Methane Retrieval Algorithms Based on Satellite: A Review
As the second most predominant greenhouse gas, methane-targeted emission mitigation holds the potential to decelerate the pace of global warming. Satellite remote sensing is an important monitoring tool, and we review developments in the satellite detection of methane. This paper provides an overvie...
Saved in:
Published in | Atmosphere Vol. 15; no. 4; p. 449 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the second most predominant greenhouse gas, methane-targeted emission mitigation holds the potential to decelerate the pace of global warming. Satellite remote sensing is an important monitoring tool, and we review developments in the satellite detection of methane. This paper provides an overview of the various types of satellites, including the various instrument parameters, and describes the different types of satellite retrieval algorithms. In addition, the currently popular methane point source quantification method is presented. Based on existing research, we delineate the classification of methane remote sensing satellites into two overarching categories: area flux mappers and point source imagers. Area flux mappers primarily concentrate on the assessment of global or large-scale methane concentrations, with a further subclassification into active remote sensing satellites (e.g., MERLIN) and passive remote sensing satellites (e.g., TROPOMI, GOSAT), contingent upon the remote sensing methodology employed. Such satellites are mainly based on physical models and the carbon dioxide proxy method for the retrieval of methane. Point source imagers, in contrast, can detect methane point source plumes using their ultra-high spatial resolution. Subcategories within this classification include multispectral imagers (e.g., Sentinel-2, Landsat-8) and hyperspectral imagers (e.g., PRISMA, GF-5), contingent upon their spectral resolution disparities. Area flux mappers are mostly distinguished by their use of physical algorithms, while point source imagers are dominated by data-driven methods. Furthermore, methane plume emissions can be accurately quantified through the utilization of an integrated mass enhancement model. Finally, a prediction of the future trajectory of methane remote sensing satellites is presented, in consideration of the current landscape. This paper aims to provide basic theoretical support for subsequent scientific research. |
---|---|
AbstractList | As the second most predominant greenhouse gas, methane-targeted emission mitigation holds the potential to decelerate the pace of global warming. Satellite remote sensing is an important monitoring tool, and we review developments in the satellite detection of methane. This paper provides an overview of the various types of satellites, including the various instrument parameters, and describes the different types of satellite retrieval algorithms. In addition, the currently popular methane point source quantification method is presented. Based on existing research, we delineate the classification of methane remote sensing satellites into two overarching categories: area flux mappers and point source imagers. Area flux mappers primarily concentrate on the assessment of global or large-scale methane concentrations, with a further subclassification into active remote sensing satellites (e.g., MERLIN) and passive remote sensing satellites (e.g., TROPOMI, GOSAT), contingent upon the remote sensing methodology employed. Such satellites are mainly based on physical models and the carbon dioxide proxy method for the retrieval of methane. Point source imagers, in contrast, can detect methane point source plumes using their ultra-high spatial resolution. Subcategories within this classification include multispectral imagers (e.g., Sentinel-2, Landsat-8) and hyperspectral imagers (e.g., PRISMA, GF-5), contingent upon their spectral resolution disparities. Area flux mappers are mostly distinguished by their use of physical algorithms, while point source imagers are dominated by data-driven methods. Furthermore, methane plume emissions can be accurately quantified through the utilization of an integrated mass enhancement model. Finally, a prediction of the future trajectory of methane remote sensing satellites is presented, in consideration of the current landscape. This paper aims to provide basic theoretical support for subsequent scientific research. |
Author | Cao, Xifeng Zhang, Lu Zhang, Xingying Jiang, Yuhan |
Author_xml | – sequence: 1 givenname: Yuhan surname: Jiang fullname: Jiang, Yuhan – sequence: 2 givenname: Lu surname: Zhang fullname: Zhang, Lu – sequence: 3 givenname: Xingying surname: Zhang fullname: Zhang, Xingying – sequence: 4 givenname: Xifeng surname: Cao fullname: Cao, Xifeng |
BookMark | eNptkM1LAzEQxYNUsNYevS94Xp1Nsptdb7X4UVAEP84hm8y2KdtNTdKK_72rVVBxLjMMv3m8eYdk0LkOCTnO4JSxCs5UXLmQ5cCB82qPDCkIlnLO2ODHfEDGISyhL14xyviQVHcYF6rD5AGjt7hVbTJp587buFiF5EIFNInrkkcVsW1txPNk0qNbi69HZL9RbcDxVx-R56vLp-lNent_PZtOblPNBMS0pqYodCkaXuQZoEbGMxBYmbIGoXjJhQEoTAMVZVmmqppC_w6Y2hihUBdsRGY7XePUUq69XSn_Jp2y8nPh_FwqH61uUeaaoqobrUEITpkohckxFxQLYQQ2Ta91stNae_eywRDl0m1819uXDHhRVJkA6Cm2o7R3IXhspLZRReu66JVtZQbyI3L5K_L-Kv1z9e31f_4dMHSDlA |
CitedBy_id | crossref_primary_10_3390_s25071974 crossref_primary_10_62660_bcstu_3_2024_65 crossref_primary_10_1016_j_jenvman_2025_124705 |
Cites_doi | 10.5194/amt-15-3401-2022 10.5194/acp-19-14721-2019 10.1073/pnas.2202742119 10.5194/essd-2023-331 10.5194/essd-12-1561-2020 10.12952/journal.elementa.000067 10.5194/acp-15-7049-2015 10.5194/amt-13-6755-2020 10.1088/1748-9326/ab9ed2 10.5194/amt-14-2127-2021 10.5194/acp-18-4935-2018 10.1016/j.rse.2013.03.018 10.1029/2012JD017549 10.5194/amt-14-3909-2021 10.5194/amt-6-2255-2013 10.1126/science.aar7204 10.3390/rs9111159 10.1038/s41598-020-57678-4 10.1073/pnas.1908712116 10.1016/j.rse.2021.112461 10.5194/amt-15-1657-2022 10.1063/1.2914664 10.1073/pnas.1103910108 10.5194/amt-8-3433-2015 10.1029/2007JG000500 10.1002/2016GL069079 10.1126/science.1106644 10.1021/acs.est.1c04873 10.1126/sciadv.abf4507 10.5194/amt-12-5655-2019 10.5194/amt-11-5673-2018 10.1109/WACV45572.2020.9093600 10.1029/RG014i004p00609 10.5194/amt-14-117-2021 10.5194/acp-16-14371-2016 10.5194/amt-15-6585-2022 10.5194/amt-14-7999-2021 10.1021/acs.estlett.1c00173 10.1021/acs.est.1c08575 10.1016/j.ese.2022.100210 10.5194/amt-17-863-2024 10.5194/amt-14-665-2021 10.1021/acs.est.0c01213 10.1038/s41558-018-0095-z 10.1029/2019GL083798 10.5194/acp-22-11203-2022 10.1002/2018GL077259 10.1109/TGRS.2020.2976888 10.1016/j.rse.2021.112579 10.1073/pnas.2107632118 10.5194/amt-4-717-2011 10.5194/acp-21-4339-2021 10.5194/egusphere-2023-563 10.5194/acp-21-3643-2021 10.5194/acp-22-10809-2022 10.1016/j.jqsrt.2016.05.022 10.5194/amt-12-6771-2019 10.5194/amt-9-5423-2016 10.5194/amt-16-89-2023 10.5194/amt-7-491-2014 10.1038/s41598-023-30761-2 10.1016/j.rse.2021.112809 10.5194/acp-5-1731-2005 10.5194/acp-22-9617-2022 10.1073/pnas.0708986104 10.5194/acp-5-9-2005 10.1109/IJCNN48605.2020.9207656 10.5194/acp-5-941-2005 10.3390/rs9101052 10.1021/acs.est.6b04303 10.21203/rs.3.rs-3855832/v1 10.1038/ngeo1955 10.1016/j.rse.2023.113652 10.1088/1748-9326/abf9c8 10.1021/acs.est.2c02136 10.5194/acp-21-4637-2021 10.1016/j.rse.2021.112671 10.1038/s41586-019-1720-3 10.1029/2011GL047871 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QH 7ST 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI DOA |
DOI | 10.3390/atmos15040449 |
DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2073-4433 |
ExternalDocumentID | oai_doaj_org_article_5c2eabfcc077423787d5e572e67d7eff 10_3390_atmos15040449 |
GeographicLocations | North America |
GeographicLocations_xml | – name: North America |
GroupedDBID | 2XV 5VS 8FE 8FH AAFWJ AAHBH AAYXX ADMLS AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BENPR BHPHI BKSAR CCPQU CITATION D1K GROUPED_DOAJ HCIFZ IAO ITC K6- KQ8 MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC 7QH 7ST 7TG 7TN 7UA ABUWG AZQEC C1K DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c370t-b2d66c87f46510ece34107e9d8b07a4847d006df092311a9b203900dbdd7aec63 |
IEDL.DBID | DOA |
ISSN | 2073-4433 |
IngestDate | Wed Aug 27 01:24:38 EDT 2025 Mon Jun 30 07:33:49 EDT 2025 Tue Jul 01 00:23:19 EDT 2025 Thu Apr 24 22:54:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-b2d66c87f46510ece34107e9d8b07a4847d006df092311a9b203900dbdd7aec63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/5c2eabfcc077423787d5e572e67d7eff |
PQID | 3046691700 |
PQPubID | 2032431 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c2eabfcc077423787d5e572e67d7eff proquest_journals_3046691700 crossref_citationtrail_10_3390_atmos15040449 crossref_primary_10_3390_atmos15040449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Atmosphere |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shen (ref_32) 2021; 260 Turner (ref_27) 2015; 15 Guanter (ref_41) 2022; 56 Jackson (ref_7) 2020; 15 Thorpe (ref_57) 2014; 7 Jervis (ref_71) 2021; 14 Hu (ref_45) 2018; 45 Buchwitz (ref_53) 2005; 5 Reuter (ref_62) 2022; 15 Zhang (ref_2) 2022; 119 Parker (ref_16) 2011; 38 Kirschke (ref_6) 2013; 6 Erland (ref_15) 2022; 56 Frankenberg (ref_55) 2005; 5 ref_12 Hu (ref_47) 2016; 9 ref_52 Lorente (ref_48) 2022; 15 Huang (ref_50) 2020; 13 Nassar (ref_79) 2021; 264 Thompson (ref_17) 2018; 18 ref_19 Xiong (ref_59) 2013; 6 Jia (ref_42) 2022; 12 Worden (ref_24) 2015; 8 ref_61 Schultz (ref_18) 2015; 3 Jongaramrungruang (ref_67) 2021; 14 Saunois (ref_1) 2020; 12 Froitzheim (ref_8) 2021; 118 Lunt (ref_5) 2019; 19 Schneising (ref_85) 2019; 12 Veefkind (ref_44) 2020; 10 ref_63 Boucher (ref_9) 2010; 48 Alvarez (ref_22) 2018; 361 Navab (ref_78) 2015; Volume 9351 ref_29 Varon (ref_37) 2019; 46 Sherwin (ref_82) 2023; 13 Jacob (ref_26) 2022; 22 Lu (ref_28) 2021; 21 ref_72 Liou (ref_23) 1981; 34 David (ref_73) 2021; 14 Pandey (ref_43) 2019; 116 ref_35 Sun (ref_64) 2021; 14 Chen (ref_33) 2022; 22 Liuzzi (ref_60) 2016; 182 ref_77 ref_76 ref_75 ref_74 Varon (ref_66) 2023; 16 Varon (ref_80) 2018; 11 Jacob (ref_25) 2016; 16 ref_38 Koven (ref_10) 2011; 108 Shen (ref_34) 2022; 22 Pei (ref_70) 2023; 295 Varon (ref_36) 2022; 15 Varon (ref_83) 2020; 54 Rodgers (ref_51) 1976; 14 Yoshida (ref_84) 2011; 4 Lorente (ref_46) 2021; 14 Guanter (ref_40) 2021; 7 Maasakkers (ref_30) 2021; 21 Brandt (ref_65) 2016; 50 Foote (ref_69) 2020; 58 Ocko (ref_14) 2021; 16 Peters (ref_58) 2007; 104 Zhang (ref_31) 2021; 21 MacLean (ref_86) 2024; 17 ref_3 Guanter (ref_68) 2021; 265 Frankenberg (ref_54) 2005; 308 Dentener (ref_4) 2005; 5 Duren (ref_13) 2019; 575 Cusworth (ref_56) 2019; 12 Knoblauch (ref_11) 2018; 8 Thompson (ref_21) 2016; 43 Cusworth (ref_39) 2021; 8 Schepers (ref_49) 2012; 117 Thorpe (ref_20) 2013; 134 Jongaramrungruang (ref_81) 2022; 269 |
References_xml | – volume: 15 start-page: 3401 year: 2022 ident: ref_62 article-title: Retrieval of Greenhouse Gases from GOSAT and GOSAT-2 Using the FOCAL Algorithm publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-3401-2022 – volume: 19 start-page: 14721 year: 2019 ident: ref_5 article-title: An Increase in Methane Emissions from Tropical Africa between 2010 and 2016 Inferred from Satellite Data publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-14721-2019 – volume: 119 start-page: e2202742119 year: 2022 ident: ref_2 article-title: Observed Changes in China’s Methane Emissions Linked to Policy Drivers publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2202742119 – ident: ref_19 doi: 10.5194/essd-2023-331 – volume: 12 start-page: 1561 year: 2020 ident: ref_1 article-title: The Global Methane Budget 2000–2017 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-1561-2020 – volume: 3 start-page: 000067 year: 2015 ident: ref_18 article-title: The Global Atmosphere Watch Reactive Gases Measurement Network publication-title: Elem. Sci. Anthr. doi: 10.12952/journal.elementa.000067 – volume: 15 start-page: 7049 year: 2015 ident: ref_27 article-title: Estimating Global and North American Methane Emissions with High Spatial Resolution Using GOSAT Satellite Data publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-7049-2015 – volume: 13 start-page: 6755 year: 2020 ident: ref_50 article-title: Quantifying the Impact of Aerosol Scattering on the Retrieval of Methane from Airborne Remote Sensing Measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-13-6755-2020 – volume: 15 start-page: 071002 year: 2020 ident: ref_7 article-title: Increasing Anthropogenic Methane Emissions Arise Equally from Agricultural and Fossil Fuel Sources publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab9ed2 – volume: 14 start-page: 2127 year: 2021 ident: ref_71 article-title: The GHGSat-D Imaging Spectrometer publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-2127-2021 – volume: 18 start-page: 4935 year: 2018 ident: ref_17 article-title: The Network for the Detection of Atmospheric Composition Change (NDACC): History, Status and Perspectives publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-4935-2018 – volume: 134 start-page: 305 year: 2013 ident: ref_20 article-title: High Resolution Mapping of Methane Emissions from Marine and Terrestrial Sources Using a Cluster-Tuned Matched Filter Technique and Imaging Spectrometry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.03.018 – volume: 117 start-page: D10 year: 2012 ident: ref_49 article-title: Methane Retrievals from Greenhouse Gases Observing Satellite (GOSAT) Shortwave Infrared Measurements: Performance Comparison of Proxy and Physics Retrieval Algorithms publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2012JD017549 – volume: 14 start-page: 3909 year: 2021 ident: ref_64 article-title: Retrieval Algorithm for the Column CO2 Mixing Ratio from Pulsed Multi-Wavelength Lidar Measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-3909-2021 – volume: 6 start-page: 2255 year: 2013 ident: ref_59 article-title: Mid-Upper Tropospheric Methane Retrieval from IASI and Its Validation publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-6-2255-2013 – volume: 361 start-page: 186 year: 2018 ident: ref_22 article-title: Assessment of Methane Emissions from the U.S. Oil and Gas Supply Chain publication-title: Science doi: 10.1126/science.aar7204 – ident: ref_61 doi: 10.3390/rs9111159 – volume: 10 start-page: 1379 year: 2020 ident: ref_44 article-title: Daily Satellite Observations of Methane from Oil and Gas Production Regions in the United States publication-title: Sci. Rep. doi: 10.1038/s41598-020-57678-4 – volume: 116 start-page: 26376 year: 2019 ident: ref_43 article-title: Satellite Observations Reveal Extreme Methane Leakage from a Natural Gas Well Blowout publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1908712116 – volume: 260 start-page: 112461 year: 2021 ident: ref_32 article-title: Unravelling a Large Methane Emission Discrepancy in Mexico Using Satellite Observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112461 – volume: 15 start-page: 1657 year: 2022 ident: ref_36 article-title: Mapping Methane Plumes at Very High Spatial Resolution with the WorldView-3 Satellite publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-1657-2022 – volume: 34 start-page: 66 year: 1981 ident: ref_23 article-title: An Introduction to Atmospheric Radiation publication-title: Phys. Today doi: 10.1063/1.2914664 – volume: 108 start-page: 14769 year: 2011 ident: ref_10 article-title: Permafrost Carbon-Climate Feedbacks Accelerate Global Warming publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1103910108 – volume: 8 start-page: 3433 year: 2015 ident: ref_24 article-title: Quantifying Lower Tropospheric Methane Concentrations Using GOSAT Near-IR and TES Thermal IR Measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-8-3433-2015 – ident: ref_29 doi: 10.1029/2007JG000500 – volume: 43 start-page: 6571 year: 2016 ident: ref_21 article-title: Space-Based Remote Imaging Spectroscopy of the Aliso Canyon CH4 Superemitter publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069079 – volume: 308 start-page: 1010 year: 2005 ident: ref_54 article-title: Assessing Methane Emissions from Global Space-Borne Observations publication-title: Science doi: 10.1126/science.1106644 – volume: 56 start-page: 2143 year: 2022 ident: ref_41 article-title: Satellites Detect Abatable Super-Emissions in One of the World’s Largest Methane Hotspot Regions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04873 – volume: 7 start-page: eabf4507 year: 2021 ident: ref_40 article-title: Satellite-Based Survey of Extreme Methane Emissions in the Permian Basin publication-title: Sci. Adv. doi: 10.1126/sciadv.abf4507 – volume: 12 start-page: 5655 year: 2019 ident: ref_56 article-title: Potential of Next-Generation Imaging Spectrometers to Detect and Quantify Methane Point Sources from Space publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-5655-2019 – volume: 11 start-page: 5673 year: 2018 ident: ref_80 article-title: Quantifying Methane Point Sources from Fine-Scale Satellite Observations of Atmospheric Methane Plumes publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-5673-2018 – ident: ref_74 doi: 10.1109/WACV45572.2020.9093600 – volume: 14 start-page: 609 year: 1976 ident: ref_51 article-title: Retrieval of Atmospheric Temperature and Composition from Remote Measurements of Thermal Radiation publication-title: Rev. Geophys. doi: 10.1029/RG014i004p00609 – ident: ref_52 – volume: 14 start-page: 117 year: 2021 ident: ref_73 article-title: XCO2 Estimates from the OCO-2 Measurements Using a Neural Network Approach publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-117-2021 – volume: 16 start-page: 14371 year: 2016 ident: ref_25 article-title: Satellite Observations of Atmospheric Methane and Their Value for Quantifying Methane Emissions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-14371-2016 – volume: 15 start-page: 6585 year: 2022 ident: ref_48 article-title: Evaluation of the Methane Full-Physics Retrieval Applied to TROPOMI Ocean Sun Glint Measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-6585-2022 – volume: 14 start-page: 7999 year: 2021 ident: ref_67 article-title: Remote Sensing of Methane Plumes: Instrument Tradeoff Analysis for Detecting and Quantifying Local Sources at Global Scale publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-7999-2021 – volume: Volume 9351 start-page: 234 year: 2015 ident: ref_78 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015 – volume: 8 start-page: 567 year: 2021 ident: ref_39 article-title: Intermittency of Large Methane Emitters in the Permian Basin publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.1c00173 – ident: ref_38 doi: 10.1021/acs.est.1c08575 – volume: 12 start-page: 100210 year: 2022 ident: ref_42 article-title: The Nord Stream Pipeline Gas Leaks Released Approximately 220,000 Tonnes of Methane into the Atmosphere publication-title: Environ. Sci. Ecotechnol. doi: 10.1016/j.ese.2022.100210 – volume: 17 start-page: 863 year: 2024 ident: ref_86 article-title: Offshore Methane Detection and Quantification from Space Using Sun Glint Measurements with the GHGSat Constellation publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-17-863-2024 – volume: 48 start-page: 4 year: 2010 ident: ref_9 article-title: Possible Role of Wetlands, Permafrost, and Methane Hydrates in the Methane Cycle under Future Climate Change: A Review publication-title: Rev. Geophys. – volume: 14 start-page: 665 year: 2021 ident: ref_46 article-title: Methane Retrieved from TROPOMI: Improvement of the Data Product and Validation of the First 2 Years of Measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-665-2021 – volume: 54 start-page: 10246 year: 2020 ident: ref_83 article-title: Quantifying Time-Averaged Methane Emissions from Individual Coal Mine Vents with GHGSat-D Satellite Observations publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01213 – volume: 8 start-page: 309 year: 2018 ident: ref_11 article-title: Methane Production as Key to the Greenhouse Gas Budget of Thawing Permafrost publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0095-z – volume: 46 start-page: 13507 year: 2019 ident: ref_37 article-title: Satellite Discovery of Anomalously Large Methane Point Sources From Oil/Gas Production publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL083798 – volume: 22 start-page: 11203 year: 2022 ident: ref_34 article-title: Satellite Quantification of Oil and Natural Gas Methane Emissions in the US and Canada Including Contributions from Individual Basins publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-22-11203-2022 – volume: 45 start-page: 3682 year: 2018 ident: ref_45 article-title: Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT publication-title: Geophys. Res. Lett. doi: 10.1002/2018GL077259 – volume: 58 start-page: 6480 year: 2020 ident: ref_69 article-title: Fast and Accurate Retrieval of Methane Concentration From Imaging Spectrometer Data Using Sparsity Prior publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2976888 – volume: 264 start-page: 112579 year: 2021 ident: ref_79 article-title: Advances in Quantifying Power Plant CO2 Emissions with OCO-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112579 – volume: 118 start-page: e2107632118 year: 2021 ident: ref_8 article-title: Methane Release from Carbonate Rock Formations in the Siberian Permafrost Area during and after the 2020 Heat Wave publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2107632118 – volume: 4 start-page: 717 year: 2011 ident: ref_84 article-title: Retrieval Algorithm for CO2 and CH4 Column Abundances from Short-Wavelength Infrared Spectral Observations by the Greenhouse Gases Observing Satellite publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-4-717-2011 – volume: 21 start-page: 4339 year: 2021 ident: ref_30 article-title: 2010–2015 North American Methane Emissions, Sectoral Contributions, and Trends: A High-Resolution Inversion of GOSAT Observations of Atmospheric Methane publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-4339-2021 – ident: ref_77 doi: 10.5194/egusphere-2023-563 – volume: 21 start-page: 3643 year: 2021 ident: ref_31 article-title: Attribution of the Accelerating Increase in Atmospheric Methane during 2010–2018 by Inverse Analysis of GOSAT Observations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-3643-2021 – ident: ref_76 – ident: ref_3 – volume: 22 start-page: 10809 year: 2022 ident: ref_33 article-title: Methane Emissions from China: A High-Resolution Inversion of TROPOMI Satellite Observations publication-title: Atmos. Chem. Phys. Discuss. doi: 10.5194/acp-22-10809-2022 – volume: 182 start-page: 128 year: 2016 ident: ref_60 article-title: Physical Inversion of the Full IASI Spectra: Assessment of Atmospheric Parameters Retrievals, Consistency of Spectroscopy and Forward Modelling publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2016.05.022 – volume: 12 start-page: 6771 year: 2019 ident: ref_85 article-title: A Scientific Algorithm to Simultaneously Retrieve Carbon Monoxide and Methane from TROPOMI Onboard Sentinel-5 Precursor publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-6771-2019 – volume: 9 start-page: 5423 year: 2016 ident: ref_47 article-title: The Operational Methane Retrieval Algorithm for TROPOMI publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-9-5423-2016 – volume: 16 start-page: 89 year: 2023 ident: ref_66 article-title: Understanding the Potential of Sentinel-2 for Monitoring Methane Point Emissions publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-16-89-2023 – volume: 7 start-page: 491 year: 2014 ident: ref_57 article-title: Retrieval Techniques for Airborne Imaging of Methane Concentrations Using High Spatial and Moderate Spectral Resolution: Application to AVIRIS publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-7-491-2014 – volume: 13 start-page: 3836 year: 2023 ident: ref_82 article-title: Single-Blind Validation of Space-Based Point-Source Detection and Quantification of Onshore Methane Emissions publication-title: Sci. Rep. doi: 10.1038/s41598-023-30761-2 – volume: 269 start-page: 112809 year: 2022 ident: ref_81 article-title: MethaNet–An AI-Driven Approach to Quantifying Methane Point-Source Emission from High-Resolution 2-D Plume Imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112809 – volume: 5 start-page: 1731 year: 2005 ident: ref_4 article-title: The Impact of Air Pollutant and Methane Emission Controls on Tropospheric Ozone and Radiative Forcing: CTM Calculations for the Period 1990–2030 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-5-1731-2005 – volume: 22 start-page: 9617 year: 2022 ident: ref_26 article-title: Quantifying Methane Emissions from the Global Scale down to Point Sources Using Satellite Observations of Atmospheric Methane publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-22-9617-2022 – volume: 104 start-page: 18925 year: 2007 ident: ref_58 article-title: An Atmospheric Perspective on North American Carbon Dioxide Exchange: CarbonTracker publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708986104 – volume: 5 start-page: 9 year: 2005 ident: ref_55 article-title: Iterative Maximum a Posteriori (IMAP)-DOAS for Retrieval of Strongly Absorbing Trace Gases: Model Studies for CH4 and CO2 Retrieval from near Infrared Spectra of SCIAMACHY Onboard publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-5-9-2005 – ident: ref_75 – ident: ref_72 doi: 10.1109/IJCNN48605.2020.9207656 – ident: ref_12 – volume: 5 start-page: 941 year: 2005 ident: ref_53 article-title: Atmospheric Methane and Carbon Dioxide from SCIAMACHY Satellite Data: Initial Comparison with Chemistry and Transport Models publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-5-941-2005 – ident: ref_63 doi: 10.3390/rs9101052 – volume: 50 start-page: 12512 year: 2016 ident: ref_65 article-title: Methane Leaks from Natural Gas Systems Follow Extreme Distributions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04303 – ident: ref_35 doi: 10.21203/rs.3.rs-3855832/v1 – volume: 6 start-page: 813 year: 2013 ident: ref_6 article-title: Three Decades of Global Methane Sources and Sinks publication-title: Nat. Geosci. doi: 10.1038/ngeo1955 – volume: 295 start-page: 113652 year: 2023 ident: ref_70 article-title: Improving Quantification of Methane Point Source Emissions from Imaging Spectroscopy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113652 – volume: 16 start-page: 054042 year: 2021 ident: ref_14 article-title: Acting Rapidly to Deploy Readily Available Methane Mitigation Measures by Sector Can Immediately Slow Global Warming publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abf9c8 – volume: 56 start-page: 16567 year: 2022 ident: ref_15 article-title: Recent Advances Toward Transparent Methane Emissions Monitoring: A Review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c02136 – volume: 21 start-page: 4637 year: 2021 ident: ref_28 article-title: Global Methane Budget and Trend, 2010–2017: Complementarity of Inverse Analyses Using in Situ (GLOBALVIEWplus CH4 ObsPack) and Satellite (GOSAT) Observations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-4637-2021 – volume: 265 start-page: 112671 year: 2021 ident: ref_68 article-title: Mapping Methane Point Emissions with the PRISMA Spaceborne Imaging Spectrometer publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112671 – volume: 575 start-page: 180 year: 2019 ident: ref_13 article-title: California’s Methane Super-Emitters publication-title: Nature doi: 10.1038/s41586-019-1720-3 – volume: 38 start-page: 15 year: 2011 ident: ref_16 article-title: Methane Observations from the Greenhouse Gases Observing SATellite: Comparison to Ground-Based TCCON Data and Model Calculations: GOSAT CH 4 OBSERVATIONS publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL047871 |
SSID | ssj0000493234 |
Score | 2.3278208 |
SecondaryResourceType | review_article |
Snippet | As the second most predominant greenhouse gas, methane-targeted emission mitigation holds the potential to decelerate the pace of global warming. Satellite... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 449 |
SubjectTerms | Active satellites Algorithms Atmosphere Carbon dioxide Classification Climate change Emissions Fluctuations Gas industry Global warming Greenhouse effect Greenhouse gases Landsat Landsat satellites Methane Mitigation Permafrost Plumes point source detection Radiation Remote sensing Retrieval retrieval algorithm Satellite imagery satellite remote sensing Satellites Scientific research Spatial discrimination Spatial resolution Spectral resolution Water pollution |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qXnwRP3F-kQfZk2UxbZLVF9lEEUGRqbC3ko-rCrPVrfr3e2mzqYg-tkkhveTufncXfkfIIecpqETHkTMxRElPq8jAsYvAithIK6Q1PqF_fSMvH5KrkRiFhNs0XKuc2cTaULvS-hx511fwZOrZ5E5f3yLfNcpXV0MLjUXSQhPcw-CrNTi_uR3OsyyIf2MeJw25ZozxfVdXL-UUUVDCEs-f-c0Z1Zz9v0xy7WcuVslKAIi03-zoGlmAYp20rxHblpM6BU479Gz8jECzftogKY496QLosG6O9eE_Hj_i0qunlykdoJdytCzona65Nys4oX3aVAQ2ycPF-f3ZZRQaIkQ2VqyKDHdS2p7KfQNzBhbQBTEFqesZpnSCjsahErmcedR2rFPDGf4yc8Y5pcHKeIssFWUB24Rym0vJTWo0BkRagLGOg865yC03wug2OZpJJrOBLdw3rRhnGDV4QWY_BNkmnfn014Ym46-JAy_m-STPbl2_KCePWVCWTFhci8mtZcoXktGmOAFCcZDKKcjzNtmbbVIWVG6afR2Qnf-Hd8kyR2TSXL_ZI0vV5B32EVlU5iAcn0_0Rc-q priority: 102 providerName: ProQuest |
Title | Methane Retrieval Algorithms Based on Satellite: A Review |
URI | https://www.proquest.com/docview/3046691700 https://doaj.org/article/5c2eabfcc077423787d5e572e67d7eff |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-iFy_iJ9aPkYPsZFmWNsnqzY3JEBSZCt5KPl6dsrWyVf9-X9pOJiJePLZ9pc17SX6_l4TfI-SM8wRUrKPQmQjCuKdVaKDrQrAiMtIKaY1f0L-5laPH-PpJPK2U-vJnwmp54NpxHWE5aJNZy5TfVMT-5QQIxUEqpyDL_OyLmLeSTL3WvDfiUVyLakaY13d0OSsWyH5iFnvdzBUQqrT6f0zFFb5cbZOthhjSy_qHdsga5LskuEFOW8yrpW_apoPpCxLM6mqPJPhsonOg46oo1od_efpcYLI_mS1oH9HJ0SKn97rS3Czhgl7SeidgnzxeDR8Go7AphBDaSLEyNNxJaXsq84XLGVhA6GEKEtczTOkYAcbh4HEZ82ytqxPDGTaZOeOc0mBldEDW8yKHQ0K5zaTkJjEaEyEtwFiH_s24yCw3wuiAnC89k9pGJdwXq5immC14R6bfHBmQ9pf5Wy2P8Zth37v5y8irWlc3MNZpE-v0r1gH5GQZpLQZaovUb-3KxMsMHv3HN47JJkfeUh_OOSHr5fwdTpF3lKZFNvrD27txq-pqnxUO2Wk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_g8aAvxs94gLoPypMNy267ezUxhEPIIdzFICS81f2YgsnRwl2V8E_xNzrbj1Nj9I3HtrtNMzs785uZ7W8A3giRoo6NjLyVGMUDoyOLmz5Cl0irXKKcDQn98USNTuJPp8npEtx2_8KEY5WdTawNtS9dyJFvhAqeSgOb3NblVRS6RoXqatdCo1GLA7y5ppBt_mH_I63vWyH2do93RlHbVSByUvMqssIr5QY6D13AOTokO841pn5guTYxWWtPmuhzHqDPpkmt4DLl3FvvtUGnJL33HizHkkKZHiwPdyefjxZZHcLbUsi4IfOUNG_DVBflnFBXzOPA1_mb86t7BPzlAmq_tvcIHraAlG03GvQYlrB4Av0xYelyVqfc2TrbmX4jYFtfPYWUnp2bAtlR3YzrR5g8PSNRVecXczYkr-hZWbAvpub6rPA922ZNBeIZnNyJqJ5DrygLfAFMuFwpYVNrKAAzCVrnBZpcJLkTNrGmD-86yWSuZScPTTKmGUUpQZDZH4Lsw_pi-GVDy_GvgcMg5sWgwKZd3yhnZ1m7ObPE0bfY3DmuQ-GabJhPMNEClfYa87wPa90iZe0Wn2e_FHLl_49fw_3R8fgwO9yfHKzCA0GoqDn6swa9avYdXxKqqeyrVpUYfL1r7f0JAuEL2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRhfjJ_xAHUflCebW3bb3auJIRxwAZELQUl4q_sxBZOjhbsq4V_jr3O2H6fG6BuPbXebZnZ25jcz298AvBEiRR0bGXkrMYqHRkcWN3yELpFWuUQ5GxL6hxO1dxJ_PE1Ol-C2-xcmHKvsbGJtqH3pQo58ECp4Kg1scoO8PRZxtDPevLyKQgepUGnt2mk0KnKAN9cUvs0_7O_QWr8VYrz7ZXsvajsMRE5qXkVWeKXcUOehIzhHh2TTucbUDy3XJibL7Ukrfc4DDNowqRVcppx767026JSk996DZU1REe_B8mh3cnS8yPAQ9pZCxg2xp6R5A1NdlHNCYDGPA3fnb46w7hfwlzuofdz4ETxswSnbarTpMSxh8QT6h4Sry1mdfmfrbHv6jUBuffUUUnp2bgpkx3Vjrh9h8vSMRFWdX8zZiDykZ2XBPpua97PC92yLNdWIZ3ByJ6J6Dr2iLPAFMOFypYRNraFgzCRonRdocpHkTtjEmj686ySTuZapPDTMmGYUsQRBZn8Isg_ri-GXDUXHvwaOgpgXgwKzdn2jnJ1l7UbNEkffYnPnuA5FbLJnPsFEC1Taa8zzPqx1i5S1232e_VLOlf8_fg33SWuzT_uTg1V4IAggNaeA1qBXzb7jSwI4lX3VahKDr3etvD8BMbcQDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+Retrieval+Algorithms+Based+on+Satellite%3A+A+Review&rft.jtitle=Atmosphere&rft.au=Yuhan+Jiang&rft.au=Lu+Zhang&rft.au=Xingying+Zhang&rft.au=Xifeng+Cao&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2073-4433&rft.volume=15&rft.issue=4&rft.spage=449&rft_id=info:doi/10.3390%2Fatmos15040449&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c2eabfcc077423787d5e572e67d7eff |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon |