Behavior of auxetic structures under compression and impact forces

In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke's law but still show the properties of negative Poisson's ratios (NPR). One potential application is body protection pads that are...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 27; no. 2; pp. 25012 - 25023
Main Authors Yang, Chulho, Vora, Hitesh D, Chang, Young
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke's law but still show the properties of negative Poisson's ratios (NPR). One potential application is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industrial workers, law enforcement and military personnel, and athletes. This paper reports an integrated theoretical, computational, and experimental investigation conducted for typical auxetic materials that exhibit NPR properties. Parametric 3D CAD models of auxetic structures such as re-entrant hexagonal cells and arrowheads were developed. Then, key structural characteristics of protection pads were evaluated through static analyses of FEA models. Finally, impact analyses were conducted through dynamic simulations of FEA models to validate the results obtained from the static analyses. Efforts were also made to relate the individual and/or combined effect of auxetic structures and materials to the overall stiffness and shock-absorption performance of the protection pads. An advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic structures. Three different materials typically used for fused deposition modeling technology, namely polylactic acid (PLA) and thermoplastic polyurethane material (NinjaFlex and SemiFlex ), were used for different stiffness and shock-absorption properties. The 3D printed prototypes were then tested and the results were compared to the computational predictions. The results showed that the auxetic material could be effective in reducing the shock forces. Each structure and material combination demonstrated unique structural properties such as stiffness, Poisson's ratio, and efficiency in shock absorption. Auxetic structures showed better shock absorption performance than non-auxetic ones. The mechanism for ideal input force distribution or shunting could be suggested for designing protectors using various shapes, thicknesses, and materials of auxetic materials to reduce the risk of injury.
AbstractList In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke's law but still show the properties of negative Poisson's ratios (NPR). One potential application is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industrial workers, law enforcement and military personnel, and athletes. This paper reports an integrated theoretical, computational, and experimental investigation conducted for typical auxetic materials that exhibit NPR properties. Parametric 3D CAD models of auxetic structures such as re-entrant hexagonal cells and arrowheads were developed. Then, key structural characteristics of protection pads were evaluated through static analyses of FEA models. Finally, impact analyses were conducted through dynamic simulations of FEA models to validate the results obtained from the static analyses. Efforts were also made to relate the individual and/or combined effect of auxetic structures and materials to the overall stiffness and shock-absorption performance of the protection pads. An advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic structures. Three different materials typically used for fused deposition modeling technology, namely polylactic acid (PLA) and thermoplastic polyurethane material (NinjaFlex and SemiFlex ), were used for different stiffness and shock-absorption properties. The 3D printed prototypes were then tested and the results were compared to the computational predictions. The results showed that the auxetic material could be effective in reducing the shock forces. Each structure and material combination demonstrated unique structural properties such as stiffness, Poisson's ratio, and efficiency in shock absorption. Auxetic structures showed better shock absorption performance than non-auxetic ones. The mechanism for ideal input force distribution or shunting could be suggested for designing protectors using various shapes, thicknesses, and materials of auxetic materials to reduce the risk of injury.
Author Chang, Young
Yang, Chulho
Vora, Hitesh D
Author_xml – sequence: 1
  givenname: Chulho
  orcidid: 0000-0001-6228-1133
  surname: Yang
  fullname: Yang, Chulho
  email: chulho.yang@okstate.edu
  organization: Oklahoma State University Mechanical Engineering Technology, Stillwater, OK 74078, United States of America
– sequence: 2
  givenname: Hitesh D
  orcidid: 0000-0001-8504-0455
  surname: Vora
  fullname: Vora, Hitesh D
  organization: Oklahoma State University Mechanical Engineering Technology, Stillwater, OK 74078, United States of America
– sequence: 3
  givenname: Young
  surname: Chang
  fullname: Chang, Young
  organization: Oklahoma State University Mechanical Engineering Technology, Stillwater, OK 74078, United States of America
BookMark eNp9kEtLxDAUhYOM4Mzo3mV2bqyTpE2aLp3BFwy4UXAX8sQM06Ykqei_t2XEhairy72cc7jfWYBZFzoLwDlGVxhxvsIlwwVj9GUlpSy1OwLz79MMzFHDqgLXhJ2ARUo7hDDmJZ6D9dq-yjcfIgwOyuHdZq9hynHQeYg2waEzNkId2n7ckg8dlJ2Bvu2lztCFqG06BcdO7pM9-5pL8Hx787S5L7aPdw-b622hyxrlgtOqUU1JdKOoYrxWDJXcWKPGD5k12ipEHK3qxhrJKs4pcpjyCmFqG0WcKZcAHXJ1DClF60QffSvjh8BITB2ICVhMwOLQwWhhPyzaZ5lHjByl3_9nvDgYfejFLgyxG8lEapMgtSACEYowEb2ZlJe_KP8M_gTIMIDA
CODEN SMSTER
CitedBy_id crossref_primary_10_1002_adem_202201336
crossref_primary_10_1080_15397734_2024_2345762
crossref_primary_10_1109_JSEN_2023_3339835
crossref_primary_10_1016_j_jobe_2020_101939
crossref_primary_10_1016_j_tws_2019_106385
crossref_primary_10_1177_2041419619858087
crossref_primary_10_1177_20414196221079366
crossref_primary_10_1016_j_matpr_2023_05_631
crossref_primary_10_1007_s40430_023_04178_x
crossref_primary_10_1063_5_0194238
crossref_primary_10_1108_RPJ_05_2020_0107
crossref_primary_10_3390_polym15041008
crossref_primary_10_1038_s41598_023_39200_8
crossref_primary_10_1080_15376494_2021_1980926
crossref_primary_10_1016_j_rineng_2024_101922
crossref_primary_10_1007_s41939_018_00040_z
crossref_primary_10_1177_14644207231195476
crossref_primary_10_1177_0040517520919750
crossref_primary_10_29109_gujsc_1346281
crossref_primary_10_1016_j_compstruct_2021_113995
crossref_primary_10_3390_polym15143096
crossref_primary_10_1080_00405167_2022_2087400
crossref_primary_10_1016_j_tws_2024_112399
crossref_primary_10_1007_s12572_021_00286_w
crossref_primary_10_1016_j_ijimpeng_2022_104315
crossref_primary_10_1016_j_eml_2018_11_001
crossref_primary_10_1088_1361_665X_ad8cb4
crossref_primary_10_1088_1361_665X_ac2811
crossref_primary_10_1016_j_jsv_2019_115038
crossref_primary_10_1016_j_ijimpeng_2022_104186
crossref_primary_10_1186_s40691_021_00273_6
crossref_primary_10_1007_s40964_025_00980_2
crossref_primary_10_1016_j_matdes_2019_107917
crossref_primary_10_1088_1361_665X_ad026d
crossref_primary_10_1108_RPJ_10_2019_0271
crossref_primary_10_1088_2631_8695_acea56
crossref_primary_10_1017_pds_2021_95
crossref_primary_10_1016_j_compstruct_2021_114289
crossref_primary_10_1016_j_engstruct_2023_115775
crossref_primary_10_1016_j_ijlmm_2025_02_002
crossref_primary_10_1016_j_matdes_2024_112885
crossref_primary_10_1016_j_matdes_2021_110341
crossref_primary_10_1088_1361_665X_ad1b24
crossref_primary_10_3390_mi14061165
crossref_primary_10_1016_j_ijmecsci_2025_109963
crossref_primary_10_1080_15376494_2023_2253803
crossref_primary_10_1002_pssb_201900197
crossref_primary_10_3390_polym14204369
crossref_primary_10_1016_j_matpr_2021_09_105
crossref_primary_10_3390_app14125291
crossref_primary_10_1002_mame_202000238
crossref_primary_10_1080_15376494_2024_2361452
crossref_primary_10_1177_10996362241305836
crossref_primary_10_1016_j_compstruct_2024_117921
crossref_primary_10_1016_j_istruc_2024_106457
crossref_primary_10_1016_j_compstruct_2023_117500
crossref_primary_10_1016_j_mtcomm_2022_103159
crossref_primary_10_1177_1099636220975450
crossref_primary_10_1016_j_istruc_2022_09_091
crossref_primary_10_1002_adem_202302033
crossref_primary_10_1016_j_ijimpeng_2023_104759
crossref_primary_10_1093_jcde_qwad010
crossref_primary_10_3390_met14111272
crossref_primary_10_1016_j_jcomc_2021_100217
crossref_primary_10_1016_j_istruc_2025_108396
crossref_primary_10_1016_j_mtcomm_2020_101102
crossref_primary_10_3390_nano11020446
crossref_primary_10_7736_JKSPE_021_024
crossref_primary_10_1016_j_compositesb_2021_109393
crossref_primary_10_1007_s40430_024_04927_6
crossref_primary_10_1088_1361_665X_ad840d
crossref_primary_10_1177_00219983241233933
crossref_primary_10_3390_s23239544
crossref_primary_10_1016_j_compositesb_2020_108340
crossref_primary_10_1016_j_tws_2021_108530
crossref_primary_10_1177_10996362241248037
crossref_primary_10_1016_j_matdes_2018_11_002
crossref_primary_10_3390_en17010160
crossref_primary_10_3390_app8060941
crossref_primary_10_1016_j_ijmecsci_2020_105466
crossref_primary_10_1016_j_tws_2022_110465
crossref_primary_10_1016_j_matpr_2020_06_075
crossref_primary_10_1039_D4MH01275E
crossref_primary_10_1002_adem_202400849
crossref_primary_10_1088_1361_665X_ad59e4
crossref_primary_10_1007_s00158_021_02961_9
crossref_primary_10_1515_rams_2024_0021
crossref_primary_10_1080_15376494_2022_2139874
crossref_primary_10_1002_adem_201901266
crossref_primary_10_1016_j_jmrt_2022_08_064
crossref_primary_10_3390_polym12092120
crossref_primary_10_1016_j_eml_2024_102124
crossref_primary_10_1088_1361_665X_ac3c08
crossref_primary_10_1016_j_jmrt_2022_12_063
crossref_primary_10_1016_j_ijmecsci_2022_107999
crossref_primary_10_1007_s12221_020_9507_6
crossref_primary_10_1002_pc_28259
crossref_primary_10_1002_adem_202101811
crossref_primary_10_1016_j_tws_2024_112354
crossref_primary_10_1016_j_ijmecsci_2023_108102
crossref_primary_10_1080_00150193_2023_2271332
crossref_primary_10_1177_14644207211021933
crossref_primary_10_2298_TAM211103002T
crossref_primary_10_1021_acsbiomaterials_2c00109
crossref_primary_10_1002_pssb_202000150
crossref_primary_10_3390_jcs6070192
crossref_primary_10_1016_j_tws_2020_107420
crossref_primary_10_1016_j_tws_2021_108314
crossref_primary_10_1088_1361_665X_acf62e
crossref_primary_10_1016_j_mtcomm_2022_104315
crossref_primary_10_1016_j_matpr_2021_11_326
crossref_primary_10_1016_j_tws_2024_112348
crossref_primary_10_3389_fmech_2023_1204893
crossref_primary_10_1080_15376494_2021_2000076
crossref_primary_10_1002_pc_27193
crossref_primary_10_1016_j_engstruct_2022_115377
crossref_primary_10_1007_s12008_023_01682_1
crossref_primary_10_1016_j_engstruct_2022_114682
crossref_primary_10_1177_0887302X231202223
crossref_primary_10_33793_acperpro_01_01_52
crossref_primary_10_1016_j_ijmecsci_2023_108597
crossref_primary_10_3390_eng4010054
crossref_primary_10_1016_j_coco_2023_101744
crossref_primary_10_1016_j_compstruct_2021_114907
crossref_primary_10_1016_j_mtcomm_2024_110470
crossref_primary_10_1016_j_ast_2024_108995
crossref_primary_10_1186_s41038_018_0121_4
crossref_primary_10_3390_app14052082
crossref_primary_10_1080_15376494_2024_2328754
crossref_primary_10_1115_1_4040514
crossref_primary_10_1016_j_matdes_2019_107840
crossref_primary_10_3390_ma14185378
crossref_primary_10_1080_10426914_2020_1819544
crossref_primary_10_3390_robotics8040103
crossref_primary_10_1016_j_ast_2020_106107
crossref_primary_10_1080_17452759_2023_2224300
crossref_primary_10_1080_17452759_2019_1644184
crossref_primary_10_1016_j_cemconcomp_2023_105266
crossref_primary_10_1016_j_ijmecsci_2023_108767
crossref_primary_10_1016_j_compstruct_2022_116550
crossref_primary_10_3389_fmats_2019_00086
crossref_primary_10_1007_s11665_022_07074_y
crossref_primary_10_1177_20414196211069574
crossref_primary_10_1016_j_engstruct_2025_119681
crossref_primary_10_1016_j_mtcomm_2023_108020
Cites_doi 10.1126/science.235.4792.1038
10.1016/j.compstruct.2016.03.044
10.1007/BF01130170
10.1023/A:1021688009461
10.1016/j.compstruct.2015.09.038
10.1115/SMASIS2016-9208
10.1080/13588265.2017.1328764
10.1088/0964-1726/25/5/054014
10.1115/IMECE2016-67588
10.1243/0309324001514152
10.1111/ffe.12381
10.1002/pssb.201384255
10.1002/pssb.201384249
10.1016/j.compstruct.2016.10.018
10.1002/pssb.201384257
10.1177/1045389X11414226
10.1016/j.msea.2008.11.002
10.1016/j.mechmat.2004.08.001
10.1016/j.compositesa.2013.02.007
10.1103/PhysRevLett.87.148103
10.1016/j.ijsolstr.2015.10.020
10.1002/pssb.201600015
10.1016/j.compositesb.2013.10.084
10.1016/j.jsv.2007.10.033
10.1016/j.ijengsci.2012.01.010
10.1016/j.compscitech.2010.02.007
10.1002/pssb.201384232
10.1016/j.proeng.2014.06.079
10.1002/pssb.201451715
10.1007/s00198-009-1045-4
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd
Copyright_xml – notice: 2018 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/aaa3cf
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Behavior Of Auxetic Structures Under Compression And Impact Forces
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_aaa3cf
smsaaa3cf
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c370t-8549b932c9b5b687b6038dedb6656edceb02f5479eda648850f1584015e9b2fd3
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Tue Jul 01 03:38:39 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Aug 21 03:40:36 EDT 2024
Thu Jan 07 13:52:42 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-8549b932c9b5b687b6038dedb6656edceb02f5479eda648850f1584015e9b2fd3
Notes SMS-105896.R1
ORCID 0000-0001-8504-0455
0000-0001-6228-1133
PageCount 12
ParticipantIDs iop_journals_10_1088_1361_665X_aaa3cf
crossref_citationtrail_10_1088_1361_665X_aaa3cf
crossref_primary_10_1088_1361_665X_aaa3cf
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Duncan O (18) 2016; 25
22
23
24
25
Lim T-C (27) 2014
26
29
Underhill R (15) 2014; 1
Control USCfD (28) 2011
Liu Y (13) 2010; 5
30
31
10
32
NinjaTek (34) 2017
11
33
12
35
14
16
17
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 10
  doi: 10.1126/science.235.4792.1038
– ident: 6
  doi: 10.1016/j.compstruct.2016.03.044
– year: 2011
  ident: 28
– ident: 11
  doi: 10.1007/BF01130170
– ident: 1
  doi: 10.1023/A:1021688009461
– ident: 20
  doi: 10.1016/j.compstruct.2015.09.038
– ident: 31
  doi: 10.1115/SMASIS2016-9208
– ident: 9
  doi: 10.1080/13588265.2017.1328764
– volume: 25
  issn: 0964-1726
  year: 2016
  ident: 18
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/5/054014
– year: 2017
  ident: 34
– ident: 30
  doi: 10.1115/IMECE2016-67588
– ident: 25
  doi: 10.1243/0309324001514152
– ident: 22
  doi: 10.1111/ffe.12381
– volume: 5
  start-page: 1052
  year: 2010
  ident: 13
  publication-title: Sci. Res. Essays
– ident: 33
  doi: 10.1002/pssb.201384255
– ident: 21
  doi: 10.1002/pssb.201384249
– volume: 1
  start-page: 7
  year: 2014
  ident: 15
  publication-title: Adv. Mater.
– ident: 8
  doi: 10.1016/j.compstruct.2016.10.018
– ident: 32
  doi: 10.1002/pssb.201384257
– ident: 3
  doi: 10.1177/1045389X11414226
– ident: 23
  doi: 10.1016/j.msea.2008.11.002
– ident: 35
  doi: 10.1016/j.mechmat.2004.08.001
– year: 2014
  ident: 27
  publication-title: Auxetic Materials and Structures
– ident: 4
  doi: 10.1016/j.compositesa.2013.02.007
– ident: 12
  doi: 10.1103/PhysRevLett.87.148103
– ident: 16
  doi: 10.1016/j.ijsolstr.2015.10.020
– ident: 7
  doi: 10.1002/pssb.201600015
– ident: 5
  doi: 10.1016/j.compositesb.2013.10.084
– ident: 24
  doi: 10.1016/j.jsv.2007.10.033
– ident: 26
  doi: 10.1016/j.ijengsci.2012.01.010
– ident: 2
  doi: 10.1016/j.compscitech.2010.02.007
– ident: 19
  doi: 10.1002/pssb.201384232
– ident: 14
  doi: 10.1016/j.proeng.2014.06.079
– ident: 17
  doi: 10.1002/pssb.201451715
– ident: 29
  doi: 10.1007/s00198-009-1045-4
SSID ssj0011831
Score 2.600996
Snippet In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 25012
SubjectTerms 3D printing
additive manufacturing
auxetic material
finite element analysis
impact
negative Poisson's ratio
protection
Title Behavior of auxetic structures under compression and impact forces
URI https://iopscience.iop.org/article/10.1088/1361-665X/aaa3cf
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aiqAHH1WxvshBDx7S7jObxZOKpQg-DhZ6EMImu7mo29JtQfz1Tjbb0ooU8baH2SRMHvMNme8LwLnPmeHnxtSwqGjgeooaFXJD1JUYcRnTpVzTwyPr9YP7QTiowdWcCzMcVUd_Gz-tULB1YVUQxzuuz1zKWDjoJEniK12HNeyRley9p-f5FQKu1fK5vJgFFKP07I7ytxaWYlId-10IMd1teJ0NzlaWvLWnE9lWXz90G_85-h3YqqAnubamu1DL8iZsLggSNmG9LAhVxR7cVMKJYzLUJJl-Gq4jsWKzU8zQieGejYkpSLeFtDlJ8pRYziVBIIzHzz70u3cvtz1avbdAlR85E8oxV5SI51QsQ8l4JJnj8zRLJQ6XmWpR6Xg6DKI4SxOGGz90tIv4BQFFFktPp_4BNPJhnh0CiTRzZILJnvJ8zKncmKeeH4dhgoCU6cxpQWfmcaEqMXLzJsa7KC_FORfGT8L4SVg_teBy_sfICnGssL1A94tqNxYr7MiSXfFRCC8SnjDA0PXEKNVHf2zqGDYQSnFbz30CDZyP7BThykSelcvyGxL34fo
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB3RIhAcWAqIsvoABw5pFjeOc2SrylZ6oFJvJk7iC5BWXSTE1zOO06pFqELilsPEScaO54087w3AGeVM83NDS7OorLrrxZZWIddEXYkRlzGVyzU9tVizU7_v-t2iz2nOhen1i62_hpdGKNi4sCiI47ZLmWsx5nftKIporOx-okqw7FOMnZrB99yeHiPges1b5oWsbmGknpxT_jbKXFwq4bNnwkxjE14nL2iqS95q45GsxV8_tBv_8QVbsFFAUHJpzLdhKc0qsD4jTFiBlbwwNB7uwFUhoDggPUWi8afmPBIjOjvGTJ1oDtqA6MJ0U1CbkShLiOFeEgTEuA3tQqdx-3LdtIq-C1ZMA2dkccwZJeK6OJS-ZDyQzKE8SROJr8x01ah0POXXgzBNIoYbgO8oF3EMAos0lJ5K6B6Us16W7gMJFHNkhElf7FHMrdyQJx4NfT9CYMpU6lTBnnhdxIUoue6N8S7yw3HOhfaV0L4SxldVuJje0TeCHAtsz3EKRPFXDhfYkTm74cdQeIHwhAaIridweg7-ONQprLZvGuLxrvVwCGuIrrgp8T6CMk5NeowIZiRP8lX6DTba514
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavior+of+auxetic+structures+under+compression+and+impact+forces&rft.jtitle=Smart+materials+and+structures&rft.au=Yang%2C+Chulho&rft.au=Vora%2C+Hitesh+D&rft.au=Chang%2C+Young&rft.date=2018-02-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1088%2F1361-665X%2Faaa3cf&rft.externalDocID=smsaaa3cf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon