Numerical study on melting of phase change material in an enclosure subject to Neumann boundary condition in the presence of Rayleigh-Bénard convection

•The effect of domain size on the phase change heat transfer process was identified.•The formation of different heat transfer subregimes was evaluated during melting.•A new correlation was developed for Nu as a function of Ste, Fo and Ras.•A new correlation was developed for Save as a function of St...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 171; p. 121103
Main Authors Parsazadeh, Mohammad, Malik, Mehtab, Duan, Xili, McDonald, André
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The effect of domain size on the phase change heat transfer process was identified.•The formation of different heat transfer subregimes was evaluated during melting.•A new correlation was developed for Nu as a function of Ste, Fo and Ras.•A new correlation was developed for Save as a function of Ste, Fo, Ras, and H. This research study investigated the melting process of a phase change material (PCM), heated from the bottom, under Neumann boundary conditions, in the presence of Rayleigh-Bénard convection. The problem was numerically simulated for a range of domain sizes (1×1−8×8cm2) and heat fluxes (0.5−2W/cm2) using the enthalpy porosity technique, which is mostly applicable in cooling heat exchangers of electronic devices. Scaling analysis and the numerical results were employed to find the relationship between the Nusselt number and the solid-liquid interface location with other dimensionless parameters and develop correlations to predict the Nusselt number and the solid-liquid interface location for this type of melting problem. The results of this research could be used to better understand the heat transfer regimes formed during melting in an enclosure heated from the bottom and predict the Nusselt number and the solid-liquid interface location. It was found that the temperature and Nusselt number fluctuations are initiated in the coarsening subregime when the Rayleigh number was not larger than 106 and thus may not occur for small-sized domains. It can be concluded the coarsening and turbulent subregimes may not occur in small enclosures, while the melting process mostly occurs during turbulent subregiem in large enclosures. The numerical results revealed the fastest advance of heat transfer rate and consequently, solid-liquid interface occur during the formation of Bénard cells when the Rayleigh number was on the order of 104. The Nusselt number and solid-liquid interface location correlations developed in this study were later validated using two new cases of numerical data. The results revealed that these correlations could accurately predict the Nusselt number and solid-liquid interface location.
AbstractList •The effect of domain size on the phase change heat transfer process was identified.•The formation of different heat transfer subregimes was evaluated during melting.•A new correlation was developed for Nu as a function of Ste, Fo and Ras.•A new correlation was developed for Save as a function of Ste, Fo, Ras, and H. This research study investigated the melting process of a phase change material (PCM), heated from the bottom, under Neumann boundary conditions, in the presence of Rayleigh-Bénard convection. The problem was numerically simulated for a range of domain sizes (1×1−8×8cm2) and heat fluxes (0.5−2W/cm2) using the enthalpy porosity technique, which is mostly applicable in cooling heat exchangers of electronic devices. Scaling analysis and the numerical results were employed to find the relationship between the Nusselt number and the solid-liquid interface location with other dimensionless parameters and develop correlations to predict the Nusselt number and the solid-liquid interface location for this type of melting problem. The results of this research could be used to better understand the heat transfer regimes formed during melting in an enclosure heated from the bottom and predict the Nusselt number and the solid-liquid interface location. It was found that the temperature and Nusselt number fluctuations are initiated in the coarsening subregime when the Rayleigh number was not larger than 106 and thus may not occur for small-sized domains. It can be concluded the coarsening and turbulent subregimes may not occur in small enclosures, while the melting process mostly occurs during turbulent subregiem in large enclosures. The numerical results revealed the fastest advance of heat transfer rate and consequently, solid-liquid interface occur during the formation of Bénard cells when the Rayleigh number was on the order of 104. The Nusselt number and solid-liquid interface location correlations developed in this study were later validated using two new cases of numerical data. The results revealed that these correlations could accurately predict the Nusselt number and solid-liquid interface location.
This research study investigated the melting process of a phase change material (PCM), heated from the bottom, under Neumann boundary conditions, in the presence of Rayleigh-Bénard convection. The problem was numerically simulated for a range of domain sizes (1 × 1−8 × 8 cm2) and heat fluxes (0.5−2W / cm2) using the enthalpy porosity technique, which is mostly applicable in cooling heat exchangers of electronic devices. Scaling analysis and the numerical results were employed to find the relationship between the Nusselt number and the solid-liquid interface location with other dimensionless parameters and develop correlations to predict the Nusselt number and the solid-liquid interface location for this type of melting problem. The results of this research could be used to better understand the heat transfer regimes formed during melting in an enclosure heated from the bottom and predict the Nusselt number and the solid-liquid interface location. It was found that the temperature and Nusselt number fluctuations are initiated in the coarsening subregime when the Rayleigh number was not larger than 106 and thus may not occur for small-sized domains. It can be concluded the coarsening and turbulent subregimes may not occur in small enclosures, while the melting process mostly occurs during turbulent subregiem in large enclosures. The numerical results revealed the fastest advance of heat transfer rate and consequently, solid-liquid interface occur during the formation of Bénard cells when the Rayleigh number was on the order of 104. The Nusselt number and solid-liquid interface location correlations developed in this study were later validated using two new cases of numerical data. The results revealed that these correlations could accurately predict the Nusselt number and solid-liquid interface location.
ArticleNumber 121103
Author Parsazadeh, Mohammad
Duan, Xili
McDonald, André
Malik, Mehtab
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0001-9973-6891
  surname: Parsazadeh
  fullname: Parsazadeh, Mohammad
  email: parsazad@ualberta.ca
  organization: Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
– sequence: 2
  givenname: Mehtab
  orcidid: 0000-0002-1163-5496
  surname: Malik
  fullname: Malik, Mehtab
  organization: Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
– sequence: 3
  givenname: Xili
  surname: Duan
  fullname: Duan, Xili
  organization: Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
– sequence: 4
  givenname: André
  surname: McDonald
  fullname: McDonald, André
  organization: Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
BookMark eNqVkc1u1DAURi1UJKaFd7DEhk0G3ziTnx1QUWhVFQnB2rpj30wcJfZgO5XmTXgFnoMXw9Gwgg3IC8vyucfW912yC-cdMfYKxBYE1K_HrR0HwjRjjCmgiz2FbSlK2EIJIOQTtoG26YoS2u6CbYSApugkiGfsMsZxPYqq3rDvD8tMwWqceEyLOXHv-ExTsu7Afc-PA0biekB3ID5jymgmrePoODk9-bgE4nHZj6QTT54_0DKjc3zvF2cwnLj2zthkszZPpYH4MVDMo7TqP-NpInsYinc_fzgMZqUfsynjz9nTHqdIL37vV-zrzfsv1x-L-08fbq_f3hdaNiIV2PRd1xsNPVJFYKSWfdU20DQaANv9rtpVNeZlNOm61NTswLS1aEmSqWQpr9jLs_cY_LeFYlKjX4LLT6pyJ2XTQd3Wmbo5Uzr4GAP1StuE6z9z9nZSINTaihrV362otRV1biWL3vwhOgY756D-R3F3VlCO5dHm26jtmqixIWenjLf_LvsFFSS_KA
CitedBy_id crossref_primary_10_1016_j_est_2023_108902
crossref_primary_10_1016_j_icheatmasstransfer_2023_106952
crossref_primary_10_1016_j_est_2022_104651
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124767
crossref_primary_10_1103_PhysRevE_105_055107
crossref_primary_10_1016_j_est_2022_104199
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123055
crossref_primary_10_1016_j_icheatmasstransfer_2024_107735
crossref_primary_10_1016_j_egyr_2022_07_178
crossref_primary_10_1016_j_applthermaleng_2022_118374
crossref_primary_10_1007_s11630_024_2020_2
crossref_primary_10_1016_j_csite_2021_101511
crossref_primary_10_1108_HFF_06_2024_0424
crossref_primary_10_3390_sym14102181
crossref_primary_10_1016_j_est_2023_108294
crossref_primary_10_1016_j_icheatmasstransfer_2023_106780
crossref_primary_10_1016_j_tsep_2023_101886
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124625
Cites_doi 10.1016/j.applthermaleng.2014.09.035
10.1016/j.applthermaleng.2010.11.022
10.1016/j.ijheatmasstransfer.2018.05.075
10.1016/j.ijheatmasstransfer.2017.01.109
10.1016/j.ijthermalsci.2020.106496
10.1115/1.4046537
10.1016/j.icheatmasstransfer.2007.02.005
10.1080/10407782.2017.1420307
10.1016/j.applthermaleng.2015.08.024
10.1007/s11434-016-1016-z
10.1007/s11242-020-01407-y
10.1016/j.ijheatfluidflow.2016.06.004
10.1016/j.egypro.2018.09.079
10.1080/10407782.2016.1244397
10.1016/j.apenergy.2012.03.058
10.1115/1.3225900
10.1016/j.ijthermalsci.2009.06.011
10.1016/j.rser.2013.12.017
10.1016/j.applthermaleng.2017.07.112
10.1016/j.icheatmasstransfer.2018.08.021
10.1016/j.applthermaleng.2020.115159
10.1016/j.apenergy.2019.01.074
10.1017/jfm.2018.773
10.1016/0017-9310(88)90065-8
10.1016/j.ijheatmasstransfer.2016.01.079
10.1016/j.ijheatmasstransfer.2014.01.014
10.1115/1.3246884
10.1016/j.applthermaleng.2012.03.002
10.1016/j.apenergy.2016.11.070
10.1016/j.expthermflusci.2017.07.017
10.1016/j.ijheatmasstransfer.2020.119792
10.1016/j.energy.2014.06.079
10.1016/j.ijheatmasstransfer.2018.06.012
10.1016/j.ijheatmasstransfer.2020.119831
10.1016/j.apenergy.2011.08.025
10.1016/j.ijheatmasstransfer.2017.12.006
10.1016/j.ijheatmasstransfer.2014.09.007
10.1016/j.renene.2018.02.119
10.1016/j.apenergy.2016.02.028
10.1016/j.ijheatmasstransfer.2019.04.037
10.1016/j.apenergy.2017.05.007
10.1007/s00231-012-1102-y
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Jun 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Jun 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2021.121103
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2021_121103
S0017931021002064
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-a7f99fdc1fae4e1d3c3f487177c11a8b54546a6a6dcec62ce751d8608e3ed4323
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Mon Jul 14 07:41:25 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 04:24:06 EDT 2025
Fri Feb 23 02:45:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phase change material (PCM)
Neumann boundary condition
Rayleigh-Bénard convection
Melting
Phase change heat transfer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-a7f99fdc1fae4e1d3c3f487177c11a8b54546a6a6dcec62ce751d8608e3ed4323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1163-5496
0000-0001-9973-6891
PQID 2533791686
PQPubID 2045464
ParticipantIDs proquest_journals_2533791686
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121103
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121103
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Labihi, Aitlahbib, Chehouani, Benhamou, Ouikhalfan, Croitoru, Nastase (bib0012) 2017; 126
Aitlahbib, Chehouani (bib0020) 2015; 75
Carslow, Jaeger, Morral (bib0041) 1986
Xu, Romagnoli, Sze, Py (bib0003) 2017; 187
Abdollahzadeh, Esmaeilpour (bib0046) 2015; 80
Zhang, Huo, Rao (bib0005) 2016; 61
Mehryan, Vaezi, Sheremet, Ghalambaz (bib0038) 2020
Yang, Guo, Liu, Jin, He (bib0026) 2019; 238
Jin, Medina, Zhang (bib0015) 2014; 73
Bejan (bib0023) 2013
Huang, Lu, Li, Xie, Yang, Cheng, Chen, Zeng, Li, Zhang, Wang (bib0021) 2020
Parsazadeh, Duan (bib0024) 2020; 142
Motahar, Alemrajabi, Khodabandeh (bib0035) 2017; 109
Zhou, Zhao (bib0009) 2011; 31
Jiji (bib0043) 2012
Parsazadeh, Liu, Duan (bib0022) 2020; 156
Yang, Lu, Bai, Zhang, Jin, Yan (bib0045) 2017; 202
Kamkari, Shokouhmand, Bruno (bib0027) 2014; 72
Ghalambaz, Mehryan, Zahmatkesh, Chamkha (bib0034) 2020
Ghalambaz, Mehryan, Mozaffari, Hashem Zadeh, Saffari Pour (bib0037) 2020; 156
Zhou, Zhao, Tian (bib0002) 2012; 92
Al-Jethelah, Tasnim, Mahmud, Dutta (bib0047) 2018; 126
Faghri, Zhang (bib0040) 2006
Gao, Viskanta (bib0016) 1986; 108
Yang, Liu (bib0004) 2018; 73
Oró, de Gracia, Castell, Farid, Cabeza (bib0001) 2012; 99
Joneidi, Hosseini, Ranjbar, Bahrampoury (bib0006) 2017; 88
Jany, Bejan (bib0010) 1988; 31
Favier, Purseed, Duchemin (bib0032) 2019; 858
Yang, Yang, Xu, Du (bib0017) 2016; 169
Versteeg, Malalasekera (bib0048) 2007
Sun, Chu, Mo, Fan, Liao (bib0014) 2018; 152
Mehryan, Ayoubi-Ayoubloo, Shahabadi, Ghalambaz, Talebizadehsardari, Chamkha (bib0039) 2020; 132
Hong, Ye, Huang, Du (bib0018) 2018; 126
Kalbasi, Salimpour (bib0025) 2015; 91
Zhao, Zhai, Lu, Liu (bib0028) 2018; 120
Ye, Zhu, Wang (bib0011) 2012; 42
Khodadadi, Hosseinizadeh (bib0049) 2007; 34
Parsazadeh, Duan (bib0044) 2018
Ling, Zhang, Shi, Fang, Wang, Gao, Fang, Xu, Wang, Liu (bib0008) 2014
Lopera-Valle, McDonald (bib0042) 2016
Ghalambaz, Doostanidezfuli, Zargartalebi, Chamkha (bib0029) 2017; 71
Jourabian, Farhadi, Darzi (bib0019) 2013; 49
Madruga, Curbelo (bib0030) 2018; 126
Fok, Shen, Tan (bib0007) 2010; 49
Ghalambaz, Chamkha, Wen (bib0036) 2019; 138
Madruga, Haruki, Horibe (bib0031) 2018; 98
Parsazadeh, Duan (bib0033) 2020; 156
Ezan, Kalfa (bib0013) 2016; 61
Ghalambaz (10.1016/j.ijheatmasstransfer.2021.121103_bib0037) 2020; 156
Versteeg (10.1016/j.ijheatmasstransfer.2021.121103_bib0048) 2007
Sun (10.1016/j.ijheatmasstransfer.2021.121103_bib0014) 2018; 152
Joneidi (10.1016/j.ijheatmasstransfer.2021.121103_bib0006) 2017; 88
Zhou (10.1016/j.ijheatmasstransfer.2021.121103_bib0009) 2011; 31
Yang (10.1016/j.ijheatmasstransfer.2021.121103_bib0026) 2019; 238
Xu (10.1016/j.ijheatmasstransfer.2021.121103_bib0003) 2017; 187
Ghalambaz (10.1016/j.ijheatmasstransfer.2021.121103_bib0036) 2019; 138
Ye (10.1016/j.ijheatmasstransfer.2021.121103_bib0011) 2012; 42
Hong (10.1016/j.ijheatmasstransfer.2021.121103_bib0018) 2018; 126
Kamkari (10.1016/j.ijheatmasstransfer.2021.121103_bib0027) 2014; 72
Yang (10.1016/j.ijheatmasstransfer.2021.121103_bib0017) 2016; 169
Parsazadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0024) 2020; 142
Yang (10.1016/j.ijheatmasstransfer.2021.121103_bib0045) 2017; 202
Ghalambaz (10.1016/j.ijheatmasstransfer.2021.121103_bib0029) 2017; 71
Parsazadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0044) 2018
Ling (10.1016/j.ijheatmasstransfer.2021.121103_bib0008) 2014
Bejan (10.1016/j.ijheatmasstransfer.2021.121103_bib0023) 2013
Jiji (10.1016/j.ijheatmasstransfer.2021.121103_bib0043) 2012
Parsazadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0033) 2020; 156
Khodadadi (10.1016/j.ijheatmasstransfer.2021.121103_bib0049) 2007; 34
Jourabian (10.1016/j.ijheatmasstransfer.2021.121103_bib0019) 2013; 49
Ghalambaz (10.1016/j.ijheatmasstransfer.2021.121103_bib0034) 2020
Huang (10.1016/j.ijheatmasstransfer.2021.121103_bib0021) 2020
Faghri (10.1016/j.ijheatmasstransfer.2021.121103_bib0040) 2006
Labihi (10.1016/j.ijheatmasstransfer.2021.121103_bib0012) 2017; 126
Mehryan (10.1016/j.ijheatmasstransfer.2021.121103_bib0039) 2020; 132
Motahar (10.1016/j.ijheatmasstransfer.2021.121103_bib0035) 2017; 109
Carslow (10.1016/j.ijheatmasstransfer.2021.121103_bib0041) 1986
Zhang (10.1016/j.ijheatmasstransfer.2021.121103_bib0005) 2016; 61
Mehryan (10.1016/j.ijheatmasstransfer.2021.121103_bib0038) 2020
Zhao (10.1016/j.ijheatmasstransfer.2021.121103_bib0028) 2018; 120
Gao (10.1016/j.ijheatmasstransfer.2021.121103_bib0016) 1986; 108
Lopera-Valle (10.1016/j.ijheatmasstransfer.2021.121103_bib0042) 2016
Parsazadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0022) 2020; 156
Fok (10.1016/j.ijheatmasstransfer.2021.121103_bib0007) 2010; 49
Madruga (10.1016/j.ijheatmasstransfer.2021.121103_bib0031) 2018; 98
Zhou (10.1016/j.ijheatmasstransfer.2021.121103_bib0002) 2012; 92
Jin (10.1016/j.ijheatmasstransfer.2021.121103_bib0015) 2014; 73
Favier (10.1016/j.ijheatmasstransfer.2021.121103_bib0032) 2019; 858
Oró (10.1016/j.ijheatmasstransfer.2021.121103_bib0001) 2012; 99
Ezan (10.1016/j.ijheatmasstransfer.2021.121103_bib0013) 2016; 61
Abdollahzadeh (10.1016/j.ijheatmasstransfer.2021.121103_bib0046) 2015; 80
Al-Jethelah (10.1016/j.ijheatmasstransfer.2021.121103_bib0047) 2018; 126
Madruga (10.1016/j.ijheatmasstransfer.2021.121103_bib0030) 2018; 126
Kalbasi (10.1016/j.ijheatmasstransfer.2021.121103_bib0025) 2015; 91
Aitlahbib (10.1016/j.ijheatmasstransfer.2021.121103_bib0020) 2015; 75
Yang (10.1016/j.ijheatmasstransfer.2021.121103_bib0004) 2018; 73
Jany (10.1016/j.ijheatmasstransfer.2021.121103_bib0010) 1988; 31
References_xml – volume: 142
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0024
  article-title: Numerical and experimental investigation of phase change heat transfer in the presence of Rayleigh–Benard convection
  publication-title: J. Heat Transf.
– volume: 75
  start-page: 73
  year: 2015
  end-page: 85
  ident: bib0020
  article-title: Numerical study of heat transfer inside a Keeping Warm System (KWS) incorporating phase change material
  publication-title: Appl. Therm. Eng.
– year: 2016
  ident: bib0042
  article-title: Flame-sprayed coatings as de-icing elements for fiber-reinforced polymer composite structures: modeling and experimentation
  publication-title: Int. J. Heat Mass Transf.
– volume: 61
  start-page: 391
  year: 2016
  end-page: 400
  ident: bib0005
  article-title: Numerical study on solid–liquid phase change in paraffin as phase change material for battery thermal management
  publication-title: Sci. Bull.
– start-page: 216
  year: 2018
  ident: bib0044
  article-title: Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit
  publication-title: Appl. Energy.
– volume: 99
  start-page: 513
  year: 2012
  end-page: 533
  ident: bib0001
  article-title: Review on phase change materials (PCMs) for cold thermal energy storage applications
  publication-title: Appl. Energy.
– volume: 126
  start-page: 305
  year: 2017
  end-page: 314
  ident: bib0012
  article-title: Effect of phase change material wall on natural convection heat transfer inside an air filled enclosure
  publication-title: Appl. Therm. Eng.
– volume: 109
  start-page: 134
  year: 2017
  end-page: 146
  ident: bib0035
  article-title: Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure
  publication-title: Int. J. Heat Mass Transf.
– volume: 169
  start-page: 164
  year: 2016
  end-page: 176
  ident: bib0017
  article-title: Experimental study on enhancement of thermal energy storage with phase-change material
  publication-title: Appl. Energy.
– volume: 156
  year: 2020
  ident: bib0022
  article-title: An improved layered thermal resistance model for solid-liquid phase change time estimation
  publication-title: Int. J. Therm. Sci.
– volume: 108
  start-page: 174
  year: 1986
  end-page: 181
  ident: bib0016
  article-title: Melting and solidification of a pure metal on a vertical wall
  publication-title: J. Heat Transf. Trans. ASME.
– volume: 71
  start-page: 91
  year: 2017
  end-page: 109
  ident: bib0029
  article-title: MHD phase change heat transfer in an inclined enclosure: Effect of a magnetic field and cavity inclination
  publication-title: Numer. Heat Transf. Part A Appl.
– volume: 126
  start-page: 137
  year: 2018
  end-page: 155
  ident: bib0047
  article-title: Nano-PCM filled energy storage system for solar-thermal applications
  publication-title: Renew. Energy.
– volume: 49
  start-page: 555
  year: 2013
  end-page: 565
  ident: bib0019
  article-title: Convection-dominated melting of phase change material in partially heated cavity: Lattice Boltzmann study
  publication-title: Heat Mass Transf. Stoffuebertragung.
– volume: 98
  start-page: 163
  year: 2018
  end-page: 170
  ident: bib0031
  article-title: Experimental and numerical study of melting of the phase change material tetracosane
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 132
  start-page: 657
  year: 2020
  end-page: 681
  ident: bib0039
  article-title: Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: a deformed mesh approach
  publication-title: Transp. Porous Media.
– year: 2020
  ident: bib0021
  article-title: Experimental study on the influence of PCM container height on heat transfer characteristics under constant heat flux condition
  publication-title: Appl. Therm. Eng.
– volume: 156
  year: 2020
  ident: bib0033
  article-title: Effects of nanoparticles on phase change heat transfer rate in the presence of Rayleigh–Benard convection
  publication-title: Int. J. Heat Mass Transf.
– volume: 187
  start-page: 281
  year: 2017
  end-page: 290
  ident: bib0003
  article-title: Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery
  publication-title: Appl. Energy.
– volume: 31
  start-page: 1221
  year: 1988
  end-page: 1235
  ident: bib0010
  article-title: Scaling theory of melting with natural convection in an enclosure
  publication-title: Int. J. Heat Mass Transf.
– year: 2007
  ident: bib0048
  article-title: An Introduction to Computational Fluid Dynamics
– volume: 88
  start-page: 594
  year: 2017
  end-page: 607
  ident: bib0006
  article-title: Experimental investigation of phase change in a cavity for varying heat flux and inclination angles
  publication-title: Exp. Therm. Fluid Sci.
– volume: 49
  start-page: 109
  year: 2010
  end-page: 117
  ident: bib0007
  article-title: Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks
  publication-title: Int. J. Therm. Sci.
– volume: 73
  start-page: 780
  year: 2014
  end-page: 786
  ident: bib0015
  article-title: On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction
  publication-title: Energy
– volume: 238
  start-page: 22
  year: 2019
  end-page: 33
  ident: bib0026
  article-title: Effect of inclination on the thermal response of composite phase change materials for thermal energy storage
  publication-title: Appl. Energy.
– year: 2014
  ident: bib0008
  article-title: Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules
  publication-title: Renew. Sustain. Energy Rev.
– volume: 138
  start-page: 738
  year: 2019
  end-page: 749
  ident: bib0036
  article-title: Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity
  publication-title: Int. J. Heat Mass Transf.
– volume: 120
  start-page: 241
  year: 2018
  end-page: 249
  ident: bib0028
  article-title: Theory and experiment of contact melting of phase change materials in a rectangular cavity at different tilt angles
  publication-title: Int. J. Heat Mass Transf.
– volume: 80
  start-page: 376
  year: 2015
  end-page: 385
  ident: bib0046
  article-title: Enhancement of phase change material (PCM) based latent heat storage system with nanofluid and wavy surface
  publication-title: Int. J. Heat Mass Transf.
– volume: 91
  start-page: 234
  year: 2015
  end-page: 244
  ident: bib0025
  article-title: Constructal design of horizontal fins to improve the performance of phase change material rectangular enclosures
  publication-title: Appl. Therm. Eng.
– start-page: 421
  year: 2006
  end-page: 530
  ident: bib0040
  article-title: 6 – melting and solidification
  publication-title: Transp. Phenom. Multiph. Syst.
– volume: 152
  start-page: 186
  year: 2018
  end-page: 191
  ident: bib0014
  article-title: Experimental investigations on the heat transfer of melting phase change material (PCM)
  publication-title: Energy Proc.
– volume: 72
  start-page: 186
  year: 2014
  end-page: 200
  ident: bib0027
  article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure
  publication-title: Int. J. Heat Mass Transf.
– volume: 126
  start-page: 206
  year: 2018
  end-page: 220
  ident: bib0030
  article-title: Dynamic of plumes and scaling during the melting of a phase change material heated from below
  publication-title: Int. J. Heat Mass Transf.
– year: 1986
  ident: bib0041
  article-title: Conduction of Heat in Solids, Second Edition
  publication-title: J. Eng. Mater. Technol.
– start-page: 157
  year: 2020
  ident: bib0034
  article-title: Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity
  publication-title: Int. J. Therm. Sci.
– volume: 202
  start-page: 558
  year: 2017
  end-page: 570
  ident: bib0045
  article-title: Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins
  publication-title: Appl. Energy.
– year: 2012
  ident: bib0043
  article-title: Heat Conduction, third
– volume: 92
  start-page: 593
  year: 2012
  end-page: 605
  ident: bib0002
  article-title: Review on thermal energy storage with phase change material (PCMs) in building applications
  publication-title: Appl. Energy.
– volume: 156
  year: 2020
  ident: bib0037
  article-title: Study of thermal and hydrodynamic characteristics of water-nano-encapsulated phase change particles suspension in an annulus of a porous eccentric horizontal cylinder
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  start-page: 970
  year: 2011
  end-page: 977
  ident: bib0009
  article-title: Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials
  publication-title: Appl. Therm. Eng.
– volume: 126
  start-page: 571
  year: 2018
  end-page: 578
  ident: bib0018
  article-title: Can the melting behaviors of solid-liquid phase change be improved by inverting the partially thermal-active rectangular cavity?
  publication-title: Int. J. Heat Mass Transf.
– year: 2013
  ident: bib0023
  article-title: Convective Heat Transfer, Fourth Edi
– volume: 61
  start-page: 438
  year: 2016
  end-page: 448
  ident: bib0013
  article-title: Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity
  publication-title: Int. J. Heat Fluid Flow.
– start-page: 151
  year: 2020
  ident: bib0038
  article-title: Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2)
  publication-title: Int. J. Heat Mass Transf.
– volume: 42
  start-page: 49
  year: 2012
  end-page: 57
  ident: bib0011
  article-title: Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions
  publication-title: Appl. Therm. Eng.
– volume: 73
  start-page: 34
  year: 2018
  end-page: 54
  ident: bib0004
  article-title: Probing the Rayleigh–Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method
  publication-title: Numer. Heat Transf. Part A Appl.
– volume: 34
  start-page: 534
  year: 2007
  end-page: 543
  ident: bib0049
  article-title: Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 858
  start-page: 437
  year: 2019
  end-page: 473
  ident: bib0032
  article-title: Rayleigh-Bénard convection with a melting boundary
  publication-title: J. Fluid Mech.
– start-page: 421
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0040
  article-title: 6 – melting and solidification
  publication-title: Transp. Phenom. Multiph. Syst.
– volume: 75
  start-page: 73
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0020
  article-title: Numerical study of heat transfer inside a Keeping Warm System (KWS) incorporating phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.09.035
– volume: 31
  start-page: 970
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0009
  article-title: Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.11.022
– volume: 126
  start-page: 206
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0030
  article-title: Dynamic of plumes and scaling during the melting of a phase change material heated from below
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.05.075
– start-page: 216
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0044
  article-title: Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit
  publication-title: Appl. Energy.
– volume: 109
  start-page: 134
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0035
  article-title: Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.01.109
– volume: 156
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0022
  article-title: An improved layered thermal resistance model for solid-liquid phase change time estimation
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106496
– volume: 142
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0024
  article-title: Numerical and experimental investigation of phase change heat transfer in the presence of Rayleigh–Benard convection
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4046537
– volume: 34
  start-page: 534
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0049
  article-title: Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2007.02.005
– volume: 73
  start-page: 34
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0004
  article-title: Probing the Rayleigh–Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407782.2017.1420307
– volume: 91
  start-page: 234
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0025
  article-title: Constructal design of horizontal fins to improve the performance of phase change material rectangular enclosures
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.08.024
– volume: 61
  start-page: 391
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0005
  article-title: Numerical study on solid–liquid phase change in paraffin as phase change material for battery thermal management
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-016-1016-z
– start-page: 151
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0038
  article-title: Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2)
  publication-title: Int. J. Heat Mass Transf.
– volume: 132
  start-page: 657
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0039
  article-title: Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: a deformed mesh approach
  publication-title: Transp. Porous Media.
  doi: 10.1007/s11242-020-01407-y
– year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0048
– volume: 61
  start-page: 438
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0013
  article-title: Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity
  publication-title: Int. J. Heat Fluid Flow.
  doi: 10.1016/j.ijheatfluidflow.2016.06.004
– volume: 152
  start-page: 186
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0014
  article-title: Experimental investigations on the heat transfer of melting phase change material (PCM)
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2018.09.079
– volume: 71
  start-page: 91
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0029
  article-title: MHD phase change heat transfer in an inclined enclosure: Effect of a magnetic field and cavity inclination
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407782.2016.1244397
– start-page: 157
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0034
  article-title: Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity
  publication-title: Int. J. Therm. Sci.
– volume: 99
  start-page: 513
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0001
  article-title: Review on phase change materials (PCMs) for cold thermal energy storage applications
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2012.03.058
– year: 1986
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0041
  article-title: Conduction of Heat in Solids, Second Edition
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3225900
– year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0043
– volume: 49
  start-page: 109
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0007
  article-title: Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.06.011
– year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0008
  article-title: Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.12.017
– volume: 126
  start-page: 305
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0012
  article-title: Effect of phase change material wall on natural convection heat transfer inside an air filled enclosure
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.112
– volume: 98
  start-page: 163
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0031
  article-title: Experimental and numerical study of melting of the phase change material tetracosane
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2018.08.021
– year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0021
  article-title: Experimental study on the influence of PCM container height on heat transfer characteristics under constant heat flux condition
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115159
– volume: 238
  start-page: 22
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0026
  article-title: Effect of inclination on the thermal response of composite phase change materials for thermal energy storage
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2019.01.074
– volume: 858
  start-page: 437
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0032
  article-title: Rayleigh-Bénard convection with a melting boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.773
– volume: 31
  start-page: 1221
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0010
  article-title: Scaling theory of melting with natural convection in an enclosure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(88)90065-8
– year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0042
  article-title: Flame-sprayed coatings as de-icing elements for fiber-reinforced polymer composite structures: modeling and experimentation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.01.079
– volume: 72
  start-page: 186
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0027
  article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.01.014
– volume: 108
  start-page: 174
  year: 1986
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0016
  article-title: Melting and solidification of a pure metal on a vertical wall
  publication-title: J. Heat Transf. Trans. ASME.
  doi: 10.1115/1.3246884
– volume: 42
  start-page: 49
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0011
  article-title: Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.002
– volume: 187
  start-page: 281
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0003
  article-title: Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2016.11.070
– volume: 88
  start-page: 594
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0006
  article-title: Experimental investigation of phase change in a cavity for varying heat flux and inclination angles
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.07.017
– volume: 156
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0037
  article-title: Study of thermal and hydrodynamic characteristics of water-nano-encapsulated phase change particles suspension in an annulus of a porous eccentric horizontal cylinder
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119792
– volume: 73
  start-page: 780
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0015
  article-title: On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.079
– volume: 126
  start-page: 571
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0018
  article-title: Can the melting behaviors of solid-liquid phase change be improved by inverting the partially thermal-active rectangular cavity?
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.06.012
– volume: 156
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0033
  article-title: Effects of nanoparticles on phase change heat transfer rate in the presence of Rayleigh–Benard convection
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119831
– volume: 92
  start-page: 593
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0002
  article-title: Review on thermal energy storage with phase change material (PCMs) in building applications
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2011.08.025
– volume: 120
  start-page: 241
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0028
  article-title: Theory and experiment of contact melting of phase change materials in a rectangular cavity at different tilt angles
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.12.006
– volume: 80
  start-page: 376
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0046
  article-title: Enhancement of phase change material (PCM) based latent heat storage system with nanofluid and wavy surface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.09.007
– volume: 126
  start-page: 137
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0047
  article-title: Nano-PCM filled energy storage system for solar-thermal applications
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2018.02.119
– volume: 169
  start-page: 164
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0017
  article-title: Experimental study on enhancement of thermal energy storage with phase-change material
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2016.02.028
– volume: 138
  start-page: 738
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0036
  article-title: Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.04.037
– volume: 202
  start-page: 558
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0045
  article-title: Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2017.05.007
– volume: 49
  start-page: 555
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0019
  article-title: Convection-dominated melting of phase change material in partially heated cavity: Lattice Boltzmann study
  publication-title: Heat Mass Transf. Stoffuebertragung.
  doi: 10.1007/s00231-012-1102-y
– year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121103_bib0023
SSID ssj0017046
Score 2.4498003
Snippet •The effect of domain size on the phase change heat transfer process was identified.•The formation of different heat transfer subregimes was evaluated during...
This research study investigated the melting process of a phase change material (PCM), heated from the bottom, under Neumann boundary conditions, in the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121103
SubjectTerms Boundary conditions
Domains
Electronic devices
Enclosures
Enthalpy
Fluid flow
Heat exchangers
Heat flux
Heat transfer
Liquid-solid interfaces
Melting
Neumann boundary condition
Nusselt number
Phase change heat transfer
Phase change material (PCM)
Phase change materials
Rayleigh number
Rayleigh-Benard convection
Rayleigh-Bénard convection
Title Numerical study on melting of phase change material in an enclosure subject to Neumann boundary condition in the presence of Rayleigh-Bénard convection
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121103
https://www.proquest.com/docview/2533791686
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTttAEF0hKhAXRCkVoYDmwIGLwRtvdu0TohEobUQOERHcVuv1Wg0KdpQ4By79jv5Cv4MfY2ZtU7WckKocoljx2t59mnk7fjPD2IlygluF21Rh8iyg-uVBEss0sKFB_2klYoriHTcjOZiI7_e9-zXWb3NhSFbZ2P7apntr3Rw5b2bzfD6dUo4vgYtaUxPnkVQTVAhFKD_7-Srz4Cqsk3XIGtO_N9npH43X9IEs3iPS1MrTREcVQrucSi7wto3WW1f1j9H2nuh6h203FBIu67v8yNZcscs2vJTTLj-xX6NV_RZmBr52LJQFPLoZyZuhzGH-A_0W1Pm-gHTVIxCmBZgC8OlnJYUMYblKKUADVQkjR3H-AlLfgGnxBLiDzrzQi85C_ghzn8JkHQ0_Nk8-2hp8ff5dIPrAy9p98sQem1xf3fYHQdN_IbCRCqvAqDxJ8szy3DjheBbZKMf9DVfKcm7iFMmXkAY_mXVWdq1TPZ7FMoxd5DIRdaPPbL0oC7fPAFmKC_M0lyJOhJNUJy-NJMLD2F5m06jDLtqp1rYpTk49Mma6VaE96LeLpWmxdL1YHZa8jjCvC3W849x-u7r6L_Bp9CvvGOWwBYZuDMFSd5FOK6TgsTz4Lxf5wrboVy1WO2Tr1WLljpAWVemxx_0x-3D5bTgY0fdwfDd8ARTsFrU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYQFW0vVemPoKV0Dq3US0qceO3kUCF-ipYCe6hA4uY6jqMuWpIVmxXaC8_RV-i5j8CLMeMkIOCEVJRbIjvRzGTms_3NDGOflBPcKlymClPkAdUvD9JEZoENDcZPK9GmaL_jYCD7R-LHce94jv3rcmGIVtn6_sane2_d3llrpbk2Hg4px5eMi1pTE-aRomVW7rnZOa7bJt92t1HJn6No5_vhVj9oWwsENlZhHRhVpGmRW14YJxzPYxsXCN25UpZzk2SIK4Q0eOXWWRlZp3o8T2SYuNjlIqZqB-j3nwh0F9Q24evFNa-Eq7DJDiL3T5_3lH25IZUNT8jFniIurj0udVSSNOJU44F3fbvux8Y7UcKHvp2X7EWLWWGjEcsim3PlK7bguaN28pr9GUybY58R-GK1UJVw6kbEp4aqgPFvDJTQJBgD4mNv8jAswZSA4h5VtEcJk2lGO0JQVzBwdLBQQuY7Pp3NAJfsuWeW0SgErDD2OVPW0fQ_zcxv7wabl39LNHfwPHqfrfGGHT2KVt6y-bIq3RIDhEUuLLJCiiQVTlJhviyWaI_G9nKbxctsvRO1tm01dGrKMdId7e1E31eWJmXpRlnLLL2eYdxUBnnA2K1Ou_qWtWsMZA-YZaUzDN16nomOEL8rxPyJfPdfXvKRPesfHuzr_d3B3nv2nJ40TLkVNl-fTd0HxGR1tur_AWC_HvunuwIZSVGo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+melting+of+phase+change+material+in+an+enclosure+subject+to+Neumann+boundary+condition+in+the+presence+of+Rayleigh-B%C3%A9nard+convection&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Parsazadeh%2C+Mohammad&rft.au=Malik%2C+Mehtab&rft.au=Duan%2C+Xili&rft.au=McDonald%2C+Andr%C3%A9&rft.date=2021-06-01&rft.issn=0017-9310&rft.volume=171&rft.spage=121103&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2021_121103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon