New Trends in Enantioselective Cross-Dehydrogenative Coupling

The development of cross-dehydrogenative coupling in recent years has simplified the synthesis of many materials, as a result of facile C–H activation, which, together with its greater atom economy and environmental friendliness, has made an impact on modern organic chemistry. Indeed, many C–C and C...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 10; no. 5; p. 529
Main Authors Faisca Phillips, Ana Maria, C. Guedes da Silva, Maria de Fátima, Pombeiro, Armando J. L.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 11.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of cross-dehydrogenative coupling in recent years has simplified the synthesis of many materials, as a result of facile C–H activation, which, together with its greater atom economy and environmental friendliness, has made an impact on modern organic chemistry. Indeed, many C–C and C–X (X = N, O, P, S, B, or Si) coupling reactions can now be performed directly between two C–H bonds or a C–H and an X–H bond, simply by adding catalytic amounts of a metal salt to a mixture of the two and an oxidant to accept the two hydrogen atoms released. Chiral organocatalysts or chiral ligands have been joined to promote enantioselective processes, resulting in the development of efficient reaction cascades that provide products in high yields and high levels of asymmetric induction through cooperative catalysis. In recent years, photochemical oxidation and electrochemistry have widened even more the scope of cross-dehydrogenative coupling (CDC). In this review, we summarized the recent literature in this subject, hoping that it will inspire many new synthetic strategies.
AbstractList The development of cross-dehydrogenative coupling in recent years has simplified the synthesis of many materials, as a result of facile C–H activation, which, together with its greater atom economy and environmental friendliness, has made an impact on modern organic chemistry. Indeed, many C–C and C–X (X = N, O, P, S, B, or Si) coupling reactions can now be performed directly between two C–H bonds or a C–H and an X–H bond, simply by adding catalytic amounts of a metal salt to a mixture of the two and an oxidant to accept the two hydrogen atoms released. Chiral organocatalysts or chiral ligands have been joined to promote enantioselective processes, resulting in the development of efficient reaction cascades that provide products in high yields and high levels of asymmetric induction through cooperative catalysis. In recent years, photochemical oxidation and electrochemistry have widened even more the scope of cross-dehydrogenative coupling (CDC). In this review, we summarized the recent literature in this subject, hoping that it will inspire many new synthetic strategies.
Author Faisca Phillips, Ana Maria
Pombeiro, Armando J. L.
C. Guedes da Silva, Maria de Fátima
Author_xml – sequence: 1
  givenname: Ana Maria
  orcidid: 0000-0002-3101-016X
  surname: Faisca Phillips
  fullname: Faisca Phillips, Ana Maria
– sequence: 2
  givenname: Maria de Fátima
  orcidid: 0000-0003-4836-2409
  surname: C. Guedes da Silva
  fullname: C. Guedes da Silva, Maria de Fátima
– sequence: 3
  givenname: Armando J. L.
  orcidid: 0000-0001-8323-888X
  surname: Pombeiro
  fullname: Pombeiro, Armando J. L.
BookMark eNp1kLtPwzAQxi1UJErpyB6JOeDzK_HAgEp5SBUsZY6c5FJcBbvYLqj_PanKAEjccqfT7x7fd0pGzjsk5BzoJeeaXjUmmR4olVQyfUTGjBY8F1yI0Y_6hExjXNMhNPAS5JhcP-Fntgzo2phZl82dccn6iD02yX5gNgs-xvwWX3dt8Ct05tD1201v3eqMHHemjzj9zhPycjdfzh7yxfP94-xmkTe8oCk3HIuaCaM7KGtVg-5Mo0HVCoxgNbSSAyrslBCsRFl0UtGiRckElEoyqPmEXBz2boJ_32JM1dpvgxtOVkxQPWjmQg5UfqCa_dMBu2oT7JsJuwpotTep-mXSwPM_fGPTINC7FIzt_5n6AqASbGA
CitedBy_id crossref_primary_10_1055_a_2031_4549
crossref_primary_10_2174_1385272824999201228140959
crossref_primary_10_1039_D1OB02003J
crossref_primary_10_1039_D4OB01490A
crossref_primary_10_1021_acs_accounts_2c00545
crossref_primary_10_1055_a_1643_7642
crossref_primary_10_1016_j_xinn_2025_100809
crossref_primary_10_1039_D1OB00665G
crossref_primary_10_1039_D1GC01871J
crossref_primary_10_1021_jacs_1c01556
crossref_primary_10_1002_ejoc_202001549
crossref_primary_10_1039_D0OB01425G
crossref_primary_10_1002_adsc_202001245
crossref_primary_10_3390_catal13071072
crossref_primary_10_1039_D3QO01467C
crossref_primary_10_1039_D1NR05894K
crossref_primary_10_1016_j_tet_2020_131645
crossref_primary_10_1039_D3GC04154A
crossref_primary_10_1039_D2QO01956F
crossref_primary_10_3390_M1514
crossref_primary_10_3390_molecules27207105
crossref_primary_10_1002_adsc_202200296
crossref_primary_10_1039_D4GC00947A
crossref_primary_10_1016_j_tetlet_2022_154184
Cites_doi 10.1002/anie.201813887
10.1002/anie.201911742
10.1021/acscatal.7b02659
10.1039/C9OB02113B
10.1016/j.catcom.2017.05.026
10.1021/acs.chemrev.6b00657
10.1016/j.molcata.2016.06.020
10.1021/acscatal.7b01912
10.1002/anie.200801367
10.1016/j.cbpa.2010.02.018
10.1021/acs.orglett.7b01734
10.2174/138527211795378263
10.1021/acscatal.7b02974
10.1021/ja9026902
10.1126/science.1142696
10.1002/anie.201912739
10.1039/c3ra46996d
10.1039/C5CC04930J
10.1039/C9OB00092E
10.1021/acs.chemrev.7b00271
10.1002/anie.201002108
10.1002/chem.201901284
10.1021/ja809405c
10.1021/cr010212u
10.1002/adsc.201901363
10.1021/jo800800y
10.1021/jacs.6b11198
10.1002/9780471678656
10.1055/s-0034-1381031
10.1021/jo034344u
10.1021/cr100280d
10.1002/anie.201105123
10.1021/ol047814v
10.1021/acs.orglett.8b00800
10.1038/s41467-019-08473-x
10.1002/anie.201308701
10.1039/c3cc41315b
10.1246/cl.130080
10.2174/1570193X15666180418153713
10.1002/anie.200904754
10.1039/C9OB00244H
10.1021/jacs.5b06828
10.1021/acs.orglett.6b01328
10.1021/acs.orglett.7b00746
10.1021/acs.joc.9b01704
10.1021/om400564x
10.1039/C5CS00012B
10.1016/j.trechm.2019.01.008
10.1039/C0CC04539J
10.1021/np060581r
10.1002/anie.201410432
10.1021/jacs.6b00127
10.1021/ja074322f
10.1002/cjoc.201800369
10.1002/anie.201612385
10.1002/anie.201700572
10.1055/s-0037-1610073
10.1039/C8OB02856G
10.1039/C4RA01341G
10.1021/cr500431s
10.1021/ol015595x
10.1021/acs.orglett.7b01152
10.1002/ejoc.201901557
10.1021/jo00087a036
10.1021/acs.chemrev.5b00676
10.1021/jacs.8b03063
10.1002/ejoc.201000453
10.1016/j.tetasy.2006.02.007
10.1021/acs.orglett.5b00447
10.1002/adsc.201700917
10.1039/C9SC00196D
10.1016/j.tetlet.2015.02.134
10.1055/s-2002-34228
10.1073/pnas.0809052106
10.1021/ja402479r
10.1002/chem.201103242
10.1021/acs.accounts.6b00637
10.1021/acs.chemrev.8b00077
10.1016/j.tetlet.2017.01.035
10.1021/acs.accounts.6b00275
10.1002/ejoc.201800117
10.1039/b101670i
10.1021/jo302157e
10.1021/ja901391u
10.1002/chir.20843
10.1016/j.tetlet.2005.06.098
10.1002/anie.201903435
10.1021/cr9900230
10.1002/ajoc.201900602
10.1002/cctc.201800582
10.1021/acscatal.6b00846
10.1039/C9QO00123A
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/catal10050529
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4344
ExternalDocumentID 10_3390_catal10050529
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
ESX
HCIFZ
IAO
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-a3e7b24a9f18b6b19fac916b61a42b1d531e6ef64428e57f5607de524186521b3
IEDL.DBID BENPR
ISSN 2073-4344
IngestDate Fri Jul 25 12:03:16 EDT 2025
Tue Jul 01 01:12:09 EDT 2025
Thu Apr 24 23:01:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-a3e7b24a9f18b6b19fac916b61a42b1d531e6ef64428e57f5607de524186521b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8323-888X
0000-0003-4836-2409
0000-0002-3101-016X
OpenAccessLink https://www.proquest.com/docview/2409505345?pq-origsite=%requestingapplication%
PQID 2409505345
PQPubID 2032420
ParticipantIDs proquest_journals_2409505345
crossref_primary_10_3390_catal10050529
crossref_citationtrail_10_3390_catal10050529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-11
PublicationDateYYYYMMDD 2020-05-11
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-11
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Catalysts
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Correa (ref_26) 2018; 50
Kozlowski (ref_5) 2017; 50
Cai (ref_39) 2019; 58
Temma (ref_46) 2005; 46
Becica (ref_59) 2019; 17
Fu (ref_81) 2017; 19
Pombeiro (ref_3) 2018; 10
Meca (ref_48) 2003; 68
Wang (ref_49) 2010; 22
Vetica (ref_90) 2017; 359
Kim (ref_44) 2017; 19
Xie (ref_30) 2016; 18
Tian (ref_52) 2019; 58
Tkachenko (ref_22) 2019; 16
Hong (ref_58) 2016; 116
Claxton (ref_45) 1994; 59
Narute (ref_47) 2016; 138
Sharma (ref_76) 2019; 17
Li (ref_20) 2004; 6
Zhao (ref_12) 2019; 17
Cao (ref_34) 2013; 49
Endo (ref_53) 2013; 42
Mondal (ref_64) 2014; 4
Rueping (ref_73) 2011; 47
Lin (ref_14) 2019; 25
Gao (ref_37) 2016; 138
Lee (ref_32) 2018; 140
Huang (ref_85) 2017; 7
ref_69
Rueping (ref_74) 2012; 18
Jensen (ref_79) 2010; 49
Schmidt (ref_92) 2011; 15
Wang (ref_11) 2018; 118
ref_68
Roudesly (ref_8) 2017; 426
ref_23
Yu (ref_36) 2020; 362
Zheng (ref_18) 2014; 4
Egami (ref_41) 2009; 131
Zhao (ref_29) 2009; 106
Xin (ref_60) 2019; 6
Scott (ref_70) 2002; 102
Kumara (ref_77) 2017; 99
Zhao (ref_28) 2008; 47
Wang (ref_56) 2019; 10
Pan (ref_57) 2018; 36
Jiang (ref_13) 2018; 118
(ref_25) 2003; 103
Yang (ref_61) 2017; 56
Fabry (ref_10) 2016; 49
Li (ref_42) 2001; 3
Conrad (ref_88) 2009; 131
McAtee (ref_66) 2019; 1
Reddy (ref_72) 2012; 77
Li (ref_83) 2006; 17
Forkosh (ref_51) 2018; 20
Varun (ref_4) 2017; 58
Mikami (ref_24) 2002; 2002
ref_78
Liu (ref_2) 2015; 115
Zhang (ref_27) 2011; 50
ref_33
Guo (ref_43) 2007; 129
Zhu (ref_62) 2015; 137
Panossian (ref_21) 2015; 44
Ye (ref_63) 2020; 59
Sun (ref_82) 2015; 17
Narute (ref_50) 2017; 19
Jin (ref_67) 2015; 54
Welsch (ref_71) 2010; 14
Qin (ref_6) 2017; 117
Maseras (ref_15) 2018; 8
Yang (ref_75) 2017; 56
Zhao (ref_19) 2015; 56
Gandhi (ref_16) 2019; 17
Yeung (ref_7) 2011; 111
ref_80
Ratnikov (ref_86) 2013; 135
Guo (ref_35) 2010; 49
ref_40
Christian (ref_84) 2008; 73
Oguma (ref_54) 2020; 9
Rezayee (ref_93) 2019; 10
Meng (ref_31) 2014; 53
Wang (ref_65) 2020; 59
Beeson (ref_87) 2007; 316
Chauhan (ref_91) 2015; 51
Appendino (ref_55) 2007; 70
Schaarschmidt (ref_38) 2013; 32
Cheng (ref_17) 2017; 28
Nicolaou (ref_89) 2009; 131
Huang (ref_1) 2019; 84
Zhang (ref_9) 2015; 26
References_xml – volume: 58
  start-page: 2149
  year: 2019
  ident: ref_39
  article-title: PdII-catalyzed regio-and enantioselective oxidative C-H/C-H cross-coupling reaction between ferrocenes and azoles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201813887
– volume: 59
  start-page: 1129
  year: 2020
  ident: ref_63
  article-title: Enantioselective copper(I)/chiral phosphoric acid catalyzed intramolecular amination of allylic and benzylic C.–H. bonds
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911742
– ident: ref_68
  doi: 10.1021/acscatal.7b02659
– volume: 17
  start-page: 9683
  year: 2019
  ident: ref_16
  article-title: Catalytic enantioselective cross dehydrogenative coupling of sp3 C–H of heterocycles
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB02113B
– volume: 99
  start-page: 94
  year: 2017
  ident: ref_77
  article-title: Enantioselective cross dehydrogenative coupling reaction catalyzed by Rose Bengal incorporated-Cu(I)-dimeric chiral complexes
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.05.026
– volume: 117
  start-page: 9433
  year: 2017
  ident: ref_6
  article-title: Organocatalysis in inert C−H bond functionalization
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00657
– volume: 426
  start-page: 275
  year: 2017
  ident: ref_8
  article-title: Metal-catalyzed CH activation/functionalization: The fundamentals
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2016.06.020
– volume: 7
  start-page: 5654
  year: 2017
  ident: ref_85
  article-title: Asymmetric aerobic oxidative cross-coupling of tetrahydroisoquinolines with alkynes
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01912
– volume: 47
  start-page: 7075
  year: 2008
  ident: ref_28
  article-title: Functionalizing glycine derivatives by direct C-C bond formation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200801367
– volume: 14
  start-page: 347
  year: 2010
  ident: ref_71
  article-title: Priviledged scaffolds for library design and drug discovery
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2010.02.018
– volume: 19
  start-page: 3867
  year: 2017
  ident: ref_44
  article-title: Reversal of enantioselectivity approach to BINOLs via single and dual 2-naphthol activation modes
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01734
– volume: 15
  start-page: 1423
  year: 2011
  ident: ref_92
  article-title: Recent advances in the chemistry of pyrazoles. Properties, biological activities, and syntheses
  publication-title: Curr. Org. Chem.
  doi: 10.2174/138527211795378263
– volume: 8
  start-page: 1161
  year: 2018
  ident: ref_15
  article-title: Oxidative coupling mechanisms: Current state of understanding
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02974
– volume: 131
  start-page: 11640
  year: 2009
  ident: ref_88
  article-title: Enantioselective α-arylation of aldehydes via organo-SOMO catalysis. An ortho-selective arylation reaction based on an open-shell pathway
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9026902
– volume: 316
  start-page: 582
  year: 2007
  ident: ref_87
  article-title: Enantioselective organocatalysis using SOMO activation
  publication-title: Science
  doi: 10.1126/science.1142696
– volume: 59
  start-page: 3053
  year: 2020
  ident: ref_65
  article-title: Synthesis of chiral triarylmethanes bearing all-carbon quaternary stereocenters: Catalytic asymmetric oxidative cross-coupling of 2,2-diarylacetonitriles and (hetero)arenes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912739
– volume: 4
  start-page: 6173
  year: 2014
  ident: ref_18
  article-title: Recent development of direct asymmetric functionalization of inert C–H bonds
  publication-title: RSC Adv.
  doi: 10.1039/c3ra46996d
– volume: 51
  start-page: 12890
  year: 2015
  ident: ref_91
  article-title: Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC04930J
– volume: 17
  start-page: 4384
  year: 2019
  ident: ref_76
  article-title: Recent advances in photocatalytic manipulations of Rose Bengal in organic synthesis
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB00092E
– volume: 118
  start-page: 4485
  year: 2018
  ident: ref_13
  article-title: Use of electrochemistry in the synthesis of heterocyclic structures
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00271
– volume: 49
  start-page: 5558
  year: 2010
  ident: ref_35
  article-title: Enantioselective oxidative cross-coupling reaction of 3-indolylmethyl C–H bonds with 1,3-dicarbonyls using a chiral Lewis acid-bonded nucleophile to control stereochemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201002108
– volume: 25
  start-page: 10033
  year: 2019
  ident: ref_14
  article-title: Asymmetric electrochemical catalysis
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201901284
– volume: 131
  start-page: 2086
  year: 2009
  ident: ref_89
  article-title: Enantioselective intramolecular Friedel−Crafts-type α-arylation of aldehydes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809405c
– volume: 102
  start-page: 1669
  year: 2002
  ident: ref_70
  article-title: Chemistry and biology of the tetrahydroisoquinoline antitumour antibiotics
  publication-title: Chem. Rev.
  doi: 10.1021/cr010212u
– volume: 362
  start-page: 893
  year: 2020
  ident: ref_36
  article-title: Mechanochemical asymmetric cross-dehydrogenative coupling reaction: Liquid-assisted grinding enables reaction acceleration and enantioselectivity control
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201901363
– volume: 73
  start-page: 5859
  year: 2008
  ident: ref_84
  article-title: Mechanistic studies on the catalytic asymmetric mannich-type reaction with dihydroisoquinolines and development of oxidative Mannich-type reactions starting from tetrahydroisoquinolines
  publication-title: J. Org. Chem.
  doi: 10.1021/jo800800y
– volume: 138
  start-page: 16553
  year: 2016
  ident: ref_47
  article-title: Enantioselective oxidative homocoupling and cross-coupling of 2-naphthols catalyzed by chiral iron phosphate complexes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11198
– ident: ref_33
  doi: 10.1002/9780471678656
– volume: 26
  start-page: 2088
  year: 2015
  ident: ref_9
  article-title: Advances in transition-metal-catalyzed direct sp3-carbon–hydrogen bond functionalization
  publication-title: Synlett
  doi: 10.1055/s-0034-1381031
– volume: 68
  start-page: 5677
  year: 2003
  ident: ref_48
  article-title: Racemization barriers of 1,1′-binaphthyl and 1,1′-binaphthalene-2,2′-diol: A DFT study
  publication-title: J. Org. Chem.
  doi: 10.1021/jo034344u
– volume: 111
  start-page: 1215
  year: 2011
  ident: ref_7
  article-title: Catalytic dehydrogenative cross-coupling: Forming carbon−carbon bonds by oxidizing two carbon−hydrogen bonds
  publication-title: Chem. Rev.
  doi: 10.1021/cr100280d
– volume: 50
  start-page: 10429
  year: 2011
  ident: ref_27
  article-title: Catalytic asymmetric activation of a C(sp³)-H bond adjacent to a nitrogen atom: A versatile approach to optically active α-alkyl α-amino acids and C1-alkylated tetrahydroisoquinoline derivatives
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201105123
– volume: 6
  start-page: 4997
  year: 2004
  ident: ref_20
  article-title: Catalytic enantioselective alkynylation of prochiral sp3 C−H bonds adjacent to a nitrogen atom
  publication-title: Org. Lett.
  doi: 10.1021/ol047814v
– volume: 20
  start-page: 2459
  year: 2018
  ident: ref_51
  article-title: Stereoselective synthesis of optically pure 2-amino-2′-hydroxy-1,1′-binaphthyls
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00800
– volume: 10
  start-page: 559
  year: 2019
  ident: ref_56
  article-title: Catalytic enantioselective oxidative coupling of saturated ethers with carboxylic acid derivatives
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-08473-x
– volume: 53
  start-page: 543
  year: 2014
  ident: ref_31
  article-title: Catalytic enantioselective oxidative cross-coupling of benzylic ethers with aldehydes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308701
– volume: 49
  start-page: 3470
  year: 2013
  ident: ref_34
  article-title: Catalytic asymmetric cross-dehydrogenative coupling: Activation of C–H bonds by a cooperative bimetallic catalyst system
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41315b
– volume: 42
  start-page: 547
  year: 2013
  ident: ref_53
  article-title: Functionalized BINOL-mono-PHOS for multinuclear Cu-catalysts in asymmetric conjugate addition of organozinc reagents
  publication-title: Chem. Lett.
  doi: 10.1246/cl.130080
– volume: 16
  start-page: 392
  year: 2019
  ident: ref_22
  article-title: Transition metal catalyzed aerobic asymmetric coupling of 2-naphthols
  publication-title: Mini Rev. Org. Chem.
  doi: 10.2174/1570193X15666180418153713
– volume: 49
  start-page: 129
  year: 2010
  ident: ref_79
  article-title: Anodic Oxidation and Organocatalysis: Direct regio-and stereoselective access to meta-substituted anilines by a-arylation of aldehydes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200904754
– volume: 17
  start-page: 4951
  year: 2019
  ident: ref_12
  article-title: Photochemical C–H bond coupling for (hetero) aryl C(sp2)–C(sp3) bond construction
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB00244H
– volume: 137
  start-page: 11868
  year: 2015
  ident: ref_62
  article-title: Highly selective cascade C−C bond formation via palladium-catalyzed oxidative carbonylation−carbocyclization−carbonylation−alkynylation of enallenes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06828
– volume: 18
  start-page: 2982
  year: 2016
  ident: ref_30
  article-title: Copper-catalyzed aerobic enantioselective cross-dehydrogenative coupling of N-aryl glycine esters with terminal alkynes
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b01328
– volume: 19
  start-page: 2122
  year: 2017
  ident: ref_81
  article-title: Catalytic asymmetric electrochemical oxidative coupling of tertiary amines with simple ketones
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b00746
– volume: 84
  start-page: 12705
  year: 2019
  ident: ref_1
  article-title: En route to intermolecular cross-dehydrogenative coupling reactions
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b01704
– volume: 32
  start-page: 5668
  year: 2013
  ident: ref_38
  article-title: Selective synthesis of planar chiral ferrocenes
  publication-title: Organometallics
  doi: 10.1021/om400564x
– volume: 44
  start-page: 3418
  year: 2015
  ident: ref_21
  article-title: Recent advances and new concepts for the synthesis of axially stereoenriched biaryls
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00012B
– volume: 1
  start-page: 111
  year: 2019
  ident: ref_66
  article-title: Illuminating photoredox catalysis
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.01.008
– volume: 47
  start-page: 2360
  year: 2011
  ident: ref_73
  article-title: Dual catalysis: Combining photoredox and Lewis base catalysis for direct Mannich reactions
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC04539J
– volume: 70
  start-page: 608
  year: 2007
  ident: ref_55
  article-title: Aezanol, an anti-inflammatory and anti-HIV-1 phloroglucinol α-pyrone from Helichrysum
  publication-title: Ital. Ssp. Microphyllum. J. Nat. Prod.
  doi: 10.1021/np060581r
– volume: 54
  start-page: 1565
  year: 2015
  ident: ref_67
  article-title: Direct α-arylation of ethers through the combination of photoredox-mediated C−H functionalization and the Minisci reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410432
– volume: 138
  start-page: 2544
  year: 2016
  ident: ref_37
  article-title: An enantioselective oxidative C−H/C−H cross-coupling reaction: Highly efficient method to prepare planar chiral ferrocenes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00127
– volume: 129
  start-page: 13927
  year: 2007
  ident: ref_43
  article-title: Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074322f
– volume: 36
  start-page: 1187
  year: 2018
  ident: ref_57
  article-title: Catalytic asymmetric cross-dehydrogenative coupling of 2H-chromenes and aldehydes
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201800369
– volume: 56
  start-page: 4535
  year: 2017
  ident: ref_61
  article-title: Enantioselective palladium-catalyzed carbonylative carbocyclization of enallenes via cross-dehydrogenative coupling with terminal alkynes: Efficient construction of α-chirality of ketones
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201612385
– volume: 56
  start-page: 3694
  year: 2017
  ident: ref_75
  article-title: Visible-light-promoted asymmetric cross-dehydrogenative coupling of tertiary amines to ketones by synergistic multiple catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201700572
– volume: 50
  start-page: 2853
  year: 2018
  ident: ref_26
  article-title: Cross-dehydrogenative coupling reactions for the functionalization, of α-amino acid derivatives and peptides
  publication-title: Synthesis
  doi: 10.1055/s-0037-1610073
– volume: 17
  start-page: 2055
  year: 2019
  ident: ref_59
  article-title: The roles of Lewis acidic additives in organotransition metal catalysis
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB02856G
– volume: 4
  start-page: 28317
  year: 2014
  ident: ref_64
  article-title: Synthetic methodologies of achiral diarylmethanols, diaryl and triarylmethanes (TRAMs) and medicinal properties of diaryl and triarylmethanes-an overview
  publication-title: RSC Adv.
  doi: 10.1039/C4RA01341G
– volume: 115
  start-page: 12138
  year: 2015
  ident: ref_2
  article-title: Oxidative coupling between two hydrocarbons: An update of recent C–H functionalizations
  publication-title: Chem. Rev.
  doi: 10.1021/cr500431s
– volume: 3
  start-page: 1137
  year: 2001
  ident: ref_42
  article-title: Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes
  publication-title: Org. Lett.
  doi: 10.1021/ol015595x
– volume: 19
  start-page: 2917
  year: 2017
  ident: ref_50
  article-title: Iron phosphate catalyzed asymmetric cross-dehydrogenative coupling of 2-naphthols with β-ketoesters
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01152
– ident: ref_23
  doi: 10.1002/ejoc.201901557
– volume: 59
  start-page: 2156
  year: 1994
  ident: ref_45
  article-title: Selective cross-coupling of 2-naphthol and 2-naphthylamine derivatives. A facile synthesis of 2,2’,3-trisubstituted and 2,2’,3,3’-tetrasubstituted 1,1’-binaphthyls
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00087a036
– volume: 116
  start-page: 4006
  year: 2016
  ident: ref_58
  article-title: Additive effects on asymmetric catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00676
– volume: 140
  start-page: 6212
  year: 2018
  ident: ref_32
  article-title: An enantioselective cross-dehydrogenative coupling catalysis approach to substituted tetrahydropyrans
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03063
– ident: ref_80
  doi: 10.1002/ejoc.201000453
– volume: 17
  start-page: 590
  year: 2006
  ident: ref_83
  article-title: Studies on Cu-catalyzed asymmetric alkynylation of tetrahydroisoquinoline derivatives
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/j.tetasy.2006.02.007
– volume: 17
  start-page: 1684
  year: 2015
  ident: ref_82
  article-title: Highly enantioselective catalytic cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinolines and terminal alkynes
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b00447
– volume: 359
  start-page: 3729
  year: 2017
  ident: ref_90
  article-title: Desymmetrization of cyclopentenediones via organocatalytic cross-dehydrogenative coupling
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201700917
– volume: 10
  start-page: 3586
  year: 2019
  ident: ref_93
  article-title: Oxidative organocatalysed enantioselective coupling of indoles with aldehydes that forms quaternary carbon stereocentres
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC00196D
– volume: 56
  start-page: 3703
  year: 2015
  ident: ref_19
  article-title: Asymmetric C–H functionalization involving organocatalysis
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.02.134
– volume: 2002
  start-page: 1561
  year: 2002
  ident: ref_24
  article-title: Tropos or atropos? That is the question!
  publication-title: Synlett
  doi: 10.1055/s-2002-34228
– volume: 106
  start-page: 4106
  year: 2009
  ident: ref_29
  article-title: Site-specific C-functionalization of free-(NH) peptides and glycine derivatives via direct C–H bond functionalization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0809052106
– volume: 135
  start-page: 9475
  year: 2013
  ident: ref_86
  article-title: Simple and sustainable iron-catalyzed aerobic C–H functionalization of N,N-dialkylanilines
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402479r
– volume: 18
  start-page: 3478
  year: 2012
  ident: ref_74
  article-title: Light-Mediated Heterogeneous Cross Dehydrogenative Coupling Reactions: Metal Oxides as Efficient, Recyclable, Photoredox Catalysts in C—C Bond-Forming Reactions
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201103242
– volume: 50
  start-page: 638
  year: 2017
  ident: ref_5
  article-title: Oxidative coupling in complexity building transforms
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00637
– volume: 118
  start-page: 7532
  year: 2018
  ident: ref_11
  article-title: Catalysis for building C−C Bonds from C(sp2)−H bonds
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00077
– volume: 58
  start-page: 803
  year: 2017
  ident: ref_4
  article-title: Recent advancements in dehydrogenative cross coupling reactions for C–C bond formation
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2017.01.035
– volume: 49
  start-page: 1969
  year: 2016
  ident: ref_10
  article-title: Merging visible light photoredox catalysis with metal catalyzed C–H activations: On the role of oxygen and superoxide ions as oxidants
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00275
– ident: ref_69
  doi: 10.1002/ejoc.201800117
– ident: ref_40
  doi: 10.1039/b101670i
– volume: 77
  start-page: 11101
  year: 2012
  ident: ref_72
  article-title: Synthesis of the 1-phenethyltetrahydroisoquinoline alkaloids (+)-dysoxyline, (+)-colchiethanamine, and (+)-colchiethine
  publication-title: J. Org. Chem.
  doi: 10.1021/jo302157e
– volume: 131
  start-page: 6082
  year: 2009
  ident: ref_41
  article-title: Iron-catalyzed asymmetric aerobic oxidation: Oxidative coupling of 2-naphthols
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901391u
– volume: 22
  start-page: 827
  year: 2010
  ident: ref_49
  article-title: Recent advances in asymmetric oxidative coupling of 2-naphthol and its derivatives
  publication-title: Chirality
  doi: 10.1002/chir.20843
– volume: 46
  start-page: 5655
  year: 2005
  ident: ref_46
  article-title: Highly selective oxidative cross-coupling of 2-naphthol derivatives with chiral copper(I)–bisoxazoline catalysts
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.06.098
– volume: 58
  start-page: 11023
  year: 2019
  ident: ref_52
  article-title: Copper-complex-catalyzed asymmetric aerobic oxidative cross-coupling of 2-naphthols: Enantioselective synthesis of 3,3’-substituted C1-symmetric BINOLs
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903435
– volume: 103
  start-page: 3213
  year: 2003
  ident: ref_25
  article-title: Non-symmetrically substituted 1,1’-binaphthyls in enantioselective catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr9900230
– volume: 9
  start-page: 404
  year: 2020
  ident: ref_54
  article-title: Iron-catalyzed asymmetric inter-and intramolecular aerobic oxidative dearomatizing spirocyclization of 2-naphthols
  publication-title: Asian, J. Org. Chem.
  doi: 10.1002/ajoc.201900602
– volume: 10
  start-page: 3354
  year: 2018
  ident: ref_3
  article-title: Recent developments in transition metal-catalyzed cross-dehydrogenative coupling reactions of ethers and thioethers
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201800582
– ident: ref_78
  doi: 10.1021/acscatal.6b00846
– volume: 28
  start-page: 159
  year: 2017
  ident: ref_17
  article-title: Recent advances in the enantioselective oxidative α-C–H functionalization of amines
  publication-title: Synlett
– volume: 6
  start-page: 1448
  year: 2019
  ident: ref_60
  article-title: Catalytic enantioselective cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with aldehydes
  publication-title: Org. Chem. Front.
  doi: 10.1039/C9QO00123A
SSID ssj0000913815
Score 2.3267295
SecondaryResourceType review_article
Snippet The development of cross-dehydrogenative coupling in recent years has simplified the synthesis of many materials, as a result of facile C–H activation, which,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 529
SubjectTerms Amino acids
Catalysis
Catalysts
Chemical reactions
Copper
Coupling
Dehydrogenation
Electrochemistry
Enantiomers
Hydrogen atoms
Hydrogen bonds
Impact analysis
Ligands
Organic chemistry
Oxidation
Oxidizing agents
Title New Trends in Enantioselective Cross-Dehydrogenative Coupling
URI https://www.proquest.com/docview/2409505345
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BO8CC-BSFUmVATFjUSew4E4LSUiFRIUSlbpEd21AJJaUfA_-ec-MWdYA1sRTpzr737uK7B3ApdYKsQmtiMVsgsUkjoqyNcC_T3FAm05i5BufnAe8P46cRG_mC28xfq1zFxGWg1mXuauQ3iDwponUUs9vJF3GqUe7vqpfQ2IY6hmAhalC_7w5eXtdVFjf1UlBWDdeMML-vOsJpJeCWboLRZixeAkxvH_Y8MwzuKlcewJYpDmGnsxJkOwI3Yimo7rAG4yLouiss43K2FLLBmBV03DfIg_n41tMS94WsnpYL13T7fgzDXvet0yde_YDkUdKeExmZRIWxTC0ViiuaWpkjl1OcyjhUVOPhMdxY5DOhMCyxSF0SbRgisuCIySo6gVpRFuYUgjxJuG1rJSR3fbdUITDTPESTac6MZA24Xpkhy_1ocKdQ8ZlhiuCslm1YrQFX6-WTaibGXwubK5tm_mjMsl9Hnv3_-hx2Q5fculGptAm1-XRhLpABzFULtkXvseWd_QO2tLHW
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VcigXxCoKBXIATljUSZzlgBDqQkuXUyv1FuzYgUooKV2E-lN8I-OkKeoBblxjK5HG43lvHM88gCsuXWQVUpIIswViK98iIoos9GUaKsq4bzNd4NzrO62h_TxiowJ85bUw-lplHhPTQC2TUJ-R3yHy-IjWls0eJh9Eq0bpv6u5hEbmFh21_MSUbXbfruP6XptmszGotchKVYCElludE24pV5g29yPqCUdQP-IhciThUG6bgkp0SuWoCHmC6SnmRkgJXKkYIp3nINYJC9-7Bdu2hUiuK9ObT-szHd1j06Msa-WJ49Ws_pxmcnH-JvRtRv4Uzpp7sLviocZj5jj7UFDxAZRqufzbIeiGTkZ2Y9YYx0ZDX5gZJ7NUNgcjpFHT3yB19baU0wS9kGdPk4Uu8X09guG_WOUYinESqxMwQtd1oqoUHnd0lS8VSANoaCJGSocpzspwm5shCFeNyLUexnuACYm2WrBhtTLcrKdPsg4cv02s5DYNVhtxFvy4zenfw5dQag163aDb7nfOYMfUabVu0korUJxPF-ocucdcXKQLbsDLf3vYNyie624
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qC-pFfGK1ag7qyWA3yeZxENE-aK2WIhZ6i7vZXS1IU_tA-tf8dc42SaUHvfWaLAnMfpnvm808AM6Z8FBVCGEqjBZMRwa2yZWyEcskkoSywKG6wPmp7Ta6zkOP9nLwndXC6LTKzCfOHbWII31Gfo3MEyBb2w69VmlaRKdavx1-mnqClP7Tmo3TSCDSkrMvDN_GN80q7vWFZdVrL5WGmU4YMCPbK09MZkuPWw4LFPG5y0mgWIR6ibuEORYnAgEqXalQM1i-pJ5CeeAJSZH1fBd5j9v43DUoeDoqykPhvtbuPC9OeHTHTZ_QpLGnbQflpBqdJMPjgmUiXOaBObnVt2ErVaXGXQKjHcjJwS5sVLJhcHug2zsZSf6s0R8YNZ0-04_H8yE66C-Nin6HWZXvMzGKEZMsuRpPdcHv2z50V2KXA8gP4oE8BCPyPFeVBfeZq2t-CUdRQCILGVO4VDJahKvMDGGUtiXX0zE-QgxPtNXCJasV4XKxfJj04_hrYSmzaZh-luPwF0RH_98-g3VEV_jYbLeOYdPSMbbu2EpKkJ-MpvIEhciEn6Y7bsDrqkH2A-Ds8QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Trends+in+Enantioselective+Cross-Dehydrogenative+Coupling&rft.jtitle=Catalysts&rft.au=Faisca+Phillips%2C+Ana+Maria&rft.au=C.+Guedes+da+Silva%2C+Maria+de+F%C3%A1tima&rft.au=Pombeiro%2C+Armando+J.+L.&rft.date=2020-05-11&rft.issn=2073-4344&rft.eissn=2073-4344&rft.volume=10&rft.issue=5&rft.spage=529&rft_id=info:doi/10.3390%2Fcatal10050529&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_catal10050529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4344&client=summon