Novel heat pipe radiator for vertical CPU cooling and its experimental study

•A pulsating plate type heat pipe radiator with multiple condensation ends is designed and manufactured.•The heat transfer performance and start-up performance of the vertical radiator are studied.•The advantages of this vertical radiator over the aluminum fin radiator are studied. A vertical radiat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 130; pp. 912 - 922
Main Authors Xiahou, Guowei, Zhang, Junjie, Ma, Rui, Liu, Yepeng
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A pulsating plate type heat pipe radiator with multiple condensation ends is designed and manufactured.•The heat transfer performance and start-up performance of the vertical radiator are studied.•The advantages of this vertical radiator over the aluminum fin radiator are studied. A vertical radiator with multi pulse condensation ends and a plane evaporating end for vertical CPU cooling is developed. A 304 stainless steel test piece is processed and a detailed experimental study of heat transfer performance and start-up performance is performed. The influence of liquid filling rate, heating power and wind speed on the two performance of vertical heat pipe radiator is analyzed, and compared with aluminum fin computer CPU radiator. The results show that when the radiator works stably, the optimal filling ratio is 25%, the lowest thermal resistance is only 0.1 °C/W; the average temperature of heat source increases with the increase of heating power and decreases with the wind speed. The temperature distributions of the five cold ends exhibit a symmetry that attenuates from the middle to the both sides. In addition, when the radiator starts up, as the heating power increases, the initial start-up time becomes shorter, the start-up temperature becomes lower, and the stability is also better. But there is no symmetry in the start sequence of the condensation ends. Compared with the current aluminum fin radiator, the vertical radiator has superior heat dissipation performance, temperature uniformity and stability. Such as, under 80 W heating power, the average heat source temperature is 66 °C, the average temperature deviation of the heat source is 3.16 °C, compared to the aluminum fin radiator, they dropped by 17.3 °C and 0.61 °C, respectively.
AbstractList A vertical radiator with multi pulse condensation ends and a plane evaporating end for vertical CPU cooling is developed. A 304 stainless steel test piece is processed and a detailed experimental study of heat transfer performance and start-up performance is performed. The influence of liquid filling rate, heating power and wind speed on the two performance of vertical heat pipe radiator is analyzed, and compared with aluminum fin computer CPU radiator. The results show that when the radiator works stably, the optimal filling ratio is 25%, the lowest thermal resistance is only 0.1 °C/W; the average temperature of heat source increases with the increase of heating power and decreases with the wind speed. The temperature distributions of the five cold ends exhibit a symmetry that attenuates from the middle to the both sides. In addition, when the radiator starts up, as the heating power increases, the initial start-up time becomes shorter, the start-up temperature becomes lower, and the stability is also better. But there is no symmetry in the start sequence of the condensation ends. Compared with the current aluminum fin radiator, the vertical radiator has superior heat dissipation performance, temperature uniformity and stability. Such as, under 80 W heating power, the average heat source temperature is 66 °C, the average temperature deviation of the heat source is 3.16 °C, compared to the aluminum fin radiator, they dropped by 17.3 °C and 0.61 °C, respectively.
•A pulsating plate type heat pipe radiator with multiple condensation ends is designed and manufactured.•The heat transfer performance and start-up performance of the vertical radiator are studied.•The advantages of this vertical radiator over the aluminum fin radiator are studied. A vertical radiator with multi pulse condensation ends and a plane evaporating end for vertical CPU cooling is developed. A 304 stainless steel test piece is processed and a detailed experimental study of heat transfer performance and start-up performance is performed. The influence of liquid filling rate, heating power and wind speed on the two performance of vertical heat pipe radiator is analyzed, and compared with aluminum fin computer CPU radiator. The results show that when the radiator works stably, the optimal filling ratio is 25%, the lowest thermal resistance is only 0.1 °C/W; the average temperature of heat source increases with the increase of heating power and decreases with the wind speed. The temperature distributions of the five cold ends exhibit a symmetry that attenuates from the middle to the both sides. In addition, when the radiator starts up, as the heating power increases, the initial start-up time becomes shorter, the start-up temperature becomes lower, and the stability is also better. But there is no symmetry in the start sequence of the condensation ends. Compared with the current aluminum fin radiator, the vertical radiator has superior heat dissipation performance, temperature uniformity and stability. Such as, under 80 W heating power, the average heat source temperature is 66 °C, the average temperature deviation of the heat source is 3.16 °C, compared to the aluminum fin radiator, they dropped by 17.3 °C and 0.61 °C, respectively.
Author Zhang, Junjie
Xiahou, Guowei
Ma, Rui
Liu, Yepeng
Author_xml – sequence: 1
  givenname: Guowei
  surname: Xiahou
  fullname: Xiahou, Guowei
  email: xh_gw@126.com
  organization: School of Energy and Power Engineering, Changsha University of Science and Technology, Hunan 410004, China
– sequence: 2
  givenname: Junjie
  surname: Zhang
  fullname: Zhang, Junjie
  email: zjj_jac@126.com
  organization: School of Energy and Power Engineering, Changsha University of Science and Technology, Hunan 410004, China
– sequence: 3
  givenname: Rui
  surname: Ma
  fullname: Ma, Rui
  organization: School of Energy and Power Engineering, Changsha University of Science and Technology, Hunan 410004, China
– sequence: 4
  givenname: Yepeng
  surname: Liu
  fullname: Liu, Yepeng
  organization: China Huadian Xiangtan New Energy Co., Ltd, Hunan 410004, China
BookMark eNqNkE1LAzEQhoNUsK3-h4AXL7tmNt2vm1L8pKgHew5pMtEs7WZN0mL_vSn15sVDGMK8PDPzTMiodz0ScgUsBwbVdZfb7hNl3MgQopd9MOjzgkGTA-SMFSdkDE3dZgU07YiMGYM6azmwMzIJoTt82awak8WL2-GaHkh0sANSL7WV0Xlq0tuhj1bJNZ2_Lalybm37Dyp7TW0MFL8H9HaDfUyBELd6f05OjVwHvPitU7K8v3ufP2aL14en-e0iU7xmMWsVqwyXFTeoNOpWlUazsqpmq0Yq05a8NmVjOG-lNhxkuypLCaxgqkEtYab4lFweuYN3X1sMUXRu6_s0UhRQ82bGoeEpdXNMKe9C8GjEkNaVfi-AiYND0Ym_DsXBoQAQyWFCPB8RmK7Z2dQNymKvUFuPKgrt7P9hP1L9ieE
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2021_117200
crossref_primary_10_1016_j_applthermaleng_2019_114459
crossref_primary_10_1016_j_tsep_2020_100742
crossref_primary_10_1109_JMMCT_2021_3106539
crossref_primary_10_3390_electronics13050882
crossref_primary_10_1007_s40430_024_04813_1
crossref_primary_10_3390_met9111227
crossref_primary_10_3390_en15165904
crossref_primary_10_1007_s00231_024_03491_y
crossref_primary_10_1007_s40997_023_00667_5
crossref_primary_10_1002_est2_437
crossref_primary_10_1007_s13369_023_08182_0
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120163
crossref_primary_10_1016_j_egyr_2022_10_025
crossref_primary_10_1016_j_applthermaleng_2023_121676
crossref_primary_10_3389_fenrg_2021_755019
crossref_primary_10_1016_j_applthermaleng_2021_117131
crossref_primary_10_3390_s23084158
crossref_primary_10_1016_j_csite_2020_100641
crossref_primary_10_1051_e3sconf_202124801051
crossref_primary_10_1016_j_tsep_2022_101542
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119843
crossref_primary_10_2298_TSCI200729059S
crossref_primary_10_1016_j_applthermaleng_2021_116847
crossref_primary_10_1021_acsami_1c01223
crossref_primary_10_1016_j_csite_2019_100545
crossref_primary_10_1016_j_ijthermalsci_2024_109121
Cites_doi 10.1016/j.expthermflusci.2018.01.003
10.1615/JEnhHeatTransf.2012001896
10.1016/j.egypro.2017.03.535
10.1016/j.applthermaleng.2016.08.187
10.1016/j.applthermaleng.2016.12.108
10.1016/j.egypro.2017.12.341
10.1016/j.proeng.2013.03.093
10.1016/j.rser.2015.12.350
10.1016/j.applthermaleng.2016.12.094
10.1016/0894-1777(88)90043-X
10.1016/j.applthermaleng.2017.02.106
10.1016/j.microrel.2016.03.033
10.1016/j.applthermaleng.2016.08.198
10.1016/j.icheatmasstransfer.2012.02.002
10.1016/j.applthermaleng.2017.11.009
10.1016/j.energy.2017.04.028
10.1016/j.ijrefrig.2013.09.019
10.1016/j.applthermaleng.2016.09.017
10.1016/j.ijheatmasstransfer.2014.05.042
10.1016/j.energy.2015.01.098
10.1016/j.expthermflusci.2014.04.009
ContentType Journal Article
Copyright 2018
Copyright Elsevier BV Mar 2019
Copyright_xml – notice: 2018
– notice: Copyright Elsevier BV Mar 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2018.11.002
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 922
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2018_11_002
S0017931018329430
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-9c06f3a63fecded9c5fd05664b8acf9537f58f339adf31a9b55a1020c8eda14c3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Thu Oct 10 20:15:08 EDT 2024
Thu Sep 26 17:16:07 EDT 2024
Fri Feb 23 02:31:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat transfer performance
Heat pipe radiator
Start-up performance
CPU cooling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-9c06f3a63fecded9c5fd05664b8acf9537f58f339adf31a9b55a1020c8eda14c3
PQID 2173843183
PQPubID 2045464
PageCount 11
ParticipantIDs proquest_journals_2173843183
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_002
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_11_002
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Moffat (b0170) 1988; 1
Li (b0140) 2011; 31
Zhao, Sun, Wang (b0010) 2014; 38
Barua, Mohammad, Nuruzzaman (b0145) 2013; 56
Xu, Chen, Xuan (b0085) 2012; 39
Li (b0125) 2015
Zhu, Cui, Han (b0105) 2014; 77
Jian (b0150) 2013; 01
Xiao, Cao (b0065) 2012; 19
Hua, Wang, Gao (b0090) 2017; 126
Xiahou, Kong, Xie (b0110) 2015; 02
Liu, Zhao, Yang (b0005) 2015; 83
Dang, Jia, Lu (b0020) 2016; 110
Batunlu, Albarbar (b0015) 2016; 62
J.I. lin-lin, Preparation of Nanofluids and its Application in Pulsating Heat Pipe, Nanjing University of Science & Technology, 2014.
Han (b0080) 2016; 05
Kim, Kim (b0100) 2018; 130
Xiahou, Xie, Kong (b0155) 2015; 01
H. Akachi, Tunnel-plate type heat pipe: US, US5697428[P], 1997.
Cai, Liu, Yang (b0025) 2017; 105
Sun, Zhang, Liao (b0040) 2017; 116
Mahdavi, Tiari, Schampheleire (b0050) 2018; 93
Lamaison, Ong, Marcinichen (b0035) 2016; 110
Sun, Liu (b0030) 2017; 115
Mauro, Vincenzo, Sauro (b0135) 2014; 59
Zhu, Li, Wang (b0045) 2017; 142
Jouhara, Chauhan, Nannou (b0055) 2017; 128
H. Akachi, Structure of a heat pipe: US, US 4921041 A [P], 1990.
Patel, Gaurav (b0120) 2017; 110
Shi, Li, Pan (b0115) 2014; 04
H. Akachi, F. Polasek, Thermal Control of IGBT Modules in Traction Drives by Pulsating Heat Pipe, Preprints 10th Int. Heat Pipe Conf, 1997, pp. 8–12.
Han, Wang, Zheng (b0070) 2016; 59
Wang, Ma (b0095) 2015; 11
2005 Standard for Performance rating of air-to-air heat exchangers for energy recovery ventilation heat equipment. Air-Conditioning and Refrigeration Institute, Virginia, USA, 2005.
Dang (10.1016/j.ijheatmasstransfer.2018.11.002_b0020) 2016; 110
Shi (10.1016/j.ijheatmasstransfer.2018.11.002_b0115) 2014; 04
Batunlu (10.1016/j.ijheatmasstransfer.2018.11.002_b0015) 2016; 62
Han (10.1016/j.ijheatmasstransfer.2018.11.002_b0070) 2016; 59
10.1016/j.ijheatmasstransfer.2018.11.002_b0165
Wang (10.1016/j.ijheatmasstransfer.2018.11.002_b0095) 2015; 11
Mauro (10.1016/j.ijheatmasstransfer.2018.11.002_b0135) 2014; 59
Li (10.1016/j.ijheatmasstransfer.2018.11.002_b0125) 2015
Zhao (10.1016/j.ijheatmasstransfer.2018.11.002_b0010) 2014; 38
Patel (10.1016/j.ijheatmasstransfer.2018.11.002_b0120) 2017; 110
Jian (10.1016/j.ijheatmasstransfer.2018.11.002_b0150) 2013; 01
Moffat (10.1016/j.ijheatmasstransfer.2018.11.002_b0170) 1988; 1
Sun (10.1016/j.ijheatmasstransfer.2018.11.002_b0040) 2017; 116
Xiahou (10.1016/j.ijheatmasstransfer.2018.11.002_b0155) 2015; 01
10.1016/j.ijheatmasstransfer.2018.11.002_b0060
Xiahou (10.1016/j.ijheatmasstransfer.2018.11.002_b0110) 2015; 02
10.1016/j.ijheatmasstransfer.2018.11.002_b0160
Sun (10.1016/j.ijheatmasstransfer.2018.11.002_b0030) 2017; 115
Xiao (10.1016/j.ijheatmasstransfer.2018.11.002_b0065) 2012; 19
Cai (10.1016/j.ijheatmasstransfer.2018.11.002_b0025) 2017; 105
Xu (10.1016/j.ijheatmasstransfer.2018.11.002_b0085) 2012; 39
Jouhara (10.1016/j.ijheatmasstransfer.2018.11.002_b0055) 2017; 128
Hua (10.1016/j.ijheatmasstransfer.2018.11.002_b0090) 2017; 126
10.1016/j.ijheatmasstransfer.2018.11.002_b0075
10.1016/j.ijheatmasstransfer.2018.11.002_b0130
Liu (10.1016/j.ijheatmasstransfer.2018.11.002_b0005) 2015; 83
Lamaison (10.1016/j.ijheatmasstransfer.2018.11.002_b0035) 2016; 110
Kim (10.1016/j.ijheatmasstransfer.2018.11.002_b0100) 2018; 130
Mahdavi (10.1016/j.ijheatmasstransfer.2018.11.002_b0050) 2018; 93
Han (10.1016/j.ijheatmasstransfer.2018.11.002_b0080) 2016; 05
Zhu (10.1016/j.ijheatmasstransfer.2018.11.002_b0105) 2014; 77
Barua (10.1016/j.ijheatmasstransfer.2018.11.002_b0145) 2013; 56
Zhu (10.1016/j.ijheatmasstransfer.2018.11.002_b0045) 2017; 142
Li (10.1016/j.ijheatmasstransfer.2018.11.002_b0140) 2011; 31
References_xml – volume: 1
  start-page: 3
  year: 1988
  end-page: 17
  ident: b0170
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Therm Fluid Sci.
  contributor:
    fullname: Moffat
– volume: 59
  start-page: 222
  year: 2014
  end-page: 229
  ident: b0135
  article-title: Thermal instability of a closed loop pulsating heat pipe: Combined effect of orientation and filling ratio
  publication-title: Exp. Therm Fluid Sci.
  contributor:
    fullname: Sauro
– volume: 04
  start-page: 155
  year: 2014
  end-page: 161
  ident: b0115
  article-title: Experiment study on visualization and start-up performance of closed loop plate pulsating heat pipe with parallel channels
  publication-title: J. Mech. Eng.
  contributor:
    fullname: Pan
– volume: 59
  start-page: 692
  year: 2016
  end-page: 709
  ident: b0070
  article-title: Review of the development of pulsating heat pipe for heat dissipation
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Zheng
– volume: 110
  start-page: 1568
  year: 2017
  end-page: 1577
  ident: b0120
  article-title: Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Gaurav
– volume: 83
  start-page: 29
  year: 2015
  end-page: 36
  ident: b0005
  article-title: Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system
  publication-title: Energy
  contributor:
    fullname: Yang
– volume: 38
  start-page: 10
  year: 2014
  end-page: 21
  ident: b0010
  article-title: Experimental and numerical study of electronic module-cooling heat sinks used in a variable frequency air-conditioner outdoor unit
  publication-title: Int. J. Refrig.
  contributor:
    fullname: Wang
– volume: 02
  start-page: 89
  year: 2015
  end-page: 94
  ident: b0110
  article-title: Study on the start-up performance of plate pulsating heat pipe with parallel trapezoidal channel
  publication-title: J. Refrig.
  contributor:
    fullname: Xie
– volume: 142
  start-page: 4163
  year: 2017
  end-page: 4168
  ident: b0045
  article-title: Dynamic performance of loop heat pipes for cooling of electronics
  publication-title: Energy Procedia.
  contributor:
    fullname: Wang
– volume: 110
  start-page: 390
  year: 2016
  end-page: 398
  ident: b0020
  article-title: Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Lu
– volume: 19
  start-page: 213
  year: 2012
  end-page: 231
  ident: b0065
  article-title: Recent advances in pulsating heat pipes and its derivatives
  publication-title: J. Enhanced Heat Transfer
  contributor:
    fullname: Cao
– volume: 62
  start-page: 82
  year: 2016
  end-page: 90
  ident: b0015
  article-title: Real-time system for monitoring the electro-thermal behavior of power electronic devices used in boost converters
  publication-title: Microelectron. Reliab.
  contributor:
    fullname: Albarbar
– volume: 01
  start-page: 317
  year: 2015
  end-page: 323
  ident: b0155
  article-title: Heat transfer performance of flat heat pipe based on air-conditioning energy recovery
  publication-title: J. Central South Univ. (Sci. Technol.)
  contributor:
    fullname: Kong
– volume: 126
  year: 2017
  ident: b0090
  article-title: Experimental research on the start –up characteristics and heat transfer performance of pulsating heat pipe with rectangular channels
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Gao
– volume: 39
  start-page: 504
  year: 2012
  end-page: 508
  ident: b0085
  article-title: Thermo-hydrodynamics analysis of vapor-liquid two-phase flow in the flat-plate pulsating heat pipe
  publication-title: Int. Commun. Heat Mass Transfer
  contributor:
    fullname: Xuan
– volume: 01
  start-page: 33
  year: 2013
  end-page: 41
  ident: b0150
  article-title: Oscillating heat pipes: State of the art and applications
  publication-title: Chem. Ind. Eng. Progress.
  contributor:
    fullname: Jian
– volume: 116
  start-page: 433
  year: 2017
  end-page: 444
  ident: b0040
  article-title: Performance of a thermoelectric cooling system integrated with a gravity-assisted heat pipe for cooling electronics
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Liao
– volume: 105
  start-page: 1644
  year: 2017
  end-page: 1650
  ident: b0025
  article-title: Optimization of thermoelectric cooling system for application in CPU cooler
  publication-title: Energy Procedia
  contributor:
    fullname: Yang
– volume: 128
  start-page: 729
  year: 2017
  end-page: 754
  ident: b0055
  article-title: Heat pipe based systems - Advances and applications
  publication-title: Energy
  contributor:
    fullname: Nannou
– volume: 11
  start-page: 3846
  year: 2015
  end-page: 3851
  ident: b0095
  article-title: Effect of evaporation/condensation length ratio on the performance of pulsating heat pipe
  publication-title: Chem. Ind. Eng. Progress.
  contributor:
    fullname: Ma
– volume: 56
  start-page: 88
  year: 2013
  end-page: 95
  ident: b0145
  article-title: Effect of filling ratio on heat transfer characteristics and performance of a closed loop pulsating heat pipe
  publication-title: Proczdia Eng.
  contributor:
    fullname: Nuruzzaman
– volume: 31
  start-page: 79
  year: 2011
  end-page: 85
  ident: b0140
  article-title: Influence of filling ratio on startup and operation of a single loop pulsating heat pipe
  publication-title: Proc. CSEE
  contributor:
    fullname: Li
– volume: 110
  start-page: 481
  year: 2016
  end-page: 494
  ident: b0035
  article-title: Two-phase mini-thermosyphon electronics cooling: dynamic modeling, experimental validation and application to 2U servers
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Marcinichen
– volume: 05
  start-page: 20
  year: 2016
  end-page: 21
  ident: b0080
  article-title: Heat conduction champion-heat pipe (under)
  publication-title: Sci. Explorat. (Aeronaut. Astronaut.)
  contributor:
    fullname: Han
– year: 2015
  ident: b0125
  article-title: Effects of Channel Structure on Heat Transfer Performance of Pulsating Heat Pipes
  contributor:
    fullname: Li
– volume: 115
  start-page: 435
  year: 2017
  end-page: 443
  ident: b0030
  article-title: Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Liu
– volume: 93
  year: 2018
  ident: b0050
  article-title: Experimental study of the thermal characteristics of a heat pipe
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Schampheleire
– volume: 77
  start-page: 834
  year: 2014
  end-page: 842
  ident: b0105
  article-title: The study on the difference of the start-up and heat transfer performance of the pulsating heat pipe with water-acetone mixture
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Han
– volume: 130
  start-page: 439
  year: 2018
  end-page: 448
  ident: b0100
  article-title: Experimental investigation on the effect of the condenser length on the thermal performance of a micro pulsating heat pipe
  publication-title: Appl. Therm. Energy
  contributor:
    fullname: Kim
– volume: 93
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0050
  article-title: Experimental study of the thermal characteristics of a heat pipe
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.01.003
  contributor:
    fullname: Mahdavi
– volume: 19
  start-page: 213
  issue: 19
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0065
  article-title: Recent advances in pulsating heat pipes and its derivatives
  publication-title: J. Enhanced Heat Transfer
  doi: 10.1615/JEnhHeatTransf.2012001896
  contributor:
    fullname: Xiao
– volume: 105
  start-page: 1644
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0025
  article-title: Optimization of thermoelectric cooling system for application in CPU cooler
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.535
  contributor:
    fullname: Cai
– volume: 110
  start-page: 390
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0020
  article-title: Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.08.187
  contributor:
    fullname: Dang
– volume: 115
  start-page: 435
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0030
  article-title: Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.12.108
  contributor:
    fullname: Sun
– volume: 142
  start-page: 4163
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0045
  article-title: Dynamic performance of loop heat pipes for cooling of electronics
  publication-title: Energy Procedia.
  doi: 10.1016/j.egypro.2017.12.341
  contributor:
    fullname: Zhu
– volume: 56
  start-page: 88
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0145
  article-title: Effect of filling ratio on heat transfer characteristics and performance of a closed loop pulsating heat pipe
  publication-title: Proczdia Eng.
  doi: 10.1016/j.proeng.2013.03.093
  contributor:
    fullname: Barua
– volume: 59
  start-page: 692
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0070
  article-title: Review of the development of pulsating heat pipe for heat dissipation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.350
  contributor:
    fullname: Han
– volume: 116
  start-page: 433
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0040
  article-title: Performance of a thermoelectric cooling system integrated with a gravity-assisted heat pipe for cooling electronics
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.12.094
  contributor:
    fullname: Sun
– ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0060
– volume: 05
  start-page: 20
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0080
  article-title: Heat conduction champion-heat pipe (under)
  publication-title: Sci. Explorat. (Aeronaut. Astronaut.)
  contributor:
    fullname: Han
– volume: 1
  start-page: 3
  issue: 1
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0170
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/0894-1777(88)90043-X
  contributor:
    fullname: Moffat
– volume: 126
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0090
  article-title: Experimental research on the start –up characteristics and heat transfer performance of pulsating heat pipe with rectangular channels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.02.106
  contributor:
    fullname: Hua
– volume: 62
  start-page: 82
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0015
  article-title: Real-time system for monitoring the electro-thermal behavior of power electronic devices used in boost converters
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2016.03.033
  contributor:
    fullname: Batunlu
– volume: 110
  start-page: 481
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0035
  article-title: Two-phase mini-thermosyphon electronics cooling: dynamic modeling, experimental validation and application to 2U servers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.08.198
  contributor:
    fullname: Lamaison
– year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0125
  contributor:
    fullname: Li
– ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0160
– volume: 39
  start-page: 504
  issue: 4
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0085
  article-title: Thermo-hydrodynamics analysis of vapor-liquid two-phase flow in the flat-plate pulsating heat pipe
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2012.02.002
  contributor:
    fullname: Xu
– volume: 01
  start-page: 317
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0155
  article-title: Heat transfer performance of flat heat pipe based on air-conditioning energy recovery
  publication-title: J. Central South Univ. (Sci. Technol.)
  contributor:
    fullname: Xiahou
– volume: 130
  start-page: 439
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0100
  article-title: Experimental investigation on the effect of the condenser length on the thermal performance of a micro pulsating heat pipe
  publication-title: Appl. Therm. Energy
  doi: 10.1016/j.applthermaleng.2017.11.009
  contributor:
    fullname: Kim
– volume: 11
  start-page: 3846
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0095
  article-title: Effect of evaporation/condensation length ratio on the performance of pulsating heat pipe
  publication-title: Chem. Ind. Eng. Progress.
  contributor:
    fullname: Wang
– volume: 128
  start-page: 729
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0055
  article-title: Heat pipe based systems - Advances and applications
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.028
  contributor:
    fullname: Jouhara
– volume: 38
  start-page: 10
  issue: 3
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0010
  article-title: Experimental and numerical study of electronic module-cooling heat sinks used in a variable frequency air-conditioner outdoor unit
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2013.09.019
  contributor:
    fullname: Zhao
– volume: 04
  start-page: 155
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0115
  article-title: Experiment study on visualization and start-up performance of closed loop plate pulsating heat pipe with parallel channels
  publication-title: J. Mech. Eng.
  contributor:
    fullname: Shi
– ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0165
– volume: 110
  start-page: 1568
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0120
  article-title: Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.017
  contributor:
    fullname: Patel
– volume: 77
  start-page: 834
  issue: 4
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0105
  article-title: The study on the difference of the start-up and heat transfer performance of the pulsating heat pipe with water-acetone mixture
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.05.042
  contributor:
    fullname: Zhu
– volume: 83
  start-page: 29
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0005
  article-title: Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.098
  contributor:
    fullname: Liu
– volume: 01
  start-page: 33
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0150
  article-title: Oscillating heat pipes: State of the art and applications
  publication-title: Chem. Ind. Eng. Progress.
  contributor:
    fullname: Jian
– ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0075
– volume: 31
  start-page: 79
  issue: 7
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0140
  article-title: Influence of filling ratio on startup and operation of a single loop pulsating heat pipe
  publication-title: Proc. CSEE
  contributor:
    fullname: Li
– ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0130
– volume: 59
  start-page: 222
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0135
  article-title: Thermal instability of a closed loop pulsating heat pipe: Combined effect of orientation and filling ratio
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.04.009
  contributor:
    fullname: Mauro
– volume: 02
  start-page: 89
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.11.002_b0110
  article-title: Study on the start-up performance of plate pulsating heat pipe with parallel trapezoidal channel
  publication-title: J. Refrig.
  contributor:
    fullname: Xiahou
SSID ssj0017046
Score 2.4679039
Snippet •A pulsating plate type heat pipe radiator with multiple condensation ends is designed and manufactured.•The heat transfer performance and start-up performance...
A vertical radiator with multi pulse condensation ends and a plane evaporating end for vertical CPU cooling is developed. A 304 stainless steel test piece is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 912
SubjectTerms Aluminum
Austenitic stainless steels
Central processing units
Condensation
Cooling
CPU cooling
CPUs
Heat pipe radiator
Heat pipes
Heat transfer
Heat transfer performance
Heating
Performance evaluation
Pipes
Radiators
Stability
Start-up performance
Symmetry
Thermal resistance
Wind speed
Title Novel heat pipe radiator for vertical CPU cooling and its experimental study
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.11.002
https://www.proquest.com/docview/2173843183
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA5SUbyIK-7k4MHL2CWZNHMsRalWi4hFbyGrjGhb2tGjv933ZnG_CJ6GGYbJ8JJ8-V743hdCDhPPTStwDvPbi4ibWEbSOR5xbaSwQcYyF9FcDkRvyM_v4rs50q1qYVBWWWJ_gek5WpdP6mU065M0xRpfHFzoOMVaaCKOFeyw_MGYPn59l3k0242iWAfRGN9eJEcfGq_0ARHvCWhqltNEjw6hTXmMvp7lRssvS9U30M5XotMVslxSSNop_nKVzPnRGlnIpZx2tk4uBuMX_0ixSTpJJ55O0X4AUmsK_JTmxy9Dv9Du1ZDaMR7Zc0_1yNE0m9HPdv80N57dIMPTk5tuLyrPTIgsazeyKLENEZgWLHjrvEtsHBxwHMGN1DYkMWuHWAbGEu0Ca-rExLEGjtGw0jvd5JZtktpoPPJbhArTMk542TZAM7gIxjLngB9oDTmUE26bJFV41KSwxlCVZuxB_QytwtBCxqEgtNukW8VTfeluBUj-h6_sVV2hyqk3U5BjMckRqnb-pZFdsgR3SaE72yO1bPrs94GIZOYgH2kHZL5z1u8N8Nq_vu2_AUSZ49Q
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xiOWCWMWODxy4BNrace0jqkAFSsWBStwsrygI2ooGvp9xFvYLEtdEiaMZz_ObeOYZ4FB6ZlqBMYxvzxNmUpEI51jCtBHcBpGKoojmus-7A3Z5l95NQafuhYlllRX2l5heoHV15aSy5sk4y2KPb5xcUXGKtqKI-DTMIhuQGJ2zpxdX3f77ZkK7UfbrRECOD8zD0UeZV_YQQe8JmWpeMEUfRUKb4jhKe1b_Wn5Zrb7hdrEYnS_DUsUiyWn5oSsw5YerMFdUc9rJGvT6o1f_SOKQZJyNPXmOCgSYXROkqKQ4gRldQzo3A2JH8dSee6KHjmT5hHxW_CeF9uw6DM7PbjvdpDo2IbG03cgTaRs8UM1p8NZ5J20aHNIczozQNsiUtkMqAqVSu0CbWpo01UgzGlZ4p5vM0g2YGY6GfhMINy3juBdtg0yD8WAsdQ4pgtaYRjnutkDW5lHjUh1D1WVjD-qnaVU0LSYdCk27BZ3anuqLxxWC-R_eslu7QlXRN1GYZlHBIlpt_8sgB7DQvb3uqd5F_2oHFvGOLMvQdmEmf37xe8hLcrNfzbs38Yfk5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+heat+pipe+radiator+for+vertical+CPU+cooling+and+its+experimental+study&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Xiahou%2C+Guowei&rft.au=Zhang%2C+Junjie&rft.au=Ma%2C+Rui&rft.au=Liu%2C+Yepeng&rft.date=2019-03-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=130&rft.spage=912&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.11.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon