Methane Retrieval Algorithms Based on Satellite: A Review

As the second most predominant greenhouse gas, methane-targeted emission mitigation holds the potential to decelerate the pace of global warming. Satellite remote sensing is an important monitoring tool, and we review developments in the satellite detection of methane. This paper provides an overvie...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 15; no. 4; p. 449
Main Authors Jiang, Yuhan, Zhang, Lu, Zhang, Xingying, Cao, Xifeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the second most predominant greenhouse gas, methane-targeted emission mitigation holds the potential to decelerate the pace of global warming. Satellite remote sensing is an important monitoring tool, and we review developments in the satellite detection of methane. This paper provides an overview of the various types of satellites, including the various instrument parameters, and describes the different types of satellite retrieval algorithms. In addition, the currently popular methane point source quantification method is presented. Based on existing research, we delineate the classification of methane remote sensing satellites into two overarching categories: area flux mappers and point source imagers. Area flux mappers primarily concentrate on the assessment of global or large-scale methane concentrations, with a further subclassification into active remote sensing satellites (e.g., MERLIN) and passive remote sensing satellites (e.g., TROPOMI, GOSAT), contingent upon the remote sensing methodology employed. Such satellites are mainly based on physical models and the carbon dioxide proxy method for the retrieval of methane. Point source imagers, in contrast, can detect methane point source plumes using their ultra-high spatial resolution. Subcategories within this classification include multispectral imagers (e.g., Sentinel-2, Landsat-8) and hyperspectral imagers (e.g., PRISMA, GF-5), contingent upon their spectral resolution disparities. Area flux mappers are mostly distinguished by their use of physical algorithms, while point source imagers are dominated by data-driven methods. Furthermore, methane plume emissions can be accurately quantified through the utilization of an integrated mass enhancement model. Finally, a prediction of the future trajectory of methane remote sensing satellites is presented, in consideration of the current landscape. This paper aims to provide basic theoretical support for subsequent scientific research.
AbstractList As the second most predominant greenhouse gas, methane-targeted emission mitigation holds the potential to decelerate the pace of global warming. Satellite remote sensing is an important monitoring tool, and we review developments in the satellite detection of methane. This paper provides an overview of the various types of satellites, including the various instrument parameters, and describes the different types of satellite retrieval algorithms. In addition, the currently popular methane point source quantification method is presented. Based on existing research, we delineate the classification of methane remote sensing satellites into two overarching categories: area flux mappers and point source imagers. Area flux mappers primarily concentrate on the assessment of global or large-scale methane concentrations, with a further subclassification into active remote sensing satellites (e.g., MERLIN) and passive remote sensing satellites (e.g., TROPOMI, GOSAT), contingent upon the remote sensing methodology employed. Such satellites are mainly based on physical models and the carbon dioxide proxy method for the retrieval of methane. Point source imagers, in contrast, can detect methane point source plumes using their ultra-high spatial resolution. Subcategories within this classification include multispectral imagers (e.g., Sentinel-2, Landsat-8) and hyperspectral imagers (e.g., PRISMA, GF-5), contingent upon their spectral resolution disparities. Area flux mappers are mostly distinguished by their use of physical algorithms, while point source imagers are dominated by data-driven methods. Furthermore, methane plume emissions can be accurately quantified through the utilization of an integrated mass enhancement model. Finally, a prediction of the future trajectory of methane remote sensing satellites is presented, in consideration of the current landscape. This paper aims to provide basic theoretical support for subsequent scientific research.
Author Cao, Xifeng
Zhang, Lu
Zhang, Xingying
Jiang, Yuhan
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Jiang
  fullname: Jiang, Yuhan
– sequence: 2
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
– sequence: 3
  givenname: Xingying
  surname: Zhang
  fullname: Zhang, Xingying
– sequence: 4
  givenname: Xifeng
  surname: Cao
  fullname: Cao, Xifeng
BookMark eNptkM1LAzEQxYNUsNYevS94Xp1Nsptdb7X4UVAEP84hm8y2KdtNTdKK_72rVVBxLjMMv3m8eYdk0LkOCTnO4JSxCs5UXLmQ5cCB82qPDCkIlnLO2ODHfEDGISyhL14xyviQVHcYF6rD5AGjt7hVbTJp587buFiF5EIFNInrkkcVsW1txPNk0qNbi69HZL9RbcDxVx-R56vLp-lNent_PZtOblPNBMS0pqYodCkaXuQZoEbGMxBYmbIGoXjJhQEoTAMVZVmmqppC_w6Y2hihUBdsRGY7XePUUq69XSn_Jp2y8nPh_FwqH61uUeaaoqobrUEITpkohckxFxQLYQQ2Ta91stNae_eywRDl0m1819uXDHhRVJkA6Cm2o7R3IXhspLZRReu66JVtZQbyI3L5K_L-Kv1z9e31f_4dMHSDlA
CitedBy_id crossref_primary_10_3390_s25071974
crossref_primary_10_62660_bcstu_3_2024_65
crossref_primary_10_1016_j_jenvman_2025_124705
Cites_doi 10.5194/amt-15-3401-2022
10.5194/acp-19-14721-2019
10.1073/pnas.2202742119
10.5194/essd-2023-331
10.5194/essd-12-1561-2020
10.12952/journal.elementa.000067
10.5194/acp-15-7049-2015
10.5194/amt-13-6755-2020
10.1088/1748-9326/ab9ed2
10.5194/amt-14-2127-2021
10.5194/acp-18-4935-2018
10.1016/j.rse.2013.03.018
10.1029/2012JD017549
10.5194/amt-14-3909-2021
10.5194/amt-6-2255-2013
10.1126/science.aar7204
10.3390/rs9111159
10.1038/s41598-020-57678-4
10.1073/pnas.1908712116
10.1016/j.rse.2021.112461
10.5194/amt-15-1657-2022
10.1063/1.2914664
10.1073/pnas.1103910108
10.5194/amt-8-3433-2015
10.1029/2007JG000500
10.1002/2016GL069079
10.1126/science.1106644
10.1021/acs.est.1c04873
10.1126/sciadv.abf4507
10.5194/amt-12-5655-2019
10.5194/amt-11-5673-2018
10.1109/WACV45572.2020.9093600
10.1029/RG014i004p00609
10.5194/amt-14-117-2021
10.5194/acp-16-14371-2016
10.5194/amt-15-6585-2022
10.5194/amt-14-7999-2021
10.1021/acs.estlett.1c00173
10.1021/acs.est.1c08575
10.1016/j.ese.2022.100210
10.5194/amt-17-863-2024
10.5194/amt-14-665-2021
10.1021/acs.est.0c01213
10.1038/s41558-018-0095-z
10.1029/2019GL083798
10.5194/acp-22-11203-2022
10.1002/2018GL077259
10.1109/TGRS.2020.2976888
10.1016/j.rse.2021.112579
10.1073/pnas.2107632118
10.5194/amt-4-717-2011
10.5194/acp-21-4339-2021
10.5194/egusphere-2023-563
10.5194/acp-21-3643-2021
10.5194/acp-22-10809-2022
10.1016/j.jqsrt.2016.05.022
10.5194/amt-12-6771-2019
10.5194/amt-9-5423-2016
10.5194/amt-16-89-2023
10.5194/amt-7-491-2014
10.1038/s41598-023-30761-2
10.1016/j.rse.2021.112809
10.5194/acp-5-1731-2005
10.5194/acp-22-9617-2022
10.1073/pnas.0708986104
10.5194/acp-5-9-2005
10.1109/IJCNN48605.2020.9207656
10.5194/acp-5-941-2005
10.3390/rs9101052
10.1021/acs.est.6b04303
10.21203/rs.3.rs-3855832/v1
10.1038/ngeo1955
10.1016/j.rse.2023.113652
10.1088/1748-9326/abf9c8
10.1021/acs.est.2c02136
10.5194/acp-21-4637-2021
10.1016/j.rse.2021.112671
10.1038/s41586-019-1720-3
10.1029/2011GL047871
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7ST
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
DOA
DOI 10.3390/atmos15040449
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2073-4433
ExternalDocumentID oai_doaj_org_article_5c2eabfcc077423787d5e572e67d7eff
10_3390_atmos15040449
GeographicLocations North America
GeographicLocations_xml – name: North America
GroupedDBID 2XV
5VS
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADMLS
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
KQ8
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
7QH
7ST
7TG
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c370t-b2d66c87f46510ece34107e9d8b07a4847d006df092311a9b203900dbdd7aec63
IEDL.DBID DOA
ISSN 2073-4433
IngestDate Wed Aug 27 01:24:38 EDT 2025
Mon Jun 30 07:33:49 EDT 2025
Tue Jul 01 00:23:19 EDT 2025
Thu Apr 24 22:54:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-b2d66c87f46510ece34107e9d8b07a4847d006df092311a9b203900dbdd7aec63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/5c2eabfcc077423787d5e572e67d7eff
PQID 3046691700
PQPubID 2032431
ParticipantIDs doaj_primary_oai_doaj_org_article_5c2eabfcc077423787d5e572e67d7eff
proquest_journals_3046691700
crossref_citationtrail_10_3390_atmos15040449
crossref_primary_10_3390_atmos15040449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Atmosphere
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shen (ref_32) 2021; 260
Turner (ref_27) 2015; 15
Guanter (ref_41) 2022; 56
Jackson (ref_7) 2020; 15
Thorpe (ref_57) 2014; 7
Jervis (ref_71) 2021; 14
Hu (ref_45) 2018; 45
Buchwitz (ref_53) 2005; 5
Reuter (ref_62) 2022; 15
Zhang (ref_2) 2022; 119
Parker (ref_16) 2011; 38
Kirschke (ref_6) 2013; 6
Erland (ref_15) 2022; 56
Frankenberg (ref_55) 2005; 5
ref_12
Hu (ref_47) 2016; 9
ref_52
Lorente (ref_48) 2022; 15
Huang (ref_50) 2020; 13
Nassar (ref_79) 2021; 264
Thompson (ref_17) 2018; 18
ref_19
Xiong (ref_59) 2013; 6
Jia (ref_42) 2022; 12
Worden (ref_24) 2015; 8
ref_61
Schultz (ref_18) 2015; 3
Jongaramrungruang (ref_67) 2021; 14
Saunois (ref_1) 2020; 12
Froitzheim (ref_8) 2021; 118
Lunt (ref_5) 2019; 19
Schneising (ref_85) 2019; 12
Veefkind (ref_44) 2020; 10
ref_63
Boucher (ref_9) 2010; 48
Alvarez (ref_22) 2018; 361
Navab (ref_78) 2015; Volume 9351
ref_29
Varon (ref_37) 2019; 46
Sherwin (ref_82) 2023; 13
Jacob (ref_26) 2022; 22
Lu (ref_28) 2021; 21
ref_72
Liou (ref_23) 1981; 34
David (ref_73) 2021; 14
Pandey (ref_43) 2019; 116
ref_35
Sun (ref_64) 2021; 14
Chen (ref_33) 2022; 22
Liuzzi (ref_60) 2016; 182
ref_77
ref_76
ref_75
ref_74
Varon (ref_66) 2023; 16
Varon (ref_80) 2018; 11
Jacob (ref_25) 2016; 16
ref_38
Koven (ref_10) 2011; 108
Shen (ref_34) 2022; 22
Pei (ref_70) 2023; 295
Varon (ref_36) 2022; 15
Varon (ref_83) 2020; 54
Rodgers (ref_51) 1976; 14
Yoshida (ref_84) 2011; 4
Lorente (ref_46) 2021; 14
Guanter (ref_40) 2021; 7
Maasakkers (ref_30) 2021; 21
Brandt (ref_65) 2016; 50
Foote (ref_69) 2020; 58
Ocko (ref_14) 2021; 16
Peters (ref_58) 2007; 104
Zhang (ref_31) 2021; 21
MacLean (ref_86) 2024; 17
ref_3
Guanter (ref_68) 2021; 265
Frankenberg (ref_54) 2005; 308
Dentener (ref_4) 2005; 5
Duren (ref_13) 2019; 575
Cusworth (ref_56) 2019; 12
Knoblauch (ref_11) 2018; 8
Thompson (ref_21) 2016; 43
Cusworth (ref_39) 2021; 8
Schepers (ref_49) 2012; 117
Thorpe (ref_20) 2013; 134
Jongaramrungruang (ref_81) 2022; 269
References_xml – volume: 15
  start-page: 3401
  year: 2022
  ident: ref_62
  article-title: Retrieval of Greenhouse Gases from GOSAT and GOSAT-2 Using the FOCAL Algorithm
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-15-3401-2022
– volume: 19
  start-page: 14721
  year: 2019
  ident: ref_5
  article-title: An Increase in Methane Emissions from Tropical Africa between 2010 and 2016 Inferred from Satellite Data
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-14721-2019
– volume: 119
  start-page: e2202742119
  year: 2022
  ident: ref_2
  article-title: Observed Changes in China’s Methane Emissions Linked to Policy Drivers
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2202742119
– ident: ref_19
  doi: 10.5194/essd-2023-331
– volume: 12
  start-page: 1561
  year: 2020
  ident: ref_1
  article-title: The Global Methane Budget 2000–2017
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-1561-2020
– volume: 3
  start-page: 000067
  year: 2015
  ident: ref_18
  article-title: The Global Atmosphere Watch Reactive Gases Measurement Network
  publication-title: Elem. Sci. Anthr.
  doi: 10.12952/journal.elementa.000067
– volume: 15
  start-page: 7049
  year: 2015
  ident: ref_27
  article-title: Estimating Global and North American Methane Emissions with High Spatial Resolution Using GOSAT Satellite Data
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-7049-2015
– volume: 13
  start-page: 6755
  year: 2020
  ident: ref_50
  article-title: Quantifying the Impact of Aerosol Scattering on the Retrieval of Methane from Airborne Remote Sensing Measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-13-6755-2020
– volume: 15
  start-page: 071002
  year: 2020
  ident: ref_7
  article-title: Increasing Anthropogenic Methane Emissions Arise Equally from Agricultural and Fossil Fuel Sources
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab9ed2
– volume: 14
  start-page: 2127
  year: 2021
  ident: ref_71
  article-title: The GHGSat-D Imaging Spectrometer
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-2127-2021
– volume: 18
  start-page: 4935
  year: 2018
  ident: ref_17
  article-title: The Network for the Detection of Atmospheric Composition Change (NDACC): History, Status and Perspectives
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-4935-2018
– volume: 134
  start-page: 305
  year: 2013
  ident: ref_20
  article-title: High Resolution Mapping of Methane Emissions from Marine and Terrestrial Sources Using a Cluster-Tuned Matched Filter Technique and Imaging Spectrometry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.03.018
– volume: 117
  start-page: D10
  year: 2012
  ident: ref_49
  article-title: Methane Retrievals from Greenhouse Gases Observing Satellite (GOSAT) Shortwave Infrared Measurements: Performance Comparison of Proxy and Physics Retrieval Algorithms
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2012JD017549
– volume: 14
  start-page: 3909
  year: 2021
  ident: ref_64
  article-title: Retrieval Algorithm for the Column CO2 Mixing Ratio from Pulsed Multi-Wavelength Lidar Measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-3909-2021
– volume: 6
  start-page: 2255
  year: 2013
  ident: ref_59
  article-title: Mid-Upper Tropospheric Methane Retrieval from IASI and Its Validation
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-6-2255-2013
– volume: 361
  start-page: 186
  year: 2018
  ident: ref_22
  article-title: Assessment of Methane Emissions from the U.S. Oil and Gas Supply Chain
  publication-title: Science
  doi: 10.1126/science.aar7204
– ident: ref_61
  doi: 10.3390/rs9111159
– volume: 10
  start-page: 1379
  year: 2020
  ident: ref_44
  article-title: Daily Satellite Observations of Methane from Oil and Gas Production Regions in the United States
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57678-4
– volume: 116
  start-page: 26376
  year: 2019
  ident: ref_43
  article-title: Satellite Observations Reveal Extreme Methane Leakage from a Natural Gas Well Blowout
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1908712116
– volume: 260
  start-page: 112461
  year: 2021
  ident: ref_32
  article-title: Unravelling a Large Methane Emission Discrepancy in Mexico Using Satellite Observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112461
– volume: 15
  start-page: 1657
  year: 2022
  ident: ref_36
  article-title: Mapping Methane Plumes at Very High Spatial Resolution with the WorldView-3 Satellite
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-15-1657-2022
– volume: 34
  start-page: 66
  year: 1981
  ident: ref_23
  article-title: An Introduction to Atmospheric Radiation
  publication-title: Phys. Today
  doi: 10.1063/1.2914664
– volume: 108
  start-page: 14769
  year: 2011
  ident: ref_10
  article-title: Permafrost Carbon-Climate Feedbacks Accelerate Global Warming
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1103910108
– volume: 8
  start-page: 3433
  year: 2015
  ident: ref_24
  article-title: Quantifying Lower Tropospheric Methane Concentrations Using GOSAT Near-IR and TES Thermal IR Measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-8-3433-2015
– ident: ref_29
  doi: 10.1029/2007JG000500
– volume: 43
  start-page: 6571
  year: 2016
  ident: ref_21
  article-title: Space-Based Remote Imaging Spectroscopy of the Aliso Canyon CH4 Superemitter
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069079
– volume: 308
  start-page: 1010
  year: 2005
  ident: ref_54
  article-title: Assessing Methane Emissions from Global Space-Borne Observations
  publication-title: Science
  doi: 10.1126/science.1106644
– volume: 56
  start-page: 2143
  year: 2022
  ident: ref_41
  article-title: Satellites Detect Abatable Super-Emissions in One of the World’s Largest Methane Hotspot Regions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04873
– volume: 7
  start-page: eabf4507
  year: 2021
  ident: ref_40
  article-title: Satellite-Based Survey of Extreme Methane Emissions in the Permian Basin
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf4507
– volume: 12
  start-page: 5655
  year: 2019
  ident: ref_56
  article-title: Potential of Next-Generation Imaging Spectrometers to Detect and Quantify Methane Point Sources from Space
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-5655-2019
– volume: 11
  start-page: 5673
  year: 2018
  ident: ref_80
  article-title: Quantifying Methane Point Sources from Fine-Scale Satellite Observations of Atmospheric Methane Plumes
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-5673-2018
– ident: ref_74
  doi: 10.1109/WACV45572.2020.9093600
– volume: 14
  start-page: 609
  year: 1976
  ident: ref_51
  article-title: Retrieval of Atmospheric Temperature and Composition from Remote Measurements of Thermal Radiation
  publication-title: Rev. Geophys.
  doi: 10.1029/RG014i004p00609
– ident: ref_52
– volume: 14
  start-page: 117
  year: 2021
  ident: ref_73
  article-title: XCO2 Estimates from the OCO-2 Measurements Using a Neural Network Approach
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-117-2021
– volume: 16
  start-page: 14371
  year: 2016
  ident: ref_25
  article-title: Satellite Observations of Atmospheric Methane and Their Value for Quantifying Methane Emissions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-14371-2016
– volume: 15
  start-page: 6585
  year: 2022
  ident: ref_48
  article-title: Evaluation of the Methane Full-Physics Retrieval Applied to TROPOMI Ocean Sun Glint Measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-15-6585-2022
– volume: 14
  start-page: 7999
  year: 2021
  ident: ref_67
  article-title: Remote Sensing of Methane Plumes: Instrument Tradeoff Analysis for Detecting and Quantifying Local Sources at Global Scale
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-7999-2021
– volume: Volume 9351
  start-page: 234
  year: 2015
  ident: ref_78
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015
– volume: 8
  start-page: 567
  year: 2021
  ident: ref_39
  article-title: Intermittency of Large Methane Emitters in the Permian Basin
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.1c00173
– ident: ref_38
  doi: 10.1021/acs.est.1c08575
– volume: 12
  start-page: 100210
  year: 2022
  ident: ref_42
  article-title: The Nord Stream Pipeline Gas Leaks Released Approximately 220,000 Tonnes of Methane into the Atmosphere
  publication-title: Environ. Sci. Ecotechnol.
  doi: 10.1016/j.ese.2022.100210
– volume: 17
  start-page: 863
  year: 2024
  ident: ref_86
  article-title: Offshore Methane Detection and Quantification from Space Using Sun Glint Measurements with the GHGSat Constellation
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-17-863-2024
– volume: 48
  start-page: 4
  year: 2010
  ident: ref_9
  article-title: Possible Role of Wetlands, Permafrost, and Methane Hydrates in the Methane Cycle under Future Climate Change: A Review
  publication-title: Rev. Geophys.
– volume: 14
  start-page: 665
  year: 2021
  ident: ref_46
  article-title: Methane Retrieved from TROPOMI: Improvement of the Data Product and Validation of the First 2 Years of Measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-665-2021
– volume: 54
  start-page: 10246
  year: 2020
  ident: ref_83
  article-title: Quantifying Time-Averaged Methane Emissions from Individual Coal Mine Vents with GHGSat-D Satellite Observations
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01213
– volume: 8
  start-page: 309
  year: 2018
  ident: ref_11
  article-title: Methane Production as Key to the Greenhouse Gas Budget of Thawing Permafrost
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0095-z
– volume: 46
  start-page: 13507
  year: 2019
  ident: ref_37
  article-title: Satellite Discovery of Anomalously Large Methane Point Sources From Oil/Gas Production
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL083798
– volume: 22
  start-page: 11203
  year: 2022
  ident: ref_34
  article-title: Satellite Quantification of Oil and Natural Gas Methane Emissions in the US and Canada Including Contributions from Individual Basins
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-22-11203-2022
– volume: 45
  start-page: 3682
  year: 2018
  ident: ref_45
  article-title: Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2018GL077259
– volume: 58
  start-page: 6480
  year: 2020
  ident: ref_69
  article-title: Fast and Accurate Retrieval of Methane Concentration From Imaging Spectrometer Data Using Sparsity Prior
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2976888
– volume: 264
  start-page: 112579
  year: 2021
  ident: ref_79
  article-title: Advances in Quantifying Power Plant CO2 Emissions with OCO-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112579
– volume: 118
  start-page: e2107632118
  year: 2021
  ident: ref_8
  article-title: Methane Release from Carbonate Rock Formations in the Siberian Permafrost Area during and after the 2020 Heat Wave
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2107632118
– volume: 4
  start-page: 717
  year: 2011
  ident: ref_84
  article-title: Retrieval Algorithm for CO2 and CH4 Column Abundances from Short-Wavelength Infrared Spectral Observations by the Greenhouse Gases Observing Satellite
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-4-717-2011
– volume: 21
  start-page: 4339
  year: 2021
  ident: ref_30
  article-title: 2010–2015 North American Methane Emissions, Sectoral Contributions, and Trends: A High-Resolution Inversion of GOSAT Observations of Atmospheric Methane
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-4339-2021
– ident: ref_77
  doi: 10.5194/egusphere-2023-563
– volume: 21
  start-page: 3643
  year: 2021
  ident: ref_31
  article-title: Attribution of the Accelerating Increase in Atmospheric Methane during 2010–2018 by Inverse Analysis of GOSAT Observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-3643-2021
– ident: ref_76
– ident: ref_3
– volume: 22
  start-page: 10809
  year: 2022
  ident: ref_33
  article-title: Methane Emissions from China: A High-Resolution Inversion of TROPOMI Satellite Observations
  publication-title: Atmos. Chem. Phys. Discuss.
  doi: 10.5194/acp-22-10809-2022
– volume: 182
  start-page: 128
  year: 2016
  ident: ref_60
  article-title: Physical Inversion of the Full IASI Spectra: Assessment of Atmospheric Parameters Retrievals, Consistency of Spectroscopy and Forward Modelling
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2016.05.022
– volume: 12
  start-page: 6771
  year: 2019
  ident: ref_85
  article-title: A Scientific Algorithm to Simultaneously Retrieve Carbon Monoxide and Methane from TROPOMI Onboard Sentinel-5 Precursor
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-6771-2019
– volume: 9
  start-page: 5423
  year: 2016
  ident: ref_47
  article-title: The Operational Methane Retrieval Algorithm for TROPOMI
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-9-5423-2016
– volume: 16
  start-page: 89
  year: 2023
  ident: ref_66
  article-title: Understanding the Potential of Sentinel-2 for Monitoring Methane Point Emissions
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-16-89-2023
– volume: 7
  start-page: 491
  year: 2014
  ident: ref_57
  article-title: Retrieval Techniques for Airborne Imaging of Methane Concentrations Using High Spatial and Moderate Spectral Resolution: Application to AVIRIS
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-7-491-2014
– volume: 13
  start-page: 3836
  year: 2023
  ident: ref_82
  article-title: Single-Blind Validation of Space-Based Point-Source Detection and Quantification of Onshore Methane Emissions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30761-2
– volume: 269
  start-page: 112809
  year: 2022
  ident: ref_81
  article-title: MethaNet–An AI-Driven Approach to Quantifying Methane Point-Source Emission from High-Resolution 2-D Plume Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112809
– volume: 5
  start-page: 1731
  year: 2005
  ident: ref_4
  article-title: The Impact of Air Pollutant and Methane Emission Controls on Tropospheric Ozone and Radiative Forcing: CTM Calculations for the Period 1990–2030
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-5-1731-2005
– volume: 22
  start-page: 9617
  year: 2022
  ident: ref_26
  article-title: Quantifying Methane Emissions from the Global Scale down to Point Sources Using Satellite Observations of Atmospheric Methane
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-22-9617-2022
– volume: 104
  start-page: 18925
  year: 2007
  ident: ref_58
  article-title: An Atmospheric Perspective on North American Carbon Dioxide Exchange: CarbonTracker
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708986104
– volume: 5
  start-page: 9
  year: 2005
  ident: ref_55
  article-title: Iterative Maximum a Posteriori (IMAP)-DOAS for Retrieval of Strongly Absorbing Trace Gases: Model Studies for CH4 and CO2 Retrieval from near Infrared Spectra of SCIAMACHY Onboard
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-5-9-2005
– ident: ref_75
– ident: ref_72
  doi: 10.1109/IJCNN48605.2020.9207656
– ident: ref_12
– volume: 5
  start-page: 941
  year: 2005
  ident: ref_53
  article-title: Atmospheric Methane and Carbon Dioxide from SCIAMACHY Satellite Data: Initial Comparison with Chemistry and Transport Models
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-5-941-2005
– ident: ref_63
  doi: 10.3390/rs9101052
– volume: 50
  start-page: 12512
  year: 2016
  ident: ref_65
  article-title: Methane Leaks from Natural Gas Systems Follow Extreme Distributions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04303
– ident: ref_35
  doi: 10.21203/rs.3.rs-3855832/v1
– volume: 6
  start-page: 813
  year: 2013
  ident: ref_6
  article-title: Three Decades of Global Methane Sources and Sinks
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1955
– volume: 295
  start-page: 113652
  year: 2023
  ident: ref_70
  article-title: Improving Quantification of Methane Point Source Emissions from Imaging Spectroscopy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113652
– volume: 16
  start-page: 054042
  year: 2021
  ident: ref_14
  article-title: Acting Rapidly to Deploy Readily Available Methane Mitigation Measures by Sector Can Immediately Slow Global Warming
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abf9c8
– volume: 56
  start-page: 16567
  year: 2022
  ident: ref_15
  article-title: Recent Advances Toward Transparent Methane Emissions Monitoring: A Review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c02136
– volume: 21
  start-page: 4637
  year: 2021
  ident: ref_28
  article-title: Global Methane Budget and Trend, 2010–2017: Complementarity of Inverse Analyses Using in Situ (GLOBALVIEWplus CH4 ObsPack) and Satellite (GOSAT) Observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-4637-2021
– volume: 265
  start-page: 112671
  year: 2021
  ident: ref_68
  article-title: Mapping Methane Point Emissions with the PRISMA Spaceborne Imaging Spectrometer
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112671
– volume: 575
  start-page: 180
  year: 2019
  ident: ref_13
  article-title: California’s Methane Super-Emitters
  publication-title: Nature
  doi: 10.1038/s41586-019-1720-3
– volume: 38
  start-page: 15
  year: 2011
  ident: ref_16
  article-title: Methane Observations from the Greenhouse Gases Observing SATellite: Comparison to Ground-Based TCCON Data and Model Calculations: GOSAT CH 4 OBSERVATIONS
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047871
SSID ssj0000493234
Score 2.3278208
SecondaryResourceType review_article
Snippet As the second most predominant greenhouse gas, methane-targeted emission mitigation holds the potential to decelerate the pace of global warming. Satellite...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 449
SubjectTerms Active satellites
Algorithms
Atmosphere
Carbon dioxide
Classification
Climate change
Emissions
Fluctuations
Gas industry
Global warming
Greenhouse effect
Greenhouse gases
Landsat
Landsat satellites
Methane
Mitigation
Permafrost
Plumes
point source detection
Radiation
Remote sensing
Retrieval
retrieval algorithm
Satellite imagery
satellite remote sensing
Satellites
Scientific research
Spatial discrimination
Spatial resolution
Spectral resolution
Water pollution
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qXnwRP3F-kQfZk2UxbZLVF9lEEUGRqbC3ko-rCrPVrfr3e2mzqYg-tkkhveTufncXfkfIIecpqETHkTMxRElPq8jAsYvAithIK6Q1PqF_fSMvH5KrkRiFhNs0XKuc2cTaULvS-hx511fwZOrZ5E5f3yLfNcpXV0MLjUXSQhPcw-CrNTi_uR3OsyyIf2MeJw25ZozxfVdXL-UUUVDCEs-f-c0Z1Zz9v0xy7WcuVslKAIi03-zoGlmAYp20rxHblpM6BU479Gz8jECzftogKY496QLosG6O9eE_Hj_i0qunlykdoJdytCzona65Nys4oX3aVAQ2ycPF-f3ZZRQaIkQ2VqyKDHdS2p7KfQNzBhbQBTEFqesZpnSCjsahErmcedR2rFPDGf4yc8Y5pcHKeIssFWUB24Rym0vJTWo0BkRagLGOg865yC03wug2OZpJJrOBLdw3rRhnGDV4QWY_BNkmnfn014Ym46-JAy_m-STPbl2_KCePWVCWTFhci8mtZcoXktGmOAFCcZDKKcjzNtmbbVIWVG6afR2Qnf-Hd8kyR2TSXL_ZI0vV5B32EVlU5iAcn0_0Rc-q
  priority: 102
  providerName: ProQuest
Title Methane Retrieval Algorithms Based on Satellite: A Review
URI https://www.proquest.com/docview/3046691700
https://doaj.org/article/5c2eabfcc077423787d5e572e67d7eff
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-iFy_iJ9aPkYPsZFmWNsnqzY3JEBSZCt5KPl6dsrWyVf9-X9pOJiJePLZ9pc17SX6_l4TfI-SM8wRUrKPQmQjCuKdVaKDrQrAiMtIKaY1f0L-5laPH-PpJPK2U-vJnwmp54NpxHWE5aJNZy5TfVMT-5QQIxUEqpyDL_OyLmLeSTL3WvDfiUVyLakaY13d0OSsWyH5iFnvdzBUQqrT6f0zFFb5cbZOthhjSy_qHdsga5LskuEFOW8yrpW_apoPpCxLM6mqPJPhsonOg46oo1od_efpcYLI_mS1oH9HJ0SKn97rS3Czhgl7SeidgnzxeDR8Go7AphBDaSLEyNNxJaXsq84XLGVhA6GEKEtczTOkYAcbh4HEZ82ytqxPDGTaZOeOc0mBldEDW8yKHQ0K5zaTkJjEaEyEtwFiH_s24yCw3wuiAnC89k9pGJdwXq5immC14R6bfHBmQ9pf5Wy2P8Zth37v5y8irWlc3MNZpE-v0r1gH5GQZpLQZaovUb-3KxMsMHv3HN47JJkfeUh_OOSHr5fwdTpF3lKZFNvrD27txq-pqnxUO2Wk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_g8aAvxs94gLoPypMNy267ezUxhEPIIdzFICS81f2YgsnRwl2V8E_xNzrbj1Nj9I3HtrtNMzs785uZ7W8A3giRoo6NjLyVGMUDoyOLmz5Cl0irXKKcDQn98USNTuJPp8npEtx2_8KEY5WdTawNtS9dyJFvhAqeSgOb3NblVRS6RoXqatdCo1GLA7y5ppBt_mH_I63vWyH2do93RlHbVSByUvMqssIr5QY6D13AOTokO841pn5guTYxWWtPmuhzHqDPpkmt4DLl3FvvtUGnJL33HizHkkKZHiwPdyefjxZZHcLbUsi4IfOUNG_DVBflnFBXzOPA1_mb86t7BPzlAmq_tvcIHraAlG03GvQYlrB4Av0xYelyVqfc2TrbmX4jYFtfPYWUnp2bAtlR3YzrR5g8PSNRVecXczYkr-hZWbAvpub6rPA922ZNBeIZnNyJqJ5DrygLfAFMuFwpYVNrKAAzCVrnBZpcJLkTNrGmD-86yWSuZScPTTKmGUUpQZDZH4Lsw_pi-GVDy_GvgcMg5sWgwKZd3yhnZ1m7ObPE0bfY3DmuQ-GabJhPMNEClfYa87wPa90iZe0Wn2e_FHLl_49fw_3R8fgwO9yfHKzCA0GoqDn6swa9avYdXxKqqeyrVpUYfL1r7f0JAuEL2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRhfjJ_xAHUflCebW3bb3auJIRxwAZELQUl4q_sxBZOjhbsq4V_jr3O2H6fG6BuPbXebZnZ25jcz298AvBEiRR0bGXkrMYqHRkcWN3yELpFWuUQ5GxL6hxO1dxJ_PE1Ol-C2-xcmHKvsbGJtqH3pQo58ECp4Kg1scoO8PRZxtDPevLyKQgepUGnt2mk0KnKAN9cUvs0_7O_QWr8VYrz7ZXsvajsMRE5qXkVWeKXcUOehIzhHh2TTucbUDy3XJibL7Ukrfc4DDNowqRVcppx767026JSk996DZU1REe_B8mh3cnS8yPAQ9pZCxg2xp6R5A1NdlHNCYDGPA3fnb46w7hfwlzuofdz4ETxswSnbarTpMSxh8QT6h4Sry1mdfmfrbHv6jUBuffUUUnp2bgpkx3Vjrh9h8vSMRFWdX8zZiDykZ2XBPpua97PC92yLNdWIZ3ByJ6J6Dr2iLPAFMOFypYRNraFgzCRonRdocpHkTtjEmj686ySTuZapPDTMmGYUsQRBZn8Isg_ri-GXDUXHvwaOgpgXgwKzdn2jnJ1l7UbNEkffYnPnuA5FbLJnPsFEC1Taa8zzPqx1i5S1232e_VLOlf8_fg33SWuzT_uTg1V4IAggNaeA1qBXzb7jSwI4lX3VahKDr3etvD8BMbcQDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+Retrieval+Algorithms+Based+on+Satellite%3A+A+Review&rft.jtitle=Atmosphere&rft.au=Yuhan+Jiang&rft.au=Lu+Zhang&rft.au=Xingying+Zhang&rft.au=Xifeng+Cao&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2073-4433&rft.volume=15&rft.issue=4&rft.spage=449&rft_id=info:doi/10.3390%2Fatmos15040449&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c2eabfcc077423787d5e572e67d7eff
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon