Analytic study on pressure drop and heat transfer characteristics for low reynolds number flow in spirally finned tubes

•Analytic solutions of the velocity and temperature profiles for a low reynolds number flow in a spirally finned tube are obtained.•The coordinate transformation in conjunction with the perturbation method is used to solve the governing equations.•Correlations of optimum fin number and twist ratio a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 158; p. 119849
Main Authors Yu, Dahm, Jeon, Wonju, Kim, Sung Jin
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Analytic solutions of the velocity and temperature profiles for a low reynolds number flow in a spirally finned tube are obtained.•The coordinate transformation in conjunction with the perturbation method is used to solve the governing equations.•Correlations of optimum fin number and twist ratio are presented. Analytic solutions of the velocity and temperature profiles for a low Reynolds number flow in a spirally finned tube are obtained. The cross-sectional shape of the unit channel of the spirally finned tube is described by an annular sector with an inner radius ri, an outer radius ro, and an apex angle 2α. The channel is twisted about its longitudinal axis with a twist length H. To simplify the problem, it is assumed that the swirling effect is negligible, which is valid for low Reynolds number flows. By using an appropriate coordinate transformation, the fully-developed flow in the spirally finned tube can be treated as a quasi-2-dimensional flow. The perturbation method is used to solve the transformed momentum and energy equations for forced convection in the tube subject to the uniform heat flux condition. The Poiseuille and Nusselt numbers are obtained by using the analytic solutions for the velocity and temperature profiles. The values of fRe and Nu are presented in terms of the geometrical parameters, 2α, Ri=ri/ro, and ω=2πro/H. The results obtained from the analytic solutions show good agreement with numerical results for ω ≤ 0.5 and Re<21/ω. These analytic solutions are useful for optimizing the thermal performance of the spirally finned tube under various constraints. To illustrate their usefulness, the thermal resistance of a spirally finned tube under the constraint of fixed pumping power is evaluated. Based on the analytic solutions, the optimum fin geometry for which a minimum thermal resistance is attained can be analytically determined for a given non-dimensional pumping power. Furthermore, correlations of the optimum fin number and optimum twist ratio are presented in this study. According to the results, for relatively low pumping power conditions (Ppump*≤Ppump,crit*), the straight finned tube has better thermal performance than that of the spirally finned tube, and the optimum fin number increases as the pumping power increases. On the other hand, For relatively high pumping power conditions, (Ppump*>Ppump,crit*),the spirally finned tube has better thermal performance than that of the straight finned tube. The optimum twist ratio and the fin number increase as the pumping power increases.
AbstractList •Analytic solutions of the velocity and temperature profiles for a low reynolds number flow in a spirally finned tube are obtained.•The coordinate transformation in conjunction with the perturbation method is used to solve the governing equations.•Correlations of optimum fin number and twist ratio are presented. Analytic solutions of the velocity and temperature profiles for a low Reynolds number flow in a spirally finned tube are obtained. The cross-sectional shape of the unit channel of the spirally finned tube is described by an annular sector with an inner radius ri, an outer radius ro, and an apex angle 2α. The channel is twisted about its longitudinal axis with a twist length H. To simplify the problem, it is assumed that the swirling effect is negligible, which is valid for low Reynolds number flows. By using an appropriate coordinate transformation, the fully-developed flow in the spirally finned tube can be treated as a quasi-2-dimensional flow. The perturbation method is used to solve the transformed momentum and energy equations for forced convection in the tube subject to the uniform heat flux condition. The Poiseuille and Nusselt numbers are obtained by using the analytic solutions for the velocity and temperature profiles. The values of fRe and Nu are presented in terms of the geometrical parameters, 2α, Ri=ri/ro, and ω=2πro/H. The results obtained from the analytic solutions show good agreement with numerical results for ω ≤ 0.5 and Re<21/ω. These analytic solutions are useful for optimizing the thermal performance of the spirally finned tube under various constraints. To illustrate their usefulness, the thermal resistance of a spirally finned tube under the constraint of fixed pumping power is evaluated. Based on the analytic solutions, the optimum fin geometry for which a minimum thermal resistance is attained can be analytically determined for a given non-dimensional pumping power. Furthermore, correlations of the optimum fin number and optimum twist ratio are presented in this study. According to the results, for relatively low pumping power conditions (Ppump*≤Ppump,crit*), the straight finned tube has better thermal performance than that of the spirally finned tube, and the optimum fin number increases as the pumping power increases. On the other hand, For relatively high pumping power conditions, (Ppump*>Ppump,crit*),the spirally finned tube has better thermal performance than that of the straight finned tube. The optimum twist ratio and the fin number increase as the pumping power increases.
Analytic solutions of the velocity and temperature profiles for a low Reynolds number flow in a spirally finned tube are obtained. The cross-sectional shape of the unit channel of the spirally finned tube is described by an annular sector with an inner radius ri, an outer radius ro, and an apex angle 2α. The channel is twisted about its longitudinal axis with a twist length H. To simplify the problem, it is assumed that the swirling effect is negligible, which is valid for low Reynolds number flows. By using an appropriate coordinate transformation, the fully-developed flow in the spirally finned tube can be treated as a quasi-2-dimensional flow. The perturbation method is used to solve the transformed momentum and energy equations for forced convection in the tube subject to the uniform heat flux condition. The Poiseuille and Nusselt numbers are obtained by using the analytic solutions for the velocity and temperature profiles. The values of fRe and Nu are presented in terms of the geometrical parameters, 2α, Ri- ri/ro, and ω = πro/H. The results obtained from the analytic solutions show good agreement with numerical results for ω ≤ 0.5 and Re < r1/ω. These analytic solutions are useful for optimizing the thermal performance of the spirally finned tube under various constraints. To illustrate their usefulness, the thermal resistance of a spirally finned tube under the constraint of fixed pumping power is evaluated. Based on the analytic solutions, the optimum fin geometry for which a minimum thermal resistance is attained can be analytically determined for a given non-dimensional pumping power. Furthermore, correlations of the optimum fin number and optimum twist ratio are presented in this study. According to the results, for relatively low pumping power conditions (P*pump ≤ P*pump,crit) the straight finned tube has better thermal performance than that of the spirally finned tube, and the optimum fin number increases as the pumping power increases. On the other hand, For relatively high pumping power conditions, (P*pump > P*pump,crit), the spirally finned tube has better thermal performance than that of the straight finned tube. The optimum twist ratio and the fin number increase as the pumping power increases.
ArticleNumber 119849
Author Yu, Dahm
Kim, Sung Jin
Jeon, Wonju
Author_xml – sequence: 1
  givenname: Dahm
  surname: Yu
  fullname: Yu, Dahm
– sequence: 2
  givenname: Wonju
  surname: Jeon
  fullname: Jeon, Wonju
– sequence: 3
  givenname: Sung Jin
  surname: Kim
  fullname: Kim, Sung Jin
  email: sungjinkim@kaist.ac.kr
BookMark eNqVkMFu1DAQhi1UpG5b3sESFy5ZbCfdxDeqigJVJS70bE2cseooawePQ5W3x9GWC1zoyRrPP99ovgt2FmJAxj5IsZdCHj6Oez8-IeQjEOUEgRymvRKqtKXuGv2G7WTX6krJTp-xnRCyrXQtxTm7IBq3UjSHHXu-CTCt2VtOeRlWHgOfExItCfmQ4swhDHzbw_8s4fYJEtiMyVOZI-5i4lN85gnXEKeBeFiOfcm57dMHTrNPME0rdz4EHHheeqQr9tbBRPju5b1kj3eff9x-rR6-f_l2e_NQ2boVuYJWao2yqy3U6ECgULXTILpreQ290Fa41gJ0QvV26LXVHRwUNq1QnbAOoL5k70_cOcWfC1I2Y1xSuZmMappDq1TdqpK6O6VsikQJnbE-Q_YxlKv9ZKQwm3Qzmn-lm026OUkvoE9_gebkj5DW1yDuTwgsWn750iXrMVgcfEKbzRD9_8N-A_sNs0c
CitedBy_id crossref_primary_10_3390_fluids9120272
crossref_primary_10_1016_j_csite_2021_101286
crossref_primary_10_1016_j_ijft_2024_100728
crossref_primary_10_1016_j_cherd_2022_03_050
crossref_primary_10_1016_j_ijthermalsci_2022_107857
crossref_primary_10_3390_en16217441
crossref_primary_10_1016_j_ijthermalsci_2024_109166
Cites_doi 10.1016/S0196-8904(96)00194-X
10.1016/j.cep.2015.08.002
10.1016/0017-9310(74)90152-5
10.1016/0142-727X(90)90058-J
10.1016/j.icheatmasstransfer.2006.02.006
10.1016/j.applthermaleng.2016.04.060
10.1016/j.applthermaleng.2010.12.009
10.1016/j.solener.2018.07.017
10.1007/978-1-4612-5347-1_1
10.1016/j.ijthermalsci.2012.02.025
10.1016/j.applthermaleng.2006.01.008
10.1016/j.applthermaleng.2008.06.009
10.1016/j.applthermaleng.2008.02.030
10.1016/j.ijheatmasstransfer.2018.09.078
10.1016/j.ijheatmasstransfer.2017.09.103
10.1016/j.enconman.2010.11.024
10.1016/j.icheatmasstransfer.2009.08.010
10.1016/j.ijheatmasstransfer.2016.07.076
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2020.119849
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2020_119849
S0017931019359150
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-a7199e183ca3efa0e023f9a08515ab09c0f7caa802bcdb9c98a62e470280cfaa3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 05:40:24 EDT 2025
Tue Jul 01 04:24:02 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Fri Feb 23 02:49:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Poiseuille number
Spirally finned tube
Perturbation method
Nusselt number
Low Reynolds number flow
Coordinate transformation
Thermal optimization
Twisted finned tube
Internally finned tube
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-a7199e183ca3efa0e023f9a08515ab09c0f7caa802bcdb9c98a62e470280cfaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2446722372
PQPubID 2045464
ParticipantIDs proquest_journals_2446722372
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119849
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119849
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jaisankar, Radhakrishnan, Sheeba (bib0009) 2011; 52
Chiu, Jang (bib0014) 2009; 29
Xu, Dai, Yang, Han, Zhu (bib0019) 2019; 129
Shah, London (bib0006) 1978
Tijing, Pak, Baek, Lee (bib0012) 2006; 33
Sivashanmugam, Suresh (bib0015) 2006; 26
Shah, London (bib0016) 1978
Piriyarungrod, Eiamsa-ard, Thianpong, Pimsarn, Nanan (bib0001) 2015; 96
Wang, Hou, Deng, Li, Huang, Huang, Zhang, Chen, Huang (bib0002) 2011; 31
Meyer, Abolarin (bib0011) 2018; 117
Ahmed, Zueco, López-González (bib0018) 2017; 104
Jaisankar, Radhakrishnan, Sheeba (bib0005) 2009; 29
Shah, London (bib0017) 1978
White (bib0022) 2008
Rashidi, Kashefi, Hormozi (bib0004) 2018; 171
Zhang, Liu, Liu (bib0003) 2012; 58
Yildiz, Biçer, Pehlivan (bib0008) 1998; 39
Date (bib0010) 1974; 17
Kim (bib0023) 2016; 102
Date, Saha (bib0007) 1990; 11
Eiamsa-ard, Thianpong, Eiamsa-ard, Promvonge (bib0013) 2010; 37
M.H. Holmes, Introduction to Perturbation Methods, Springer-Verlag, 1995, pp. 1–9.
Zill, Wright (bib0021) 2011
Patankar (bib0024) 1980
Jaisankar (10.1016/j.ijheatmasstransfer.2020.119849_bib0009) 2011; 52
Date (10.1016/j.ijheatmasstransfer.2020.119849_bib0007) 1990; 11
Yildiz (10.1016/j.ijheatmasstransfer.2020.119849_bib0008) 1998; 39
Zill (10.1016/j.ijheatmasstransfer.2020.119849_bib0021) 2011
Jaisankar (10.1016/j.ijheatmasstransfer.2020.119849_bib0005) 2009; 29
Wang (10.1016/j.ijheatmasstransfer.2020.119849_bib0002) 2011; 31
White (10.1016/j.ijheatmasstransfer.2020.119849_bib0022) 2008
10.1016/j.ijheatmasstransfer.2020.119849_bib0020
Chiu (10.1016/j.ijheatmasstransfer.2020.119849_bib0014) 2009; 29
Zhang (10.1016/j.ijheatmasstransfer.2020.119849_bib0003) 2012; 58
Meyer (10.1016/j.ijheatmasstransfer.2020.119849_bib0011) 2018; 117
Tijing (10.1016/j.ijheatmasstransfer.2020.119849_bib0012) 2006; 33
Shah (10.1016/j.ijheatmasstransfer.2020.119849_bib0017) 1978
Eiamsa-ard (10.1016/j.ijheatmasstransfer.2020.119849_bib0013) 2010; 37
Xu (10.1016/j.ijheatmasstransfer.2020.119849_bib0019) 2019; 129
Kim (10.1016/j.ijheatmasstransfer.2020.119849_bib0023) 2016; 102
Rashidi (10.1016/j.ijheatmasstransfer.2020.119849_bib0004) 2018; 171
Shah (10.1016/j.ijheatmasstransfer.2020.119849_bib0006) 1978
Ahmed (10.1016/j.ijheatmasstransfer.2020.119849_bib0018) 2017; 104
Shah (10.1016/j.ijheatmasstransfer.2020.119849_bib0016) 1978
Patankar (10.1016/j.ijheatmasstransfer.2020.119849_bib0024) 1980
Sivashanmugam (10.1016/j.ijheatmasstransfer.2020.119849_bib0015) 2006; 26
Piriyarungrod (10.1016/j.ijheatmasstransfer.2020.119849_bib0001) 2015; 96
Date (10.1016/j.ijheatmasstransfer.2020.119849_bib0010) 1974; 17
References_xml – start-page: 78
  year: 1978
  end-page: 278
  ident: bib0006
  article-title: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
– start-page: 367
  year: 2008
  ident: bib0022
  article-title: Fluid Mechanics
– volume: 17
  start-page: 845
  year: 1974
  end-page: 859
  ident: bib0010
  article-title: Prediction of fully-developed flow in a tube containing a twisted-tape
  publication-title: Int J Heat Mass Transf
– volume: 11
  start-page: 346
  year: 1990
  end-page: 354
  ident: bib0007
  article-title: Numerical prediction of laminar flow and heat transfer characteristics in a tube fitted with regularly spaced twisted-tape elements
  publication-title: International Journal of Heat and Fluid Flow
– volume: 104
  start-page: 409
  year: 2017
  end-page: 418
  ident: bib0018
  article-title: Effects of chemical reaction, heat and mass transfer and viscous dissipation over a MHD flow in a vertical porous wall using perturbation method
  publication-title: International Journal of Heat and Mass Trnasfer
– volume: 58
  start-page: 157
  year: 2012
  end-page: 167
  ident: bib0003
  article-title: Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes
  publication-title: International Journal of Thermal Sciences
– reference: M.H. Holmes, Introduction to Perturbation Methods, Springer-Verlag, 1995, pp. 1–9.
– start-page: 379
  year: 1978
  end-page: 380
  ident: bib0016
  article-title: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
– volume: 102
  start-page: 1250
  year: 2016
  end-page: 1261
  ident: bib0023
  article-title: Thermal optimization of internally finned tube with variable fin thickness
  publication-title: Appl Therm Eng
– volume: 129
  start-page: 299
  year: 2019
  end-page: 309
  ident: bib0019
  article-title: Axisymmetric lattice Boltzmann simulation of the heat-exchanger method-based sapphire crystal growth
  publication-title: Int J Heat Mass Transf
– year: 1980
  ident: bib0024
  article-title: Numerical Heat Transfer and Fluid Flow
– volume: 117
  start-page: 11
  year: 2018
  end-page: 29
  ident: bib0011
  article-title: Heat transfer and pressure drop in the transitional flow regime for a smooth circular tube with twisted tape inserts and a square-edged inlet
  publication-title: Int J Heat Mass Transf
– volume: 37
  start-page: 39
  year: 2010
  end-page: 46
  ident: bib0013
  article-title: Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem
  publication-title: International Communications in Heat and Mass Transfer
– start-page: 26
  year: 1978
  ident: bib0017
  article-title: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
– volume: 39
  start-page: 331
  year: 1998
  end-page: 336
  ident: bib0008
  article-title: Effect of twisted strips on heat transfer and pressure drop in heat exchangers
  publication-title: Energy Conversion and Management
– volume: 29
  start-page: 250
  year: 2009
  end-page: 258
  ident: bib0014
  article-title: 3D numerical and experimental analysis for thermal–hydraulic characteristics of air flow inside a circular tube with different tube inserts of twisted tapes
  publication-title: Appl Therm Eng
– volume: 171
  start-page: 929
  year: 2018
  end-page: 952
  ident: bib0004
  article-title: Potential applications of inserts in solar thermal energy systems – A review to identify the gaps and frontier challenges
  publication-title: Solar Energy
– volume: 33
  year: 2006
  ident: bib0012
  article-title: A study on heat transfer enhancement using straight and twisted internal fin inserts
  publication-title: International Communications in Heat and Mass Transfer
– volume: 26
  start-page: 1990
  year: 2006
  end-page: 1997
  ident: bib0015
  article-title: Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts
  publication-title: Appl Therm Eng
– volume: 52
  start-page: 2048
  year: 2011
  end-page: 2055
  ident: bib0009
  article-title: Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and Left–Right twisted tapes
  publication-title: Energy Conversion and Management
– volume: 29
  start-page: 1224
  year: 2009
  end-page: 1231
  ident: bib0005
  article-title: Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes
  publication-title: Appl Therm Eng
– start-page: 632
  year: 2011
  end-page: 641
  ident: bib0021
  article-title: Advanced Engineering Mathematics
– volume: 31
  start-page: 1141
  year: 2011
  end-page: 1149
  ident: bib0002
  article-title: Configuration optimization of regularly spaced short-length twisted tape in a circular tube to enhance turbulent heat transfer using CFD modeling
  publication-title: Appl Therm Eng
– volume: 96
  start-page: 62
  year: 2015
  end-page: 71
  ident: bib0001
  article-title: Heat transfer enhancement by tapered twisted tape inserts
  publication-title: Chemical Engineering and Processing: Process Intensification
– start-page: 632
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0021
– volume: 39
  start-page: 331
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0008
  article-title: Effect of twisted strips on heat transfer and pressure drop in heat exchangers
  publication-title: Energy Conversion and Management
  doi: 10.1016/S0196-8904(96)00194-X
– volume: 96
  start-page: 62
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0001
  article-title: Heat transfer enhancement by tapered twisted tape inserts
  publication-title: Chemical Engineering and Processing: Process Intensification
  doi: 10.1016/j.cep.2015.08.002
– volume: 17
  start-page: 845
  year: 1974
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0010
  article-title: Prediction of fully-developed flow in a tube containing a twisted-tape
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(74)90152-5
– start-page: 367
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0022
– start-page: 379
  year: 1978
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0016
– volume: 11
  start-page: 346
  year: 1990
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0007
  article-title: Numerical prediction of laminar flow and heat transfer characteristics in a tube fitted with regularly spaced twisted-tape elements
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/0142-727X(90)90058-J
– volume: 33
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0012
  article-title: A study on heat transfer enhancement using straight and twisted internal fin inserts
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2006.02.006
– volume: 102
  start-page: 1250
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0023
  article-title: Thermal optimization of internally finned tube with variable fin thickness
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.04.060
– volume: 31
  start-page: 1141
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0002
  article-title: Configuration optimization of regularly spaced short-length twisted tape in a circular tube to enhance turbulent heat transfer using CFD modeling
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.12.009
– volume: 171
  start-page: 929
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0004
  article-title: Potential applications of inserts in solar thermal energy systems – A review to identify the gaps and frontier challenges
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.07.017
– ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0020
  doi: 10.1007/978-1-4612-5347-1_1
– volume: 58
  start-page: 157
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0003
  article-title: Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2012.02.025
– volume: 26
  start-page: 1990
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0015
  article-title: Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.01.008
– volume: 29
  start-page: 1224
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0005
  article-title: Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2008.06.009
– volume: 29
  start-page: 250
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0014
  article-title: 3D numerical and experimental analysis for thermal–hydraulic characteristics of air flow inside a circular tube with different tube inserts of twisted tapes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2008.02.030
– volume: 129
  start-page: 299
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0019
  article-title: Axisymmetric lattice Boltzmann simulation of the heat-exchanger method-based sapphire crystal growth
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.09.078
– start-page: 78
  year: 1978
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0006
– volume: 117
  start-page: 11
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0011
  article-title: Heat transfer and pressure drop in the transitional flow regime for a smooth circular tube with twisted tape inserts and a square-edged inlet
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.09.103
– volume: 52
  start-page: 2048
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0009
  article-title: Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and Left–Right twisted tapes
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2010.11.024
– year: 1980
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0024
– volume: 37
  start-page: 39
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0013
  article-title: Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2009.08.010
– start-page: 26
  year: 1978
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0017
– volume: 104
  start-page: 409
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0018
  article-title: Effects of chemical reaction, heat and mass transfer and viscous dissipation over a MHD flow in a vertical porous wall using perturbation method
  publication-title: International Journal of Heat and Mass Trnasfer
  doi: 10.1016/j.ijheatmasstransfer.2016.07.076
SSID ssj0017046
Score 2.3541512
Snippet •Analytic solutions of the velocity and temperature profiles for a low reynolds number flow in a spirally finned tube are obtained.•The coordinate...
Analytic solutions of the velocity and temperature profiles for a low Reynolds number flow in a spirally finned tube are obtained. The cross-sectional shape of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119849
SubjectTerms Apex angle
Computational fluid dynamics
Coordinate transformation
Coordinate transformations
Exact solutions
Fluid flow
Forced convection
Heat flux
Heat transfer
Internally finned tube
Low Reynolds number flow
Nusselt number
Optimization
Perturbation method
Perturbation methods
Poiseuille number
Pressure drop
Pumping
Reynolds number
Spirally finned tube
Swirling
Temperature profiles
Thermal optimization
Thermal resistance
Tubes
Twisted finned tube
Two dimensional flow
Title Analytic study on pressure drop and heat transfer characteristics for low reynolds number flow in spirally finned tubes
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119849
https://www.proquest.com/docview/2446722372
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iKF7EJ64v5uDBSzV9bNOcZFmU1UUPougtpEkKK7VddruIF3-7mbRd8XERPJWmaRsyk5kvZOYbQo51KDUNs9TzfZN4kWa-J61meYrrGNlXtHRUSje38eAhun7qPi2QfpsLg2GVje2vbbqz1k3LWTObZ-PRCHN8UbmsSmFyab1vjyKGWn76Pg_z8Bmtk3XQGmPvFXLyGeM1ekaL92JhauVgokGG0ADtCE-QXfN3V_XNaDtPdLlO1hoICb16lBtkwRSbZNmFcqrpFnl1PCP2GTjqWCgLcMGus4kBPSnHIAsNOCBoRwPqK2szWCALefkKVsxFmesp1HVDIMPGUQHudD7P3yDDyl0aqllqptvk4fLivj_wmvIKngoZrTzJfM6NXdJKhiaT1Fj3nXGJGKwrU8oVzZiSMqFBqnTKFU9kHJiI4WGsyqQMd8hiURZml4DtGthdOdU8sQhBBtykNNGxsq6Op2E37JDzdiaFarjHsQRGLtogs2fxUxYCZSFqWXQIn39hXPNw_OHdfis88UW3hHUbf_jKQSt30azzqbDgKGYWYbFg719-sk9W8a4OYjsgi9VkZg4t6qnSI6fWR2SpdzUc3OJ1ePc4_ADp1Arv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbQEI8L4ikGA3zgwKUia7e2OaFpAo3XTiBxi9IklYZKO22dEP-eOG1BPC5IXJMmjWLH_qLYnwFOdSA1C9LE63ZN7PV01PWk1SxPcR0S-4qWjkrpfhyOHns3T_2nJRg2uTAUVlnb_sqmO2tdt5zXu3k-nUwox5eUy6oUJZe6e_sysVP1W7A8uL4djT8eEyJW5euQQaYBq3D2GeY1eSaj92KRaumQoiGSUJ9MCY-JYPN3b_XNbjtndLUJGzWKxEG10C1YMvk2rLhoTjXfgVdHNWL70LHHYpGji3ddzAzqWTFFmWukBWGzGlRfiZvRYlnMile0ks6LTM-xKh2CKTVOcnQP9Fn2hikV79JYLhIz34XHq8uH4cirKyx4KohY6cmoy7mxp1rJwKSSGevBUy4JhvVlwrhiaaSkjJmfKJ1wxWMZ-qYX0XusSqUM9qCVF7nZB7Sf-vZizjSPLUiQPjcJi3WorLfjSdAP2nDR7KRQNf04VcHIRBNn9ix-ykKQLEQlizbwjxmmFRXHH8YOG-GJL-olrOf4wyydRu6iPupzYfFRGFmQFfkH__KTE1gbPdzfibvr8e0hrFNPFdPWgVY5W5gjC4LK5LhW8neVPwv9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+study+on+pressure+drop+and+heat+transfer+characteristics+for+low+reynolds+number+flow+in+spirally+finned+tubes&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yu%2C+Dahm&rft.au=Jeon%2C+Wonju&rft.au=Kim%2C+Sung+Jin&rft.date=2020-09-01&rft.issn=0017-9310&rft.volume=158&rft.spage=119849&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119849&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon