Analytic study on pressure drop and heat transfer characteristics for low reynolds number flow in spirally finned tubes
•Analytic solutions of the velocity and temperature profiles for a low reynolds number flow in a spirally finned tube are obtained.•The coordinate transformation in conjunction with the perturbation method is used to solve the governing equations.•Correlations of optimum fin number and twist ratio a...
Saved in:
Published in | International journal of heat and mass transfer Vol. 158; p. 119849 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Analytic solutions of the velocity and temperature profiles for a low reynolds number flow in a spirally finned tube are obtained.•The coordinate transformation in conjunction with the perturbation method is used to solve the governing equations.•Correlations of optimum fin number and twist ratio are presented.
Analytic solutions of the velocity and temperature profiles for a low Reynolds number flow in a spirally finned tube are obtained. The cross-sectional shape of the unit channel of the spirally finned tube is described by an annular sector with an inner radius ri, an outer radius ro, and an apex angle 2α. The channel is twisted about its longitudinal axis with a twist length H. To simplify the problem, it is assumed that the swirling effect is negligible, which is valid for low Reynolds number flows. By using an appropriate coordinate transformation, the fully-developed flow in the spirally finned tube can be treated as a quasi-2-dimensional flow. The perturbation method is used to solve the transformed momentum and energy equations for forced convection in the tube subject to the uniform heat flux condition. The Poiseuille and Nusselt numbers are obtained by using the analytic solutions for the velocity and temperature profiles. The values of fRe and Nu are presented in terms of the geometrical parameters, 2α, Ri=ri/ro, and ω=2πro/H. The results obtained from the analytic solutions show good agreement with numerical results for ω ≤ 0.5 and Re<21/ω. These analytic solutions are useful for optimizing the thermal performance of the spirally finned tube under various constraints. To illustrate their usefulness, the thermal resistance of a spirally finned tube under the constraint of fixed pumping power is evaluated. Based on the analytic solutions, the optimum fin geometry for which a minimum thermal resistance is attained can be analytically determined for a given non-dimensional pumping power. Furthermore, correlations of the optimum fin number and optimum twist ratio are presented in this study. According to the results, for relatively low pumping power conditions (Ppump*≤Ppump,crit*), the straight finned tube has better thermal performance than that of the spirally finned tube, and the optimum fin number increases as the pumping power increases. On the other hand, For relatively high pumping power conditions, (Ppump*>Ppump,crit*),the spirally finned tube has better thermal performance than that of the straight finned tube. The optimum twist ratio and the fin number increase as the pumping power increases. |
---|---|
AbstractList | •Analytic solutions of the velocity and temperature profiles for a low reynolds number flow in a spirally finned tube are obtained.•The coordinate transformation in conjunction with the perturbation method is used to solve the governing equations.•Correlations of optimum fin number and twist ratio are presented.
Analytic solutions of the velocity and temperature profiles for a low Reynolds number flow in a spirally finned tube are obtained. The cross-sectional shape of the unit channel of the spirally finned tube is described by an annular sector with an inner radius ri, an outer radius ro, and an apex angle 2α. The channel is twisted about its longitudinal axis with a twist length H. To simplify the problem, it is assumed that the swirling effect is negligible, which is valid for low Reynolds number flows. By using an appropriate coordinate transformation, the fully-developed flow in the spirally finned tube can be treated as a quasi-2-dimensional flow. The perturbation method is used to solve the transformed momentum and energy equations for forced convection in the tube subject to the uniform heat flux condition. The Poiseuille and Nusselt numbers are obtained by using the analytic solutions for the velocity and temperature profiles. The values of fRe and Nu are presented in terms of the geometrical parameters, 2α, Ri=ri/ro, and ω=2πro/H. The results obtained from the analytic solutions show good agreement with numerical results for ω ≤ 0.5 and Re<21/ω. These analytic solutions are useful for optimizing the thermal performance of the spirally finned tube under various constraints. To illustrate their usefulness, the thermal resistance of a spirally finned tube under the constraint of fixed pumping power is evaluated. Based on the analytic solutions, the optimum fin geometry for which a minimum thermal resistance is attained can be analytically determined for a given non-dimensional pumping power. Furthermore, correlations of the optimum fin number and optimum twist ratio are presented in this study. According to the results, for relatively low pumping power conditions (Ppump*≤Ppump,crit*), the straight finned tube has better thermal performance than that of the spirally finned tube, and the optimum fin number increases as the pumping power increases. On the other hand, For relatively high pumping power conditions, (Ppump*>Ppump,crit*),the spirally finned tube has better thermal performance than that of the straight finned tube. The optimum twist ratio and the fin number increase as the pumping power increases. Analytic solutions of the velocity and temperature profiles for a low Reynolds number flow in a spirally finned tube are obtained. The cross-sectional shape of the unit channel of the spirally finned tube is described by an annular sector with an inner radius ri, an outer radius ro, and an apex angle 2α. The channel is twisted about its longitudinal axis with a twist length H. To simplify the problem, it is assumed that the swirling effect is negligible, which is valid for low Reynolds number flows. By using an appropriate coordinate transformation, the fully-developed flow in the spirally finned tube can be treated as a quasi-2-dimensional flow. The perturbation method is used to solve the transformed momentum and energy equations for forced convection in the tube subject to the uniform heat flux condition. The Poiseuille and Nusselt numbers are obtained by using the analytic solutions for the velocity and temperature profiles. The values of fRe and Nu are presented in terms of the geometrical parameters, 2α, Ri- ri/ro, and ω = πro/H. The results obtained from the analytic solutions show good agreement with numerical results for ω ≤ 0.5 and Re < r1/ω. These analytic solutions are useful for optimizing the thermal performance of the spirally finned tube under various constraints. To illustrate their usefulness, the thermal resistance of a spirally finned tube under the constraint of fixed pumping power is evaluated. Based on the analytic solutions, the optimum fin geometry for which a minimum thermal resistance is attained can be analytically determined for a given non-dimensional pumping power. Furthermore, correlations of the optimum fin number and optimum twist ratio are presented in this study. According to the results, for relatively low pumping power conditions (P*pump ≤ P*pump,crit) the straight finned tube has better thermal performance than that of the spirally finned tube, and the optimum fin number increases as the pumping power increases. On the other hand, For relatively high pumping power conditions, (P*pump > P*pump,crit), the spirally finned tube has better thermal performance than that of the straight finned tube. The optimum twist ratio and the fin number increase as the pumping power increases. |
ArticleNumber | 119849 |
Author | Yu, Dahm Kim, Sung Jin Jeon, Wonju |
Author_xml | – sequence: 1 givenname: Dahm surname: Yu fullname: Yu, Dahm – sequence: 2 givenname: Wonju surname: Jeon fullname: Jeon, Wonju – sequence: 3 givenname: Sung Jin surname: Kim fullname: Kim, Sung Jin email: sungjinkim@kaist.ac.kr |
BookMark | eNqVkMFu1DAQhi1UpG5b3sESFy5ZbCfdxDeqigJVJS70bE2cseooawePQ5W3x9GWC1zoyRrPP99ovgt2FmJAxj5IsZdCHj6Oez8-IeQjEOUEgRymvRKqtKXuGv2G7WTX6krJTp-xnRCyrXQtxTm7IBq3UjSHHXu-CTCt2VtOeRlWHgOfExItCfmQ4swhDHzbw_8s4fYJEtiMyVOZI-5i4lN85gnXEKeBeFiOfcm57dMHTrNPME0rdz4EHHheeqQr9tbBRPju5b1kj3eff9x-rR6-f_l2e_NQ2boVuYJWao2yqy3U6ECgULXTILpreQ290Fa41gJ0QvV26LXVHRwUNq1QnbAOoL5k70_cOcWfC1I2Y1xSuZmMappDq1TdqpK6O6VsikQJnbE-Q_YxlKv9ZKQwm3Qzmn-lm026OUkvoE9_gebkj5DW1yDuTwgsWn750iXrMVgcfEKbzRD9_8N-A_sNs0c |
CitedBy_id | crossref_primary_10_3390_fluids9120272 crossref_primary_10_1016_j_csite_2021_101286 crossref_primary_10_1016_j_ijft_2024_100728 crossref_primary_10_1016_j_cherd_2022_03_050 crossref_primary_10_1016_j_ijthermalsci_2022_107857 crossref_primary_10_3390_en16217441 crossref_primary_10_1016_j_ijthermalsci_2024_109166 |
Cites_doi | 10.1016/S0196-8904(96)00194-X 10.1016/j.cep.2015.08.002 10.1016/0017-9310(74)90152-5 10.1016/0142-727X(90)90058-J 10.1016/j.icheatmasstransfer.2006.02.006 10.1016/j.applthermaleng.2016.04.060 10.1016/j.applthermaleng.2010.12.009 10.1016/j.solener.2018.07.017 10.1007/978-1-4612-5347-1_1 10.1016/j.ijthermalsci.2012.02.025 10.1016/j.applthermaleng.2006.01.008 10.1016/j.applthermaleng.2008.06.009 10.1016/j.applthermaleng.2008.02.030 10.1016/j.ijheatmasstransfer.2018.09.078 10.1016/j.ijheatmasstransfer.2017.09.103 10.1016/j.enconman.2010.11.024 10.1016/j.icheatmasstransfer.2009.08.010 10.1016/j.ijheatmasstransfer.2016.07.076 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Sep 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2020.119849 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2020_119849 S0017931019359150 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c370t-a7199e183ca3efa0e023f9a08515ab09c0f7caa802bcdb9c98a62e470280cfaa3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 05:40:24 EDT 2025 Tue Jul 01 04:24:02 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Fri Feb 23 02:49:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Poiseuille number Spirally finned tube Perturbation method Nusselt number Low Reynolds number flow Coordinate transformation Thermal optimization Twisted finned tube Internally finned tube |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-a7199e183ca3efa0e023f9a08515ab09c0f7caa802bcdb9c98a62e470280cfaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2446722372 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2446722372 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119849 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119849 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Jaisankar, Radhakrishnan, Sheeba (bib0009) 2011; 52 Chiu, Jang (bib0014) 2009; 29 Xu, Dai, Yang, Han, Zhu (bib0019) 2019; 129 Shah, London (bib0006) 1978 Tijing, Pak, Baek, Lee (bib0012) 2006; 33 Sivashanmugam, Suresh (bib0015) 2006; 26 Shah, London (bib0016) 1978 Piriyarungrod, Eiamsa-ard, Thianpong, Pimsarn, Nanan (bib0001) 2015; 96 Wang, Hou, Deng, Li, Huang, Huang, Zhang, Chen, Huang (bib0002) 2011; 31 Meyer, Abolarin (bib0011) 2018; 117 Ahmed, Zueco, López-González (bib0018) 2017; 104 Jaisankar, Radhakrishnan, Sheeba (bib0005) 2009; 29 Shah, London (bib0017) 1978 White (bib0022) 2008 Rashidi, Kashefi, Hormozi (bib0004) 2018; 171 Zhang, Liu, Liu (bib0003) 2012; 58 Yildiz, Biçer, Pehlivan (bib0008) 1998; 39 Date (bib0010) 1974; 17 Kim (bib0023) 2016; 102 Date, Saha (bib0007) 1990; 11 Eiamsa-ard, Thianpong, Eiamsa-ard, Promvonge (bib0013) 2010; 37 M.H. Holmes, Introduction to Perturbation Methods, Springer-Verlag, 1995, pp. 1–9. Zill, Wright (bib0021) 2011 Patankar (bib0024) 1980 Jaisankar (10.1016/j.ijheatmasstransfer.2020.119849_bib0009) 2011; 52 Date (10.1016/j.ijheatmasstransfer.2020.119849_bib0007) 1990; 11 Yildiz (10.1016/j.ijheatmasstransfer.2020.119849_bib0008) 1998; 39 Zill (10.1016/j.ijheatmasstransfer.2020.119849_bib0021) 2011 Jaisankar (10.1016/j.ijheatmasstransfer.2020.119849_bib0005) 2009; 29 Wang (10.1016/j.ijheatmasstransfer.2020.119849_bib0002) 2011; 31 White (10.1016/j.ijheatmasstransfer.2020.119849_bib0022) 2008 10.1016/j.ijheatmasstransfer.2020.119849_bib0020 Chiu (10.1016/j.ijheatmasstransfer.2020.119849_bib0014) 2009; 29 Zhang (10.1016/j.ijheatmasstransfer.2020.119849_bib0003) 2012; 58 Meyer (10.1016/j.ijheatmasstransfer.2020.119849_bib0011) 2018; 117 Tijing (10.1016/j.ijheatmasstransfer.2020.119849_bib0012) 2006; 33 Shah (10.1016/j.ijheatmasstransfer.2020.119849_bib0017) 1978 Eiamsa-ard (10.1016/j.ijheatmasstransfer.2020.119849_bib0013) 2010; 37 Xu (10.1016/j.ijheatmasstransfer.2020.119849_bib0019) 2019; 129 Kim (10.1016/j.ijheatmasstransfer.2020.119849_bib0023) 2016; 102 Rashidi (10.1016/j.ijheatmasstransfer.2020.119849_bib0004) 2018; 171 Shah (10.1016/j.ijheatmasstransfer.2020.119849_bib0006) 1978 Ahmed (10.1016/j.ijheatmasstransfer.2020.119849_bib0018) 2017; 104 Shah (10.1016/j.ijheatmasstransfer.2020.119849_bib0016) 1978 Patankar (10.1016/j.ijheatmasstransfer.2020.119849_bib0024) 1980 Sivashanmugam (10.1016/j.ijheatmasstransfer.2020.119849_bib0015) 2006; 26 Piriyarungrod (10.1016/j.ijheatmasstransfer.2020.119849_bib0001) 2015; 96 Date (10.1016/j.ijheatmasstransfer.2020.119849_bib0010) 1974; 17 |
References_xml | – start-page: 78 year: 1978 end-page: 278 ident: bib0006 article-title: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data – start-page: 367 year: 2008 ident: bib0022 article-title: Fluid Mechanics – volume: 17 start-page: 845 year: 1974 end-page: 859 ident: bib0010 article-title: Prediction of fully-developed flow in a tube containing a twisted-tape publication-title: Int J Heat Mass Transf – volume: 11 start-page: 346 year: 1990 end-page: 354 ident: bib0007 article-title: Numerical prediction of laminar flow and heat transfer characteristics in a tube fitted with regularly spaced twisted-tape elements publication-title: International Journal of Heat and Fluid Flow – volume: 104 start-page: 409 year: 2017 end-page: 418 ident: bib0018 article-title: Effects of chemical reaction, heat and mass transfer and viscous dissipation over a MHD flow in a vertical porous wall using perturbation method publication-title: International Journal of Heat and Mass Trnasfer – volume: 58 start-page: 157 year: 2012 end-page: 167 ident: bib0003 article-title: Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes publication-title: International Journal of Thermal Sciences – reference: M.H. Holmes, Introduction to Perturbation Methods, Springer-Verlag, 1995, pp. 1–9. – start-page: 379 year: 1978 end-page: 380 ident: bib0016 article-title: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data – volume: 102 start-page: 1250 year: 2016 end-page: 1261 ident: bib0023 article-title: Thermal optimization of internally finned tube with variable fin thickness publication-title: Appl Therm Eng – volume: 129 start-page: 299 year: 2019 end-page: 309 ident: bib0019 article-title: Axisymmetric lattice Boltzmann simulation of the heat-exchanger method-based sapphire crystal growth publication-title: Int J Heat Mass Transf – year: 1980 ident: bib0024 article-title: Numerical Heat Transfer and Fluid Flow – volume: 117 start-page: 11 year: 2018 end-page: 29 ident: bib0011 article-title: Heat transfer and pressure drop in the transitional flow regime for a smooth circular tube with twisted tape inserts and a square-edged inlet publication-title: Int J Heat Mass Transf – volume: 37 start-page: 39 year: 2010 end-page: 46 ident: bib0013 article-title: Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem publication-title: International Communications in Heat and Mass Transfer – start-page: 26 year: 1978 ident: bib0017 article-title: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data – volume: 39 start-page: 331 year: 1998 end-page: 336 ident: bib0008 article-title: Effect of twisted strips on heat transfer and pressure drop in heat exchangers publication-title: Energy Conversion and Management – volume: 29 start-page: 250 year: 2009 end-page: 258 ident: bib0014 article-title: 3D numerical and experimental analysis for thermal–hydraulic characteristics of air flow inside a circular tube with different tube inserts of twisted tapes publication-title: Appl Therm Eng – volume: 171 start-page: 929 year: 2018 end-page: 952 ident: bib0004 article-title: Potential applications of inserts in solar thermal energy systems – A review to identify the gaps and frontier challenges publication-title: Solar Energy – volume: 33 year: 2006 ident: bib0012 article-title: A study on heat transfer enhancement using straight and twisted internal fin inserts publication-title: International Communications in Heat and Mass Transfer – volume: 26 start-page: 1990 year: 2006 end-page: 1997 ident: bib0015 article-title: Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts publication-title: Appl Therm Eng – volume: 52 start-page: 2048 year: 2011 end-page: 2055 ident: bib0009 article-title: Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and Left–Right twisted tapes publication-title: Energy Conversion and Management – volume: 29 start-page: 1224 year: 2009 end-page: 1231 ident: bib0005 article-title: Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes publication-title: Appl Therm Eng – start-page: 632 year: 2011 end-page: 641 ident: bib0021 article-title: Advanced Engineering Mathematics – volume: 31 start-page: 1141 year: 2011 end-page: 1149 ident: bib0002 article-title: Configuration optimization of regularly spaced short-length twisted tape in a circular tube to enhance turbulent heat transfer using CFD modeling publication-title: Appl Therm Eng – volume: 96 start-page: 62 year: 2015 end-page: 71 ident: bib0001 article-title: Heat transfer enhancement by tapered twisted tape inserts publication-title: Chemical Engineering and Processing: Process Intensification – start-page: 632 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0021 – volume: 39 start-page: 331 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0008 article-title: Effect of twisted strips on heat transfer and pressure drop in heat exchangers publication-title: Energy Conversion and Management doi: 10.1016/S0196-8904(96)00194-X – volume: 96 start-page: 62 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0001 article-title: Heat transfer enhancement by tapered twisted tape inserts publication-title: Chemical Engineering and Processing: Process Intensification doi: 10.1016/j.cep.2015.08.002 – volume: 17 start-page: 845 year: 1974 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0010 article-title: Prediction of fully-developed flow in a tube containing a twisted-tape publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(74)90152-5 – start-page: 367 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0022 – start-page: 379 year: 1978 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0016 – volume: 11 start-page: 346 year: 1990 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0007 article-title: Numerical prediction of laminar flow and heat transfer characteristics in a tube fitted with regularly spaced twisted-tape elements publication-title: International Journal of Heat and Fluid Flow doi: 10.1016/0142-727X(90)90058-J – volume: 33 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0012 article-title: A study on heat transfer enhancement using straight and twisted internal fin inserts publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2006.02.006 – volume: 102 start-page: 1250 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0023 article-title: Thermal optimization of internally finned tube with variable fin thickness publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.04.060 – volume: 31 start-page: 1141 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0002 article-title: Configuration optimization of regularly spaced short-length twisted tape in a circular tube to enhance turbulent heat transfer using CFD modeling publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2010.12.009 – volume: 171 start-page: 929 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0004 article-title: Potential applications of inserts in solar thermal energy systems – A review to identify the gaps and frontier challenges publication-title: Solar Energy doi: 10.1016/j.solener.2018.07.017 – ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0020 doi: 10.1007/978-1-4612-5347-1_1 – volume: 58 start-page: 157 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0003 article-title: Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2012.02.025 – volume: 26 start-page: 1990 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0015 article-title: Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.01.008 – volume: 29 start-page: 1224 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0005 article-title: Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2008.06.009 – volume: 29 start-page: 250 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0014 article-title: 3D numerical and experimental analysis for thermal–hydraulic characteristics of air flow inside a circular tube with different tube inserts of twisted tapes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2008.02.030 – volume: 129 start-page: 299 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0019 article-title: Axisymmetric lattice Boltzmann simulation of the heat-exchanger method-based sapphire crystal growth publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.09.078 – start-page: 78 year: 1978 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0006 – volume: 117 start-page: 11 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0011 article-title: Heat transfer and pressure drop in the transitional flow regime for a smooth circular tube with twisted tape inserts and a square-edged inlet publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.09.103 – volume: 52 start-page: 2048 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0009 article-title: Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and Left–Right twisted tapes publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2010.11.024 – year: 1980 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0024 – volume: 37 start-page: 39 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0013 article-title: Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2009.08.010 – start-page: 26 year: 1978 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0017 – volume: 104 start-page: 409 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119849_bib0018 article-title: Effects of chemical reaction, heat and mass transfer and viscous dissipation over a MHD flow in a vertical porous wall using perturbation method publication-title: International Journal of Heat and Mass Trnasfer doi: 10.1016/j.ijheatmasstransfer.2016.07.076 |
SSID | ssj0017046 |
Score | 2.3541512 |
Snippet | •Analytic solutions of the velocity and temperature profiles for a low reynolds number flow in a spirally finned tube are obtained.•The coordinate... Analytic solutions of the velocity and temperature profiles for a low Reynolds number flow in a spirally finned tube are obtained. The cross-sectional shape of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119849 |
SubjectTerms | Apex angle Computational fluid dynamics Coordinate transformation Coordinate transformations Exact solutions Fluid flow Forced convection Heat flux Heat transfer Internally finned tube Low Reynolds number flow Nusselt number Optimization Perturbation method Perturbation methods Poiseuille number Pressure drop Pumping Reynolds number Spirally finned tube Swirling Temperature profiles Thermal optimization Thermal resistance Tubes Twisted finned tube Two dimensional flow |
Title | Analytic study on pressure drop and heat transfer characteristics for low reynolds number flow in spirally finned tubes |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119849 https://www.proquest.com/docview/2446722372 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iKF7EJ64v5uDBSzV9bNOcZFmU1UUPougtpEkKK7VddruIF3-7mbRd8XERPJWmaRsyk5kvZOYbQo51KDUNs9TzfZN4kWa-J61meYrrGNlXtHRUSje38eAhun7qPi2QfpsLg2GVje2vbbqz1k3LWTObZ-PRCHN8UbmsSmFyab1vjyKGWn76Pg_z8Bmtk3XQGmPvFXLyGeM1ekaL92JhauVgokGG0ADtCE-QXfN3V_XNaDtPdLlO1hoICb16lBtkwRSbZNmFcqrpFnl1PCP2GTjqWCgLcMGus4kBPSnHIAsNOCBoRwPqK2szWCALefkKVsxFmesp1HVDIMPGUQHudD7P3yDDyl0aqllqptvk4fLivj_wmvIKngoZrTzJfM6NXdJKhiaT1Fj3nXGJGKwrU8oVzZiSMqFBqnTKFU9kHJiI4WGsyqQMd8hiURZml4DtGthdOdU8sQhBBtykNNGxsq6Op2E37JDzdiaFarjHsQRGLtogs2fxUxYCZSFqWXQIn39hXPNw_OHdfis88UW3hHUbf_jKQSt30azzqbDgKGYWYbFg719-sk9W8a4OYjsgi9VkZg4t6qnSI6fWR2SpdzUc3OJ1ePc4_ADp1Arv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbQEI8L4ikGA3zgwKUia7e2OaFpAo3XTiBxi9IklYZKO22dEP-eOG1BPC5IXJMmjWLH_qLYnwFOdSA1C9LE63ZN7PV01PWk1SxPcR0S-4qWjkrpfhyOHns3T_2nJRg2uTAUVlnb_sqmO2tdt5zXu3k-nUwox5eUy6oUJZe6e_sysVP1W7A8uL4djT8eEyJW5euQQaYBq3D2GeY1eSaj92KRaumQoiGSUJ9MCY-JYPN3b_XNbjtndLUJGzWKxEG10C1YMvk2rLhoTjXfgVdHNWL70LHHYpGji3ddzAzqWTFFmWukBWGzGlRfiZvRYlnMile0ks6LTM-xKh2CKTVOcnQP9Fn2hikV79JYLhIz34XHq8uH4cirKyx4KohY6cmoy7mxp1rJwKSSGevBUy4JhvVlwrhiaaSkjJmfKJ1wxWMZ-qYX0XusSqUM9qCVF7nZB7Sf-vZizjSPLUiQPjcJi3WorLfjSdAP2nDR7KRQNf04VcHIRBNn9ix-ykKQLEQlizbwjxmmFRXHH8YOG-GJL-olrOf4wyydRu6iPupzYfFRGFmQFfkH__KTE1gbPdzfibvr8e0hrFNPFdPWgVY5W5gjC4LK5LhW8neVPwv9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+study+on+pressure+drop+and+heat+transfer+characteristics+for+low+reynolds+number+flow+in+spirally+finned+tubes&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yu%2C+Dahm&rft.au=Jeon%2C+Wonju&rft.au=Kim%2C+Sung+Jin&rft.date=2020-09-01&rft.issn=0017-9310&rft.volume=158&rft.spage=119849&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119849&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |