Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: inhibition kinetics and molecular docking

Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the tran...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 9; no. 1; pp. 5251 - 5259
Main Authors Ling, Yuan, Liping, Sun, Yongliang, Zhuang
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC 50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension. Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer.
AbstractList Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC₅₀ values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver–Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.
Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver–Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.
Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC 50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension. Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer.
Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC 50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver–Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.
Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.
Author Liping, Sun
Yongliang, Zhuang
Ling, Yuan
AuthorAffiliation Kunming University of Science and Technology
Yunnan Institute of Food Safety
AuthorAffiliation_xml – sequence: 0
  name: Yunnan Institute of Food Safety
– sequence: 0
  name: Kunming University of Science and Technology
Author_xml – sequence: 1
  givenname: Yuan
  surname: Ling
  fullname: Ling, Yuan
– sequence: 2
  givenname: Sun
  surname: Liping
  fullname: Liping, Sun
– sequence: 3
  givenname: Zhuang
  surname: Yongliang
  fullname: Yongliang, Zhuang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30229250$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9rFTEUxYNU7B-7ca8E3BRhNJPMZJLuysNqoVAXCu6GTHLnNXUmGZNMYfxOfkfz3uurUASzSUh-9yS55xyjA-cdIPSqJO9LwuQHLXpPSM2leoaOKKlowWvy_WC_riQ_RKcx3pE8mJRCihfokBFKJa3JEfr9JcCkgkrWO6ycwdaAS7a3erfle-z8PQzYulvb2eTDkrG19QlctK64KrR39xCSdWsM7tcyAp5gSlkm4j74ESc7qMkqHH9Yh9cwZF2HbxcT_LBElSCe77U392UIktVx-5bRD6DnQQVsvM4n65foea-GCKcP8wn6dvnx6-pzcX3z6Wp1cV1o1pBUyIYbxikVTDPDGyaNqYioTCXKruKkY3XfGFVz1Xd1JSulaENAcNkrELTmjJ2gs53uFPzPGWJqRxs1DINy4OfYUkqJkLmL1f_RkpY1obnvGX37BL3zc3D5IxuKiGxJSTP15oGauxFMOwU7qrC0e88y8G4H6OBjDNA_IiVpN5loV-LyZpuJiwyTJ7C2aWttCsoO_y55vSsJUT9K_40Z-wPtiMUr
CitedBy_id crossref_primary_10_1016_j_lwt_2021_111682
crossref_primary_10_1111_1750_3841_14975
crossref_primary_10_3390_foods12183480
crossref_primary_10_1080_07388551_2021_1948816
crossref_primary_10_1016_j_jff_2019_103488
crossref_primary_10_1016_j_jhazmat_2021_126116
crossref_primary_10_1007_s11947_023_03142_w
crossref_primary_10_1016_j_tifs_2021_08_007
crossref_primary_10_3390_nu14122420
crossref_primary_10_1016_j_colsurfb_2022_112799
crossref_primary_10_1021_acs_jafc_2c07270
crossref_primary_10_1002_jsfa_11445
crossref_primary_10_1016_j_fbio_2024_104955
crossref_primary_10_1016_j_lwt_2022_113634
crossref_primary_10_3390_md21090485
crossref_primary_10_3390_foods11030468
crossref_primary_10_1002_fsn3_2253
crossref_primary_10_3390_foods11020194
crossref_primary_10_3390_ijms252313021
crossref_primary_10_3390_md17050288
crossref_primary_10_1016_j_foodchem_2023_137074
crossref_primary_10_1016_j_heliyon_2024_e28060
crossref_primary_10_1016_j_ijbiomac_2023_127196
crossref_primary_10_1111_ijfs_14578
crossref_primary_10_3390_molecules26113308
crossref_primary_10_3390_ijms22084068
crossref_primary_10_1016_j_ijbiomac_2025_140274
crossref_primary_10_5851_kosfa_2022_e70
crossref_primary_10_3390_md19030145
crossref_primary_10_1039_D1FO00356A
crossref_primary_10_1002_jsfa_10609
crossref_primary_10_1007_s00217_022_04061_4
crossref_primary_10_3390_foods12183461
crossref_primary_10_1021_acs_jafc_1c06110
crossref_primary_10_1007_s10989_020_10142_3
crossref_primary_10_1016_j_jece_2023_110726
crossref_primary_10_1111_jfbc_13090
crossref_primary_10_3390_ijms21030864
crossref_primary_10_3390_md17080463
crossref_primary_10_2174_1381612829666230110141811
crossref_primary_10_1039_D0RA10476K
crossref_primary_10_3389_fsufs_2024_1292297
crossref_primary_10_3390_medicina59020301
crossref_primary_10_1039_D1FO01094H
crossref_primary_10_1016_j_cofs_2020_12_016
crossref_primary_10_1016_j_crfs_2022_10_031
crossref_primary_10_1080_87559129_2021_1936005
crossref_primary_10_1021_acs_jafc_0c06053
crossref_primary_10_1016_j_bcab_2021_102152
crossref_primary_10_1016_j_fshw_2022_06_007
crossref_primary_10_3390_foods11091355
crossref_primary_10_3390_md22040156
crossref_primary_10_1111_1750_3841_15115
crossref_primary_10_3390_molecules25020295
crossref_primary_10_1111_1750_3841_15754
crossref_primary_10_3390_molecules24244562
crossref_primary_10_1080_10667857_2019_1649888
crossref_primary_10_3390_nu12030653
crossref_primary_10_3390_nu11020392
crossref_primary_10_1007_s10989_020_10053_3
Cites_doi 10.1016/j.ijbiomac.2017.03.054
10.1016/j.jff.2015.11.046
10.1016/j.peptides.2011.11.006
10.1271/bbb.60.1353
10.1016/j.jchromb.2017.02.015
10.1021/acs.jafc.7b04196
10.1021/acs.jafc.7b04562
10.1016/j.foodchem.2009.11.018
10.1016/j.foodres.2017.06.002
10.1016/j.idairyj.2017.07.003
10.1016/j.foodchem.2010.09.039
10.1016/j.jff.2012.12.003
10.1021/jf405639w
10.1016/j.procbio.2016.07.006
10.1021/acs.jafc.7b04522
10.1016/j.foodchem.2015.02.004
10.1016/j.jff.2015.06.062
10.1021/acs.jafc.7b04043
10.1016/j.foodchem.2009.04.086
10.1016/j.foodchem.2011.06.051
10.1016/j.foodchem.2017.10.095
10.1016/j.foodchem.2016.10.087
10.1007/s11947-010-0439-9
10.1016/j.phymed.2017.09.013
10.1016/j.jff.2017.03.008
10.1016/j.carbon.2016.05.062
10.1016/0006-2952(71)90292-9
10.3390/md10051066
10.1002/mnfr.200700503
10.1016/j.jff.2015.10.025
10.1016/j.jff.2013.03.008
10.1016/j.lwt.2010.09.009
10.1016/j.jff.2017.06.049
10.1016/j.peptides.2012.08.014
10.1016/j.foodchem.2016.05.087
10.1016/j.foodchem.2017.06.112
10.1016/j.jff.2012.09.006
10.1021/acs.jafc.5b01824
10.1016/j.foodres.2010.02.013
10.1271/bbb.80189
10.1016/j.molcatb.2005.09.002
10.1038/srep00717
10.1016/j.jff.2015.01.050
10.3390/md14100186
10.1021/jf900494d
10.1016/j.ifset.2016.03.014
10.1016/j.foodchem.2015.06.066
10.1016/j.idairyj.2007.09.006
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
DOI 10.1039/c8fo00569a
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Oncogenes and Growth Factors Abstracts

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2042-650X
EndPage 5259
ExternalDocumentID 30229250
10_1039_C8FO00569A
c8fo00569a
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
4.4
53G
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
AAYXX
AFRZK
AKMSF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-976d362283c3d6739dd4084d481b460b35f7da56afb5494aa270e869fae825633
ISSN 2042-6496
2042-650X
IngestDate Fri Jul 11 06:34:33 EDT 2025
Fri Jul 11 09:29:01 EDT 2025
Mon Jun 30 12:04:48 EDT 2025
Wed Feb 19 02:35:36 EST 2025
Tue Jul 01 03:02:08 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Tue Dec 17 21:00:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-976d362283c3d6739dd4084d481b460b35f7da56afb5494aa270e869fae825633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7771-2610
PMID 30229250
PQID 2120829212
PQPubID 2047526
PageCount 9
ParticipantIDs crossref_primary_10_1039_C8FO00569A
rsc_primary_c8fo00569a
proquest_miscellaneous_2220893024
crossref_citationtrail_10_1039_C8FO00569A
proquest_journals_2120829212
proquest_miscellaneous_2121502898
pubmed_primary_30229250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181017
PublicationDateYYYYMMDD 2018-10-17
PublicationDate_xml – month: 10
  year: 2018
  text: 20181017
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Garcia-Moreno (C8FO00569A-(cit36)/*[position()=1]) 2015; 18
Zhuang (C8FO00569A-(cit6)/*[position()=1]) 2010; 48
Toopcham (C8FO00569A-(cit2)/*[position()=1]) 2015; 14
Miguel (C8FO00569A-(cit42)/*[position()=1]) 2008; 52
Wako (C8FO00569A-(cit32)/*[position()=1]) 1996; 60
Orio (C8FO00569A-(cit39)/*[position()=1]) 2017; 65
Balti (C8FO00569A-(cit44)/*[position()=1]) 2010; 43
Shen (C8FO00569A-(cit31)/*[position()=1]) 2005; 37
Lin (C8FO00569A-(cit33)/*[position()=1]) 2017; 32
Masuyer (C8FO00569A-(cit37)/*[position()=1]) 2012; 2
Liang (C8FO00569A-(cit16)/*[position()=1]) 2017; 66
Du (C8FO00569A-(cit47)/*[position()=1]) 2013; 5
Saiga-Egusa (C8FO00569A-(cit9)/*[position()=1]) 2009; 73
Sun (C8FO00569A-(cit22)/*[position()=1]) 2018; 66
Chen (C8FO00569A-(cit46)/*[position()=1]) 2012; 33
Fu (C8FO00569A-(cit4)/*[position()=1]) 2017; 101
Zhuang (C8FO00569A-(cit12)/*[position()=1]) 2012; 5
Quirós (C8FO00569A-(cit43)/*[position()=1]) 2008; 18
Sun (C8FO00569A-(cit15)/*[position()=1]) 2016; 14
Sun (C8FO00569A-(cit10)/*[position()=1]) 2013; 5
Ngo (C8FO00569A-(cit11)/*[position()=1]) 2016; 51
Lee (C8FO00569A-(cit34)/*[position()=1]) 2011; 125
Huang (C8FO00569A-(cit14)/*[position()=1]) 2016; 190
Ding (C8FO00569A-(cit27)/*[position()=1]) 2014; 62
Ghassem (C8FO00569A-(cit35)/*[position()=1]) 2011; 129
Hippauf (C8FO00569A-(cit1)/*[position()=1]) 2016; 107
García-Mora (C8FO00569A-(cit8)/*[position()=1]) 2017; 221
Liu (C8FO00569A-(cit5)/*[position()=1]) 2018; 245
Zhang (C8FO00569A-(cit24)/*[position()=1]) 2017; 36
Georgalaki (C8FO00569A-(cit7)/*[position()=1]) 2017; 75
Hayes (C8FO00569A-(cit3)/*[position()=1]) 2016; 37
Sun (C8FO00569A-(cit49)/*[position()=1]) 2017; 65
Wu (C8FO00569A-(cit40)/*[position()=1]) 2012; 10
Grootaert (C8FO00569A-(cit41)/*[position()=1]) 2017; 99
Xin (C8FO00569A-(cit29)/*[position()=1]) 2013; 5
Sanghoon (C8FO00569A-(cit30)/*[position()=1]) 2010; 118
Ayub Nawaz (C8FO00569A-(cit48)/*[position()=1]) 2017; 36
Zhang (C8FO00569A-(cit18)/*[position()=1]) 2012; 38
Forghani (C8FO00569A-(cit21)/*[position()=1]) 2016; 20
Ding (C8FO00569A-(cit25)/*[position()=1]) 2015; 63
Hou (C8FO00569A-(cit17)/*[position()=1]) 2011; 44
Abdelhedi (C8FO00569A-(cit28)/*[position()=1]) 2018; 239
Pan (C8FO00569A-(cit45)/*[position()=1]) 2016; 211
Guang (C8FO00569A-(cit38)/*[position()=1]) 2009; 57
Lan (C8FO00569A-(cit20)/*[position()=1]) 2015; 182
Gallego (C8FO00569A-(cit26)/*[position()=1]) 2016; 21
Yesmine (C8FO00569A-(cit13)/*[position()=1]) 2017; 1052
Cushman (C8FO00569A-(cit19)/*[position()=1]) 1971; 20
You (C8FO00569A-(cit23)/*[position()=1]) 2010; 120
References_xml – volume: 101
  start-page: 207
  year: 2017
  ident: C8FO00569A-(cit4)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.03.054
– volume: 21
  start-page: 388
  year: 2016
  ident: C8FO00569A-(cit26)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2015.11.046
– volume: 33
  start-page: 52
  year: 2012
  ident: C8FO00569A-(cit46)/*[position()=1]
  publication-title: Peptides
  doi: 10.1016/j.peptides.2011.11.006
– volume: 60
  start-page: 1353
  year: 1996
  ident: C8FO00569A-(cit32)/*[position()=1]
  publication-title: Biosci., Biotechnol., Biochem.
  doi: 10.1271/bbb.60.1353
– volume: 1052
  start-page: 43
  year: 2017
  ident: C8FO00569A-(cit13)/*[position()=1]
  publication-title: J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2017.02.015
– volume: 66
  start-page: 593
  year: 2018
  ident: C8FO00569A-(cit22)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b04196
– volume: 66
  start-page: 1114
  year: 2017
  ident: C8FO00569A-(cit16)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b04562
– volume: 120
  start-page: 810
  year: 2010
  ident: C8FO00569A-(cit23)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2009.11.018
– volume: 99
  start-page: 531
  year: 2017
  ident: C8FO00569A-(cit41)/*[position()=1]
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2017.06.002
– volume: 75
  start-page: 10
  year: 2017
  ident: C8FO00569A-(cit7)/*[position()=1]
  publication-title: Int. Dairy J.
  doi: 10.1016/j.idairyj.2017.07.003
– volume: 125
  start-page: 495
  year: 2011
  ident: C8FO00569A-(cit34)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2010.09.039
– volume: 5
  start-page: 475
  year: 2013
  ident: C8FO00569A-(cit47)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2012.12.003
– volume: 62
  start-page: 3177
  year: 2014
  ident: C8FO00569A-(cit27)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf405639w
– volume: 51
  start-page: 1622
  year: 2016
  ident: C8FO00569A-(cit11)/*[position()=1]
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2016.07.006
– volume: 65
  start-page: 10482
  year: 2017
  ident: C8FO00569A-(cit39)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b04522
– volume: 182
  start-page: 136
  year: 2015
  ident: C8FO00569A-(cit20)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.02.004
– volume: 18
  start-page: 95
  year: 2015
  ident: C8FO00569A-(cit36)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2015.06.062
– volume: 65
  start-page: 10020
  year: 2017
  ident: C8FO00569A-(cit49)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b04043
– volume: 118
  start-page: 96
  year: 2010
  ident: C8FO00569A-(cit30)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2009.04.086
– volume: 129
  start-page: 1770
  year: 2011
  ident: C8FO00569A-(cit35)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2011.06.051
– volume: 245
  start-page: 471
  year: 2018
  ident: C8FO00569A-(cit5)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.10.095
– volume: 221
  start-page: 464
  year: 2017
  ident: C8FO00569A-(cit8)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.10.087
– volume: 5
  start-page: 1622
  year: 2012
  ident: C8FO00569A-(cit12)/*[position()=1]
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-010-0439-9
– volume: 36
  start-page: 1
  year: 2017
  ident: C8FO00569A-(cit48)/*[position()=1]
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2017.09.013
– volume: 32
  start-page: 266
  year: 2017
  ident: C8FO00569A-(cit33)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2017.03.008
– volume: 107
  start-page: 116
  year: 2016
  ident: C8FO00569A-(cit1)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.05.062
– volume: 20
  start-page: 1637
  year: 1971
  ident: C8FO00569A-(cit19)/*[position()=1]
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/0006-2952(71)90292-9
– volume: 10
  start-page: 1066
  year: 2012
  ident: C8FO00569A-(cit40)/*[position()=1]
  publication-title: Mar. Drugs
  doi: 10.3390/md10051066
– volume: 52
  start-page: 1507
  year: 2008
  ident: C8FO00569A-(cit42)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.200700503
– volume: 20
  start-page: 276
  year: 2016
  ident: C8FO00569A-(cit21)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2015.10.025
– volume: 5
  start-page: 1116
  year: 2013
  ident: C8FO00569A-(cit29)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2013.03.008
– volume: 44
  start-page: 421
  year: 2011
  ident: C8FO00569A-(cit17)/*[position()=1]
  publication-title: LWT–Food Sci. Technol.
  doi: 10.1016/j.lwt.2010.09.009
– volume: 36
  start-page: 72
  year: 2017
  ident: C8FO00569A-(cit24)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2017.06.049
– volume: 38
  start-page: 13
  year: 2012
  ident: C8FO00569A-(cit18)/*[position()=1]
  publication-title: Peptides
  doi: 10.1016/j.peptides.2012.08.014
– volume: 211
  start-page: 423
  year: 2016
  ident: C8FO00569A-(cit45)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.05.087
– volume: 239
  start-page: 453
  year: 2018
  ident: C8FO00569A-(cit28)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.06.112
– volume: 5
  start-page: 154
  year: 2013
  ident: C8FO00569A-(cit10)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2012.09.006
– volume: 63
  start-page: 8143
  year: 2015
  ident: C8FO00569A-(cit25)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b01824
– volume: 43
  start-page: 1136
  year: 2010
  ident: C8FO00569A-(cit44)/*[position()=1]
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2010.02.013
– volume: 73
  start-page: 422
  year: 2009
  ident: C8FO00569A-(cit9)/*[position()=1]
  publication-title: Biosci., Biotechnol., Biochem.
  doi: 10.1271/bbb.80189
– volume: 37
  start-page: 26
  year: 2005
  ident: C8FO00569A-(cit31)/*[position()=1]
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2005.09.002
– volume: 2
  start-page: 717
  year: 2012
  ident: C8FO00569A-(cit37)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00717
– volume: 14
  start-page: 435
  year: 2015
  ident: C8FO00569A-(cit2)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2015.01.050
– volume: 14
  start-page: 186
  year: 2016
  ident: C8FO00569A-(cit15)/*[position()=1]
  publication-title: Mar. Drugs
  doi: 10.3390/md14100186
– volume: 57
  start-page: 5113
  year: 2009
  ident: C8FO00569A-(cit38)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf900494d
– volume: 48
  start-page: 222
  year: 2010
  ident: C8FO00569A-(cit6)/*[position()=1]
  publication-title: Food Technol. Biotechnol.
– volume: 37
  start-page: 253
  year: 2016
  ident: C8FO00569A-(cit3)/*[position()=1]
  publication-title: Innovative Food Sci. Emerging Technol.
  doi: 10.1016/j.ifset.2016.03.014
– volume: 190
  start-page: 997
  year: 2016
  ident: C8FO00569A-(cit14)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.06.066
– volume: 18
  start-page: 279
  year: 2008
  ident: C8FO00569A-(cit43)/*[position()=1]
  publication-title: Int. Dairy J.
  doi: 10.1016/j.idairyj.2007.09.006
SSID ssj0000399898
Score 2.4277809
Snippet Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5251
SubjectTerms active sites
Amino acids
Angiotensin
Angiotensin-Converting Enzyme Inhibitors - chemistry
Angiotensin-Converting Enzyme Inhibitors - isolation & purification
Angiotensin-Converting Enzyme Inhibitors - metabolism
Animals
Biological Transport
Caco-2 Cells
chromatography
computer simulation
Conversion
Digestive system
Enzymes
Fish Proteins - chemistry
Fish Proteins - isolation & purification
Fish Proteins - metabolism
functional foods
Functional foods & nutraceuticals
gastrointestinal system
Gastrointestinal tract
Gelatin
Gelatin - chemistry
human cell lines
Humans
Hydrogen Bonding
Hydrogen bonds
Hydrolysates
Hydrolysis
Hypertension
in vitro digestion
ingredients
inhibitory concentration 50
Kinetics
Molecular docking
Molecular Docking Simulation
Peptide Mapping
Peptides
Peptides - chemistry
Peptides - isolation & purification
Peptides - metabolism
Peptidyl-Dipeptidase A - chemistry
Peptidyl-Dipeptidase A - metabolism
Protein Hydrolysates - chemistry
Skin
Skin - chemistry
Skin preparations
Tilapia
Transport
Title Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: inhibition kinetics and molecular docking
URI https://www.ncbi.nlm.nih.gov/pubmed/30229250
https://www.proquest.com/docview/2120829212
https://www.proquest.com/docview/2121502898
https://www.proquest.com/docview/2220893024
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sIL4jYIDGQEQkJVII3tJOatDMa4DR42MfZSObbTRnTJ1AtS9zf4HfxHjh3nMq1DwEvaOkeOpfP1-DvOuSD0JAuyQcYHmU80oz5lkvoCfDafDgSjaRzLhJh850_70d4hfX_Ejnq9n52opeUifS7P1uaV_I9WYQz0arJk_0GzzaQwAN9Bv3AFDcP1r3T8Zaar0t0upDhXLvan4YFF-UObqhqTPM3t63RRjPPSRq0X_jvfxpzPbOSzLs5WJ7p_aqJclJ67vJPcJLuJ_vx7XvTHNm6u6E9WalZOV3PDUs2BgpvdPBHEdFP3-aTuvNtXYHTrLbJpCVoqCzuzsXaDAT66Jivflp1oIdNguzrWXhatnTIZyO64-3gC4uPuEcbA1pOtMjYrSxeaHKGIclcTuzPGgqOuqeYXEFmZXRa6qrW6_snXbg8BMdVVZZKVpgQq72yCTWhie_MK2gzB9wDjuTn88Ort1-boDmYxXTdN28J64XXhW8JftBOcpzoX_BdgM7O6y4xlMwfX0TXnhuBhhakbqKeLm8h7nesFfopdrdgp3q9bNdxCvzpYw6BdfB5ruMywxRpusYYvwxqusIZrrGGDNeywhg3WsMMa7mLtJW6Rhmuk2bU0SMMOabfR4e6bg50937X68CWJg4UPpFgBlQKuK4mKYsKVokFCFQWvikZBSlgWK8EikaWMcipEGAc6iXgmdAKknZAttFGUhb6LsBQJk2kWUqk55SpKKQkHOpREMhWLMPPQs1orI-nq4Jt2LNORjccgfLST7H62Ghx66HEje1pVf1krtV0rd-Ssw3wElNCkrcOHhx41t8F2mxdyotDl0sqAPxYClv4gE8I8nACV9tCdCjjNUmAUnsACD20BkprhFoH3LrtxH11t_4jbaGMxW-oHwK4X6UOH9t9eWdp4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+and+identification+of+novel+inhibitory+angiotensin-I-converting+enzyme+peptides+from+tilapia+skin+gelatin+hydrolysates%3A+inhibition+kinetics+and+molecular+docking&rft.jtitle=Food+%26+function&rft.au=Ling%2C+Yuan&rft.au=Liping%2C+Sun&rft.au=Yongliang%2C+Zhuang&rft.date=2018-10-17&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=9&rft.issue=1&rft.spage=5251&rft.epage=5259&rft_id=info:doi/10.1039%2Fc8fo00569a&rft.externalDocID=c8fo00569a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon