Using the universal phase diagrams to describe pore shape development in solid for different solidification rates

•The general shapes of a pore resulted from a tiny bubble captured by a solidification front can be self-consistently described by the universal and unique three phase diagrams.•Phase diagrams account for solidification rate and apex radius determined by Stefan boundary condition and Young-Laplace e...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 158; p. 119977
Main Authors Wei, P.S., Wu, C.M., Huang, Y.K., Chang, C.C.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The general shapes of a pore resulted from a tiny bubble captured by a solidification front can be self-consistently described by the universal and unique three phase diagrams.•Phase diagrams account for solidification rate and apex radius determined by Stefan boundary condition and Young-Laplace equation, respectively.•Phase diagrams can predict pore shapes for Cases 1 and 2 subject to solute transport across the cap in different directions in early stage.•Phase diagrams confirm that the bubble can be completely entrapped in Cases 1 and 2a. In contrast to Case 2b, Case 2a represents a stronger effect of solute transport from the surrounding liquid into pore on solute gas pressure than volume expansion of the pore in the early stage.•Case 2b is the only case which cannot be entrapped as an isolated pore in solid. This study shows that there exist the universal three phase diagrams to describe general development of the pore shape in solid, resulting from a bubble captured by a solidification front with different solidification rates. Pore formation and its shape strongly determine microstructural quality of materials, functional materials encountered in biology, chemistry, engineering, foods, and phenomena of geophysics and climate change, and so on. The solidification rate plays an important role in solute transport and gas pressure, contact angle of the bubble cap, and pore shape in solid. Three universal phase diagrams are under dimensionless coordinate systems of (1) solidification rate, temperature gradients in solid and liquid at the solidification front, (2) solidification rate, contact angle and growth rate of base radius of the cap, and (3) apex radius, contact angle and base radius of the cap. Solidification rate is determined by temperature gradients in liquid and solid at the solid-liquid interface governed by the Stefan boundary condition, whereas apex radius is determined by solute gas pressure in the pore governed by the Young-Laplace equation, equation of state, and different cases governing directions of mass transfer in the pore. Extending previous analysis, phase diagrams in this study confirm that the bubble cannot be completely entrapped in Case 2b, which represents a stronger effect of pore volume expansion on solute gas pressure than solute transport from the surrounding liquid to pore in the early stage. The computed and measured results of development of the pore shape are in good agreement.
AbstractList •The general shapes of a pore resulted from a tiny bubble captured by a solidification front can be self-consistently described by the universal and unique three phase diagrams.•Phase diagrams account for solidification rate and apex radius determined by Stefan boundary condition and Young-Laplace equation, respectively.•Phase diagrams can predict pore shapes for Cases 1 and 2 subject to solute transport across the cap in different directions in early stage.•Phase diagrams confirm that the bubble can be completely entrapped in Cases 1 and 2a. In contrast to Case 2b, Case 2a represents a stronger effect of solute transport from the surrounding liquid into pore on solute gas pressure than volume expansion of the pore in the early stage.•Case 2b is the only case which cannot be entrapped as an isolated pore in solid. This study shows that there exist the universal three phase diagrams to describe general development of the pore shape in solid, resulting from a bubble captured by a solidification front with different solidification rates. Pore formation and its shape strongly determine microstructural quality of materials, functional materials encountered in biology, chemistry, engineering, foods, and phenomena of geophysics and climate change, and so on. The solidification rate plays an important role in solute transport and gas pressure, contact angle of the bubble cap, and pore shape in solid. Three universal phase diagrams are under dimensionless coordinate systems of (1) solidification rate, temperature gradients in solid and liquid at the solidification front, (2) solidification rate, contact angle and growth rate of base radius of the cap, and (3) apex radius, contact angle and base radius of the cap. Solidification rate is determined by temperature gradients in liquid and solid at the solid-liquid interface governed by the Stefan boundary condition, whereas apex radius is determined by solute gas pressure in the pore governed by the Young-Laplace equation, equation of state, and different cases governing directions of mass transfer in the pore. Extending previous analysis, phase diagrams in this study confirm that the bubble cannot be completely entrapped in Case 2b, which represents a stronger effect of pore volume expansion on solute gas pressure than solute transport from the surrounding liquid to pore in the early stage. The computed and measured results of development of the pore shape are in good agreement.
This study shows that there exist the universal three phase diagrams to describe general development of the pore shape in solid, resulting from a bubble captured by a solidification front with different solidification rates. Pore formation and its shape strongly determine microstructural quality of materials, functional materials encountered in biology, chemistry, engineering, foods, and phenomena of geophysics and climate change, and so on. The solidification rate plays an important role in solute transport and gas pressure, contact angle of the bubble cap, and pore shape in solid. Three universal phase diagrams are under dimensionless coordinate systems of (1) solidification rate, temperature gradients in solid and liquid at the solidification front, (2) solidification rate, contact angle and growth rate of base radius of the cap, and (3) apex radius, contact angle and base radius of the cap. Solidification rate is determined by temperature gradients in liquid and solid at the solid-liquid interface governed by the Stefan boundary condition, whereas apex radius is determined by solute gas pressure in the pore governed by the Young-Laplace equation, equation of state, and different cases governing directions of mass transfer in the pore. Extending previous analysis, phase diagrams in this study confirm that the bubble cannot be completely entrapped in Case 2b, which represents a stronger effect of pore volume expansion on solute gas pressure than solute transport from the surrounding liquid to pore in the early stage. The computed and measured results of development of the pore shape are in good agreement.
ArticleNumber 119977
Author Wu, C.M.
Wei, P.S.
Huang, Y.K.
Chang, C.C.
Author_xml – sequence: 1
  givenname: P.S.
  surname: Wei
  fullname: Wei, P.S.
  email: pswei@mail.nsysu.edu.tw
– sequence: 2
  givenname: C.M.
  surname: Wu
  fullname: Wu, C.M.
– sequence: 3
  givenname: Y.K.
  surname: Huang
  fullname: Huang, Y.K.
  email: u10000168@lssh.tp.edu.tw
– sequence: 4
  givenname: C.C.
  surname: Chang
  fullname: Chang, C.C.
BookMark eNqVkMFuEzEQhi3USqQt72CJC5dN7V3vOr6BKgpFlbjQszWxZxuvNvbW40Ti7XEaTnCBkzXzj78ZfVfsIqaIjH2QYi2FHG6ndZh2CGUPRCVDpBHzuhVtjaUxWr9hK7nRpmnlxlywlRBSN6aT4i27IppOpVDDir08UYjPvOyQH2I4YiaY-bIDQu4DPGfYEy-JeySXwxb5kjJy2sFSczzinJY9xsJD5JTm4PmYcv041mNO7ddeGIODElLkGQrSDbscYSZ89_u9Zk_3n3_cfW0ev395uPv02LhOi9KAGpzSAOCFUd4o8Eaa3gnf9m0relC9lK6Tox8H1cl-C7Xs5bDVOLjtBnx3zd6fuUtOLwekYqd0yLGutK1Sg25bZXSduj9PuZyIMo7WhfJ6bZUaZiuFPem2k_1btz3ptmfdFfTxD9CSwx7yz_9BfDsjsGo5hpqSCxgd-pDRFetT-HfYL0ZVsEY
CitedBy_id crossref_primary_10_1016_j_jcrysgro_2020_125889
crossref_primary_10_1016_j_heliyon_2023_e18163
crossref_primary_10_1088_1402_4896_ad671c
crossref_primary_10_1007_s11665_024_10115_3
crossref_primary_10_1016_j_heliyon_2024_e26224
crossref_primary_10_1016_j_jcrysgro_2021_126289
Cites_doi 10.1016/j.jcrysgro.2004.06.039
10.1016/j.ijthermalsci.2017.01.012
10.1002/adem.200800241
10.1017/S0022143000023248
10.1039/C4SM02037E
10.1007/s11661-007-9390-4
10.5194/bg-12-977-2015
10.1016/j.msea.2005.03.107
10.1115/1.4033499
10.1016/S0017-9310(99)00134-9
10.1088/0370-1328/77/3/327
10.1007/s11663-003-0078-x
10.1016/j.ijheatmasstransfer.2012.08.054
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2020.119977
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2020_119977
S0017931020301836
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-a46c47aaad094d94ad9195c0d252205a4511c31fdf64315ba11c516b7e6cb8ad3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Sun Jul 13 04:57:29 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Tue Jul 01 04:24:02 EDT 2025
Fri Feb 23 02:49:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phase diagram
Phase change
Pore shape
Bubble entrapment
Porosity
Bubble capture
Pore formation
Solidification defect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-a46c47aaad094d94ad9195c0d252205a4511c31fdf64315ba11c516b7e6cb8ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2446722497
PQPubID 2045464
ParticipantIDs proquest_journals_2446722497
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119977
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119977
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119977
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References K. Tagavi, L. C. Chow, O. Solaiappan, Void formation in unidirectional solidification, Exper. Heat Transf. 3(1990) 239-255.
P. S. Wei, S. Y. Hsiao, Effects of solidification rate on pore shape in solid, Int. J. Therm. Sci.115(2017) 79-88.
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties, Prog. Mater. Sci.92(2018) 112–224
K. Yoshimura, T. Inada, S. Koyama, Growth of spherical and cylindrical oxygen bubbles at an ice-water interface, Cryst. Growth Des. 8(2008) 2108-2115.
Y. Liu, Y. X. Li, J. Wan, H. W. Zhang, Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification, Mater. Sci. Eng. A402(2005) 47-54.
P. S. Wei, C. C. Chang, Existence of universal phase diagrams for describing general pore shape resulting from an entrapped bubble during solidification, ASME J. Heat Transf., 138(2016) 104503.
Crank (bib0021) 1984
Wei, Huang, Wang, Chen, Lin (bib0024) 2004; 270
Kou (bib0001) 2003
J. S. Park, S. K. Hyun, S. Suzuki, H. Nakajima, Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique, Acta Mater.. 55(2007) 5646-5654.
H. Nakajima, Fabrication, properties and application of porous metals with directional pores, Prog. Mater. Sci.52(2007) 1091-1173.
J. W. Elmer, J. Vaja, H. D. Carlton, R. Pong, The effect of Ar and N2 shielding gas on laser weld porosity in steel, stainless steels, and nickel, Weld. J.94(2015)313-s-325-s.
S. A. Bari, J. Hallett, Nucleation and growth of bubbles at an ice-water interface. J. Glaciol.13(1974) 489-520.
P. S. Wei, C. C. Huang, K. W. Lee, Nucleation of bubbles on a solidification front-experiment and analysis, Metall. Mater. Trans. B34(2003) 321-332.
L. Drenchev, J. Sobczak, N. Sobczak, W. Sha, S. Malinov, A comprehensive model of ordered porosity formation, Acta Mater.. 55(2007) 6459-6471.
Lefebvre, Banhart, Dunand (bib0008) 2008; 10
Langer, Westermann, Walter Anthony, Wischnewski, Boike (bib0009) 2015; 12
Carte (bib0017) 1961; 77
J. M. Solano-Altamirano, J. D. Malcolm and S. Goldman, Gas bubble dynamics in soft materials, Soft Matter11(2015) 202-210
K. Murakami, H. Nakajima, Formation of pores during unidirectional solidification of water containing carbon dioxide, Mater. Trans.43(2002) 2582-2588.
P. S. Wei, S. Y. Hsiao, Pore shape development from a bubble captured by a solidification front, Int. J. Heat Mass Transf. 55(2012) 8129-8138.
R. Hardin, C. Beckermann, Effect of porosity on the stiffness of cast steel, Metall. Mater. Trans. A38(2007) 2992-3006.
J. J. Blecher, T. A. Palmer, T. DebRoy, Porosity in thick section alloy 690 welds –experiments, modeling, mechanism, and remedy, Weld. J.95(2016)17-s-26-s.
Wei, Kuo, Chiu, Ho (bib0025) 2000; 43
Tanaka (bib0023) 2000; 12
10.1016/j.ijheatmasstransfer.2020.119977_bib0022
Wei (10.1016/j.ijheatmasstransfer.2020.119977_bib0025) 2000; 43
10.1016/j.ijheatmasstransfer.2020.119977_bib0002
10.1016/j.ijheatmasstransfer.2020.119977_bib0003
10.1016/j.ijheatmasstransfer.2020.119977_bib0004
10.1016/j.ijheatmasstransfer.2020.119977_bib0005
10.1016/j.ijheatmasstransfer.2020.119977_bib0006
10.1016/j.ijheatmasstransfer.2020.119977_bib0007
Kou (10.1016/j.ijheatmasstransfer.2020.119977_bib0001) 2003
Carte (10.1016/j.ijheatmasstransfer.2020.119977_bib0017) 1961; 77
10.1016/j.ijheatmasstransfer.2020.119977_bib0020
Crank (10.1016/j.ijheatmasstransfer.2020.119977_bib0021) 1984
10.1016/j.ijheatmasstransfer.2020.119977_bib0011
10.1016/j.ijheatmasstransfer.2020.119977_bib0012
10.1016/j.ijheatmasstransfer.2020.119977_bib0013
10.1016/j.ijheatmasstransfer.2020.119977_bib0014
10.1016/j.ijheatmasstransfer.2020.119977_bib0015
10.1016/j.ijheatmasstransfer.2020.119977_bib0016
10.1016/j.ijheatmasstransfer.2020.119977_bib0018
10.1016/j.ijheatmasstransfer.2020.119977_bib0019
Tanaka (10.1016/j.ijheatmasstransfer.2020.119977_bib0023) 2000; 12
Langer (10.1016/j.ijheatmasstransfer.2020.119977_bib0009) 2015; 12
Wei (10.1016/j.ijheatmasstransfer.2020.119977_bib0024) 2004; 270
Lefebvre (10.1016/j.ijheatmasstransfer.2020.119977_bib0008) 2008; 10
10.1016/j.ijheatmasstransfer.2020.119977_bib0010
References_xml – volume: 43
  start-page: 263
  year: 2000
  end-page: 280
  ident: bib0025
  article-title: Shape of a pore trapped in solid during solidification
  publication-title: Int. J. Heat Mass Transf.
– reference: J. J. Blecher, T. A. Palmer, T. DebRoy, Porosity in thick section alloy 690 welds –experiments, modeling, mechanism, and remedy, Weld. J.95(2016)17-s-26-s.
– reference: L. Drenchev, J. Sobczak, N. Sobczak, W. Sha, S. Malinov, A comprehensive model of ordered porosity formation, Acta Mater.. 55(2007) 6459-6471.
– reference: K. Murakami, H. Nakajima, Formation of pores during unidirectional solidification of water containing carbon dioxide, Mater. Trans.43(2002) 2582-2588.
– year: 2003
  ident: bib0001
  article-title: Welding Metallurgy
– reference: K. Tagavi, L. C. Chow, O. Solaiappan, Void formation in unidirectional solidification, Exper. Heat Transf. 3(1990) 239-255.
– volume: 12
  start-page: R207
  year: 2000
  end-page: R264
  ident: bib0023
  article-title: Review article: viscoelastic phase separation
  publication-title: J. Phys.: Condens. Matter
– reference: P. S. Wei, C. C. Huang, K. W. Lee, Nucleation of bubbles on a solidification front-experiment and analysis, Metall. Mater. Trans. B34(2003) 321-332.
– reference: S. A. Bari, J. Hallett, Nucleation and growth of bubbles at an ice-water interface. J. Glaciol.13(1974) 489-520.
– reference: P. S. Wei, S. Y. Hsiao, Effects of solidification rate on pore shape in solid, Int. J. Therm. Sci.115(2017) 79-88.
– reference: P. S. Wei, C. C. Chang, Existence of universal phase diagrams for describing general pore shape resulting from an entrapped bubble during solidification, ASME J. Heat Transf., 138(2016) 104503.
– year: 1984
  ident: bib0021
  article-title: Free and Moving Boundary Problems
– volume: 270
  start-page: 662
  year: 2004
  end-page: 673
  ident: bib0024
  article-title: Growths of bubble/pore sizes in solid during solidification -an in situ measurement and analysis
  publication-title: J. Cryst. Growth
– reference: J. S. Park, S. K. Hyun, S. Suzuki, H. Nakajima, Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique, Acta Mater.. 55(2007) 5646-5654.
– volume: 10
  start-page: 775
  year: 2008
  end-page: 787
  ident: bib0008
  article-title: Porous metals and metallic foams: current status and recent developments
  publication-title: Adv. Eng. Mater.
– volume: 77
  start-page: 757
  year: 1961
  end-page: 768
  ident: bib0017
  article-title: Air bubbles in ice
  publication-title: Proc. Phys. Soc.
– reference: J. W. Elmer, J. Vaja, H. D. Carlton, R. Pong, The effect of Ar and N2 shielding gas on laser weld porosity in steel, stainless steels, and nickel, Weld. J.94(2015)313-s-325-s.
– reference: T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties, Prog. Mater. Sci.92(2018) 112–224
– reference: K. Yoshimura, T. Inada, S. Koyama, Growth of spherical and cylindrical oxygen bubbles at an ice-water interface, Cryst. Growth Des. 8(2008) 2108-2115.
– reference: Y. Liu, Y. X. Li, J. Wan, H. W. Zhang, Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification, Mater. Sci. Eng. A402(2005) 47-54.
– reference: R. Hardin, C. Beckermann, Effect of porosity on the stiffness of cast steel, Metall. Mater. Trans. A38(2007) 2992-3006.
– volume: 12
  start-page: 977
  year: 2015
  end-page: 990
  ident: bib0009
  article-title: Frozen ponds: production and storage of methane during the arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta
  publication-title: Biogeosciences
– reference: H. Nakajima, Fabrication, properties and application of porous metals with directional pores, Prog. Mater. Sci.52(2007) 1091-1173.
– reference: P. S. Wei, S. Y. Hsiao, Pore shape development from a bubble captured by a solidification front, Int. J. Heat Mass Transf. 55(2012) 8129-8138.
– reference: J. M. Solano-Altamirano, J. D. Malcolm and S. Goldman, Gas bubble dynamics in soft materials, Soft Matter11(2015) 202-210
– volume: 270
  start-page: 662
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0024
  article-title: Growths of bubble/pore sizes in solid during solidification -an in situ measurement and analysis
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.06.039
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0013
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0015
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0016
  doi: 10.1016/j.ijthermalsci.2017.01.012
– volume: 10
  start-page: 775
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0008
  article-title: Porous metals and metallic foams: current status and recent developments
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200800241
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0007
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0010
  doi: 10.1017/S0022143000023248
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0022
  doi: 10.1039/C4SM02037E
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0003
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0005
  doi: 10.1007/s11661-007-9390-4
– volume: 12
  start-page: 977
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0009
  article-title: Frozen ponds: production and storage of methane during the arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-977-2015
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0012
  doi: 10.1016/j.msea.2005.03.107
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0020
  doi: 10.1115/1.4033499
– volume: 43
  start-page: 263
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0025
  article-title: Shape of a pore trapped in solid during solidification
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(99)00134-9
– volume: 12
  start-page: R207
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0023
  article-title: Review article: viscoelastic phase separation
  publication-title: J. Phys.: Condens. Matter
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0018
– volume: 77
  start-page: 757
  year: 1961
  ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0017
  article-title: Air bubbles in ice
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/77/3/327
– year: 1984
  ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0021
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0014
– year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0001
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0011
  doi: 10.1007/s11663-003-0078-x
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0006
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0019
  doi: 10.1016/j.ijheatmasstransfer.2012.08.054
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0004
– ident: 10.1016/j.ijheatmasstransfer.2020.119977_bib0002
SSID ssj0017046
Score 2.3714535
Snippet •The general shapes of a pore resulted from a tiny bubble captured by a solidification front can be self-consistently described by the universal and unique...
This study shows that there exist the universal three phase diagrams to describe general development of the pore shape in solid, resulting from a bubble...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119977
SubjectTerms Boundary conditions
Bubble capture
Bubble entrapment
Bubbles
Contact angle
Contact pressure
Coordinates
Equations of state
Functional materials
Gas pressure
Geophysics
Laplace equation
Liquid-solid interfaces
Mass transfer
Phase change
Phase diagram
Phase diagrams
Pore formation
Pore shape
Porosity
Solidification
Solidification defect
Solids
Temperature gradients
Title Using the universal phase diagrams to describe pore shape development in solid for different solidification rates
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119977
https://www.proquest.com/docview/2446722497
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6LongRn7i-yMGDl2q7TZP2JMvisrroQVz0FvJosYt2q61Xf7szfeyi4kHwVJKmaclMv_lKv5kQchIAZ01saBykAw4LVeholURYGVFYrhOmXMx3vrnlowm7fgweO2TQ5sKgrLLB_hrTK7Rues6b1TzP0xRzfNG5PPyV5oJjYtltxgR6-dnHXObhCbdO1kE0xtGr5HSh8UqniHgvQFPLiibGWCG0hzgSAS_6LVR9A-0qEg03yHpDIWm_fspN0omzLbJSSTlNsU1eKxUABWJH32vVBQzOnyBaUfAFFGMVtJxRGyNg6JgCAY9p8aRyOL9QENE0o-CWqaXAamm7jUpZ96G8qLIoxUITxQ6ZDC_vByOn2VjBMb5wS0cxbphQSln4uLMRUzbyosC4thdg3q3CmmXG9xKbAF_xAq2gGXhci5gbHSrr75KlbJbFe4QKw7jmvkgg9jOgWpG1QukwTCw3QShYl1y0ayhNU3UcN794lq28bCp_WkGiFWRthS6J5jPkdQWOP1w7aM0mv3iVhIDxh1kOW4vL5g0vJNAiLoD_RGL_X25yQNawVcvXDslS-fYeHwHfKfVx5dDHZLl_NR7d4nF89zD-BJaQB_E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2VIpYLYhU7PnDgEkhax05OCFWgsp6o1JvlJRGpoC0kXPl2ZrKAAHFA4hjbcSLP-M2L8mYMcBgiZ01dZD2iAx6PdOQZncZUGVE6YVKufcp3vr0T_QG_GobDFvSaXBiSVdbYX2F6idZ1y0m9mifTLKMcX3KugH6l-eiYYgZmOW5fOsbg-O1D5xFIv8rWITim4fNw9CnyykYEeU_IU4uSJyZUIrRDQBIjMfotVn1D7TIUXSzDUs0h2Vn1mivQSsarMFdqOW2-Bs-lDIAhs2OvlewCB08fMFwxdAZSY-WsmDCXEGKYhCEDT1j-oKfY_ykhYtmYoV9mjiGtZc05KkXVRvqi0qSMKk3k6zC4OL_v9b36ZAXPdqVfeJoLy6XW2uHXnYu5dnEQh9Z3nZASbzUVLbPdIHUpEpYgNBovw0AYmQhrIu26G9AeT8bJJjBpuTCiK1MM_hy5Vuyc1CaKUidsGEm-BafNGipblx2n0y8eVaMvG6mfVlBkBVVZYQvijxmmVQmOP9zba8ymvriVwojxh1l2G4ureovnCnmRkEiAYrn9Lw85gIX-_e2Nurm8u96BReqptGy70C5eXpM9JD-F2S-d-x1B7Afc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+universal+phase+diagrams+to+describe+pore+shape+development+in+solid+for+different+solidification+rates&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Wei%2C+P.S.&rft.au=Wu%2C+C.M.&rft.au=Huang%2C+Y.K.&rft.au=Chang%2C+C.C.&rft.date=2020-09-01&rft.issn=0017-9310&rft.volume=158&rft.spage=119977&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119977&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon