Augmentation of natural convection heat sink via using displacement design

•Delay merging of boundary layer between fins is used to improve the natural convection performance.•Screening method is used for parametric study such as fin spacing, height, length, and heat flux.•The fin spacing is found to be the most prominent factor affecting the performance of the heat sink.•...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 154; p. 119757
Main Authors Abbas, Ali, Wang, Chi-Chuan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Delay merging of boundary layer between fins is used to improve the natural convection performance.•Screening method is used for parametric study such as fin spacing, height, length, and heat flux.•The fin spacing is found to be the most prominent factor affecting the performance of the heat sink.•Up to 60 % reduction in thermal resistance for the displacement fin is seen. Miniaturization of electronic devices demands an effective thermal management system for efficient cooling. Still, many electronic industries use natural convection cooling techniques like plate-fin heat sinks as far as no moving part (noise) and reliability is concerned. In this study, the widely-used plate fin heat sink is augmented by a novel fin displacement amid fin array. Yet the effect of fin displacement between alternate fins is experimentally and numerically investigated under natural convection condition. In the meantime, the effects of fin spacing, length, height, and heat flux on the heat sink performance subject to fin displacement is also studied. For the smaller fin pacing, introducing the fin displacement will delay the merging of boundary layers, and reduce the length of fully developed region accordingly. Smaller fin spacing can also entrain the outside air into the fin array at the upper portion of heat sink for offering additional enhancement. The fin displacement is especially effective for a smaller fin spacing. This is because fully developed flow prevails at a smaller fin spacing. On the other hand, the fin displacement may impair the performance when a very wide fin spacing is used. Similarly, the increase in the fin length also enhances the heat transfer performance under the fin displacement conditions. It is also found that the effect of fin height on the thermal performance is small and the effect of heat flux is negligible. The maximum reduction in the thermal resistance is 56% by adopting the displacement design. A drop in fin temperature at the upper portion with the displacement design may lead to a reduction in heat transfer coefficient. For the comparison containing the fixed volume, the heat sink with fin displacement offers a 30% heat transfer enhancement ratio, 28.7% reduction in total mass, and 27.4 % reduction in surface area when compared to the conventional heat sinks.
AbstractList Miniaturization of electronic devices demands an effective thermal management system for efficient cooling. Still, many electronic industries use natural convection cooling techniques like plate-fin heat sinks as far as no moving part (noise) and reliability is concerned. In this study, the widely-used plate fin heat sink is augmented by a novel fin displacement amid fin array. Yet the effect of fin displacement between alternate fins is experimentally and numerically investigated under natural convection condition. In the meantime, the effects of fin spacing, length, height, and heat flux on the heat sink performance subject to fin displacement is also studied. For the smaller fin pacing, introducing the fin displacement will delay the merging of boundary layers, and reduce the length of fully developed region accordingly. Smaller fin spacing can also entrain the outside air into the fin array at the upper portion of heat sink for offering additional enhancement. The fin displacement is especially effective for a smaller fin spacing. This is because fully developed flow prevails at a smaller fin spacing. On the other hand, the fin displacement may impair the performance when a very wide fin spacing is used. Similarly, the increase in the fin length also enhances the heat transfer performance under the fin displacement conditions. It is also found that the effect of fin height on the thermal performance is small and the effect of heat flux is negligible. The maximum reduction in the thermal resistance is 56% by adopting the displacement design. A drop in fin temperature at the upper portion with the displacement design may lead to a reduction in heat transfer coefficient. For the comparison containing the fixed volume, the heat sink with fin displacement offers a 30% heat transfer enhancement ratio, 28.7% reduction in total mass, and 27.4 % reduction in surface area when compared to the conventional heat sinks.
•Delay merging of boundary layer between fins is used to improve the natural convection performance.•Screening method is used for parametric study such as fin spacing, height, length, and heat flux.•The fin spacing is found to be the most prominent factor affecting the performance of the heat sink.•Up to 60 % reduction in thermal resistance for the displacement fin is seen. Miniaturization of electronic devices demands an effective thermal management system for efficient cooling. Still, many electronic industries use natural convection cooling techniques like plate-fin heat sinks as far as no moving part (noise) and reliability is concerned. In this study, the widely-used plate fin heat sink is augmented by a novel fin displacement amid fin array. Yet the effect of fin displacement between alternate fins is experimentally and numerically investigated under natural convection condition. In the meantime, the effects of fin spacing, length, height, and heat flux on the heat sink performance subject to fin displacement is also studied. For the smaller fin pacing, introducing the fin displacement will delay the merging of boundary layers, and reduce the length of fully developed region accordingly. Smaller fin spacing can also entrain the outside air into the fin array at the upper portion of heat sink for offering additional enhancement. The fin displacement is especially effective for a smaller fin spacing. This is because fully developed flow prevails at a smaller fin spacing. On the other hand, the fin displacement may impair the performance when a very wide fin spacing is used. Similarly, the increase in the fin length also enhances the heat transfer performance under the fin displacement conditions. It is also found that the effect of fin height on the thermal performance is small and the effect of heat flux is negligible. The maximum reduction in the thermal resistance is 56% by adopting the displacement design. A drop in fin temperature at the upper portion with the displacement design may lead to a reduction in heat transfer coefficient. For the comparison containing the fixed volume, the heat sink with fin displacement offers a 30% heat transfer enhancement ratio, 28.7% reduction in total mass, and 27.4 % reduction in surface area when compared to the conventional heat sinks.
ArticleNumber 119757
Author Abbas, Ali
Wang, Chi-Chuan
Author_xml – sequence: 1
  givenname: Ali
  surname: Abbas
  fullname: Abbas, Ali
– sequence: 2
  givenname: Chi-Chuan
  surname: Wang
  fullname: Wang, Chi-Chuan
  email: ccwang@nctu.edu.tw
BookMark eNqVkEFPwyAUgImZidv0P5B48dIJhQK9uSxOXZZ40TNBSie1gwntEv-91HrSi56A9x7fe--bgYnzzgBwhdECI8yum4VtXo3q9irGLigXaxMWOcpTGpe84CdgigUvsxyLcgKmCGGelQSjMzCLsRmeiLIp2Cz73d64TnXWO-hr6FTXB9VC7d3R6K_o0AZG697g0SrYp9sOVjYeWqXN8BdWJtqdOwentWqjufg-5-B5ffu0us-2j3cPq-U204SjLlOUUkQM16oUL5pqRjErBEOYCqY4IYjyomKVLqgWaUzCGUd1qXKWY1VzzskcXI7cQ_DvvYmdbHwfXGop84SmohQkT1XrsUoHH2MwtdR23DLZsq3ESA4eZSN_e5SDRzl6TKCbH6BDsHsVPv6D2IwIk7QcbcpGbY3TprIhOZaVt3-HfQJiyp_5
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2024_109250
crossref_primary_10_2139_ssrn_4093659
crossref_primary_10_1007_s40430_025_05493_1
crossref_primary_10_3390_fluids9110252
crossref_primary_10_1002_htj_23303
crossref_primary_10_1016_j_csite_2021_101520
crossref_primary_10_1016_j_csite_2024_105727
crossref_primary_10_2298_TSCI230926076S
crossref_primary_10_1016_j_device_2023_100122
crossref_primary_10_1016_j_jppr_2020_11_002
crossref_primary_10_1115_1_4062305
crossref_primary_10_1016_j_est_2022_106480
crossref_primary_10_1016_j_ijthermalsci_2024_109604
crossref_primary_10_3390_ma14216257
crossref_primary_10_1007_s00231_022_03298_9
crossref_primary_10_1016_j_csite_2021_101013
crossref_primary_10_1016_j_ijmecsci_2020_105975
crossref_primary_10_1016_j_ijthermalsci_2022_107668
crossref_primary_10_1007_s00170_022_10652_y
crossref_primary_10_1115_1_4055263
crossref_primary_10_1016_j_icheatmasstransfer_2024_108055
crossref_primary_10_1016_j_csite_2023_103316
crossref_primary_10_1016_j_ijthermalsci_2022_107540
crossref_primary_10_1016_j_isci_2024_110950
crossref_primary_10_1016_j_matpr_2021_02_565
crossref_primary_10_1016_j_icheatmasstransfer_2023_106676
crossref_primary_10_1016_j_applthermaleng_2020_115586
crossref_primary_10_1016_j_ceramint_2023_07_209
crossref_primary_10_1016_j_energy_2021_122050
crossref_primary_10_1002_pen_26888
crossref_primary_10_1080_01457632_2022_2079046
crossref_primary_10_1615_HeatTransRes_2024052307
crossref_primary_10_1016_j_applthermaleng_2024_123885
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121763
crossref_primary_10_1016_j_matpr_2023_02_331
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121527
crossref_primary_10_3390_en15010145
crossref_primary_10_1016_j_procs_2024_08_055
crossref_primary_10_1080_01457632_2021_1975998
crossref_primary_10_1115_1_4065359
crossref_primary_10_1016_j_device_2024_100684
crossref_primary_10_1016_j_ctta_2025_100166
crossref_primary_10_1016_j_rser_2024_114372
crossref_primary_10_1016_j_csite_2022_101778
crossref_primary_10_1016_j_ijft_2024_100737
crossref_primary_10_1016_j_ijthermalsci_2021_106971
crossref_primary_10_1515_kern_2022_0114
crossref_primary_10_1016_j_applthermaleng_2023_120783
crossref_primary_10_1016_j_ijthermalsci_2022_108097
crossref_primary_10_1016_j_ijthermalsci_2020_106797
crossref_primary_10_1016_j_ijheatmasstransfer_2021_120900
Cites_doi 10.1016/j.icheatmasstransfer.2014.10.014
10.1016/j.applthermaleng.2017.12.049
10.1115/1.3450517
10.1080/00224065.2011.11917841
10.1016/0017-9310(72)90012-9
10.1016/S1290-0729(99)80025-8
10.1115/1.3684288
10.1115/1.1568361
10.1016/j.camwa.2018.12.005
10.1016/j.ijheatmasstransfer.2018.04.122
10.1016/j.ijheatmasstransfer.2016.09.094
10.1016/0894-1777(88)90043-X
10.1007/s00231-006-0207-6
10.1016/S0031-8914(42)90053-3
10.1115/1.3689135
10.1016/0017-9310(76)90168-X
10.1007/s002310000116
10.1016/j.applthermaleng.2013.09.003
10.1016/j.ijheatmasstransfer.2011.10.034
10.1115/1.3686097
10.1016/j.enconman.2016.02.024
10.1016/j.ijthermalsci.2014.05.017
10.3938/jkps.65.1529
10.1016/j.ijheatmasstransfer.2017.06.031
10.1007/s00231-014-1308-2
10.1115/1.3246622
10.1016/j.apm.2013.04.004
10.1115/1.3449648
10.1016/j.enconman.2010.05.009
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Jun 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Jun 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2020.119757
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2020_119757
S0017931019358417
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-a44403e7ca98bc4c641658601486a7330475d6dc54c800137670f9a2621af7773
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Mon Jul 14 10:21:14 EDT 2025
Tue Jul 01 04:24:00 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Fri Feb 23 02:38:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Natural convection
Enhancement
Heat sink
Displacement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-a44403e7ca98bc4c641658601486a7330475d6dc54c800137670f9a2621af7773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440489832
PQPubID 2045464
ParticipantIDs proquest_journals_2440489832
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119757
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119757
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Gray, Giorgini (bib0025) 1976; 19
Jeon, Byon, Transfer (bib0020) 2017; 113
Gan (bib0030) 1998; 33
Park, Jang, Yook, Lee (bib0021) 2016; 114
Byon (bib0009) 2014; 65
Moffat (bib0024) 1988; 1
Yazicioğlu, Yüncü (bib0013) 2007; 44
Salinas-Vázquez, Vicente, Barrios, Martínez, Palacio, Rodríguez (bib0028) 2013; 37
Kraus, Aziz, Welty, Sekulic (bib0007) 2001
Bar-Cohen, Rohsenow (bib0004) 1984; 106
Jones, Smith (bib0011) 1970; 92
Charles, Wang (bib0016) 2014; 59
Huang, Wong, Lin (bib0019) 2014; 84
Aung (bib0003) 1972; 15
Bar-Cohen, Iyengar, Kraus (bib0008) 2003; 125
Kim (bib0012) 2012; 55
Taji, Parishwad, Sane (bib0022) 2014; 50
Shabany (bib0034) 2008
Haghighi, Goshayeshi, Safaei (bib0018) 2018; 125
Jones, Nachtsheim (bib0032) 2011; 43
de Lieto Vollaro, Grignaffini, Gugliermetti (bib0010) 1999; 38
Welling, Wooldridge (bib0006) 1965; 87
Feng, Shi, Yan, Sun, Li, Lu (bib0017) 2018; 132
Tari, Mehrtash (bib0033) 2013; 61
Chang, Wu, Guo, Shi, Chen (bib0015) 2017; 106
Hollands, Unny, Raithby, Konicek (bib0031) 1976; 98
Howell, Menguc, Siegel (bib0027) 2015
Elenbaas (bib0001) 1942; 9
Paillere, Viozat, Kumbaro, Toumi (bib0026) 2000; 36
Zhang, Liu (bib0014) 2010; 51
Bodoia, Osterle (bib0002) 1962; 84
Starner, McManus (bib0005) 1963; 85
Cengel, Klein, Beckman (bib0023) 1998
Parmananda, Dalal, Natarajan (bib0029) 2019; 77
Parmananda (10.1016/j.ijheatmasstransfer.2020.119757_bib0029) 2019; 77
Bodoia (10.1016/j.ijheatmasstransfer.2020.119757_bib0002) 1962; 84
Kim (10.1016/j.ijheatmasstransfer.2020.119757_bib0012) 2012; 55
Starner (10.1016/j.ijheatmasstransfer.2020.119757_bib0005) 1963; 85
Cengel (10.1016/j.ijheatmasstransfer.2020.119757_bib0023) 1998
Jones (10.1016/j.ijheatmasstransfer.2020.119757_bib0011) 1970; 92
Gray (10.1016/j.ijheatmasstransfer.2020.119757_bib0025) 1976; 19
Yazicioğlu (10.1016/j.ijheatmasstransfer.2020.119757_bib0013) 2007; 44
Park (10.1016/j.ijheatmasstransfer.2020.119757_bib0021) 2016; 114
Paillere (10.1016/j.ijheatmasstransfer.2020.119757_bib0026) 2000; 36
Elenbaas (10.1016/j.ijheatmasstransfer.2020.119757_bib0001) 1942; 9
Byon (10.1016/j.ijheatmasstransfer.2020.119757_bib0009) 2014; 65
de Lieto Vollaro (10.1016/j.ijheatmasstransfer.2020.119757_bib0010) 1999; 38
Welling (10.1016/j.ijheatmasstransfer.2020.119757_bib0006) 1965; 87
Taji (10.1016/j.ijheatmasstransfer.2020.119757_bib0022) 2014; 50
Salinas-Vázquez (10.1016/j.ijheatmasstransfer.2020.119757_bib0028) 2013; 37
Kraus (10.1016/j.ijheatmasstransfer.2020.119757_bib0007) 2001
Feng (10.1016/j.ijheatmasstransfer.2020.119757_bib0017) 2018; 132
Huang (10.1016/j.ijheatmasstransfer.2020.119757_bib0019) 2014; 84
Aung (10.1016/j.ijheatmasstransfer.2020.119757_bib0003) 1972; 15
Bar-Cohen (10.1016/j.ijheatmasstransfer.2020.119757_bib0008) 2003; 125
Bar-Cohen (10.1016/j.ijheatmasstransfer.2020.119757_bib0004) 1984; 106
Jones (10.1016/j.ijheatmasstransfer.2020.119757_bib0032) 2011; 43
Hollands (10.1016/j.ijheatmasstransfer.2020.119757_bib0031) 1976; 98
Charles (10.1016/j.ijheatmasstransfer.2020.119757_bib0016) 2014; 59
Shabany (10.1016/j.ijheatmasstransfer.2020.119757_bib0034) 2008
Chang (10.1016/j.ijheatmasstransfer.2020.119757_bib0015) 2017; 106
Zhang (10.1016/j.ijheatmasstransfer.2020.119757_bib0014) 2010; 51
Tari (10.1016/j.ijheatmasstransfer.2020.119757_bib0033) 2013; 61
Haghighi (10.1016/j.ijheatmasstransfer.2020.119757_bib0018) 2018; 125
Howell (10.1016/j.ijheatmasstransfer.2020.119757_bib0027) 2015
Gan (10.1016/j.ijheatmasstransfer.2020.119757_bib0030) 1998; 33
Moffat (10.1016/j.ijheatmasstransfer.2020.119757_bib0024) 1988; 1
Jeon (10.1016/j.ijheatmasstransfer.2020.119757_bib0020) 2017; 113
References_xml – volume: 84
  start-page: 164
  year: 2014
  end-page: 174
  ident: bib0019
  article-title: Enhancement of natural convection heat transfer from horizontal rectangular fin arrays with perforations in fin base
  publication-title: Int. J. Thermal Sci.
– volume: 1
  start-page: 3
  year: 1988
  end-page: 17
  ident: bib0024
  article-title: Describing the uncertainties in experimental results
  publication-title: Exper. Thermal Fluid Sci.
– volume: 33
  start-page: 169
  year: 1998
  end-page: 189
  ident: bib0030
  article-title: Prediction of Turbulent Buoyant flow using an RNG A-ϵ model, numerical heat transfer
  publication-title: Part A Appl.
– volume: 114
  start-page: 180
  year: 2016
  end-page: 187
  ident: bib0021
  article-title: Optimization of a chimney design for cooling efficiency of a radial heat sink in a LED downlight
  publication-title: Energy Convers. Manag.
– volume: 98
  start-page: 189
  year: 1976
  end-page: 193
  ident: bib0031
  article-title: Free convective heat transfer across inclined air layers
  publication-title: J. Heat Transf.
– volume: 43
  start-page: 1
  year: 2011
  end-page: 15
  ident: bib0032
  article-title: A class of three-level designs for definitive screening in the presence of second-order effects
  publication-title: J. Q. Technol.
– volume: 125
  start-page: 208
  year: 2003
  end-page: 216
  ident: bib0008
  article-title: Design of optimum plate-fin natural convective heat sinks
  publication-title: J. Electron. Packag.
– volume: 19
  start-page: 545
  year: 1976
  end-page: 551
  ident: bib0025
  article-title: The validity of the Boussinesq approximation for liquids and gases
  publication-title: Int. J. Heat Mass Transf.
– volume: 55
  start-page: 752
  year: 2012
  end-page: 761
  ident: bib0012
  article-title: Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection
  publication-title: Int. J. Heat Mass Transf.
– volume: 59
  start-page: 24
  year: 2014
  end-page: 29
  ident: bib0016
  article-title: A novel heat dissipation fin design applicable for natural convection augmentation
  publication-title: Int. Commun. Heat Mass Transf.
– year: 1998
  ident: bib0023
  article-title: Heat Transfer: A Practical Approach
– volume: 85
  start-page: 273
  year: 1963
  end-page: 277
  ident: bib0005
  article-title: An experimental investigation of free-convection heat transfer from rectangular-fin arrays
  publication-title: J. Heat Transf.
– volume: 92
  start-page: 6
  year: 1970
  end-page: 10
  ident: bib0011
  article-title: Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer
  publication-title: J. Heat Transf.
– volume: 38
  start-page: 525
  year: 1999
  end-page: 529
  ident: bib0010
  article-title: Optimum design of vertical rectangular fin arrays
  publication-title: Int. J. Thermal Sci.
– volume: 9
  start-page: 1
  year: 1942
  end-page: 28
  ident: bib0001
  article-title: Heat dissipation of parallel plates by free convection
  publication-title: Physica
– volume: 51
  start-page: 2449
  year: 2010
  end-page: 2456
  ident: bib0014
  article-title: Optimum geometric arrangement of vertical rectangular fin arrays in natural convection
  publication-title: Energy Convers. Manag.
– volume: 50
  start-page: 1005
  year: 2014
  end-page: 1015
  ident: bib0022
  article-title: Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection
  publication-title: Heat Mass Transf.
– year: 2015
  ident: bib0027
  article-title: Thermal Radiation Heat Transfer
– volume: 77
  start-page: 2162
  year: 2019
  end-page: 2181
  ident: bib0029
  article-title: Numerical appraisal of three low Mach number algorithms for radiative–convective flows in enclosures
  publication-title: Comput. Math. Appl.
– volume: 132
  start-page: 30
  year: 2018
  end-page: 37
  ident: bib0017
  article-title: Natural convection in a cross-fin heat sink
  publication-title: Appl. Thermal Eng.
– start-page: 132
  year: 2008
  end-page: 136
  ident: bib0034
  article-title: Radiation heat transfer from plate-fin heat sinks,
  publication-title: Proceedings of the Semiconductor Thermal Measurement and Management Symposium
– volume: 87
  start-page: 439
  year: 1965
  end-page: 444
  ident: bib0006
  article-title: Free convection heat transfer coefficients from rectangular vertical fins
  publication-title: J. Heat Transf.
– volume: 125
  start-page: 640
  year: 2018
  end-page: 647
  ident: bib0018
  article-title: Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 113
  start-page: 1086
  year: 2017
  end-page: 1092
  ident: bib0020
  article-title: Thermal performance of plate fin heat sinks with dual-height fins subject to natural convection
  publication-title: Int. J. Heat Mass Transf.
– volume: 15
  start-page: 1577
  year: 1972
  end-page: 1580
  ident: bib0003
  article-title: Fully developed laminar free convection between vertical plates heated asymmetrically
  publication-title: Int. J. Heat Mass Transf.
– volume: 106
  start-page: 116
  year: 1984
  end-page: 123
  ident: bib0004
  article-title: Thermally optimum spacing of vertical, natural convection cooled, parallel plates
  publication-title: J. Heat Transf.
– volume: 65
  start-page: 1529
  year: 2014
  end-page: 1535
  ident: bib0009
  article-title: Optimal design method for plate fin heat sinks subject to natural convection
  publication-title: J. Korean Phys. Soc.
– volume: 36
  start-page: 567
  year: 2000
  end-page: 573
  ident: bib0026
  article-title: Comparison of low Mach number models for natural convection problems
  publication-title: Heat Mass Transf.
– volume: 106
  start-page: 781
  year: 2017
  end-page: 792
  ident: bib0015
  article-title: Heat transfer enhancement of vertical dimpled fin array in natural convection
  publication-title: Int. J. Heat Mass Transf.
– year: 2001
  ident: bib0007
  article-title: Extended surface heat transfer
  publication-title: Am. Soc. Mech. Eng. Digital Collect.
– volume: 84
  start-page: 40
  year: 1962
  end-page: 43
  ident: bib0002
  article-title: The development of free convection between heated vertical plates
  publication-title: J. Heat Transf.
– volume: 44
  start-page: 11
  year: 2007
  end-page: 21
  ident: bib0013
  article-title: Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer
  publication-title: J. Heat Mass Transf.
– volume: 37
  start-page: 9132
  year: 2013
  end-page: 9146
  ident: bib0028
  article-title: A low-Mach number method for the numerical simulation of complex flows
  publication-title: Appl. Math. Model.
– volume: 61
  start-page: 728
  year: 2013
  end-page: 736
  ident: bib0033
  article-title: Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks
  publication-title: Appl. Thermal Eng.
– volume: 59
  start-page: 24
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0016
  article-title: A novel heat dissipation fin design applicable for natural convection augmentation
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2014.10.014
– volume: 132
  start-page: 30
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0017
  article-title: Natural convection in a cross-fin heat sink
  publication-title: Appl. Thermal Eng.
  doi: 10.1016/j.applthermaleng.2017.12.049
– volume: 98
  start-page: 189
  issue: 2
  year: 1976
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0031
  article-title: Free convective heat transfer across inclined air layers
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3450517
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0032
  article-title: A class of three-level designs for definitive screening in the presence of second-order effects
  publication-title: J. Q. Technol.
  doi: 10.1080/00224065.2011.11917841
– volume: 15
  start-page: 1577
  issue: 8
  year: 1972
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0003
  article-title: Fully developed laminar free convection between vertical plates heated asymmetrically
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(72)90012-9
– volume: 38
  start-page: 525
  issue: 6
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0010
  article-title: Optimum design of vertical rectangular fin arrays
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/S1290-0729(99)80025-8
– year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0023
– volume: 84
  start-page: 40
  issue: 1
  year: 1962
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0002
  article-title: The development of free convection between heated vertical plates
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3684288
– volume: 125
  start-page: 208
  issue: 2
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0008
  article-title: Design of optimum plate-fin natural convective heat sinks
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.1568361
– volume: 77
  start-page: 2162
  issue: 8
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0029
  article-title: Numerical appraisal of three low Mach number algorithms for radiative–convective flows in enclosures
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.12.005
– volume: 125
  start-page: 640
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0018
  article-title: Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.122
– volume: 106
  start-page: 781
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0015
  article-title: Heat transfer enhancement of vertical dimpled fin array in natural convection
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.09.094
– volume: 1
  start-page: 3
  issue: 1
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0024
  article-title: Describing the uncertainties in experimental results
  publication-title: Exper. Thermal Fluid Sci.
  doi: 10.1016/0894-1777(88)90043-X
– volume: 33
  start-page: 169
  issue: 2
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0030
  article-title: Prediction of Turbulent Buoyant flow using an RNG A-ϵ model, numerical heat transfer
  publication-title: Part A Appl.
– volume: 44
  start-page: 11
  issue: 1
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0013
  article-title: Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer
  publication-title: J. Heat Mass Transf.
  doi: 10.1007/s00231-006-0207-6
– volume: 9
  start-page: 1
  issue: 1
  year: 1942
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0001
  article-title: Heat dissipation of parallel plates by free convection
  publication-title: Physica
  doi: 10.1016/S0031-8914(42)90053-3
– year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0007
  article-title: Extended surface heat transfer
  publication-title: Am. Soc. Mech. Eng. Digital Collect.
– year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0027
– volume: 87
  start-page: 439
  issue: 4
  year: 1965
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0006
  article-title: Free convection heat transfer coefficients from rectangular vertical fins
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3689135
– volume: 19
  start-page: 545
  issue: 5
  year: 1976
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0025
  article-title: The validity of the Boussinesq approximation for liquids and gases
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(76)90168-X
– volume: 36
  start-page: 567
  issue: 6
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0026
  article-title: Comparison of low Mach number models for natural convection problems
  publication-title: Heat Mass Transf.
  doi: 10.1007/s002310000116
– volume: 61
  start-page: 728
  issue: 2
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0033
  article-title: Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks
  publication-title: Appl. Thermal Eng.
  doi: 10.1016/j.applthermaleng.2013.09.003
– volume: 55
  start-page: 752
  issue: 4
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0012
  article-title: Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.10.034
– volume: 85
  start-page: 273
  issue: 3
  year: 1963
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0005
  article-title: An experimental investigation of free-convection heat transfer from rectangular-fin arrays
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3686097
– volume: 114
  start-page: 180
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0021
  article-title: Optimization of a chimney design for cooling efficiency of a radial heat sink in a LED downlight
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.02.024
– volume: 84
  start-page: 164
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0019
  article-title: Enhancement of natural convection heat transfer from horizontal rectangular fin arrays with perforations in fin base
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2014.05.017
– volume: 65
  start-page: 1529
  issue: 10
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0009
  article-title: Optimal design method for plate fin heat sinks subject to natural convection
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.65.1529
– volume: 113
  start-page: 1086
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0020
  article-title: Thermal performance of plate fin heat sinks with dual-height fins subject to natural convection
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.031
– volume: 50
  start-page: 1005
  issue: 7
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0022
  article-title: Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-014-1308-2
– volume: 106
  start-page: 116
  issue: 1
  year: 1984
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0004
  article-title: Thermally optimum spacing of vertical, natural convection cooled, parallel plates
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3246622
– volume: 37
  start-page: 9132
  issue: 22
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0028
  article-title: A low-Mach number method for the numerical simulation of complex flows
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.04.004
– volume: 92
  start-page: 6
  issue: 1
  year: 1970
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0011
  article-title: Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3449648
– volume: 51
  start-page: 2449
  issue: 12
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0014
  article-title: Optimum geometric arrangement of vertical rectangular fin arrays in natural convection
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.05.009
– start-page: 132
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.119757_bib0034
  article-title: Radiation heat transfer from plate-fin heat sinks,
SSID ssj0017046
Score 2.5309358
Snippet •Delay merging of boundary layer between fins is used to improve the natural convection performance.•Screening method is used for parametric study such as fin...
Miniaturization of electronic devices demands an effective thermal management system for efficient cooling. Still, many electronic industries use natural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119757
SubjectTerms Air entrainment
Arrays
Boundary layers
Component reliability
Convection cooling
Cooling effects
Displacement
Electronic devices
Enhancement
Fins
Free convection
Heat flux
Heat sink
Heat sinks
Heat transfer
Heat transfer coefficients
Miniaturization
Natural convection
Thermal energy
Thermal management
Thermal resistance
Title Augmentation of natural convection heat sink via using displacement design
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119757
https://www.proquest.com/docview/2440489832
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT4MwFG6WGY0X4884nUsPHrzgGBRKT2ZZXOYWdzAu7ta0BRYWxxZhHv3b7Ssw44_LEk8EQqF5fXzvtXzfK0LXsc4pmCc9i0XMtwiT0hKey6zYpkow6kpqVPyPY38wIcOpN62hXqWFAVplif0Fphu0Lq-0S2u2V0kCGl9wLu1S8CuPdEBRTggFL7_92NA8OtQuxDqAxnD3Hrr54nglc0C8hU5Tc5MmRlAh1AEcYRQC1t-h6gdom0jUP0QHZQqJu0Uvj1AtSo_RrqFyquwEDbvr2aJUFKV4GWNTu1M3MARzI2PA0B-c6Wkofk8EBu77DIdJZgha0BaHhthxiib9--fewCp3TLCUS-3cEoQQ243AzIFURPk63fICH1YNfUFh6YJ6oR8qj6jAVBT1qR0z4fhOR8SUUvcM1dNlGp0jbEsR6PhNQ-bpSUSsg5ZkTNmwbsqYRusGuquMw1VZThx2tXjlFW9szn-bl4N5eWHeBmKbJ6yK0hpbtO1V48G_uQvXkWCLpzSroeTlp5txByomBkwj3cW_vOQS7cNZQS9ronr-to6udCKTy5bx1Bba6T6MBmM4jp5eRp8xPPdE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb8IwDLYYaI_LtKfGxrYcdtilotCmaU4TQkO8TyBxi9q0RUXjoQH7_YvTlGmPC9KurZxGjvvZcT47AE-Jiik4DanFY-5ZLg9DK6AOtxKbyYAzJ2S6in8w9NpjtzuhkwI081oYpFUa7M8wXaO1eVI12qyu0hRrfNG4lEnhUZ5bYwdQwu5UtAilRqfXHu4OE5id1esgIKPAETx_0bzSGYLeXEWqGx0pxtgktI5Qwhn6rL-91Q_c1s6odQanJookjWyi51CIFxdwqNmccn0J3cZ2OjdFRQuyTIhu36kENMdcVzIQnA9Zq50o-UgDgvT3KYnSteZooSyJNLfjCsat11GzbZlLEyzpMHtjBa7r2k6MmvZD6UpPRVzU9zBx6AUMsxeMRl4kqSt93VTUY3bCg7pXrwUJY8y5huJiuYhvgNhh4CsXziJO1T4iUX4r5FzamDrlXAF2GV5y5QhpOorjxRZvIqeOzcRv9QpUr8jUWwa-G2GVddfYQ7aZr4f4ZjFCOYM9RqnkSynM37sWdWya6HMFdrf_8pFHOG6PBn3R7wx7d3CCbzK2WQWKm_dtfK_imk34YOz2E-D8-FI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmentation+of+natural+convection+heat+sink+via+using+displacement+design&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Abbas%2C+Ali&rft.au=Wang%2C+Chi-Chuan&rft.date=2020-06-01&rft.issn=0017-9310&rft.volume=154&rft.spage=119757&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon