Using the universal phase diagrams to describe pore shape development in solid for different solidification rates
•The general shapes of a pore resulted from a tiny bubble captured by a solidification front can be self-consistently described by the universal and unique three phase diagrams.•Phase diagrams account for solidification rate and apex radius determined by Stefan boundary condition and Young-Laplace e...
Saved in:
Published in | International journal of heat and mass transfer Vol. 158; p. 119977 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The general shapes of a pore resulted from a tiny bubble captured by a solidification front can be self-consistently described by the universal and unique three phase diagrams.•Phase diagrams account for solidification rate and apex radius determined by Stefan boundary condition and Young-Laplace equation, respectively.•Phase diagrams can predict pore shapes for Cases 1 and 2 subject to solute transport across the cap in different directions in early stage.•Phase diagrams confirm that the bubble can be completely entrapped in Cases 1 and 2a. In contrast to Case 2b, Case 2a represents a stronger effect of solute transport from the surrounding liquid into pore on solute gas pressure than volume expansion of the pore in the early stage.•Case 2b is the only case which cannot be entrapped as an isolated pore in solid.
This study shows that there exist the universal three phase diagrams to describe general development of the pore shape in solid, resulting from a bubble captured by a solidification front with different solidification rates. Pore formation and its shape strongly determine microstructural quality of materials, functional materials encountered in biology, chemistry, engineering, foods, and phenomena of geophysics and climate change, and so on. The solidification rate plays an important role in solute transport and gas pressure, contact angle of the bubble cap, and pore shape in solid. Three universal phase diagrams are under dimensionless coordinate systems of (1) solidification rate, temperature gradients in solid and liquid at the solidification front, (2) solidification rate, contact angle and growth rate of base radius of the cap, and (3) apex radius, contact angle and base radius of the cap. Solidification rate is determined by temperature gradients in liquid and solid at the solid-liquid interface governed by the Stefan boundary condition, whereas apex radius is determined by solute gas pressure in the pore governed by the Young-Laplace equation, equation of state, and different cases governing directions of mass transfer in the pore. Extending previous analysis, phase diagrams in this study confirm that the bubble cannot be completely entrapped in Case 2b, which represents a stronger effect of pore volume expansion on solute gas pressure than solute transport from the surrounding liquid to pore in the early stage. The computed and measured results of development of the pore shape are in good agreement. |
---|---|
AbstractList | •The general shapes of a pore resulted from a tiny bubble captured by a solidification front can be self-consistently described by the universal and unique three phase diagrams.•Phase diagrams account for solidification rate and apex radius determined by Stefan boundary condition and Young-Laplace equation, respectively.•Phase diagrams can predict pore shapes for Cases 1 and 2 subject to solute transport across the cap in different directions in early stage.•Phase diagrams confirm that the bubble can be completely entrapped in Cases 1 and 2a. In contrast to Case 2b, Case 2a represents a stronger effect of solute transport from the surrounding liquid into pore on solute gas pressure than volume expansion of the pore in the early stage.•Case 2b is the only case which cannot be entrapped as an isolated pore in solid.
This study shows that there exist the universal three phase diagrams to describe general development of the pore shape in solid, resulting from a bubble captured by a solidification front with different solidification rates. Pore formation and its shape strongly determine microstructural quality of materials, functional materials encountered in biology, chemistry, engineering, foods, and phenomena of geophysics and climate change, and so on. The solidification rate plays an important role in solute transport and gas pressure, contact angle of the bubble cap, and pore shape in solid. Three universal phase diagrams are under dimensionless coordinate systems of (1) solidification rate, temperature gradients in solid and liquid at the solidification front, (2) solidification rate, contact angle and growth rate of base radius of the cap, and (3) apex radius, contact angle and base radius of the cap. Solidification rate is determined by temperature gradients in liquid and solid at the solid-liquid interface governed by the Stefan boundary condition, whereas apex radius is determined by solute gas pressure in the pore governed by the Young-Laplace equation, equation of state, and different cases governing directions of mass transfer in the pore. Extending previous analysis, phase diagrams in this study confirm that the bubble cannot be completely entrapped in Case 2b, which represents a stronger effect of pore volume expansion on solute gas pressure than solute transport from the surrounding liquid to pore in the early stage. The computed and measured results of development of the pore shape are in good agreement. This study shows that there exist the universal three phase diagrams to describe general development of the pore shape in solid, resulting from a bubble captured by a solidification front with different solidification rates. Pore formation and its shape strongly determine microstructural quality of materials, functional materials encountered in biology, chemistry, engineering, foods, and phenomena of geophysics and climate change, and so on. The solidification rate plays an important role in solute transport and gas pressure, contact angle of the bubble cap, and pore shape in solid. Three universal phase diagrams are under dimensionless coordinate systems of (1) solidification rate, temperature gradients in solid and liquid at the solidification front, (2) solidification rate, contact angle and growth rate of base radius of the cap, and (3) apex radius, contact angle and base radius of the cap. Solidification rate is determined by temperature gradients in liquid and solid at the solid-liquid interface governed by the Stefan boundary condition, whereas apex radius is determined by solute gas pressure in the pore governed by the Young-Laplace equation, equation of state, and different cases governing directions of mass transfer in the pore. Extending previous analysis, phase diagrams in this study confirm that the bubble cannot be completely entrapped in Case 2b, which represents a stronger effect of pore volume expansion on solute gas pressure than solute transport from the surrounding liquid to pore in the early stage. The computed and measured results of development of the pore shape are in good agreement. |
ArticleNumber | 119977 |
Author | Wu, C.M. Wei, P.S. Huang, Y.K. Chang, C.C. |
Author_xml | – sequence: 1 givenname: P.S. surname: Wei fullname: Wei, P.S. email: pswei@mail.nsysu.edu.tw – sequence: 2 givenname: C.M. surname: Wu fullname: Wu, C.M. – sequence: 3 givenname: Y.K. surname: Huang fullname: Huang, Y.K. email: u10000168@lssh.tp.edu.tw – sequence: 4 givenname: C.C. surname: Chang fullname: Chang, C.C. |
BookMark | eNqVkMFuEzEQhi3USqQt72CJC5dN7V3vOr6BKgpFlbjQszWxZxuvNvbW40Ti7XEaTnCBkzXzj78ZfVfsIqaIjH2QYi2FHG6ndZh2CGUPRCVDpBHzuhVtjaUxWr9hK7nRpmnlxlywlRBSN6aT4i27IppOpVDDir08UYjPvOyQH2I4YiaY-bIDQu4DPGfYEy-JeySXwxb5kjJy2sFSczzinJY9xsJD5JTm4PmYcv041mNO7ddeGIODElLkGQrSDbscYSZ89_u9Zk_3n3_cfW0ev395uPv02LhOi9KAGpzSAOCFUd4o8Eaa3gnf9m0relC9lK6Tox8H1cl-C7Xs5bDVOLjtBnx3zd6fuUtOLwekYqd0yLGutK1Sg25bZXSduj9PuZyIMo7WhfJ6bZUaZiuFPem2k_1btz3ptmfdFfTxD9CSwx7yz_9BfDsjsGo5hpqSCxgd-pDRFetT-HfYL0ZVsEY |
CitedBy_id | crossref_primary_10_1016_j_jcrysgro_2020_125889 crossref_primary_10_1016_j_heliyon_2023_e18163 crossref_primary_10_1088_1402_4896_ad671c crossref_primary_10_1007_s11665_024_10115_3 crossref_primary_10_1016_j_heliyon_2024_e26224 crossref_primary_10_1016_j_jcrysgro_2021_126289 |
Cites_doi | 10.1016/j.jcrysgro.2004.06.039 10.1016/j.ijthermalsci.2017.01.012 10.1002/adem.200800241 10.1017/S0022143000023248 10.1039/C4SM02037E 10.1007/s11661-007-9390-4 10.5194/bg-12-977-2015 10.1016/j.msea.2005.03.107 10.1115/1.4033499 10.1016/S0017-9310(99)00134-9 10.1088/0370-1328/77/3/327 10.1007/s11663-003-0078-x 10.1016/j.ijheatmasstransfer.2012.08.054 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Sep 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2020.119977 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2020_119977 S0017931020301836 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c370t-a46c47aaad094d94ad9195c0d252205a4511c31fdf64315ba11c516b7e6cb8ad3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Sun Jul 13 04:57:29 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Tue Jul 01 04:24:02 EDT 2025 Fri Feb 23 02:49:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase diagram Phase change Pore shape Bubble entrapment Porosity Bubble capture Pore formation Solidification defect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-a46c47aaad094d94ad9195c0d252205a4511c31fdf64315ba11c516b7e6cb8ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2446722497 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2446722497 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119977 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119977 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119977 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | K. Tagavi, L. C. Chow, O. Solaiappan, Void formation in unidirectional solidification, Exper. Heat Transf. 3(1990) 239-255. P. S. Wei, S. Y. Hsiao, Effects of solidification rate on pore shape in solid, Int. J. Therm. Sci.115(2017) 79-88. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties, Prog. Mater. Sci.92(2018) 112–224 K. Yoshimura, T. Inada, S. Koyama, Growth of spherical and cylindrical oxygen bubbles at an ice-water interface, Cryst. Growth Des. 8(2008) 2108-2115. Y. Liu, Y. X. Li, J. Wan, H. W. Zhang, Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification, Mater. Sci. Eng. A402(2005) 47-54. P. S. Wei, C. C. Chang, Existence of universal phase diagrams for describing general pore shape resulting from an entrapped bubble during solidification, ASME J. Heat Transf., 138(2016) 104503. Crank (bib0021) 1984 Wei, Huang, Wang, Chen, Lin (bib0024) 2004; 270 Kou (bib0001) 2003 J. S. Park, S. K. Hyun, S. Suzuki, H. Nakajima, Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique, Acta Mater.. 55(2007) 5646-5654. H. Nakajima, Fabrication, properties and application of porous metals with directional pores, Prog. Mater. Sci.52(2007) 1091-1173. J. W. Elmer, J. Vaja, H. D. Carlton, R. Pong, The effect of Ar and N2 shielding gas on laser weld porosity in steel, stainless steels, and nickel, Weld. J.94(2015)313-s-325-s. S. A. Bari, J. Hallett, Nucleation and growth of bubbles at an ice-water interface. J. Glaciol.13(1974) 489-520. P. S. Wei, C. C. Huang, K. W. Lee, Nucleation of bubbles on a solidification front-experiment and analysis, Metall. Mater. Trans. B34(2003) 321-332. L. Drenchev, J. Sobczak, N. Sobczak, W. Sha, S. Malinov, A comprehensive model of ordered porosity formation, Acta Mater.. 55(2007) 6459-6471. Lefebvre, Banhart, Dunand (bib0008) 2008; 10 Langer, Westermann, Walter Anthony, Wischnewski, Boike (bib0009) 2015; 12 Carte (bib0017) 1961; 77 J. M. Solano-Altamirano, J. D. Malcolm and S. Goldman, Gas bubble dynamics in soft materials, Soft Matter11(2015) 202-210 K. Murakami, H. Nakajima, Formation of pores during unidirectional solidification of water containing carbon dioxide, Mater. Trans.43(2002) 2582-2588. P. S. Wei, S. Y. Hsiao, Pore shape development from a bubble captured by a solidification front, Int. J. Heat Mass Transf. 55(2012) 8129-8138. R. Hardin, C. Beckermann, Effect of porosity on the stiffness of cast steel, Metall. Mater. Trans. A38(2007) 2992-3006. J. J. Blecher, T. A. Palmer, T. DebRoy, Porosity in thick section alloy 690 welds –experiments, modeling, mechanism, and remedy, Weld. J.95(2016)17-s-26-s. Wei, Kuo, Chiu, Ho (bib0025) 2000; 43 Tanaka (bib0023) 2000; 12 10.1016/j.ijheatmasstransfer.2020.119977_bib0022 Wei (10.1016/j.ijheatmasstransfer.2020.119977_bib0025) 2000; 43 10.1016/j.ijheatmasstransfer.2020.119977_bib0002 10.1016/j.ijheatmasstransfer.2020.119977_bib0003 10.1016/j.ijheatmasstransfer.2020.119977_bib0004 10.1016/j.ijheatmasstransfer.2020.119977_bib0005 10.1016/j.ijheatmasstransfer.2020.119977_bib0006 10.1016/j.ijheatmasstransfer.2020.119977_bib0007 Kou (10.1016/j.ijheatmasstransfer.2020.119977_bib0001) 2003 Carte (10.1016/j.ijheatmasstransfer.2020.119977_bib0017) 1961; 77 10.1016/j.ijheatmasstransfer.2020.119977_bib0020 Crank (10.1016/j.ijheatmasstransfer.2020.119977_bib0021) 1984 10.1016/j.ijheatmasstransfer.2020.119977_bib0011 10.1016/j.ijheatmasstransfer.2020.119977_bib0012 10.1016/j.ijheatmasstransfer.2020.119977_bib0013 10.1016/j.ijheatmasstransfer.2020.119977_bib0014 10.1016/j.ijheatmasstransfer.2020.119977_bib0015 10.1016/j.ijheatmasstransfer.2020.119977_bib0016 10.1016/j.ijheatmasstransfer.2020.119977_bib0018 10.1016/j.ijheatmasstransfer.2020.119977_bib0019 Tanaka (10.1016/j.ijheatmasstransfer.2020.119977_bib0023) 2000; 12 Langer (10.1016/j.ijheatmasstransfer.2020.119977_bib0009) 2015; 12 Wei (10.1016/j.ijheatmasstransfer.2020.119977_bib0024) 2004; 270 Lefebvre (10.1016/j.ijheatmasstransfer.2020.119977_bib0008) 2008; 10 10.1016/j.ijheatmasstransfer.2020.119977_bib0010 |
References_xml | – volume: 43 start-page: 263 year: 2000 end-page: 280 ident: bib0025 article-title: Shape of a pore trapped in solid during solidification publication-title: Int. J. Heat Mass Transf. – reference: J. J. Blecher, T. A. Palmer, T. DebRoy, Porosity in thick section alloy 690 welds –experiments, modeling, mechanism, and remedy, Weld. J.95(2016)17-s-26-s. – reference: L. Drenchev, J. Sobczak, N. Sobczak, W. Sha, S. Malinov, A comprehensive model of ordered porosity formation, Acta Mater.. 55(2007) 6459-6471. – reference: K. Murakami, H. Nakajima, Formation of pores during unidirectional solidification of water containing carbon dioxide, Mater. Trans.43(2002) 2582-2588. – year: 2003 ident: bib0001 article-title: Welding Metallurgy – reference: K. Tagavi, L. C. Chow, O. Solaiappan, Void formation in unidirectional solidification, Exper. Heat Transf. 3(1990) 239-255. – volume: 12 start-page: R207 year: 2000 end-page: R264 ident: bib0023 article-title: Review article: viscoelastic phase separation publication-title: J. Phys.: Condens. Matter – reference: P. S. Wei, C. C. Huang, K. W. Lee, Nucleation of bubbles on a solidification front-experiment and analysis, Metall. Mater. Trans. B34(2003) 321-332. – reference: S. A. Bari, J. Hallett, Nucleation and growth of bubbles at an ice-water interface. J. Glaciol.13(1974) 489-520. – reference: P. S. Wei, S. Y. Hsiao, Effects of solidification rate on pore shape in solid, Int. J. Therm. Sci.115(2017) 79-88. – reference: P. S. Wei, C. C. Chang, Existence of universal phase diagrams for describing general pore shape resulting from an entrapped bubble during solidification, ASME J. Heat Transf., 138(2016) 104503. – year: 1984 ident: bib0021 article-title: Free and Moving Boundary Problems – volume: 270 start-page: 662 year: 2004 end-page: 673 ident: bib0024 article-title: Growths of bubble/pore sizes in solid during solidification -an in situ measurement and analysis publication-title: J. Cryst. Growth – reference: J. S. Park, S. K. Hyun, S. Suzuki, H. Nakajima, Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique, Acta Mater.. 55(2007) 5646-5654. – volume: 10 start-page: 775 year: 2008 end-page: 787 ident: bib0008 article-title: Porous metals and metallic foams: current status and recent developments publication-title: Adv. Eng. Mater. – volume: 77 start-page: 757 year: 1961 end-page: 768 ident: bib0017 article-title: Air bubbles in ice publication-title: Proc. Phys. Soc. – reference: J. W. Elmer, J. Vaja, H. D. Carlton, R. Pong, The effect of Ar and N2 shielding gas on laser weld porosity in steel, stainless steels, and nickel, Weld. J.94(2015)313-s-325-s. – reference: T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties, Prog. Mater. Sci.92(2018) 112–224 – reference: K. Yoshimura, T. Inada, S. Koyama, Growth of spherical and cylindrical oxygen bubbles at an ice-water interface, Cryst. Growth Des. 8(2008) 2108-2115. – reference: Y. Liu, Y. X. Li, J. Wan, H. W. Zhang, Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification, Mater. Sci. Eng. A402(2005) 47-54. – reference: R. Hardin, C. Beckermann, Effect of porosity on the stiffness of cast steel, Metall. Mater. Trans. A38(2007) 2992-3006. – volume: 12 start-page: 977 year: 2015 end-page: 990 ident: bib0009 article-title: Frozen ponds: production and storage of methane during the arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta publication-title: Biogeosciences – reference: H. Nakajima, Fabrication, properties and application of porous metals with directional pores, Prog. Mater. Sci.52(2007) 1091-1173. – reference: P. S. Wei, S. Y. Hsiao, Pore shape development from a bubble captured by a solidification front, Int. J. Heat Mass Transf. 55(2012) 8129-8138. – reference: J. M. Solano-Altamirano, J. D. Malcolm and S. Goldman, Gas bubble dynamics in soft materials, Soft Matter11(2015) 202-210 – volume: 270 start-page: 662 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0024 article-title: Growths of bubble/pore sizes in solid during solidification -an in situ measurement and analysis publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.06.039 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0013 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0015 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0016 doi: 10.1016/j.ijthermalsci.2017.01.012 – volume: 10 start-page: 775 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0008 article-title: Porous metals and metallic foams: current status and recent developments publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200800241 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0007 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0010 doi: 10.1017/S0022143000023248 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0022 doi: 10.1039/C4SM02037E – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0003 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0005 doi: 10.1007/s11661-007-9390-4 – volume: 12 start-page: 977 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0009 article-title: Frozen ponds: production and storage of methane during the arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta publication-title: Biogeosciences doi: 10.5194/bg-12-977-2015 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0012 doi: 10.1016/j.msea.2005.03.107 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0020 doi: 10.1115/1.4033499 – volume: 43 start-page: 263 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0025 article-title: Shape of a pore trapped in solid during solidification publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(99)00134-9 – volume: 12 start-page: R207 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0023 article-title: Review article: viscoelastic phase separation publication-title: J. Phys.: Condens. Matter – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0018 – volume: 77 start-page: 757 year: 1961 ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0017 article-title: Air bubbles in ice publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/77/3/327 – year: 1984 ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0021 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0014 – year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0001 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0011 doi: 10.1007/s11663-003-0078-x – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0006 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0019 doi: 10.1016/j.ijheatmasstransfer.2012.08.054 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0004 – ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0002 |
SSID | ssj0017046 |
Score | 2.3714535 |
Snippet | •The general shapes of a pore resulted from a tiny bubble captured by a solidification front can be self-consistently described by the universal and unique... This study shows that there exist the universal three phase diagrams to describe general development of the pore shape in solid, resulting from a bubble... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119977 |
SubjectTerms | Boundary conditions Bubble capture Bubble entrapment Bubbles Contact angle Contact pressure Coordinates Equations of state Functional materials Gas pressure Geophysics Laplace equation Liquid-solid interfaces Mass transfer Phase change Phase diagram Phase diagrams Pore formation Pore shape Porosity Solidification Solidification defect Solids Temperature gradients |
Title | Using the universal phase diagrams to describe pore shape development in solid for different solidification rates |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119977 https://www.proquest.com/docview/2446722497 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6LongRn7i-yMGDl2q7TZP2JMvisrroQVz0FvJosYt2q61Xf7szfeyi4kHwVJKmaclMv_lKv5kQchIAZ01saBykAw4LVeholURYGVFYrhOmXMx3vrnlowm7fgweO2TQ5sKgrLLB_hrTK7Rues6b1TzP0xRzfNG5PPyV5oJjYtltxgR6-dnHXObhCbdO1kE0xtGr5HSh8UqniHgvQFPLiibGWCG0hzgSAS_6LVR9A-0qEg03yHpDIWm_fspN0omzLbJSSTlNsU1eKxUABWJH32vVBQzOnyBaUfAFFGMVtJxRGyNg6JgCAY9p8aRyOL9QENE0o-CWqaXAamm7jUpZ96G8qLIoxUITxQ6ZDC_vByOn2VjBMb5wS0cxbphQSln4uLMRUzbyosC4thdg3q3CmmXG9xKbAF_xAq2gGXhci5gbHSrr75KlbJbFe4QKw7jmvkgg9jOgWpG1QukwTCw3QShYl1y0ayhNU3UcN794lq28bCp_WkGiFWRthS6J5jPkdQWOP1w7aM0mv3iVhIDxh1kOW4vL5g0vJNAiLoD_RGL_X25yQNawVcvXDslS-fYeHwHfKfVx5dDHZLl_NR7d4nF89zD-BJaQB_E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2VIpYLYhU7PnDgEkhax05OCFWgsp6o1JvlJRGpoC0kXPl2ZrKAAHFA4hjbcSLP-M2L8mYMcBgiZ01dZD2iAx6PdOQZncZUGVE6YVKufcp3vr0T_QG_GobDFvSaXBiSVdbYX2F6idZ1y0m9mifTLKMcX3KugH6l-eiYYgZmOW5fOsbg-O1D5xFIv8rWITim4fNw9CnyykYEeU_IU4uSJyZUIrRDQBIjMfotVn1D7TIUXSzDUs0h2Vn1mivQSsarMFdqOW2-Bs-lDIAhs2OvlewCB08fMFwxdAZSY-WsmDCXEGKYhCEDT1j-oKfY_ykhYtmYoV9mjiGtZc05KkXVRvqi0qSMKk3k6zC4OL_v9b36ZAXPdqVfeJoLy6XW2uHXnYu5dnEQh9Z3nZASbzUVLbPdIHUpEpYgNBovw0AYmQhrIu26G9AeT8bJJjBpuTCiK1MM_hy5Vuyc1CaKUidsGEm-BafNGipblx2n0y8eVaMvG6mfVlBkBVVZYQvijxmmVQmOP9zba8ymvriVwojxh1l2G4ureovnCnmRkEiAYrn9Lw85gIX-_e2Nurm8u96BReqptGy70C5eXpM9JD-F2S-d-x1B7Afc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+universal+phase+diagrams+to+describe+pore+shape+development+in+solid+for+different+solidification+rates&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Wei%2C+P.S.&rft.au=Wu%2C+C.M.&rft.au=Huang%2C+Y.K.&rft.au=Chang%2C+C.C.&rft.date=2020-09-01&rft.issn=0017-9310&rft.volume=158&rft.spage=119977&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119977&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |