Numerical study on melting of phase change material in an enclosure subject to Neumann boundary condition in the presence of Rayleigh-Bénard convection
•The effect of domain size on the phase change heat transfer process was identified.•The formation of different heat transfer subregimes was evaluated during melting.•A new correlation was developed for Nu as a function of Ste, Fo and Ras.•A new correlation was developed for Save as a function of St...
Saved in:
Published in | International journal of heat and mass transfer Vol. 171; p. 121103 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The effect of domain size on the phase change heat transfer process was identified.•The formation of different heat transfer subregimes was evaluated during melting.•A new correlation was developed for Nu as a function of Ste, Fo and Ras.•A new correlation was developed for Save as a function of Ste, Fo, Ras, and H.
This research study investigated the melting process of a phase change material (PCM), heated from the bottom, under Neumann boundary conditions, in the presence of Rayleigh-Bénard convection. The problem was numerically simulated for a range of domain sizes (1×1−8×8cm2) and heat fluxes (0.5−2W/cm2) using the enthalpy porosity technique, which is mostly applicable in cooling heat exchangers of electronic devices. Scaling analysis and the numerical results were employed to find the relationship between the Nusselt number and the solid-liquid interface location with other dimensionless parameters and develop correlations to predict the Nusselt number and the solid-liquid interface location for this type of melting problem. The results of this research could be used to better understand the heat transfer regimes formed during melting in an enclosure heated from the bottom and predict the Nusselt number and the solid-liquid interface location. It was found that the temperature and Nusselt number fluctuations are initiated in the coarsening subregime when the Rayleigh number was not larger than 106 and thus may not occur for small-sized domains. It can be concluded the coarsening and turbulent subregimes may not occur in small enclosures, while the melting process mostly occurs during turbulent subregiem in large enclosures. The numerical results revealed the fastest advance of heat transfer rate and consequently, solid-liquid interface occur during the formation of Bénard cells when the Rayleigh number was on the order of 104. The Nusselt number and solid-liquid interface location correlations developed in this study were later validated using two new cases of numerical data. The results revealed that these correlations could accurately predict the Nusselt number and solid-liquid interface location. |
---|---|
AbstractList | •The effect of domain size on the phase change heat transfer process was identified.•The formation of different heat transfer subregimes was evaluated during melting.•A new correlation was developed for Nu as a function of Ste, Fo and Ras.•A new correlation was developed for Save as a function of Ste, Fo, Ras, and H.
This research study investigated the melting process of a phase change material (PCM), heated from the bottom, under Neumann boundary conditions, in the presence of Rayleigh-Bénard convection. The problem was numerically simulated for a range of domain sizes (1×1−8×8cm2) and heat fluxes (0.5−2W/cm2) using the enthalpy porosity technique, which is mostly applicable in cooling heat exchangers of electronic devices. Scaling analysis and the numerical results were employed to find the relationship between the Nusselt number and the solid-liquid interface location with other dimensionless parameters and develop correlations to predict the Nusselt number and the solid-liquid interface location for this type of melting problem. The results of this research could be used to better understand the heat transfer regimes formed during melting in an enclosure heated from the bottom and predict the Nusselt number and the solid-liquid interface location. It was found that the temperature and Nusselt number fluctuations are initiated in the coarsening subregime when the Rayleigh number was not larger than 106 and thus may not occur for small-sized domains. It can be concluded the coarsening and turbulent subregimes may not occur in small enclosures, while the melting process mostly occurs during turbulent subregiem in large enclosures. The numerical results revealed the fastest advance of heat transfer rate and consequently, solid-liquid interface occur during the formation of Bénard cells when the Rayleigh number was on the order of 104. The Nusselt number and solid-liquid interface location correlations developed in this study were later validated using two new cases of numerical data. The results revealed that these correlations could accurately predict the Nusselt number and solid-liquid interface location. This research study investigated the melting process of a phase change material (PCM), heated from the bottom, under Neumann boundary conditions, in the presence of Rayleigh-Bénard convection. The problem was numerically simulated for a range of domain sizes (1 × 1−8 × 8 cm2) and heat fluxes (0.5−2W / cm2) using the enthalpy porosity technique, which is mostly applicable in cooling heat exchangers of electronic devices. Scaling analysis and the numerical results were employed to find the relationship between the Nusselt number and the solid-liquid interface location with other dimensionless parameters and develop correlations to predict the Nusselt number and the solid-liquid interface location for this type of melting problem. The results of this research could be used to better understand the heat transfer regimes formed during melting in an enclosure heated from the bottom and predict the Nusselt number and the solid-liquid interface location. It was found that the temperature and Nusselt number fluctuations are initiated in the coarsening subregime when the Rayleigh number was not larger than 106 and thus may not occur for small-sized domains. It can be concluded the coarsening and turbulent subregimes may not occur in small enclosures, while the melting process mostly occurs during turbulent subregiem in large enclosures. The numerical results revealed the fastest advance of heat transfer rate and consequently, solid-liquid interface occur during the formation of Bénard cells when the Rayleigh number was on the order of 104. The Nusselt number and solid-liquid interface location correlations developed in this study were later validated using two new cases of numerical data. The results revealed that these correlations could accurately predict the Nusselt number and solid-liquid interface location. |
ArticleNumber | 121103 |
Author | Parsazadeh, Mohammad Duan, Xili McDonald, André Malik, Mehtab |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0001-9973-6891 surname: Parsazadeh fullname: Parsazadeh, Mohammad email: parsazad@ualberta.ca organization: Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada – sequence: 2 givenname: Mehtab orcidid: 0000-0002-1163-5496 surname: Malik fullname: Malik, Mehtab organization: Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada – sequence: 3 givenname: Xili surname: Duan fullname: Duan, Xili organization: Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada – sequence: 4 givenname: André surname: McDonald fullname: McDonald, André organization: Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada |
BookMark | eNqVkc1u1DAURi1UJKaFd7DEhk0G3ziTnx1QUWhVFQnB2rpj30wcJfZgO5XmTXgFnoMXw9Gwgg3IC8vyucfW912yC-cdMfYKxBYE1K_HrR0HwjRjjCmgiz2FbSlK2EIJIOQTtoG26YoS2u6CbYSApugkiGfsMsZxPYqq3rDvD8tMwWqceEyLOXHv-ExTsu7Afc-PA0biekB3ID5jymgmrePoODk9-bgE4nHZj6QTT54_0DKjc3zvF2cwnLj2zthkszZPpYH4MVDMo7TqP-NpInsYinc_fzgMZqUfsynjz9nTHqdIL37vV-zrzfsv1x-L-08fbq_f3hdaNiIV2PRd1xsNPVJFYKSWfdU20DQaANv9rtpVNeZlNOm61NTswLS1aEmSqWQpr9jLs_cY_LeFYlKjX4LLT6pyJ2XTQd3Wmbo5Uzr4GAP1StuE6z9z9nZSINTaihrV362otRV1biWL3vwhOgY756D-R3F3VlCO5dHm26jtmqixIWenjLf_LvsFFSS_KA |
CitedBy_id | crossref_primary_10_1016_j_est_2023_108902 crossref_primary_10_1016_j_icheatmasstransfer_2023_106952 crossref_primary_10_1016_j_est_2022_104651 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124767 crossref_primary_10_1103_PhysRevE_105_055107 crossref_primary_10_1016_j_est_2022_104199 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123055 crossref_primary_10_1016_j_icheatmasstransfer_2024_107735 crossref_primary_10_1016_j_egyr_2022_07_178 crossref_primary_10_1016_j_applthermaleng_2022_118374 crossref_primary_10_1007_s11630_024_2020_2 crossref_primary_10_1016_j_csite_2021_101511 crossref_primary_10_1108_HFF_06_2024_0424 crossref_primary_10_3390_sym14102181 crossref_primary_10_1016_j_est_2023_108294 crossref_primary_10_1016_j_icheatmasstransfer_2023_106780 crossref_primary_10_1016_j_tsep_2023_101886 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124625 |
Cites_doi | 10.1016/j.applthermaleng.2014.09.035 10.1016/j.applthermaleng.2010.11.022 10.1016/j.ijheatmasstransfer.2018.05.075 10.1016/j.ijheatmasstransfer.2017.01.109 10.1016/j.ijthermalsci.2020.106496 10.1115/1.4046537 10.1016/j.icheatmasstransfer.2007.02.005 10.1080/10407782.2017.1420307 10.1016/j.applthermaleng.2015.08.024 10.1007/s11434-016-1016-z 10.1007/s11242-020-01407-y 10.1016/j.ijheatfluidflow.2016.06.004 10.1016/j.egypro.2018.09.079 10.1080/10407782.2016.1244397 10.1016/j.apenergy.2012.03.058 10.1115/1.3225900 10.1016/j.ijthermalsci.2009.06.011 10.1016/j.rser.2013.12.017 10.1016/j.applthermaleng.2017.07.112 10.1016/j.icheatmasstransfer.2018.08.021 10.1016/j.applthermaleng.2020.115159 10.1016/j.apenergy.2019.01.074 10.1017/jfm.2018.773 10.1016/0017-9310(88)90065-8 10.1016/j.ijheatmasstransfer.2016.01.079 10.1016/j.ijheatmasstransfer.2014.01.014 10.1115/1.3246884 10.1016/j.applthermaleng.2012.03.002 10.1016/j.apenergy.2016.11.070 10.1016/j.expthermflusci.2017.07.017 10.1016/j.ijheatmasstransfer.2020.119792 10.1016/j.energy.2014.06.079 10.1016/j.ijheatmasstransfer.2018.06.012 10.1016/j.ijheatmasstransfer.2020.119831 10.1016/j.apenergy.2011.08.025 10.1016/j.ijheatmasstransfer.2017.12.006 10.1016/j.ijheatmasstransfer.2014.09.007 10.1016/j.renene.2018.02.119 10.1016/j.apenergy.2016.02.028 10.1016/j.ijheatmasstransfer.2019.04.037 10.1016/j.apenergy.2017.05.007 10.1007/s00231-012-1102-y |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Jun 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Jun 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2021.121103 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2021_121103 S0017931021002064 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c370t-a7f99fdc1fae4e1d3c3f487177c11a8b54546a6a6dcec62ce751d8608e3ed4323 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Mon Jul 14 07:41:25 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 04:24:06 EDT 2025 Fri Feb 23 02:45:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase change material (PCM) Neumann boundary condition Rayleigh-Bénard convection Melting Phase change heat transfer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-a7f99fdc1fae4e1d3c3f487177c11a8b54546a6a6dcec62ce751d8608e3ed4323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1163-5496 0000-0001-9973-6891 |
PQID | 2533791686 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2533791686 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121103 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121103 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Labihi, Aitlahbib, Chehouani, Benhamou, Ouikhalfan, Croitoru, Nastase (bib0012) 2017; 126 Aitlahbib, Chehouani (bib0020) 2015; 75 Carslow, Jaeger, Morral (bib0041) 1986 Xu, Romagnoli, Sze, Py (bib0003) 2017; 187 Abdollahzadeh, Esmaeilpour (bib0046) 2015; 80 Zhang, Huo, Rao (bib0005) 2016; 61 Mehryan, Vaezi, Sheremet, Ghalambaz (bib0038) 2020 Yang, Guo, Liu, Jin, He (bib0026) 2019; 238 Jin, Medina, Zhang (bib0015) 2014; 73 Bejan (bib0023) 2013 Huang, Lu, Li, Xie, Yang, Cheng, Chen, Zeng, Li, Zhang, Wang (bib0021) 2020 Parsazadeh, Duan (bib0024) 2020; 142 Motahar, Alemrajabi, Khodabandeh (bib0035) 2017; 109 Zhou, Zhao (bib0009) 2011; 31 Jiji (bib0043) 2012 Parsazadeh, Liu, Duan (bib0022) 2020; 156 Yang, Lu, Bai, Zhang, Jin, Yan (bib0045) 2017; 202 Kamkari, Shokouhmand, Bruno (bib0027) 2014; 72 Ghalambaz, Mehryan, Zahmatkesh, Chamkha (bib0034) 2020 Ghalambaz, Mehryan, Mozaffari, Hashem Zadeh, Saffari Pour (bib0037) 2020; 156 Zhou, Zhao, Tian (bib0002) 2012; 92 Al-Jethelah, Tasnim, Mahmud, Dutta (bib0047) 2018; 126 Faghri, Zhang (bib0040) 2006 Gao, Viskanta (bib0016) 1986; 108 Yang, Liu (bib0004) 2018; 73 Oró, de Gracia, Castell, Farid, Cabeza (bib0001) 2012; 99 Joneidi, Hosseini, Ranjbar, Bahrampoury (bib0006) 2017; 88 Jany, Bejan (bib0010) 1988; 31 Favier, Purseed, Duchemin (bib0032) 2019; 858 Yang, Yang, Xu, Du (bib0017) 2016; 169 Versteeg, Malalasekera (bib0048) 2007 Sun, Chu, Mo, Fan, Liao (bib0014) 2018; 152 Mehryan, Ayoubi-Ayoubloo, Shahabadi, Ghalambaz, Talebizadehsardari, Chamkha (bib0039) 2020; 132 Hong, Ye, Huang, Du (bib0018) 2018; 126 Kalbasi, Salimpour (bib0025) 2015; 91 Zhao, Zhai, Lu, Liu (bib0028) 2018; 120 Ye, Zhu, Wang (bib0011) 2012; 42 Khodadadi, Hosseinizadeh (bib0049) 2007; 34 Parsazadeh, Duan (bib0044) 2018 Ling, Zhang, Shi, Fang, Wang, Gao, Fang, Xu, Wang, Liu (bib0008) 2014 Lopera-Valle, McDonald (bib0042) 2016 Ghalambaz, Doostanidezfuli, Zargartalebi, Chamkha (bib0029) 2017; 71 Jourabian, Farhadi, Darzi (bib0019) 2013; 49 Madruga, Curbelo (bib0030) 2018; 126 Fok, Shen, Tan (bib0007) 2010; 49 Ghalambaz, Chamkha, Wen (bib0036) 2019; 138 Madruga, Haruki, Horibe (bib0031) 2018; 98 Parsazadeh, Duan (bib0033) 2020; 156 Ezan, Kalfa (bib0013) 2016; 61 Ghalambaz (10.1016/j.ijheatmasstransfer.2021.121103_bib0037) 2020; 156 Versteeg (10.1016/j.ijheatmasstransfer.2021.121103_bib0048) 2007 Sun (10.1016/j.ijheatmasstransfer.2021.121103_bib0014) 2018; 152 Joneidi (10.1016/j.ijheatmasstransfer.2021.121103_bib0006) 2017; 88 Zhou (10.1016/j.ijheatmasstransfer.2021.121103_bib0009) 2011; 31 Yang (10.1016/j.ijheatmasstransfer.2021.121103_bib0026) 2019; 238 Xu (10.1016/j.ijheatmasstransfer.2021.121103_bib0003) 2017; 187 Ghalambaz (10.1016/j.ijheatmasstransfer.2021.121103_bib0036) 2019; 138 Ye (10.1016/j.ijheatmasstransfer.2021.121103_bib0011) 2012; 42 Hong (10.1016/j.ijheatmasstransfer.2021.121103_bib0018) 2018; 126 Kamkari (10.1016/j.ijheatmasstransfer.2021.121103_bib0027) 2014; 72 Yang (10.1016/j.ijheatmasstransfer.2021.121103_bib0017) 2016; 169 Parsazadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0024) 2020; 142 Yang (10.1016/j.ijheatmasstransfer.2021.121103_bib0045) 2017; 202 Ghalambaz (10.1016/j.ijheatmasstransfer.2021.121103_bib0029) 2017; 71 Parsazadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0044) 2018 Ling (10.1016/j.ijheatmasstransfer.2021.121103_bib0008) 2014 Bejan (10.1016/j.ijheatmasstransfer.2021.121103_bib0023) 2013 Jiji (10.1016/j.ijheatmasstransfer.2021.121103_bib0043) 2012 Parsazadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0033) 2020; 156 Khodadadi (10.1016/j.ijheatmasstransfer.2021.121103_bib0049) 2007; 34 Jourabian (10.1016/j.ijheatmasstransfer.2021.121103_bib0019) 2013; 49 Ghalambaz (10.1016/j.ijheatmasstransfer.2021.121103_bib0034) 2020 Huang (10.1016/j.ijheatmasstransfer.2021.121103_bib0021) 2020 Faghri (10.1016/j.ijheatmasstransfer.2021.121103_bib0040) 2006 Labihi (10.1016/j.ijheatmasstransfer.2021.121103_bib0012) 2017; 126 Mehryan (10.1016/j.ijheatmasstransfer.2021.121103_bib0039) 2020; 132 Motahar (10.1016/j.ijheatmasstransfer.2021.121103_bib0035) 2017; 109 Carslow (10.1016/j.ijheatmasstransfer.2021.121103_bib0041) 1986 Zhang (10.1016/j.ijheatmasstransfer.2021.121103_bib0005) 2016; 61 Mehryan (10.1016/j.ijheatmasstransfer.2021.121103_bib0038) 2020 Zhao (10.1016/j.ijheatmasstransfer.2021.121103_bib0028) 2018; 120 Gao (10.1016/j.ijheatmasstransfer.2021.121103_bib0016) 1986; 108 Lopera-Valle (10.1016/j.ijheatmasstransfer.2021.121103_bib0042) 2016 Parsazadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0022) 2020; 156 Fok (10.1016/j.ijheatmasstransfer.2021.121103_bib0007) 2010; 49 Madruga (10.1016/j.ijheatmasstransfer.2021.121103_bib0031) 2018; 98 Zhou (10.1016/j.ijheatmasstransfer.2021.121103_bib0002) 2012; 92 Jin (10.1016/j.ijheatmasstransfer.2021.121103_bib0015) 2014; 73 Favier (10.1016/j.ijheatmasstransfer.2021.121103_bib0032) 2019; 858 Oró (10.1016/j.ijheatmasstransfer.2021.121103_bib0001) 2012; 99 Ezan (10.1016/j.ijheatmasstransfer.2021.121103_bib0013) 2016; 61 Abdollahzadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0046) 2015; 80 Al-Jethelah (10.1016/j.ijheatmasstransfer.2021.121103_bib0047) 2018; 126 Madruga (10.1016/j.ijheatmasstransfer.2021.121103_bib0030) 2018; 126 Kalbasi (10.1016/j.ijheatmasstransfer.2021.121103_bib0025) 2015; 91 Aitlahbib (10.1016/j.ijheatmasstransfer.2021.121103_bib0020) 2015; 75 Yang (10.1016/j.ijheatmasstransfer.2021.121103_bib0004) 2018; 73 Jany (10.1016/j.ijheatmasstransfer.2021.121103_bib0010) 1988; 31 |
References_xml | – volume: 142 start-page: 1 year: 2020 end-page: 13 ident: bib0024 article-title: Numerical and experimental investigation of phase change heat transfer in the presence of Rayleigh–Benard convection publication-title: J. Heat Transf. – volume: 75 start-page: 73 year: 2015 end-page: 85 ident: bib0020 article-title: Numerical study of heat transfer inside a Keeping Warm System (KWS) incorporating phase change material publication-title: Appl. Therm. Eng. – year: 2016 ident: bib0042 article-title: Flame-sprayed coatings as de-icing elements for fiber-reinforced polymer composite structures: modeling and experimentation publication-title: Int. J. Heat Mass Transf. – volume: 61 start-page: 391 year: 2016 end-page: 400 ident: bib0005 article-title: Numerical study on solid–liquid phase change in paraffin as phase change material for battery thermal management publication-title: Sci. Bull. – start-page: 216 year: 2018 ident: bib0044 article-title: Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit publication-title: Appl. Energy. – volume: 99 start-page: 513 year: 2012 end-page: 533 ident: bib0001 article-title: Review on phase change materials (PCMs) for cold thermal energy storage applications publication-title: Appl. Energy. – volume: 126 start-page: 305 year: 2017 end-page: 314 ident: bib0012 article-title: Effect of phase change material wall on natural convection heat transfer inside an air filled enclosure publication-title: Appl. Therm. Eng. – volume: 109 start-page: 134 year: 2017 end-page: 146 ident: bib0035 article-title: Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure publication-title: Int. J. Heat Mass Transf. – volume: 169 start-page: 164 year: 2016 end-page: 176 ident: bib0017 article-title: Experimental study on enhancement of thermal energy storage with phase-change material publication-title: Appl. Energy. – volume: 156 year: 2020 ident: bib0022 article-title: An improved layered thermal resistance model for solid-liquid phase change time estimation publication-title: Int. J. Therm. Sci. – volume: 108 start-page: 174 year: 1986 end-page: 181 ident: bib0016 article-title: Melting and solidification of a pure metal on a vertical wall publication-title: J. Heat Transf. Trans. ASME. – volume: 71 start-page: 91 year: 2017 end-page: 109 ident: bib0029 article-title: MHD phase change heat transfer in an inclined enclosure: Effect of a magnetic field and cavity inclination publication-title: Numer. Heat Transf. Part A Appl. – volume: 126 start-page: 137 year: 2018 end-page: 155 ident: bib0047 article-title: Nano-PCM filled energy storage system for solar-thermal applications publication-title: Renew. Energy. – volume: 49 start-page: 555 year: 2013 end-page: 565 ident: bib0019 article-title: Convection-dominated melting of phase change material in partially heated cavity: Lattice Boltzmann study publication-title: Heat Mass Transf. Stoffuebertragung. – volume: 98 start-page: 163 year: 2018 end-page: 170 ident: bib0031 article-title: Experimental and numerical study of melting of the phase change material tetracosane publication-title: Int. Commun. Heat Mass Transf. – volume: 132 start-page: 657 year: 2020 end-page: 681 ident: bib0039 article-title: Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: a deformed mesh approach publication-title: Transp. Porous Media. – year: 2020 ident: bib0021 article-title: Experimental study on the influence of PCM container height on heat transfer characteristics under constant heat flux condition publication-title: Appl. Therm. Eng. – volume: 156 year: 2020 ident: bib0033 article-title: Effects of nanoparticles on phase change heat transfer rate in the presence of Rayleigh–Benard convection publication-title: Int. J. Heat Mass Transf. – volume: 187 start-page: 281 year: 2017 end-page: 290 ident: bib0003 article-title: Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery publication-title: Appl. Energy. – volume: 31 start-page: 1221 year: 1988 end-page: 1235 ident: bib0010 article-title: Scaling theory of melting with natural convection in an enclosure publication-title: Int. J. Heat Mass Transf. – year: 2007 ident: bib0048 article-title: An Introduction to Computational Fluid Dynamics – volume: 88 start-page: 594 year: 2017 end-page: 607 ident: bib0006 article-title: Experimental investigation of phase change in a cavity for varying heat flux and inclination angles publication-title: Exp. Therm. Fluid Sci. – volume: 49 start-page: 109 year: 2010 end-page: 117 ident: bib0007 article-title: Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks publication-title: Int. J. Therm. Sci. – volume: 73 start-page: 780 year: 2014 end-page: 786 ident: bib0015 article-title: On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction publication-title: Energy – volume: 238 start-page: 22 year: 2019 end-page: 33 ident: bib0026 article-title: Effect of inclination on the thermal response of composite phase change materials for thermal energy storage publication-title: Appl. Energy. – year: 2014 ident: bib0008 article-title: Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules publication-title: Renew. Sustain. Energy Rev. – volume: 138 start-page: 738 year: 2019 end-page: 749 ident: bib0036 article-title: Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity publication-title: Int. J. Heat Mass Transf. – volume: 120 start-page: 241 year: 2018 end-page: 249 ident: bib0028 article-title: Theory and experiment of contact melting of phase change materials in a rectangular cavity at different tilt angles publication-title: Int. J. Heat Mass Transf. – volume: 80 start-page: 376 year: 2015 end-page: 385 ident: bib0046 article-title: Enhancement of phase change material (PCM) based latent heat storage system with nanofluid and wavy surface publication-title: Int. J. Heat Mass Transf. – volume: 91 start-page: 234 year: 2015 end-page: 244 ident: bib0025 article-title: Constructal design of horizontal fins to improve the performance of phase change material rectangular enclosures publication-title: Appl. Therm. Eng. – start-page: 421 year: 2006 end-page: 530 ident: bib0040 article-title: 6 – melting and solidification publication-title: Transp. Phenom. Multiph. Syst. – volume: 152 start-page: 186 year: 2018 end-page: 191 ident: bib0014 article-title: Experimental investigations on the heat transfer of melting phase change material (PCM) publication-title: Energy Proc. – volume: 72 start-page: 186 year: 2014 end-page: 200 ident: bib0027 article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure publication-title: Int. J. Heat Mass Transf. – volume: 126 start-page: 206 year: 2018 end-page: 220 ident: bib0030 article-title: Dynamic of plumes and scaling during the melting of a phase change material heated from below publication-title: Int. J. Heat Mass Transf. – year: 1986 ident: bib0041 article-title: Conduction of Heat in Solids, Second Edition publication-title: J. Eng. Mater. Technol. – start-page: 157 year: 2020 ident: bib0034 article-title: Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity publication-title: Int. J. Therm. Sci. – volume: 202 start-page: 558 year: 2017 end-page: 570 ident: bib0045 article-title: Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins publication-title: Appl. Energy. – year: 2012 ident: bib0043 article-title: Heat Conduction, third – volume: 92 start-page: 593 year: 2012 end-page: 605 ident: bib0002 article-title: Review on thermal energy storage with phase change material (PCMs) in building applications publication-title: Appl. Energy. – volume: 156 year: 2020 ident: bib0037 article-title: Study of thermal and hydrodynamic characteristics of water-nano-encapsulated phase change particles suspension in an annulus of a porous eccentric horizontal cylinder publication-title: Int. J. Heat Mass Transf. – volume: 31 start-page: 970 year: 2011 end-page: 977 ident: bib0009 article-title: Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials publication-title: Appl. Therm. Eng. – volume: 126 start-page: 571 year: 2018 end-page: 578 ident: bib0018 article-title: Can the melting behaviors of solid-liquid phase change be improved by inverting the partially thermal-active rectangular cavity? publication-title: Int. J. Heat Mass Transf. – year: 2013 ident: bib0023 article-title: Convective Heat Transfer, Fourth Edi – volume: 61 start-page: 438 year: 2016 end-page: 448 ident: bib0013 article-title: Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity publication-title: Int. J. Heat Fluid Flow. – start-page: 151 year: 2020 ident: bib0038 article-title: Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2) publication-title: Int. J. Heat Mass Transf. – volume: 42 start-page: 49 year: 2012 end-page: 57 ident: bib0011 article-title: Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions publication-title: Appl. Therm. Eng. – volume: 73 start-page: 34 year: 2018 end-page: 54 ident: bib0004 article-title: Probing the Rayleigh–Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method publication-title: Numer. Heat Transf. Part A Appl. – volume: 34 start-page: 534 year: 2007 end-page: 543 ident: bib0049 article-title: Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage publication-title: Int. Commun. Heat Mass Transf. – volume: 858 start-page: 437 year: 2019 end-page: 473 ident: bib0032 article-title: Rayleigh-Bénard convection with a melting boundary publication-title: J. Fluid Mech. – start-page: 421 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0040 article-title: 6 – melting and solidification publication-title: Transp. Phenom. Multiph. Syst. – volume: 75 start-page: 73 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0020 article-title: Numerical study of heat transfer inside a Keeping Warm System (KWS) incorporating phase change material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.09.035 – volume: 31 start-page: 970 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0009 article-title: Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.11.022 – volume: 126 start-page: 206 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0030 article-title: Dynamic of plumes and scaling during the melting of a phase change material heated from below publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.05.075 – start-page: 216 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0044 article-title: Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit publication-title: Appl. Energy. – volume: 109 start-page: 134 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0035 article-title: Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.01.109 – volume: 156 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0022 article-title: An improved layered thermal resistance model for solid-liquid phase change time estimation publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106496 – volume: 142 start-page: 1 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0024 article-title: Numerical and experimental investigation of phase change heat transfer in the presence of Rayleigh–Benard convection publication-title: J. Heat Transf. doi: 10.1115/1.4046537 – volume: 34 start-page: 534 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0049 article-title: Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2007.02.005 – volume: 73 start-page: 34 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0004 article-title: Probing the Rayleigh–Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407782.2017.1420307 – volume: 91 start-page: 234 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0025 article-title: Constructal design of horizontal fins to improve the performance of phase change material rectangular enclosures publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.08.024 – volume: 61 start-page: 391 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0005 article-title: Numerical study on solid–liquid phase change in paraffin as phase change material for battery thermal management publication-title: Sci. Bull. doi: 10.1007/s11434-016-1016-z – start-page: 151 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0038 article-title: Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2) publication-title: Int. J. Heat Mass Transf. – volume: 132 start-page: 657 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0039 article-title: Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: a deformed mesh approach publication-title: Transp. Porous Media. doi: 10.1007/s11242-020-01407-y – year: 2007 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0048 – volume: 61 start-page: 438 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0013 article-title: Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity publication-title: Int. J. Heat Fluid Flow. doi: 10.1016/j.ijheatfluidflow.2016.06.004 – volume: 152 start-page: 186 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0014 article-title: Experimental investigations on the heat transfer of melting phase change material (PCM) publication-title: Energy Proc. doi: 10.1016/j.egypro.2018.09.079 – volume: 71 start-page: 91 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0029 article-title: MHD phase change heat transfer in an inclined enclosure: Effect of a magnetic field and cavity inclination publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407782.2016.1244397 – start-page: 157 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0034 article-title: Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity publication-title: Int. J. Therm. Sci. – volume: 99 start-page: 513 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0001 article-title: Review on phase change materials (PCMs) for cold thermal energy storage applications publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2012.03.058 – year: 1986 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0041 article-title: Conduction of Heat in Solids, Second Edition publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3225900 – year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0043 – volume: 49 start-page: 109 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0007 article-title: Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.06.011 – year: 2014 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0008 article-title: Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.017 – volume: 126 start-page: 305 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0012 article-title: Effect of phase change material wall on natural convection heat transfer inside an air filled enclosure publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.112 – volume: 98 start-page: 163 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0031 article-title: Experimental and numerical study of melting of the phase change material tetracosane publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2018.08.021 – year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0021 article-title: Experimental study on the influence of PCM container height on heat transfer characteristics under constant heat flux condition publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115159 – volume: 238 start-page: 22 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0026 article-title: Effect of inclination on the thermal response of composite phase change materials for thermal energy storage publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2019.01.074 – volume: 858 start-page: 437 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0032 article-title: Rayleigh-Bénard convection with a melting boundary publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.773 – volume: 31 start-page: 1221 year: 1988 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0010 article-title: Scaling theory of melting with natural convection in an enclosure publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(88)90065-8 – year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0042 article-title: Flame-sprayed coatings as de-icing elements for fiber-reinforced polymer composite structures: modeling and experimentation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.01.079 – volume: 72 start-page: 186 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0027 article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.01.014 – volume: 108 start-page: 174 year: 1986 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0016 article-title: Melting and solidification of a pure metal on a vertical wall publication-title: J. Heat Transf. Trans. ASME. doi: 10.1115/1.3246884 – volume: 42 start-page: 49 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0011 article-title: Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.03.002 – volume: 187 start-page: 281 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0003 article-title: Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2016.11.070 – volume: 88 start-page: 594 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0006 article-title: Experimental investigation of phase change in a cavity for varying heat flux and inclination angles publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.07.017 – volume: 156 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0037 article-title: Study of thermal and hydrodynamic characteristics of water-nano-encapsulated phase change particles suspension in an annulus of a porous eccentric horizontal cylinder publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119792 – volume: 73 start-page: 780 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0015 article-title: On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction publication-title: Energy doi: 10.1016/j.energy.2014.06.079 – volume: 126 start-page: 571 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0018 article-title: Can the melting behaviors of solid-liquid phase change be improved by inverting the partially thermal-active rectangular cavity? publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.06.012 – volume: 156 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0033 article-title: Effects of nanoparticles on phase change heat transfer rate in the presence of Rayleigh–Benard convection publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119831 – volume: 92 start-page: 593 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0002 article-title: Review on thermal energy storage with phase change material (PCMs) in building applications publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2011.08.025 – volume: 120 start-page: 241 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0028 article-title: Theory and experiment of contact melting of phase change materials in a rectangular cavity at different tilt angles publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.12.006 – volume: 80 start-page: 376 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0046 article-title: Enhancement of phase change material (PCM) based latent heat storage system with nanofluid and wavy surface publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.09.007 – volume: 126 start-page: 137 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0047 article-title: Nano-PCM filled energy storage system for solar-thermal applications publication-title: Renew. Energy. doi: 10.1016/j.renene.2018.02.119 – volume: 169 start-page: 164 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0017 article-title: Experimental study on enhancement of thermal energy storage with phase-change material publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2016.02.028 – volume: 138 start-page: 738 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0036 article-title: Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.04.037 – volume: 202 start-page: 558 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0045 article-title: Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2017.05.007 – volume: 49 start-page: 555 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0019 article-title: Convection-dominated melting of phase change material in partially heated cavity: Lattice Boltzmann study publication-title: Heat Mass Transf. Stoffuebertragung. doi: 10.1007/s00231-012-1102-y – year: 2013 ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0023 |
SSID | ssj0017046 |
Score | 2.4498003 |
Snippet | •The effect of domain size on the phase change heat transfer process was identified.•The formation of different heat transfer subregimes was evaluated during... This research study investigated the melting process of a phase change material (PCM), heated from the bottom, under Neumann boundary conditions, in the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121103 |
SubjectTerms | Boundary conditions Domains Electronic devices Enclosures Enthalpy Fluid flow Heat exchangers Heat flux Heat transfer Liquid-solid interfaces Melting Neumann boundary condition Nusselt number Phase change heat transfer Phase change material (PCM) Phase change materials Rayleigh number Rayleigh-Benard convection Rayleigh-Bénard convection |
Title | Numerical study on melting of phase change material in an enclosure subject to Neumann boundary condition in the presence of Rayleigh-Bénard convection |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121103 https://www.proquest.com/docview/2533791686 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTttAEF0hKhAXRCkVoYDmwIGLwRtvdu0TohEobUQOERHcVuv1Wg0KdpQ4By79jv5Cv4MfY2ZtU7WckKocoljx2t59mnk7fjPD2IlygluF21Rh8iyg-uVBEss0sKFB_2klYoriHTcjOZiI7_e9-zXWb3NhSFbZ2P7apntr3Rw5b2bzfD6dUo4vgYtaUxPnkVQTVAhFKD_7-Srz4Cqsk3XIGtO_N9npH43X9IEs3iPS1MrTREcVQrucSi7wto3WW1f1j9H2nuh6h203FBIu67v8yNZcscs2vJTTLj-xX6NV_RZmBr52LJQFPLoZyZuhzGH-A_0W1Pm-gHTVIxCmBZgC8OlnJYUMYblKKUADVQkjR3H-AlLfgGnxBLiDzrzQi85C_ghzn8JkHQ0_Nk8-2hp8ff5dIPrAy9p98sQem1xf3fYHQdN_IbCRCqvAqDxJ8szy3DjheBbZKMf9DVfKcm7iFMmXkAY_mXVWdq1TPZ7FMoxd5DIRdaPPbL0oC7fPAFmKC_M0lyJOhJNUJy-NJMLD2F5m06jDLtqp1rYpTk49Mma6VaE96LeLpWmxdL1YHZa8jjCvC3W849x-u7r6L_Bp9CvvGOWwBYZuDMFSd5FOK6TgsTz4Lxf5wrboVy1WO2Tr1WLljpAWVemxx_0x-3D5bTgY0fdwfDd8ARTsFrU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYQFW0vVemPoKV0Dq3US0qceO3kUCF-ipYCe6hA4uY6jqMuWpIVmxXaC8_RV-i5j8CLMeMkIOCEVJRbIjvRzGTms_3NDGOflBPcKlymClPkAdUvD9JEZoENDcZPK9GmaL_jYCD7R-LHce94jv3rcmGIVtn6_sane2_d3llrpbk2Hg4px5eMi1pTE-aRomVW7rnZOa7bJt92t1HJn6No5_vhVj9oWwsENlZhHRhVpGmRW14YJxzPYxsXCN25UpZzk2SIK4Q0eOXWWRlZp3o8T2SYuNjlIqZqB-j3nwh0F9Q24evFNa-Eq7DJDiL3T5_3lH25IZUNT8jFniIurj0udVSSNOJU44F3fbvux8Y7UcKHvp2X7EWLWWGjEcsim3PlK7bguaN28pr9GUybY58R-GK1UJVw6kbEp4aqgPFvDJTQJBgD4mNv8jAswZSA4h5VtEcJk2lGO0JQVzBwdLBQQuY7Pp3NAJfsuWeW0SgErDD2OVPW0fQ_zcxv7wabl39LNHfwPHqfrfGGHT2KVt6y-bIq3RIDhEUuLLJCiiQVTlJhviyWaI_G9nKbxctsvRO1tm01dGrKMdId7e1E31eWJmXpRlnLLL2eYdxUBnnA2K1Ou_qWtWsMZA-YZaUzDN16nomOEL8rxPyJfPdfXvKRPesfHuzr_d3B3nv2nJ40TLkVNl-fTd0HxGR1tur_AWC_HvunuwIZSVGo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+melting+of+phase+change+material+in+an+enclosure+subject+to+Neumann+boundary+condition+in+the+presence+of+Rayleigh-B%C3%A9nard+convection&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Parsazadeh%2C+Mohammad&rft.au=Malik%2C+Mehtab&rft.au=Duan%2C+Xili&rft.au=McDonald%2C+Andr%C3%A9&rft.date=2021-06-01&rft.issn=0017-9310&rft.volume=171&rft.spage=121103&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2021_121103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |