Augmentation of natural convection heat sink via using displacement design
•Delay merging of boundary layer between fins is used to improve the natural convection performance.•Screening method is used for parametric study such as fin spacing, height, length, and heat flux.•The fin spacing is found to be the most prominent factor affecting the performance of the heat sink.•...
Saved in:
Published in | International journal of heat and mass transfer Vol. 154; p. 119757 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Delay merging of boundary layer between fins is used to improve the natural convection performance.•Screening method is used for parametric study such as fin spacing, height, length, and heat flux.•The fin spacing is found to be the most prominent factor affecting the performance of the heat sink.•Up to 60 % reduction in thermal resistance for the displacement fin is seen.
Miniaturization of electronic devices demands an effective thermal management system for efficient cooling. Still, many electronic industries use natural convection cooling techniques like plate-fin heat sinks as far as no moving part (noise) and reliability is concerned. In this study, the widely-used plate fin heat sink is augmented by a novel fin displacement amid fin array. Yet the effect of fin displacement between alternate fins is experimentally and numerically investigated under natural convection condition. In the meantime, the effects of fin spacing, length, height, and heat flux on the heat sink performance subject to fin displacement is also studied. For the smaller fin pacing, introducing the fin displacement will delay the merging of boundary layers, and reduce the length of fully developed region accordingly. Smaller fin spacing can also entrain the outside air into the fin array at the upper portion of heat sink for offering additional enhancement. The fin displacement is especially effective for a smaller fin spacing. This is because fully developed flow prevails at a smaller fin spacing. On the other hand, the fin displacement may impair the performance when a very wide fin spacing is used. Similarly, the increase in the fin length also enhances the heat transfer performance under the fin displacement conditions. It is also found that the effect of fin height on the thermal performance is small and the effect of heat flux is negligible. The maximum reduction in the thermal resistance is 56% by adopting the displacement design. A drop in fin temperature at the upper portion with the displacement design may lead to a reduction in heat transfer coefficient. For the comparison containing the fixed volume, the heat sink with fin displacement offers a 30% heat transfer enhancement ratio, 28.7% reduction in total mass, and 27.4 % reduction in surface area when compared to the conventional heat sinks. |
---|---|
AbstractList | Miniaturization of electronic devices demands an effective thermal management system for efficient cooling. Still, many electronic industries use natural convection cooling techniques like plate-fin heat sinks as far as no moving part (noise) and reliability is concerned. In this study, the widely-used plate fin heat sink is augmented by a novel fin displacement amid fin array. Yet the effect of fin displacement between alternate fins is experimentally and numerically investigated under natural convection condition. In the meantime, the effects of fin spacing, length, height, and heat flux on the heat sink performance subject to fin displacement is also studied. For the smaller fin pacing, introducing the fin displacement will delay the merging of boundary layers, and reduce the length of fully developed region accordingly. Smaller fin spacing can also entrain the outside air into the fin array at the upper portion of heat sink for offering additional enhancement. The fin displacement is especially effective for a smaller fin spacing. This is because fully developed flow prevails at a smaller fin spacing. On the other hand, the fin displacement may impair the performance when a very wide fin spacing is used. Similarly, the increase in the fin length also enhances the heat transfer performance under the fin displacement conditions. It is also found that the effect of fin height on the thermal performance is small and the effect of heat flux is negligible. The maximum reduction in the thermal resistance is 56% by adopting the displacement design. A drop in fin temperature at the upper portion with the displacement design may lead to a reduction in heat transfer coefficient. For the comparison containing the fixed volume, the heat sink with fin displacement offers a 30% heat transfer enhancement ratio, 28.7% reduction in total mass, and 27.4 % reduction in surface area when compared to the conventional heat sinks. •Delay merging of boundary layer between fins is used to improve the natural convection performance.•Screening method is used for parametric study such as fin spacing, height, length, and heat flux.•The fin spacing is found to be the most prominent factor affecting the performance of the heat sink.•Up to 60 % reduction in thermal resistance for the displacement fin is seen. Miniaturization of electronic devices demands an effective thermal management system for efficient cooling. Still, many electronic industries use natural convection cooling techniques like plate-fin heat sinks as far as no moving part (noise) and reliability is concerned. In this study, the widely-used plate fin heat sink is augmented by a novel fin displacement amid fin array. Yet the effect of fin displacement between alternate fins is experimentally and numerically investigated under natural convection condition. In the meantime, the effects of fin spacing, length, height, and heat flux on the heat sink performance subject to fin displacement is also studied. For the smaller fin pacing, introducing the fin displacement will delay the merging of boundary layers, and reduce the length of fully developed region accordingly. Smaller fin spacing can also entrain the outside air into the fin array at the upper portion of heat sink for offering additional enhancement. The fin displacement is especially effective for a smaller fin spacing. This is because fully developed flow prevails at a smaller fin spacing. On the other hand, the fin displacement may impair the performance when a very wide fin spacing is used. Similarly, the increase in the fin length also enhances the heat transfer performance under the fin displacement conditions. It is also found that the effect of fin height on the thermal performance is small and the effect of heat flux is negligible. The maximum reduction in the thermal resistance is 56% by adopting the displacement design. A drop in fin temperature at the upper portion with the displacement design may lead to a reduction in heat transfer coefficient. For the comparison containing the fixed volume, the heat sink with fin displacement offers a 30% heat transfer enhancement ratio, 28.7% reduction in total mass, and 27.4 % reduction in surface area when compared to the conventional heat sinks. |
ArticleNumber | 119757 |
Author | Abbas, Ali Wang, Chi-Chuan |
Author_xml | – sequence: 1 givenname: Ali surname: Abbas fullname: Abbas, Ali – sequence: 2 givenname: Chi-Chuan surname: Wang fullname: Wang, Chi-Chuan email: ccwang@nctu.edu.tw |
BookMark | eNqVkEFPwyAUgImZidv0P5B48dIJhQK9uSxOXZZ40TNBSie1gwntEv-91HrSi56A9x7fe--bgYnzzgBwhdECI8yum4VtXo3q9irGLigXaxMWOcpTGpe84CdgigUvsxyLcgKmCGGelQSjMzCLsRmeiLIp2Cz73d64TnXWO-hr6FTXB9VC7d3R6K_o0AZG697g0SrYp9sOVjYeWqXN8BdWJtqdOwentWqjufg-5-B5ffu0us-2j3cPq-U204SjLlOUUkQM16oUL5pqRjErBEOYCqY4IYjyomKVLqgWaUzCGUd1qXKWY1VzzskcXI7cQ_DvvYmdbHwfXGop84SmohQkT1XrsUoHH2MwtdR23DLZsq3ESA4eZSN_e5SDRzl6TKCbH6BDsHsVPv6D2IwIk7QcbcpGbY3TprIhOZaVt3-HfQJiyp_5 |
CitedBy_id | crossref_primary_10_1016_j_ijthermalsci_2024_109250 crossref_primary_10_2139_ssrn_4093659 crossref_primary_10_1007_s40430_025_05493_1 crossref_primary_10_3390_fluids9110252 crossref_primary_10_1002_htj_23303 crossref_primary_10_1016_j_csite_2021_101520 crossref_primary_10_1016_j_csite_2024_105727 crossref_primary_10_2298_TSCI230926076S crossref_primary_10_1016_j_device_2023_100122 crossref_primary_10_1016_j_jppr_2020_11_002 crossref_primary_10_1115_1_4062305 crossref_primary_10_1016_j_est_2022_106480 crossref_primary_10_1016_j_ijthermalsci_2024_109604 crossref_primary_10_3390_ma14216257 crossref_primary_10_1007_s00231_022_03298_9 crossref_primary_10_1016_j_csite_2021_101013 crossref_primary_10_1016_j_ijmecsci_2020_105975 crossref_primary_10_1016_j_ijthermalsci_2022_107668 crossref_primary_10_1007_s00170_022_10652_y crossref_primary_10_1115_1_4055263 crossref_primary_10_1016_j_icheatmasstransfer_2024_108055 crossref_primary_10_1016_j_csite_2023_103316 crossref_primary_10_1016_j_ijthermalsci_2022_107540 crossref_primary_10_1016_j_isci_2024_110950 crossref_primary_10_1016_j_matpr_2021_02_565 crossref_primary_10_1016_j_icheatmasstransfer_2023_106676 crossref_primary_10_1016_j_applthermaleng_2020_115586 crossref_primary_10_1016_j_ceramint_2023_07_209 crossref_primary_10_1016_j_energy_2021_122050 crossref_primary_10_1002_pen_26888 crossref_primary_10_1080_01457632_2022_2079046 crossref_primary_10_1615_HeatTransRes_2024052307 crossref_primary_10_1016_j_applthermaleng_2024_123885 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121763 crossref_primary_10_1016_j_matpr_2023_02_331 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121527 crossref_primary_10_3390_en15010145 crossref_primary_10_1016_j_procs_2024_08_055 crossref_primary_10_1080_01457632_2021_1975998 crossref_primary_10_1115_1_4065359 crossref_primary_10_1016_j_device_2024_100684 crossref_primary_10_1016_j_ctta_2025_100166 crossref_primary_10_1016_j_rser_2024_114372 crossref_primary_10_1016_j_csite_2022_101778 crossref_primary_10_1016_j_ijft_2024_100737 crossref_primary_10_1016_j_ijthermalsci_2021_106971 crossref_primary_10_1515_kern_2022_0114 crossref_primary_10_1016_j_applthermaleng_2023_120783 crossref_primary_10_1016_j_ijthermalsci_2022_108097 crossref_primary_10_1016_j_ijthermalsci_2020_106797 crossref_primary_10_1016_j_ijheatmasstransfer_2021_120900 |
Cites_doi | 10.1016/j.icheatmasstransfer.2014.10.014 10.1016/j.applthermaleng.2017.12.049 10.1115/1.3450517 10.1080/00224065.2011.11917841 10.1016/0017-9310(72)90012-9 10.1016/S1290-0729(99)80025-8 10.1115/1.3684288 10.1115/1.1568361 10.1016/j.camwa.2018.12.005 10.1016/j.ijheatmasstransfer.2018.04.122 10.1016/j.ijheatmasstransfer.2016.09.094 10.1016/0894-1777(88)90043-X 10.1007/s00231-006-0207-6 10.1016/S0031-8914(42)90053-3 10.1115/1.3689135 10.1016/0017-9310(76)90168-X 10.1007/s002310000116 10.1016/j.applthermaleng.2013.09.003 10.1016/j.ijheatmasstransfer.2011.10.034 10.1115/1.3686097 10.1016/j.enconman.2016.02.024 10.1016/j.ijthermalsci.2014.05.017 10.3938/jkps.65.1529 10.1016/j.ijheatmasstransfer.2017.06.031 10.1007/s00231-014-1308-2 10.1115/1.3246622 10.1016/j.apm.2013.04.004 10.1115/1.3449648 10.1016/j.enconman.2010.05.009 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Jun 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Jun 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2020.119757 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2020_119757 S0017931019358417 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c370t-a44403e7ca98bc4c641658601486a7330475d6dc54c800137670f9a2621af7773 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Mon Jul 14 10:21:14 EDT 2025 Tue Jul 01 04:24:00 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Fri Feb 23 02:38:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Natural convection Enhancement Heat sink Displacement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-a44403e7ca98bc4c641658601486a7330475d6dc54c800137670f9a2621af7773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2440489832 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2440489832 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119757 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119757 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Gray, Giorgini (bib0025) 1976; 19 Jeon, Byon, Transfer (bib0020) 2017; 113 Gan (bib0030) 1998; 33 Park, Jang, Yook, Lee (bib0021) 2016; 114 Byon (bib0009) 2014; 65 Moffat (bib0024) 1988; 1 Yazicioğlu, Yüncü (bib0013) 2007; 44 Salinas-Vázquez, Vicente, Barrios, Martínez, Palacio, Rodríguez (bib0028) 2013; 37 Kraus, Aziz, Welty, Sekulic (bib0007) 2001 Bar-Cohen, Rohsenow (bib0004) 1984; 106 Jones, Smith (bib0011) 1970; 92 Charles, Wang (bib0016) 2014; 59 Huang, Wong, Lin (bib0019) 2014; 84 Aung (bib0003) 1972; 15 Bar-Cohen, Iyengar, Kraus (bib0008) 2003; 125 Kim (bib0012) 2012; 55 Taji, Parishwad, Sane (bib0022) 2014; 50 Shabany (bib0034) 2008 Haghighi, Goshayeshi, Safaei (bib0018) 2018; 125 Jones, Nachtsheim (bib0032) 2011; 43 de Lieto Vollaro, Grignaffini, Gugliermetti (bib0010) 1999; 38 Welling, Wooldridge (bib0006) 1965; 87 Feng, Shi, Yan, Sun, Li, Lu (bib0017) 2018; 132 Tari, Mehrtash (bib0033) 2013; 61 Chang, Wu, Guo, Shi, Chen (bib0015) 2017; 106 Hollands, Unny, Raithby, Konicek (bib0031) 1976; 98 Howell, Menguc, Siegel (bib0027) 2015 Elenbaas (bib0001) 1942; 9 Paillere, Viozat, Kumbaro, Toumi (bib0026) 2000; 36 Zhang, Liu (bib0014) 2010; 51 Bodoia, Osterle (bib0002) 1962; 84 Starner, McManus (bib0005) 1963; 85 Cengel, Klein, Beckman (bib0023) 1998 Parmananda, Dalal, Natarajan (bib0029) 2019; 77 Parmananda (10.1016/j.ijheatmasstransfer.2020.119757_bib0029) 2019; 77 Bodoia (10.1016/j.ijheatmasstransfer.2020.119757_bib0002) 1962; 84 Kim (10.1016/j.ijheatmasstransfer.2020.119757_bib0012) 2012; 55 Starner (10.1016/j.ijheatmasstransfer.2020.119757_bib0005) 1963; 85 Cengel (10.1016/j.ijheatmasstransfer.2020.119757_bib0023) 1998 Jones (10.1016/j.ijheatmasstransfer.2020.119757_bib0011) 1970; 92 Gray (10.1016/j.ijheatmasstransfer.2020.119757_bib0025) 1976; 19 Yazicioğlu (10.1016/j.ijheatmasstransfer.2020.119757_bib0013) 2007; 44 Park (10.1016/j.ijheatmasstransfer.2020.119757_bib0021) 2016; 114 Paillere (10.1016/j.ijheatmasstransfer.2020.119757_bib0026) 2000; 36 Elenbaas (10.1016/j.ijheatmasstransfer.2020.119757_bib0001) 1942; 9 Byon (10.1016/j.ijheatmasstransfer.2020.119757_bib0009) 2014; 65 de Lieto Vollaro (10.1016/j.ijheatmasstransfer.2020.119757_bib0010) 1999; 38 Welling (10.1016/j.ijheatmasstransfer.2020.119757_bib0006) 1965; 87 Taji (10.1016/j.ijheatmasstransfer.2020.119757_bib0022) 2014; 50 Salinas-Vázquez (10.1016/j.ijheatmasstransfer.2020.119757_bib0028) 2013; 37 Kraus (10.1016/j.ijheatmasstransfer.2020.119757_bib0007) 2001 Feng (10.1016/j.ijheatmasstransfer.2020.119757_bib0017) 2018; 132 Huang (10.1016/j.ijheatmasstransfer.2020.119757_bib0019) 2014; 84 Aung (10.1016/j.ijheatmasstransfer.2020.119757_bib0003) 1972; 15 Bar-Cohen (10.1016/j.ijheatmasstransfer.2020.119757_bib0008) 2003; 125 Bar-Cohen (10.1016/j.ijheatmasstransfer.2020.119757_bib0004) 1984; 106 Jones (10.1016/j.ijheatmasstransfer.2020.119757_bib0032) 2011; 43 Hollands (10.1016/j.ijheatmasstransfer.2020.119757_bib0031) 1976; 98 Charles (10.1016/j.ijheatmasstransfer.2020.119757_bib0016) 2014; 59 Shabany (10.1016/j.ijheatmasstransfer.2020.119757_bib0034) 2008 Chang (10.1016/j.ijheatmasstransfer.2020.119757_bib0015) 2017; 106 Zhang (10.1016/j.ijheatmasstransfer.2020.119757_bib0014) 2010; 51 Tari (10.1016/j.ijheatmasstransfer.2020.119757_bib0033) 2013; 61 Haghighi (10.1016/j.ijheatmasstransfer.2020.119757_bib0018) 2018; 125 Howell (10.1016/j.ijheatmasstransfer.2020.119757_bib0027) 2015 Gan (10.1016/j.ijheatmasstransfer.2020.119757_bib0030) 1998; 33 Moffat (10.1016/j.ijheatmasstransfer.2020.119757_bib0024) 1988; 1 Jeon (10.1016/j.ijheatmasstransfer.2020.119757_bib0020) 2017; 113 |
References_xml | – volume: 84 start-page: 164 year: 2014 end-page: 174 ident: bib0019 article-title: Enhancement of natural convection heat transfer from horizontal rectangular fin arrays with perforations in fin base publication-title: Int. J. Thermal Sci. – volume: 1 start-page: 3 year: 1988 end-page: 17 ident: bib0024 article-title: Describing the uncertainties in experimental results publication-title: Exper. Thermal Fluid Sci. – volume: 33 start-page: 169 year: 1998 end-page: 189 ident: bib0030 article-title: Prediction of Turbulent Buoyant flow using an RNG A-ϵ model, numerical heat transfer publication-title: Part A Appl. – volume: 114 start-page: 180 year: 2016 end-page: 187 ident: bib0021 article-title: Optimization of a chimney design for cooling efficiency of a radial heat sink in a LED downlight publication-title: Energy Convers. Manag. – volume: 98 start-page: 189 year: 1976 end-page: 193 ident: bib0031 article-title: Free convective heat transfer across inclined air layers publication-title: J. Heat Transf. – volume: 43 start-page: 1 year: 2011 end-page: 15 ident: bib0032 article-title: A class of three-level designs for definitive screening in the presence of second-order effects publication-title: J. Q. Technol. – volume: 125 start-page: 208 year: 2003 end-page: 216 ident: bib0008 article-title: Design of optimum plate-fin natural convective heat sinks publication-title: J. Electron. Packag. – volume: 19 start-page: 545 year: 1976 end-page: 551 ident: bib0025 article-title: The validity of the Boussinesq approximation for liquids and gases publication-title: Int. J. Heat Mass Transf. – volume: 55 start-page: 752 year: 2012 end-page: 761 ident: bib0012 article-title: Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection publication-title: Int. J. Heat Mass Transf. – volume: 59 start-page: 24 year: 2014 end-page: 29 ident: bib0016 article-title: A novel heat dissipation fin design applicable for natural convection augmentation publication-title: Int. Commun. Heat Mass Transf. – year: 1998 ident: bib0023 article-title: Heat Transfer: A Practical Approach – volume: 85 start-page: 273 year: 1963 end-page: 277 ident: bib0005 article-title: An experimental investigation of free-convection heat transfer from rectangular-fin arrays publication-title: J. Heat Transf. – volume: 92 start-page: 6 year: 1970 end-page: 10 ident: bib0011 article-title: Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer publication-title: J. Heat Transf. – volume: 38 start-page: 525 year: 1999 end-page: 529 ident: bib0010 article-title: Optimum design of vertical rectangular fin arrays publication-title: Int. J. Thermal Sci. – volume: 9 start-page: 1 year: 1942 end-page: 28 ident: bib0001 article-title: Heat dissipation of parallel plates by free convection publication-title: Physica – volume: 51 start-page: 2449 year: 2010 end-page: 2456 ident: bib0014 article-title: Optimum geometric arrangement of vertical rectangular fin arrays in natural convection publication-title: Energy Convers. Manag. – volume: 50 start-page: 1005 year: 2014 end-page: 1015 ident: bib0022 article-title: Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection publication-title: Heat Mass Transf. – year: 2015 ident: bib0027 article-title: Thermal Radiation Heat Transfer – volume: 77 start-page: 2162 year: 2019 end-page: 2181 ident: bib0029 article-title: Numerical appraisal of three low Mach number algorithms for radiative–convective flows in enclosures publication-title: Comput. Math. Appl. – volume: 132 start-page: 30 year: 2018 end-page: 37 ident: bib0017 article-title: Natural convection in a cross-fin heat sink publication-title: Appl. Thermal Eng. – start-page: 132 year: 2008 end-page: 136 ident: bib0034 article-title: Radiation heat transfer from plate-fin heat sinks, publication-title: Proceedings of the Semiconductor Thermal Measurement and Management Symposium – volume: 87 start-page: 439 year: 1965 end-page: 444 ident: bib0006 article-title: Free convection heat transfer coefficients from rectangular vertical fins publication-title: J. Heat Transf. – volume: 125 start-page: 640 year: 2018 end-page: 647 ident: bib0018 article-title: Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 113 start-page: 1086 year: 2017 end-page: 1092 ident: bib0020 article-title: Thermal performance of plate fin heat sinks with dual-height fins subject to natural convection publication-title: Int. J. Heat Mass Transf. – volume: 15 start-page: 1577 year: 1972 end-page: 1580 ident: bib0003 article-title: Fully developed laminar free convection between vertical plates heated asymmetrically publication-title: Int. J. Heat Mass Transf. – volume: 106 start-page: 116 year: 1984 end-page: 123 ident: bib0004 article-title: Thermally optimum spacing of vertical, natural convection cooled, parallel plates publication-title: J. Heat Transf. – volume: 65 start-page: 1529 year: 2014 end-page: 1535 ident: bib0009 article-title: Optimal design method for plate fin heat sinks subject to natural convection publication-title: J. Korean Phys. Soc. – volume: 36 start-page: 567 year: 2000 end-page: 573 ident: bib0026 article-title: Comparison of low Mach number models for natural convection problems publication-title: Heat Mass Transf. – volume: 106 start-page: 781 year: 2017 end-page: 792 ident: bib0015 article-title: Heat transfer enhancement of vertical dimpled fin array in natural convection publication-title: Int. J. Heat Mass Transf. – year: 2001 ident: bib0007 article-title: Extended surface heat transfer publication-title: Am. Soc. Mech. Eng. Digital Collect. – volume: 84 start-page: 40 year: 1962 end-page: 43 ident: bib0002 article-title: The development of free convection between heated vertical plates publication-title: J. Heat Transf. – volume: 44 start-page: 11 year: 2007 end-page: 21 ident: bib0013 article-title: Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer publication-title: J. Heat Mass Transf. – volume: 37 start-page: 9132 year: 2013 end-page: 9146 ident: bib0028 article-title: A low-Mach number method for the numerical simulation of complex flows publication-title: Appl. Math. Model. – volume: 61 start-page: 728 year: 2013 end-page: 736 ident: bib0033 article-title: Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks publication-title: Appl. Thermal Eng. – volume: 59 start-page: 24 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0016 article-title: A novel heat dissipation fin design applicable for natural convection augmentation publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2014.10.014 – volume: 132 start-page: 30 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0017 article-title: Natural convection in a cross-fin heat sink publication-title: Appl. Thermal Eng. doi: 10.1016/j.applthermaleng.2017.12.049 – volume: 98 start-page: 189 issue: 2 year: 1976 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0031 article-title: Free convective heat transfer across inclined air layers publication-title: J. Heat Transf. doi: 10.1115/1.3450517 – volume: 43 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0032 article-title: A class of three-level designs for definitive screening in the presence of second-order effects publication-title: J. Q. Technol. doi: 10.1080/00224065.2011.11917841 – volume: 15 start-page: 1577 issue: 8 year: 1972 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0003 article-title: Fully developed laminar free convection between vertical plates heated asymmetrically publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(72)90012-9 – volume: 38 start-page: 525 issue: 6 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0010 article-title: Optimum design of vertical rectangular fin arrays publication-title: Int. J. Thermal Sci. doi: 10.1016/S1290-0729(99)80025-8 – year: 1998 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0023 – volume: 84 start-page: 40 issue: 1 year: 1962 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0002 article-title: The development of free convection between heated vertical plates publication-title: J. Heat Transf. doi: 10.1115/1.3684288 – volume: 125 start-page: 208 issue: 2 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0008 article-title: Design of optimum plate-fin natural convective heat sinks publication-title: J. Electron. Packag. doi: 10.1115/1.1568361 – volume: 77 start-page: 2162 issue: 8 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0029 article-title: Numerical appraisal of three low Mach number algorithms for radiative–convective flows in enclosures publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.12.005 – volume: 125 start-page: 640 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0018 article-title: Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.122 – volume: 106 start-page: 781 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0015 article-title: Heat transfer enhancement of vertical dimpled fin array in natural convection publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.09.094 – volume: 1 start-page: 3 issue: 1 year: 1988 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0024 article-title: Describing the uncertainties in experimental results publication-title: Exper. Thermal Fluid Sci. doi: 10.1016/0894-1777(88)90043-X – volume: 33 start-page: 169 issue: 2 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0030 article-title: Prediction of Turbulent Buoyant flow using an RNG A-ϵ model, numerical heat transfer publication-title: Part A Appl. – volume: 44 start-page: 11 issue: 1 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0013 article-title: Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer publication-title: J. Heat Mass Transf. doi: 10.1007/s00231-006-0207-6 – volume: 9 start-page: 1 issue: 1 year: 1942 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0001 article-title: Heat dissipation of parallel plates by free convection publication-title: Physica doi: 10.1016/S0031-8914(42)90053-3 – year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0007 article-title: Extended surface heat transfer publication-title: Am. Soc. Mech. Eng. Digital Collect. – year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0027 – volume: 87 start-page: 439 issue: 4 year: 1965 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0006 article-title: Free convection heat transfer coefficients from rectangular vertical fins publication-title: J. Heat Transf. doi: 10.1115/1.3689135 – volume: 19 start-page: 545 issue: 5 year: 1976 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0025 article-title: The validity of the Boussinesq approximation for liquids and gases publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(76)90168-X – volume: 36 start-page: 567 issue: 6 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0026 article-title: Comparison of low Mach number models for natural convection problems publication-title: Heat Mass Transf. doi: 10.1007/s002310000116 – volume: 61 start-page: 728 issue: 2 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0033 article-title: Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks publication-title: Appl. Thermal Eng. doi: 10.1016/j.applthermaleng.2013.09.003 – volume: 55 start-page: 752 issue: 4 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0012 article-title: Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.10.034 – volume: 85 start-page: 273 issue: 3 year: 1963 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0005 article-title: An experimental investigation of free-convection heat transfer from rectangular-fin arrays publication-title: J. Heat Transf. doi: 10.1115/1.3686097 – volume: 114 start-page: 180 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0021 article-title: Optimization of a chimney design for cooling efficiency of a radial heat sink in a LED downlight publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.02.024 – volume: 84 start-page: 164 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0019 article-title: Enhancement of natural convection heat transfer from horizontal rectangular fin arrays with perforations in fin base publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2014.05.017 – volume: 65 start-page: 1529 issue: 10 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0009 article-title: Optimal design method for plate fin heat sinks subject to natural convection publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.65.1529 – volume: 113 start-page: 1086 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0020 article-title: Thermal performance of plate fin heat sinks with dual-height fins subject to natural convection publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.031 – volume: 50 start-page: 1005 issue: 7 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0022 article-title: Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection publication-title: Heat Mass Transf. doi: 10.1007/s00231-014-1308-2 – volume: 106 start-page: 116 issue: 1 year: 1984 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0004 article-title: Thermally optimum spacing of vertical, natural convection cooled, parallel plates publication-title: J. Heat Transf. doi: 10.1115/1.3246622 – volume: 37 start-page: 9132 issue: 22 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0028 article-title: A low-Mach number method for the numerical simulation of complex flows publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.04.004 – volume: 92 start-page: 6 issue: 1 year: 1970 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0011 article-title: Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer publication-title: J. Heat Transf. doi: 10.1115/1.3449648 – volume: 51 start-page: 2449 issue: 12 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0014 article-title: Optimum geometric arrangement of vertical rectangular fin arrays in natural convection publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.05.009 – start-page: 132 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0034 article-title: Radiation heat transfer from plate-fin heat sinks, |
SSID | ssj0017046 |
Score | 2.5309358 |
Snippet | •Delay merging of boundary layer between fins is used to improve the natural convection performance.•Screening method is used for parametric study such as fin... Miniaturization of electronic devices demands an effective thermal management system for efficient cooling. Still, many electronic industries use natural... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119757 |
SubjectTerms | Air entrainment Arrays Boundary layers Component reliability Convection cooling Cooling effects Displacement Electronic devices Enhancement Fins Free convection Heat flux Heat sink Heat sinks Heat transfer Heat transfer coefficients Miniaturization Natural convection Thermal energy Thermal management Thermal resistance |
Title | Augmentation of natural convection heat sink via using displacement design |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119757 https://www.proquest.com/docview/2440489832 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT4MwFG6WGY0X4884nUsPHrzgGBRKT2ZZXOYWdzAu7ta0BRYWxxZhHv3b7Ssw44_LEk8EQqF5fXzvtXzfK0LXsc4pmCc9i0XMtwiT0hKey6zYpkow6kpqVPyPY38wIcOpN62hXqWFAVplif0Fphu0Lq-0S2u2V0kCGl9wLu1S8CuPdEBRTggFL7_92NA8OtQuxDqAxnD3Hrr54nglc0C8hU5Tc5MmRlAh1AEcYRQC1t-h6gdom0jUP0QHZQqJu0Uvj1AtSo_RrqFyquwEDbvr2aJUFKV4GWNTu1M3MARzI2PA0B-c6Wkofk8EBu77DIdJZgha0BaHhthxiib9--fewCp3TLCUS-3cEoQQ243AzIFURPk63fICH1YNfUFh6YJ6oR8qj6jAVBT1qR0z4fhOR8SUUvcM1dNlGp0jbEsR6PhNQ-bpSUSsg5ZkTNmwbsqYRusGuquMw1VZThx2tXjlFW9szn-bl4N5eWHeBmKbJ6yK0hpbtO1V48G_uQvXkWCLpzSroeTlp5txByomBkwj3cW_vOQS7cNZQS9ronr-to6udCKTy5bx1Bba6T6MBmM4jp5eRp8xPPdE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb8IwDLYYaI_LtKfGxrYcdtilotCmaU4TQkO8TyBxi9q0RUXjoQH7_YvTlGmPC9KurZxGjvvZcT47AE-Jiik4DanFY-5ZLg9DK6AOtxKbyYAzJ2S6in8w9NpjtzuhkwI081oYpFUa7M8wXaO1eVI12qyu0hRrfNG4lEnhUZ5bYwdQwu5UtAilRqfXHu4OE5id1esgIKPAETx_0bzSGYLeXEWqGx0pxtgktI5Qwhn6rL-91Q_c1s6odQanJookjWyi51CIFxdwqNmccn0J3cZ2OjdFRQuyTIhu36kENMdcVzIQnA9Zq50o-UgDgvT3KYnSteZooSyJNLfjCsat11GzbZlLEyzpMHtjBa7r2k6MmvZD6UpPRVzU9zBx6AUMsxeMRl4kqSt93VTUY3bCg7pXrwUJY8y5huJiuYhvgNhh4CsXziJO1T4iUX4r5FzamDrlXAF2GV5y5QhpOorjxRZvIqeOzcRv9QpUr8jUWwa-G2GVddfYQ7aZr4f4ZjFCOYM9RqnkSynM37sWdWya6HMFdrf_8pFHOG6PBn3R7wx7d3CCbzK2WQWKm_dtfK_imk34YOz2E-D8-FI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmentation+of+natural+convection+heat+sink+via+using+displacement+design&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Abbas%2C+Ali&rft.au=Wang%2C+Chi-Chuan&rft.date=2020-06-01&rft.issn=0017-9310&rft.volume=154&rft.spage=119757&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |