Behavior of auxetic structures under compression and impact forces
In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke's law but still show the properties of negative Poisson's ratios (NPR). One potential application is body protection pads that are...
Saved in:
Published in | Smart materials and structures Vol. 27; no. 2; pp. 25012 - 25023 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke's law but still show the properties of negative Poisson's ratios (NPR). One potential application is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industrial workers, law enforcement and military personnel, and athletes. This paper reports an integrated theoretical, computational, and experimental investigation conducted for typical auxetic materials that exhibit NPR properties. Parametric 3D CAD models of auxetic structures such as re-entrant hexagonal cells and arrowheads were developed. Then, key structural characteristics of protection pads were evaluated through static analyses of FEA models. Finally, impact analyses were conducted through dynamic simulations of FEA models to validate the results obtained from the static analyses. Efforts were also made to relate the individual and/or combined effect of auxetic structures and materials to the overall stiffness and shock-absorption performance of the protection pads. An advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic structures. Three different materials typically used for fused deposition modeling technology, namely polylactic acid (PLA) and thermoplastic polyurethane material (NinjaFlex and SemiFlex ), were used for different stiffness and shock-absorption properties. The 3D printed prototypes were then tested and the results were compared to the computational predictions. The results showed that the auxetic material could be effective in reducing the shock forces. Each structure and material combination demonstrated unique structural properties such as stiffness, Poisson's ratio, and efficiency in shock absorption. Auxetic structures showed better shock absorption performance than non-auxetic ones. The mechanism for ideal input force distribution or shunting could be suggested for designing protectors using various shapes, thicknesses, and materials of auxetic materials to reduce the risk of injury. |
---|---|
AbstractList | In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke's law but still show the properties of negative Poisson's ratios (NPR). One potential application is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industrial workers, law enforcement and military personnel, and athletes. This paper reports an integrated theoretical, computational, and experimental investigation conducted for typical auxetic materials that exhibit NPR properties. Parametric 3D CAD models of auxetic structures such as re-entrant hexagonal cells and arrowheads were developed. Then, key structural characteristics of protection pads were evaluated through static analyses of FEA models. Finally, impact analyses were conducted through dynamic simulations of FEA models to validate the results obtained from the static analyses. Efforts were also made to relate the individual and/or combined effect of auxetic structures and materials to the overall stiffness and shock-absorption performance of the protection pads. An advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic structures. Three different materials typically used for fused deposition modeling technology, namely polylactic acid (PLA) and thermoplastic polyurethane material (NinjaFlex and SemiFlex ), were used for different stiffness and shock-absorption properties. The 3D printed prototypes were then tested and the results were compared to the computational predictions. The results showed that the auxetic material could be effective in reducing the shock forces. Each structure and material combination demonstrated unique structural properties such as stiffness, Poisson's ratio, and efficiency in shock absorption. Auxetic structures showed better shock absorption performance than non-auxetic ones. The mechanism for ideal input force distribution or shunting could be suggested for designing protectors using various shapes, thicknesses, and materials of auxetic materials to reduce the risk of injury. |
Author | Chang, Young Yang, Chulho Vora, Hitesh D |
Author_xml | – sequence: 1 givenname: Chulho orcidid: 0000-0001-6228-1133 surname: Yang fullname: Yang, Chulho email: chulho.yang@okstate.edu organization: Oklahoma State University Mechanical Engineering Technology, Stillwater, OK 74078, United States of America – sequence: 2 givenname: Hitesh D orcidid: 0000-0001-8504-0455 surname: Vora fullname: Vora, Hitesh D organization: Oklahoma State University Mechanical Engineering Technology, Stillwater, OK 74078, United States of America – sequence: 3 givenname: Young surname: Chang fullname: Chang, Young organization: Oklahoma State University Mechanical Engineering Technology, Stillwater, OK 74078, United States of America |
BookMark | eNp9kEtLxDAUhYOM4Mzo3mV2bqyTpE2aLp3BFwy4UXAX8sQM06Ykqei_t2XEhairy72cc7jfWYBZFzoLwDlGVxhxvsIlwwVj9GUlpSy1OwLz79MMzFHDqgLXhJ2ARUo7hDDmJZ6D9dq-yjcfIgwOyuHdZq9hynHQeYg2waEzNkId2n7ckg8dlJ2Bvu2lztCFqG06BcdO7pM9-5pL8Hx787S5L7aPdw-b622hyxrlgtOqUU1JdKOoYrxWDJXcWKPGD5k12ipEHK3qxhrJKs4pcpjyCmFqG0WcKZcAHXJ1DClF60QffSvjh8BITB2ICVhMwOLQwWhhPyzaZ5lHjByl3_9nvDgYfejFLgyxG8lEapMgtSACEYowEb2ZlJe_KP8M_gTIMIDA |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1002_adem_202201336 crossref_primary_10_1080_15397734_2024_2345762 crossref_primary_10_1109_JSEN_2023_3339835 crossref_primary_10_1016_j_jobe_2020_101939 crossref_primary_10_1016_j_tws_2019_106385 crossref_primary_10_1177_2041419619858087 crossref_primary_10_1177_20414196221079366 crossref_primary_10_1016_j_matpr_2023_05_631 crossref_primary_10_1007_s40430_023_04178_x crossref_primary_10_1063_5_0194238 crossref_primary_10_1108_RPJ_05_2020_0107 crossref_primary_10_3390_polym15041008 crossref_primary_10_1038_s41598_023_39200_8 crossref_primary_10_1080_15376494_2021_1980926 crossref_primary_10_1016_j_rineng_2024_101922 crossref_primary_10_1007_s41939_018_00040_z crossref_primary_10_1177_14644207231195476 crossref_primary_10_1177_0040517520919750 crossref_primary_10_29109_gujsc_1346281 crossref_primary_10_1016_j_compstruct_2021_113995 crossref_primary_10_3390_polym15143096 crossref_primary_10_1080_00405167_2022_2087400 crossref_primary_10_1016_j_tws_2024_112399 crossref_primary_10_1007_s12572_021_00286_w crossref_primary_10_1016_j_ijimpeng_2022_104315 crossref_primary_10_1016_j_eml_2018_11_001 crossref_primary_10_1088_1361_665X_ad8cb4 crossref_primary_10_1088_1361_665X_ac2811 crossref_primary_10_1016_j_jsv_2019_115038 crossref_primary_10_1016_j_ijimpeng_2022_104186 crossref_primary_10_1186_s40691_021_00273_6 crossref_primary_10_1007_s40964_025_00980_2 crossref_primary_10_1016_j_matdes_2019_107917 crossref_primary_10_1088_1361_665X_ad026d crossref_primary_10_1108_RPJ_10_2019_0271 crossref_primary_10_1088_2631_8695_acea56 crossref_primary_10_1017_pds_2021_95 crossref_primary_10_1016_j_compstruct_2021_114289 crossref_primary_10_1016_j_engstruct_2023_115775 crossref_primary_10_1016_j_ijlmm_2025_02_002 crossref_primary_10_1016_j_matdes_2024_112885 crossref_primary_10_1016_j_matdes_2021_110341 crossref_primary_10_1088_1361_665X_ad1b24 crossref_primary_10_3390_mi14061165 crossref_primary_10_1016_j_ijmecsci_2025_109963 crossref_primary_10_1080_15376494_2023_2253803 crossref_primary_10_1002_pssb_201900197 crossref_primary_10_3390_polym14204369 crossref_primary_10_1016_j_matpr_2021_09_105 crossref_primary_10_3390_app14125291 crossref_primary_10_1002_mame_202000238 crossref_primary_10_1080_15376494_2024_2361452 crossref_primary_10_1177_10996362241305836 crossref_primary_10_1016_j_compstruct_2024_117921 crossref_primary_10_1016_j_istruc_2024_106457 crossref_primary_10_1016_j_compstruct_2023_117500 crossref_primary_10_1016_j_mtcomm_2022_103159 crossref_primary_10_1177_1099636220975450 crossref_primary_10_1016_j_istruc_2022_09_091 crossref_primary_10_1002_adem_202302033 crossref_primary_10_1016_j_ijimpeng_2023_104759 crossref_primary_10_1093_jcde_qwad010 crossref_primary_10_3390_met14111272 crossref_primary_10_1016_j_jcomc_2021_100217 crossref_primary_10_1016_j_istruc_2025_108396 crossref_primary_10_1016_j_mtcomm_2020_101102 crossref_primary_10_3390_nano11020446 crossref_primary_10_7736_JKSPE_021_024 crossref_primary_10_1016_j_compositesb_2021_109393 crossref_primary_10_1007_s40430_024_04927_6 crossref_primary_10_1088_1361_665X_ad840d crossref_primary_10_1177_00219983241233933 crossref_primary_10_3390_s23239544 crossref_primary_10_1016_j_compositesb_2020_108340 crossref_primary_10_1016_j_tws_2021_108530 crossref_primary_10_1177_10996362241248037 crossref_primary_10_1016_j_matdes_2018_11_002 crossref_primary_10_3390_en17010160 crossref_primary_10_3390_app8060941 crossref_primary_10_1016_j_ijmecsci_2020_105466 crossref_primary_10_1016_j_tws_2022_110465 crossref_primary_10_1016_j_matpr_2020_06_075 crossref_primary_10_1039_D4MH01275E crossref_primary_10_1002_adem_202400849 crossref_primary_10_1088_1361_665X_ad59e4 crossref_primary_10_1007_s00158_021_02961_9 crossref_primary_10_1515_rams_2024_0021 crossref_primary_10_1080_15376494_2022_2139874 crossref_primary_10_1002_adem_201901266 crossref_primary_10_1016_j_jmrt_2022_08_064 crossref_primary_10_3390_polym12092120 crossref_primary_10_1016_j_eml_2024_102124 crossref_primary_10_1088_1361_665X_ac3c08 crossref_primary_10_1016_j_jmrt_2022_12_063 crossref_primary_10_1016_j_ijmecsci_2022_107999 crossref_primary_10_1007_s12221_020_9507_6 crossref_primary_10_1002_pc_28259 crossref_primary_10_1002_adem_202101811 crossref_primary_10_1016_j_tws_2024_112354 crossref_primary_10_1016_j_ijmecsci_2023_108102 crossref_primary_10_1080_00150193_2023_2271332 crossref_primary_10_1177_14644207211021933 crossref_primary_10_2298_TAM211103002T crossref_primary_10_1021_acsbiomaterials_2c00109 crossref_primary_10_1002_pssb_202000150 crossref_primary_10_3390_jcs6070192 crossref_primary_10_1016_j_tws_2020_107420 crossref_primary_10_1016_j_tws_2021_108314 crossref_primary_10_1088_1361_665X_acf62e crossref_primary_10_1016_j_mtcomm_2022_104315 crossref_primary_10_1016_j_matpr_2021_11_326 crossref_primary_10_1016_j_tws_2024_112348 crossref_primary_10_3389_fmech_2023_1204893 crossref_primary_10_1080_15376494_2021_2000076 crossref_primary_10_1002_pc_27193 crossref_primary_10_1016_j_engstruct_2022_115377 crossref_primary_10_1007_s12008_023_01682_1 crossref_primary_10_1016_j_engstruct_2022_114682 crossref_primary_10_1177_0887302X231202223 crossref_primary_10_33793_acperpro_01_01_52 crossref_primary_10_1016_j_ijmecsci_2023_108597 crossref_primary_10_3390_eng4010054 crossref_primary_10_1016_j_coco_2023_101744 crossref_primary_10_1016_j_compstruct_2021_114907 crossref_primary_10_1016_j_mtcomm_2024_110470 crossref_primary_10_1016_j_ast_2024_108995 crossref_primary_10_1186_s41038_018_0121_4 crossref_primary_10_3390_app14052082 crossref_primary_10_1080_15376494_2024_2328754 crossref_primary_10_1115_1_4040514 crossref_primary_10_1016_j_matdes_2019_107840 crossref_primary_10_3390_ma14185378 crossref_primary_10_1080_10426914_2020_1819544 crossref_primary_10_3390_robotics8040103 crossref_primary_10_1016_j_ast_2020_106107 crossref_primary_10_1080_17452759_2023_2224300 crossref_primary_10_1080_17452759_2019_1644184 crossref_primary_10_1016_j_cemconcomp_2023_105266 crossref_primary_10_1016_j_ijmecsci_2023_108767 crossref_primary_10_1016_j_compstruct_2022_116550 crossref_primary_10_3389_fmats_2019_00086 crossref_primary_10_1007_s11665_022_07074_y crossref_primary_10_1177_20414196211069574 crossref_primary_10_1016_j_engstruct_2025_119681 crossref_primary_10_1016_j_mtcomm_2023_108020 |
Cites_doi | 10.1126/science.235.4792.1038 10.1016/j.compstruct.2016.03.044 10.1007/BF01130170 10.1023/A:1021688009461 10.1016/j.compstruct.2015.09.038 10.1115/SMASIS2016-9208 10.1080/13588265.2017.1328764 10.1088/0964-1726/25/5/054014 10.1115/IMECE2016-67588 10.1243/0309324001514152 10.1111/ffe.12381 10.1002/pssb.201384255 10.1002/pssb.201384249 10.1016/j.compstruct.2016.10.018 10.1002/pssb.201384257 10.1177/1045389X11414226 10.1016/j.msea.2008.11.002 10.1016/j.mechmat.2004.08.001 10.1016/j.compositesa.2013.02.007 10.1103/PhysRevLett.87.148103 10.1016/j.ijsolstr.2015.10.020 10.1002/pssb.201600015 10.1016/j.compositesb.2013.10.084 10.1016/j.jsv.2007.10.033 10.1016/j.ijengsci.2012.01.010 10.1016/j.compscitech.2010.02.007 10.1002/pssb.201384232 10.1016/j.proeng.2014.06.079 10.1002/pssb.201451715 10.1007/s00198-009-1045-4 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd |
Copyright_xml | – notice: 2018 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/aaa3cf |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Behavior Of Auxetic Structures Under Compression And Impact Forces |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_aaa3cf smsaaa3cf |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c370t-8549b932c9b5b687b6038dedb6656edceb02f5479eda648850f1584015e9b2fd3 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Tue Jul 01 03:38:39 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Aug 21 03:40:36 EDT 2024 Thu Jan 07 13:52:42 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-8549b932c9b5b687b6038dedb6656edceb02f5479eda648850f1584015e9b2fd3 |
Notes | SMS-105896.R1 |
ORCID | 0000-0001-8504-0455 0000-0001-6228-1133 |
PageCount | 12 |
ParticipantIDs | iop_journals_10_1088_1361_665X_aaa3cf crossref_citationtrail_10_1088_1361_665X_aaa3cf crossref_primary_10_1088_1361_665X_aaa3cf |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Duncan O (18) 2016; 25 22 23 24 25 Lim T-C (27) 2014 26 29 Underhill R (15) 2014; 1 Control USCfD (28) 2011 Liu Y (13) 2010; 5 30 31 10 32 NinjaTek (34) 2017 11 33 12 35 14 16 17 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 10 doi: 10.1126/science.235.4792.1038 – ident: 6 doi: 10.1016/j.compstruct.2016.03.044 – year: 2011 ident: 28 – ident: 11 doi: 10.1007/BF01130170 – ident: 1 doi: 10.1023/A:1021688009461 – ident: 20 doi: 10.1016/j.compstruct.2015.09.038 – ident: 31 doi: 10.1115/SMASIS2016-9208 – ident: 9 doi: 10.1080/13588265.2017.1328764 – volume: 25 issn: 0964-1726 year: 2016 ident: 18 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/5/054014 – year: 2017 ident: 34 – ident: 30 doi: 10.1115/IMECE2016-67588 – ident: 25 doi: 10.1243/0309324001514152 – ident: 22 doi: 10.1111/ffe.12381 – volume: 5 start-page: 1052 year: 2010 ident: 13 publication-title: Sci. Res. Essays – ident: 33 doi: 10.1002/pssb.201384255 – ident: 21 doi: 10.1002/pssb.201384249 – volume: 1 start-page: 7 year: 2014 ident: 15 publication-title: Adv. Mater. – ident: 8 doi: 10.1016/j.compstruct.2016.10.018 – ident: 32 doi: 10.1002/pssb.201384257 – ident: 3 doi: 10.1177/1045389X11414226 – ident: 23 doi: 10.1016/j.msea.2008.11.002 – ident: 35 doi: 10.1016/j.mechmat.2004.08.001 – year: 2014 ident: 27 publication-title: Auxetic Materials and Structures – ident: 4 doi: 10.1016/j.compositesa.2013.02.007 – ident: 12 doi: 10.1103/PhysRevLett.87.148103 – ident: 16 doi: 10.1016/j.ijsolstr.2015.10.020 – ident: 7 doi: 10.1002/pssb.201600015 – ident: 5 doi: 10.1016/j.compositesb.2013.10.084 – ident: 24 doi: 10.1016/j.jsv.2007.10.033 – ident: 26 doi: 10.1016/j.ijengsci.2012.01.010 – ident: 2 doi: 10.1016/j.compscitech.2010.02.007 – ident: 19 doi: 10.1002/pssb.201384232 – ident: 14 doi: 10.1016/j.proeng.2014.06.079 – ident: 17 doi: 10.1002/pssb.201451715 – ident: 29 doi: 10.1007/s00198-009-1045-4 |
SSID | ssj0011831 |
Score | 2.600996 |
Snippet | In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 25012 |
SubjectTerms | 3D printing additive manufacturing auxetic material finite element analysis impact negative Poisson's ratio protection |
Title | Behavior of auxetic structures under compression and impact forces |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/aaa3cf |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aiqAHH1WxvshBDx7S7jObxZOKpQg-DhZ6EMImu7mo29JtQfz1Tjbb0ooU8baH2SRMHvMNme8LwLnPmeHnxtSwqGjgeooaFXJD1JUYcRnTpVzTwyPr9YP7QTiowdWcCzMcVUd_Gz-tULB1YVUQxzuuz1zKWDjoJEniK12HNeyRley9p-f5FQKu1fK5vJgFFKP07I7ytxaWYlId-10IMd1teJ0NzlaWvLWnE9lWXz90G_85-h3YqqAnubamu1DL8iZsLggSNmG9LAhVxR7cVMKJYzLUJJl-Gq4jsWKzU8zQieGejYkpSLeFtDlJ8pRYziVBIIzHzz70u3cvtz1avbdAlR85E8oxV5SI51QsQ8l4JJnj8zRLJQ6XmWpR6Xg6DKI4SxOGGz90tIv4BQFFFktPp_4BNPJhnh0CiTRzZILJnvJ8zKncmKeeH4dhgoCU6cxpQWfmcaEqMXLzJsa7KC_FORfGT8L4SVg_teBy_sfICnGssL1A94tqNxYr7MiSXfFRCC8SnjDA0PXEKNVHf2zqGDYQSnFbz30CDZyP7BThykSelcvyGxL34fo |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB3RIhAcWAqIsvoABw5pFjeOc2SrylZ6oFJvJk7iC5BWXSTE1zOO06pFqELilsPEScaO54087w3AGeVM83NDS7OorLrrxZZWIddEXYkRlzGVyzU9tVizU7_v-t2iz2nOhen1i62_hpdGKNi4sCiI47ZLmWsx5nftKIporOx-okqw7FOMnZrB99yeHiPges1b5oWsbmGknpxT_jbKXFwq4bNnwkxjE14nL2iqS95q45GsxV8_tBv_8QVbsFFAUHJpzLdhKc0qsD4jTFiBlbwwNB7uwFUhoDggPUWi8afmPBIjOjvGTJ1oDtqA6MJ0U1CbkShLiOFeEgTEuA3tQqdx-3LdtIq-C1ZMA2dkccwZJeK6OJS-ZDyQzKE8SROJr8x01ah0POXXgzBNIoYbgO8oF3EMAos0lJ5K6B6Us16W7gMJFHNkhElf7FHMrdyQJx4NfT9CYMpU6lTBnnhdxIUoue6N8S7yw3HOhfaV0L4SxldVuJje0TeCHAtsz3EKRPFXDhfYkTm74cdQeIHwhAaIridweg7-ONQprLZvGuLxrvVwCGuIrrgp8T6CMk5NeowIZiRP8lX6DTba514 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavior+of+auxetic+structures+under+compression+and+impact+forces&rft.jtitle=Smart+materials+and+structures&rft.au=Yang%2C+Chulho&rft.au=Vora%2C+Hitesh+D&rft.au=Chang%2C+Young&rft.date=2018-02-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1088%2F1361-665X%2Faaa3cf&rft.externalDocID=smsaaa3cf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |