Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: inhibition kinetics and molecular docking
Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the tran...
Saved in:
Published in | Food & function Vol. 9; no. 1; pp. 5251 - 5259 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
17.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC
50
values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site
via
hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.
Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. |
---|---|
AbstractList | Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC₅₀ values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver–Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension. Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver–Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension. Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC 50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension. Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC 50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver–Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension. Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension. |
Author | Liping, Sun Yongliang, Zhuang Ling, Yuan |
AuthorAffiliation | Kunming University of Science and Technology Yunnan Institute of Food Safety |
AuthorAffiliation_xml | – sequence: 0 name: Yunnan Institute of Food Safety – sequence: 0 name: Kunming University of Science and Technology |
Author_xml | – sequence: 1 givenname: Yuan surname: Ling fullname: Ling, Yuan – sequence: 2 givenname: Sun surname: Liping fullname: Liping, Sun – sequence: 3 givenname: Zhuang surname: Yongliang fullname: Yongliang, Zhuang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30229250$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9rFTEUxYNU7B-7ca8E3BRhNJPMZJLuysNqoVAXCu6GTHLnNXUmGZNMYfxOfkfz3uurUASzSUh-9yS55xyjA-cdIPSqJO9LwuQHLXpPSM2leoaOKKlowWvy_WC_riQ_RKcx3pE8mJRCihfokBFKJa3JEfr9JcCkgkrWO6ycwdaAS7a3erfle-z8PQzYulvb2eTDkrG19QlctK64KrR39xCSdWsM7tcyAp5gSlkm4j74ESc7qMkqHH9Yh9cwZF2HbxcT_LBElSCe77U392UIktVx-5bRD6DnQQVsvM4n65foea-GCKcP8wn6dvnx6-pzcX3z6Wp1cV1o1pBUyIYbxikVTDPDGyaNqYioTCXKruKkY3XfGFVz1Xd1JSulaENAcNkrELTmjJ2gs53uFPzPGWJqRxs1DINy4OfYUkqJkLmL1f_RkpY1obnvGX37BL3zc3D5IxuKiGxJSTP15oGauxFMOwU7qrC0e88y8G4H6OBjDNA_IiVpN5loV-LyZpuJiwyTJ7C2aWttCsoO_y55vSsJUT9K_40Z-wPtiMUr |
CitedBy_id | crossref_primary_10_1016_j_lwt_2021_111682 crossref_primary_10_1111_1750_3841_14975 crossref_primary_10_3390_foods12183480 crossref_primary_10_1080_07388551_2021_1948816 crossref_primary_10_1016_j_jff_2019_103488 crossref_primary_10_1016_j_jhazmat_2021_126116 crossref_primary_10_1007_s11947_023_03142_w crossref_primary_10_1016_j_tifs_2021_08_007 crossref_primary_10_3390_nu14122420 crossref_primary_10_1016_j_colsurfb_2022_112799 crossref_primary_10_1021_acs_jafc_2c07270 crossref_primary_10_1002_jsfa_11445 crossref_primary_10_1016_j_fbio_2024_104955 crossref_primary_10_1016_j_lwt_2022_113634 crossref_primary_10_3390_md21090485 crossref_primary_10_3390_foods11030468 crossref_primary_10_1002_fsn3_2253 crossref_primary_10_3390_foods11020194 crossref_primary_10_3390_ijms252313021 crossref_primary_10_3390_md17050288 crossref_primary_10_1016_j_foodchem_2023_137074 crossref_primary_10_1016_j_heliyon_2024_e28060 crossref_primary_10_1016_j_ijbiomac_2023_127196 crossref_primary_10_1111_ijfs_14578 crossref_primary_10_3390_molecules26113308 crossref_primary_10_3390_ijms22084068 crossref_primary_10_1016_j_ijbiomac_2025_140274 crossref_primary_10_5851_kosfa_2022_e70 crossref_primary_10_3390_md19030145 crossref_primary_10_1039_D1FO00356A crossref_primary_10_1002_jsfa_10609 crossref_primary_10_1007_s00217_022_04061_4 crossref_primary_10_3390_foods12183461 crossref_primary_10_1021_acs_jafc_1c06110 crossref_primary_10_1007_s10989_020_10142_3 crossref_primary_10_1016_j_jece_2023_110726 crossref_primary_10_1111_jfbc_13090 crossref_primary_10_3390_ijms21030864 crossref_primary_10_3390_md17080463 crossref_primary_10_2174_1381612829666230110141811 crossref_primary_10_1039_D0RA10476K crossref_primary_10_3389_fsufs_2024_1292297 crossref_primary_10_3390_medicina59020301 crossref_primary_10_1039_D1FO01094H crossref_primary_10_1016_j_cofs_2020_12_016 crossref_primary_10_1016_j_crfs_2022_10_031 crossref_primary_10_1080_87559129_2021_1936005 crossref_primary_10_1021_acs_jafc_0c06053 crossref_primary_10_1016_j_bcab_2021_102152 crossref_primary_10_1016_j_fshw_2022_06_007 crossref_primary_10_3390_foods11091355 crossref_primary_10_3390_md22040156 crossref_primary_10_1111_1750_3841_15115 crossref_primary_10_3390_molecules25020295 crossref_primary_10_1111_1750_3841_15754 crossref_primary_10_3390_molecules24244562 crossref_primary_10_1080_10667857_2019_1649888 crossref_primary_10_3390_nu12030653 crossref_primary_10_3390_nu11020392 crossref_primary_10_1007_s10989_020_10053_3 |
Cites_doi | 10.1016/j.ijbiomac.2017.03.054 10.1016/j.jff.2015.11.046 10.1016/j.peptides.2011.11.006 10.1271/bbb.60.1353 10.1016/j.jchromb.2017.02.015 10.1021/acs.jafc.7b04196 10.1021/acs.jafc.7b04562 10.1016/j.foodchem.2009.11.018 10.1016/j.foodres.2017.06.002 10.1016/j.idairyj.2017.07.003 10.1016/j.foodchem.2010.09.039 10.1016/j.jff.2012.12.003 10.1021/jf405639w 10.1016/j.procbio.2016.07.006 10.1021/acs.jafc.7b04522 10.1016/j.foodchem.2015.02.004 10.1016/j.jff.2015.06.062 10.1021/acs.jafc.7b04043 10.1016/j.foodchem.2009.04.086 10.1016/j.foodchem.2011.06.051 10.1016/j.foodchem.2017.10.095 10.1016/j.foodchem.2016.10.087 10.1007/s11947-010-0439-9 10.1016/j.phymed.2017.09.013 10.1016/j.jff.2017.03.008 10.1016/j.carbon.2016.05.062 10.1016/0006-2952(71)90292-9 10.3390/md10051066 10.1002/mnfr.200700503 10.1016/j.jff.2015.10.025 10.1016/j.jff.2013.03.008 10.1016/j.lwt.2010.09.009 10.1016/j.jff.2017.06.049 10.1016/j.peptides.2012.08.014 10.1016/j.foodchem.2016.05.087 10.1016/j.foodchem.2017.06.112 10.1016/j.jff.2012.09.006 10.1021/acs.jafc.5b01824 10.1016/j.foodres.2010.02.013 10.1271/bbb.80189 10.1016/j.molcatb.2005.09.002 10.1038/srep00717 10.1016/j.jff.2015.01.050 10.3390/md14100186 10.1021/jf900494d 10.1016/j.ifset.2016.03.014 10.1016/j.foodchem.2015.06.066 10.1016/j.idairyj.2007.09.006 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
DOI | 10.1039/c8fo00569a |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oncogenes and Growth Factors Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Oncogenes and Growth Factors Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 5259 |
ExternalDocumentID | 30229250 10_1039_C8FO00569A c8fo00569a |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 4.4 53G 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF AAYXX AFRZK AKMSF CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-976d362283c3d6739dd4084d481b460b35f7da56afb5494aa270e869fae825633 |
ISSN | 2042-6496 2042-650X |
IngestDate | Fri Jul 11 06:34:33 EDT 2025 Fri Jul 11 09:29:01 EDT 2025 Mon Jun 30 12:04:48 EDT 2025 Wed Feb 19 02:35:36 EST 2025 Tue Jul 01 03:02:08 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Tue Dec 17 21:00:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-976d362283c3d6739dd4084d481b460b35f7da56afb5494aa270e869fae825633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7771-2610 |
PMID | 30229250 |
PQID | 2120829212 |
PQPubID | 2047526 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_C8FO00569A rsc_primary_c8fo00569a proquest_miscellaneous_2220893024 crossref_citationtrail_10_1039_C8FO00569A proquest_journals_2120829212 proquest_miscellaneous_2121502898 pubmed_primary_30229250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181017 |
PublicationDateYYYYMMDD | 2018-10-17 |
PublicationDate_xml | – month: 10 year: 2018 text: 20181017 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Garcia-Moreno (C8FO00569A-(cit36)/*[position()=1]) 2015; 18 Zhuang (C8FO00569A-(cit6)/*[position()=1]) 2010; 48 Toopcham (C8FO00569A-(cit2)/*[position()=1]) 2015; 14 Miguel (C8FO00569A-(cit42)/*[position()=1]) 2008; 52 Wako (C8FO00569A-(cit32)/*[position()=1]) 1996; 60 Orio (C8FO00569A-(cit39)/*[position()=1]) 2017; 65 Balti (C8FO00569A-(cit44)/*[position()=1]) 2010; 43 Shen (C8FO00569A-(cit31)/*[position()=1]) 2005; 37 Lin (C8FO00569A-(cit33)/*[position()=1]) 2017; 32 Masuyer (C8FO00569A-(cit37)/*[position()=1]) 2012; 2 Liang (C8FO00569A-(cit16)/*[position()=1]) 2017; 66 Du (C8FO00569A-(cit47)/*[position()=1]) 2013; 5 Saiga-Egusa (C8FO00569A-(cit9)/*[position()=1]) 2009; 73 Sun (C8FO00569A-(cit22)/*[position()=1]) 2018; 66 Chen (C8FO00569A-(cit46)/*[position()=1]) 2012; 33 Fu (C8FO00569A-(cit4)/*[position()=1]) 2017; 101 Zhuang (C8FO00569A-(cit12)/*[position()=1]) 2012; 5 Quirós (C8FO00569A-(cit43)/*[position()=1]) 2008; 18 Sun (C8FO00569A-(cit15)/*[position()=1]) 2016; 14 Sun (C8FO00569A-(cit10)/*[position()=1]) 2013; 5 Ngo (C8FO00569A-(cit11)/*[position()=1]) 2016; 51 Lee (C8FO00569A-(cit34)/*[position()=1]) 2011; 125 Huang (C8FO00569A-(cit14)/*[position()=1]) 2016; 190 Ding (C8FO00569A-(cit27)/*[position()=1]) 2014; 62 Ghassem (C8FO00569A-(cit35)/*[position()=1]) 2011; 129 Hippauf (C8FO00569A-(cit1)/*[position()=1]) 2016; 107 García-Mora (C8FO00569A-(cit8)/*[position()=1]) 2017; 221 Liu (C8FO00569A-(cit5)/*[position()=1]) 2018; 245 Zhang (C8FO00569A-(cit24)/*[position()=1]) 2017; 36 Georgalaki (C8FO00569A-(cit7)/*[position()=1]) 2017; 75 Hayes (C8FO00569A-(cit3)/*[position()=1]) 2016; 37 Sun (C8FO00569A-(cit49)/*[position()=1]) 2017; 65 Wu (C8FO00569A-(cit40)/*[position()=1]) 2012; 10 Grootaert (C8FO00569A-(cit41)/*[position()=1]) 2017; 99 Xin (C8FO00569A-(cit29)/*[position()=1]) 2013; 5 Sanghoon (C8FO00569A-(cit30)/*[position()=1]) 2010; 118 Ayub Nawaz (C8FO00569A-(cit48)/*[position()=1]) 2017; 36 Zhang (C8FO00569A-(cit18)/*[position()=1]) 2012; 38 Forghani (C8FO00569A-(cit21)/*[position()=1]) 2016; 20 Ding (C8FO00569A-(cit25)/*[position()=1]) 2015; 63 Hou (C8FO00569A-(cit17)/*[position()=1]) 2011; 44 Abdelhedi (C8FO00569A-(cit28)/*[position()=1]) 2018; 239 Pan (C8FO00569A-(cit45)/*[position()=1]) 2016; 211 Guang (C8FO00569A-(cit38)/*[position()=1]) 2009; 57 Lan (C8FO00569A-(cit20)/*[position()=1]) 2015; 182 Gallego (C8FO00569A-(cit26)/*[position()=1]) 2016; 21 Yesmine (C8FO00569A-(cit13)/*[position()=1]) 2017; 1052 Cushman (C8FO00569A-(cit19)/*[position()=1]) 1971; 20 You (C8FO00569A-(cit23)/*[position()=1]) 2010; 120 |
References_xml | – volume: 101 start-page: 207 year: 2017 ident: C8FO00569A-(cit4)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.03.054 – volume: 21 start-page: 388 year: 2016 ident: C8FO00569A-(cit26)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2015.11.046 – volume: 33 start-page: 52 year: 2012 ident: C8FO00569A-(cit46)/*[position()=1] publication-title: Peptides doi: 10.1016/j.peptides.2011.11.006 – volume: 60 start-page: 1353 year: 1996 ident: C8FO00569A-(cit32)/*[position()=1] publication-title: Biosci., Biotechnol., Biochem. doi: 10.1271/bbb.60.1353 – volume: 1052 start-page: 43 year: 2017 ident: C8FO00569A-(cit13)/*[position()=1] publication-title: J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2017.02.015 – volume: 66 start-page: 593 year: 2018 ident: C8FO00569A-(cit22)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b04196 – volume: 66 start-page: 1114 year: 2017 ident: C8FO00569A-(cit16)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b04562 – volume: 120 start-page: 810 year: 2010 ident: C8FO00569A-(cit23)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.11.018 – volume: 99 start-page: 531 year: 2017 ident: C8FO00569A-(cit41)/*[position()=1] publication-title: Food Res. Int. doi: 10.1016/j.foodres.2017.06.002 – volume: 75 start-page: 10 year: 2017 ident: C8FO00569A-(cit7)/*[position()=1] publication-title: Int. Dairy J. doi: 10.1016/j.idairyj.2017.07.003 – volume: 125 start-page: 495 year: 2011 ident: C8FO00569A-(cit34)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2010.09.039 – volume: 5 start-page: 475 year: 2013 ident: C8FO00569A-(cit47)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2012.12.003 – volume: 62 start-page: 3177 year: 2014 ident: C8FO00569A-(cit27)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf405639w – volume: 51 start-page: 1622 year: 2016 ident: C8FO00569A-(cit11)/*[position()=1] publication-title: Process Biochem. doi: 10.1016/j.procbio.2016.07.006 – volume: 65 start-page: 10482 year: 2017 ident: C8FO00569A-(cit39)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b04522 – volume: 182 start-page: 136 year: 2015 ident: C8FO00569A-(cit20)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.02.004 – volume: 18 start-page: 95 year: 2015 ident: C8FO00569A-(cit36)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2015.06.062 – volume: 65 start-page: 10020 year: 2017 ident: C8FO00569A-(cit49)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b04043 – volume: 118 start-page: 96 year: 2010 ident: C8FO00569A-(cit30)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.04.086 – volume: 129 start-page: 1770 year: 2011 ident: C8FO00569A-(cit35)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2011.06.051 – volume: 245 start-page: 471 year: 2018 ident: C8FO00569A-(cit5)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.10.095 – volume: 221 start-page: 464 year: 2017 ident: C8FO00569A-(cit8)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.10.087 – volume: 5 start-page: 1622 year: 2012 ident: C8FO00569A-(cit12)/*[position()=1] publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-010-0439-9 – volume: 36 start-page: 1 year: 2017 ident: C8FO00569A-(cit48)/*[position()=1] publication-title: Phytomedicine doi: 10.1016/j.phymed.2017.09.013 – volume: 32 start-page: 266 year: 2017 ident: C8FO00569A-(cit33)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2017.03.008 – volume: 107 start-page: 116 year: 2016 ident: C8FO00569A-(cit1)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.05.062 – volume: 20 start-page: 1637 year: 1971 ident: C8FO00569A-(cit19)/*[position()=1] publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(71)90292-9 – volume: 10 start-page: 1066 year: 2012 ident: C8FO00569A-(cit40)/*[position()=1] publication-title: Mar. Drugs doi: 10.3390/md10051066 – volume: 52 start-page: 1507 year: 2008 ident: C8FO00569A-(cit42)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200700503 – volume: 20 start-page: 276 year: 2016 ident: C8FO00569A-(cit21)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2015.10.025 – volume: 5 start-page: 1116 year: 2013 ident: C8FO00569A-(cit29)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2013.03.008 – volume: 44 start-page: 421 year: 2011 ident: C8FO00569A-(cit17)/*[position()=1] publication-title: LWT–Food Sci. Technol. doi: 10.1016/j.lwt.2010.09.009 – volume: 36 start-page: 72 year: 2017 ident: C8FO00569A-(cit24)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2017.06.049 – volume: 38 start-page: 13 year: 2012 ident: C8FO00569A-(cit18)/*[position()=1] publication-title: Peptides doi: 10.1016/j.peptides.2012.08.014 – volume: 211 start-page: 423 year: 2016 ident: C8FO00569A-(cit45)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.05.087 – volume: 239 start-page: 453 year: 2018 ident: C8FO00569A-(cit28)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.06.112 – volume: 5 start-page: 154 year: 2013 ident: C8FO00569A-(cit10)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2012.09.006 – volume: 63 start-page: 8143 year: 2015 ident: C8FO00569A-(cit25)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b01824 – volume: 43 start-page: 1136 year: 2010 ident: C8FO00569A-(cit44)/*[position()=1] publication-title: Food Res. Int. doi: 10.1016/j.foodres.2010.02.013 – volume: 73 start-page: 422 year: 2009 ident: C8FO00569A-(cit9)/*[position()=1] publication-title: Biosci., Biotechnol., Biochem. doi: 10.1271/bbb.80189 – volume: 37 start-page: 26 year: 2005 ident: C8FO00569A-(cit31)/*[position()=1] publication-title: J. Mol. Catal. B: Enzym. doi: 10.1016/j.molcatb.2005.09.002 – volume: 2 start-page: 717 year: 2012 ident: C8FO00569A-(cit37)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00717 – volume: 14 start-page: 435 year: 2015 ident: C8FO00569A-(cit2)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2015.01.050 – volume: 14 start-page: 186 year: 2016 ident: C8FO00569A-(cit15)/*[position()=1] publication-title: Mar. Drugs doi: 10.3390/md14100186 – volume: 57 start-page: 5113 year: 2009 ident: C8FO00569A-(cit38)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf900494d – volume: 48 start-page: 222 year: 2010 ident: C8FO00569A-(cit6)/*[position()=1] publication-title: Food Technol. Biotechnol. – volume: 37 start-page: 253 year: 2016 ident: C8FO00569A-(cit3)/*[position()=1] publication-title: Innovative Food Sci. Emerging Technol. doi: 10.1016/j.ifset.2016.03.014 – volume: 190 start-page: 997 year: 2016 ident: C8FO00569A-(cit14)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.06.066 – volume: 18 start-page: 279 year: 2008 ident: C8FO00569A-(cit43)/*[position()=1] publication-title: Int. Dairy J. doi: 10.1016/j.idairyj.2007.09.006 |
SSID | ssj0000399898 |
Score | 2.4277809 |
Snippet | Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5251 |
SubjectTerms | active sites Amino acids Angiotensin Angiotensin-Converting Enzyme Inhibitors - chemistry Angiotensin-Converting Enzyme Inhibitors - isolation & purification Angiotensin-Converting Enzyme Inhibitors - metabolism Animals Biological Transport Caco-2 Cells chromatography computer simulation Conversion Digestive system Enzymes Fish Proteins - chemistry Fish Proteins - isolation & purification Fish Proteins - metabolism functional foods Functional foods & nutraceuticals gastrointestinal system Gastrointestinal tract Gelatin Gelatin - chemistry human cell lines Humans Hydrogen Bonding Hydrogen bonds Hydrolysates Hydrolysis Hypertension in vitro digestion ingredients inhibitory concentration 50 Kinetics Molecular docking Molecular Docking Simulation Peptide Mapping Peptides Peptides - chemistry Peptides - isolation & purification Peptides - metabolism Peptidyl-Dipeptidase A - chemistry Peptidyl-Dipeptidase A - metabolism Protein Hydrolysates - chemistry Skin Skin - chemistry Skin preparations Tilapia Transport |
Title | Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: inhibition kinetics and molecular docking |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30229250 https://www.proquest.com/docview/2120829212 https://www.proquest.com/docview/2121502898 https://www.proquest.com/docview/2220893024 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sIL4jYIDGQEQkJVII3tJOatDMa4DR42MfZSObbTRnTJ1AtS9zf4HfxHjh3nMq1DwEvaOkeOpfP1-DvOuSD0JAuyQcYHmU80oz5lkvoCfDafDgSjaRzLhJh850_70d4hfX_Ejnq9n52opeUifS7P1uaV_I9WYQz0arJk_0GzzaQwAN9Bv3AFDcP1r3T8Zaar0t0upDhXLvan4YFF-UObqhqTPM3t63RRjPPSRq0X_jvfxpzPbOSzLs5WJ7p_aqJclJ67vJPcJLuJ_vx7XvTHNm6u6E9WalZOV3PDUs2BgpvdPBHEdFP3-aTuvNtXYHTrLbJpCVoqCzuzsXaDAT66Jivflp1oIdNguzrWXhatnTIZyO64-3gC4uPuEcbA1pOtMjYrSxeaHKGIclcTuzPGgqOuqeYXEFmZXRa6qrW6_snXbg8BMdVVZZKVpgQq72yCTWhie_MK2gzB9wDjuTn88Ort1-boDmYxXTdN28J64XXhW8JftBOcpzoX_BdgM7O6y4xlMwfX0TXnhuBhhakbqKeLm8h7nesFfopdrdgp3q9bNdxCvzpYw6BdfB5ruMywxRpusYYvwxqusIZrrGGDNeywhg3WsMMa7mLtJW6Rhmuk2bU0SMMOabfR4e6bg50937X68CWJg4UPpFgBlQKuK4mKYsKVokFCFQWvikZBSlgWK8EikaWMcipEGAc6iXgmdAKknZAttFGUhb6LsBQJk2kWUqk55SpKKQkHOpREMhWLMPPQs1orI-nq4Jt2LNORjccgfLST7H62Ghx66HEje1pVf1krtV0rd-Ssw3wElNCkrcOHhx41t8F2mxdyotDl0sqAPxYClv4gE8I8nACV9tCdCjjNUmAUnsACD20BkprhFoH3LrtxH11t_4jbaGMxW-oHwK4X6UOH9t9eWdp4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+and+identification+of+novel+inhibitory+angiotensin-I-converting+enzyme+peptides+from+tilapia+skin+gelatin+hydrolysates%3A+inhibition+kinetics+and+molecular+docking&rft.jtitle=Food+%26+function&rft.au=Ling%2C+Yuan&rft.au=Liping%2C+Sun&rft.au=Yongliang%2C+Zhuang&rft.date=2018-10-17&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=9&rft.issue=1&rft.spage=5251&rft.epage=5259&rft_id=info:doi/10.1039%2Fc8fo00569a&rft.externalDocID=c8fo00569a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |