From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties

[Display omitted] •Tests at 7T (range: 120–250°C) and 4 biomass to water ratios (B/W range 7–25%).•Solid load (B/W) and T: crucial parameters for the energy properties of hydrochars.•The higher B/W, the higher the hydrochar carbon content, fixed carbon, HHV, yield.•High solid load and high reaction...

Full description

Saved in:
Bibliographic Details
Published inJournal of analytical and applied pyrolysis Vol. 124; pp. 63 - 72
Main Authors Volpe, Maurizio, Fiori, Luca
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2017
Subjects
Online AccessGet full text
ISSN0165-2370
1873-250X
DOI10.1016/j.jaap.2017.02.022

Cover

Abstract [Display omitted] •Tests at 7T (range: 120–250°C) and 4 biomass to water ratios (B/W range 7–25%).•Solid load (B/W) and T: crucial parameters for the energy properties of hydrochars.•The higher B/W, the higher the hydrochar carbon content, fixed carbon, HHV, yield.•High solid load and high reaction temperature promote secondary char formation.•C/O atomic ratio in secondary char is much higher than in primary char. Hydrothermal carbonisation was used to upgrade fuels from two types of agro-industrial wastes: olive tree trimmings and olive pulp. Hydrochar yield, elemental and proximate analyses, thermal stability, higher heating value (HHV), and energy yield at different reaction temperatures (120, 150, 180, 200, 220, 235 and 250°C) and solid load (biomass to water ratios − B/W − equal to 7, 10, 15 and 25%) were assessed for a fixed reaction time of 30min. HHV varied linearly with hydrochar mass yield and reaction temperature in the temperature range 180–250°C. Solid load proved to be a crucial parameter in determining the energy properties of hydrochars. The higher B/W, the higher were the degree of carbonisation (in terms of fixed and total carbon), the hydrochar HHV, and the hydrochar yield. Elemental analysis showed that during HTC, olive pulp samples underwent a greater degree of carbonisation when compared to the corresponding olive tree trimmings residues. High solid load and high reaction temperature promoted secondary char formation. Secondary char showed a sphere-like structure formed by overlapping layers. EDS microanalysis showed that secondary char is characterised by a significantly higher carbon content than parent primary char, thus confirming its contribution towards enhancing the HHV of hydrochars.
AbstractList Hydrothermal carbonisation was used to upgrade fuels from two types of agro-industrial wastes: olive tree trimmings and olive pulp. Hydrochar yield, elemental and proximate analyses, thermal stability, higher heating value (HHV), and energy yield at different reaction temperatures (120, 150, 180, 200, 220, 235 and 250°C) and solid load (biomass to water ratios − B/W − equal to 7, 10, 15 and 25%) were assessed for a fixed reaction time of 30min. HHV varied linearly with hydrochar mass yield and reaction temperature in the temperature range 180–250°C. Solid load proved to be a crucial parameter in determining the energy properties of hydrochars. The higher B/W, the higher were the degree of carbonisation (in terms of fixed and total carbon), the hydrochar HHV, and the hydrochar yield. Elemental analysis showed that during HTC, olive pulp samples underwent a greater degree of carbonisation when compared to the corresponding olive tree trimmings residues. High solid load and high reaction temperature promoted secondary char formation. Secondary char showed a sphere-like structure formed by overlapping layers. EDS microanalysis showed that secondary char is characterised by a significantly higher carbon content than parent primary char, thus confirming its contribution towards enhancing the HHV of hydrochars.
[Display omitted] •Tests at 7T (range: 120–250°C) and 4 biomass to water ratios (B/W range 7–25%).•Solid load (B/W) and T: crucial parameters for the energy properties of hydrochars.•The higher B/W, the higher the hydrochar carbon content, fixed carbon, HHV, yield.•High solid load and high reaction temperature promote secondary char formation.•C/O atomic ratio in secondary char is much higher than in primary char. Hydrothermal carbonisation was used to upgrade fuels from two types of agro-industrial wastes: olive tree trimmings and olive pulp. Hydrochar yield, elemental and proximate analyses, thermal stability, higher heating value (HHV), and energy yield at different reaction temperatures (120, 150, 180, 200, 220, 235 and 250°C) and solid load (biomass to water ratios − B/W − equal to 7, 10, 15 and 25%) were assessed for a fixed reaction time of 30min. HHV varied linearly with hydrochar mass yield and reaction temperature in the temperature range 180–250°C. Solid load proved to be a crucial parameter in determining the energy properties of hydrochars. The higher B/W, the higher were the degree of carbonisation (in terms of fixed and total carbon), the hydrochar HHV, and the hydrochar yield. Elemental analysis showed that during HTC, olive pulp samples underwent a greater degree of carbonisation when compared to the corresponding olive tree trimmings residues. High solid load and high reaction temperature promoted secondary char formation. Secondary char showed a sphere-like structure formed by overlapping layers. EDS microanalysis showed that secondary char is characterised by a significantly higher carbon content than parent primary char, thus confirming its contribution towards enhancing the HHV of hydrochars.
Author Volpe, Maurizio
Fiori, Luca
Author_xml – sequence: 1
  givenname: Maurizio
  surname: Volpe
  fullname: Volpe, Maurizio
– sequence: 2
  givenname: Luca
  surname: Fiori
  fullname: Fiori, Luca
  email: luca.fiori@unitn.it
BookMark eNp9UcFq3DAQFSWFbtL-QE869uKtLNmyXXopoWkLgVxS6E3I0ijWYmu2kpyyf5TPrHY3pxwCA8MM773hzbskFwEDEPKxZtua1fLzbrvTer_lrO62jJfib8im7jtR8Zb9uSCbAmorLjr2jlymtGOMSVn3G_J0E3GhOPtHoP90ykAz0lRmS0ePboWZ5ini-jDR6WAj5gniomdqdBwx-KSzx_CF3k9AI85A0dEMyx6izmsEqoN9VptRW4qBJjAYrI4HaiYdqcMid9Q4QU8nTnsIEB8OdB-xaGUP6T156_Sc4MNzvyK_b77fX_-sbu9-_Lr-dluZYi5XPReiGcZWDnXTu1EIDtJ1TW9c2xjN9cDFABw0SNHVQjs5SGMdY00ztra3UlyRT2fdcvrvCimrxScD86wD4JoUL69rBilZX6D9GWoiphTBKePzyUyO2s-qZuoYjtqpYzjqGI5ivBQvVP6Cuo9-KV95nfT1TILi_9FDVMl4CAasj2Cysuhfo_8HgwOvIg
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_153854
crossref_primary_10_1016_j_fuel_2024_132256
crossref_primary_10_1016_j_scp_2025_101980
crossref_primary_10_1016_j_enconman_2018_12_009
crossref_primary_10_1016_j_renene_2020_04_050
crossref_primary_10_2139_ssrn_3973936
crossref_primary_10_1016_j_cherd_2023_04_007
crossref_primary_10_1016_j_scp_2023_101106
crossref_primary_10_1038_s41598_021_03501_7
crossref_primary_10_3390_su132212600
crossref_primary_10_1016_j_biteb_2023_101503
crossref_primary_10_1016_j_jwpe_2024_106692
crossref_primary_10_1016_j_biortech_2021_125972
crossref_primary_10_1016_j_jaap_2017_09_022
crossref_primary_10_1007_s13399_021_01782_6
crossref_primary_10_1016_j_energy_2021_122022
crossref_primary_10_1016_j_jenvman_2020_111164
crossref_primary_10_1016_j_wasman_2022_07_009
crossref_primary_10_3390_agronomy14020247
crossref_primary_10_1016_j_clet_2022_100467
crossref_primary_10_3390_app10103445
crossref_primary_10_3390_asi4010019
crossref_primary_10_3390_pr10020231
crossref_primary_10_1016_j_jaap_2019_03_007
crossref_primary_10_1016_j_fuel_2020_118069
crossref_primary_10_1016_j_jaap_2024_106459
crossref_primary_10_1088_1757_899X_1195_1_012024
crossref_primary_10_1002_cite_201900093
crossref_primary_10_1016_j_enconman_2024_119353
crossref_primary_10_3390_en12030516
crossref_primary_10_3390_su12125100
crossref_primary_10_1016_j_biortech_2018_04_066
crossref_primary_10_1016_j_renene_2020_03_112
crossref_primary_10_1016_j_gerr_2023_100034
crossref_primary_10_1166_jbmb_2021_2030
crossref_primary_10_3390_app142210670
crossref_primary_10_3390_app13031515
crossref_primary_10_1051_e3sconf_202560100012
crossref_primary_10_1007_s12649_018_00554_0
crossref_primary_10_1016_j_fuproc_2024_108167
crossref_primary_10_1016_j_jece_2018_04_015
crossref_primary_10_3390_pr8111432
crossref_primary_10_3390_en15186499
crossref_primary_10_1016_j_scitotenv_2021_150748
crossref_primary_10_1016_j_jaap_2020_104965
crossref_primary_10_1016_j_jece_2018_05_009
crossref_primary_10_1016_j_fuel_2025_134421
crossref_primary_10_1007_s13399_021_01330_2
crossref_primary_10_3390_en11113226
crossref_primary_10_1016_j_biortech_2021_126084
crossref_primary_10_1016_j_biombioe_2024_107166
crossref_primary_10_1299_jtst_23_00561
crossref_primary_10_1016_j_fuel_2021_122668
crossref_primary_10_1016_j_renene_2021_05_112
crossref_primary_10_1016_j_scitotenv_2022_155572
crossref_primary_10_1016_j_biortech_2018_10_084
crossref_primary_10_1021_acs_energyfuels_1c01681
crossref_primary_10_1016_j_fuel_2023_127486
crossref_primary_10_1016_j_psep_2023_02_085
crossref_primary_10_1016_j_rser_2021_111877
crossref_primary_10_1007_s13399_022_02874_7
crossref_primary_10_1007_s10668_024_05841_6
crossref_primary_10_1007_s11270_024_07023_6
crossref_primary_10_3390_en15030950
crossref_primary_10_1016_j_cej_2022_137827
crossref_primary_10_1007_s13399_021_01816_z
crossref_primary_10_1007_s13399_019_00488_0
crossref_primary_10_1016_j_jelechem_2021_115616
crossref_primary_10_1080_17597269_2023_2201732
crossref_primary_10_1016_j_biortech_2017_09_072
crossref_primary_10_1016_j_fuel_2018_06_060
crossref_primary_10_1016_j_chemosphere_2020_128412
crossref_primary_10_1016_j_fuproc_2021_106795
crossref_primary_10_3390_app10103492
crossref_primary_10_3390_ijerph17186618
crossref_primary_10_1016_j_fuel_2023_129531
crossref_primary_10_1007_s11356_024_32468_x
crossref_primary_10_1016_j_fuel_2023_129776
crossref_primary_10_1016_j_jaap_2017_07_023
crossref_primary_10_1016_j_biortech_2017_07_018
crossref_primary_10_3390_en13164098
crossref_primary_10_1016_j_energy_2024_132327
crossref_primary_10_3390_catal12060655
crossref_primary_10_1016_j_jfueco_2023_100090
crossref_primary_10_1016_j_energy_2023_127803
crossref_primary_10_1016_j_jclepro_2021_129020
crossref_primary_10_1016_j_renene_2024_120269
crossref_primary_10_1016_j_rser_2018_03_097
crossref_primary_10_3390_app8030331
crossref_primary_10_1016_j_fuel_2023_130643
crossref_primary_10_1007_s13399_023_04409_0
crossref_primary_10_1016_j_enconman_2018_04_073
crossref_primary_10_1016_j_scitotenv_2023_163193
crossref_primary_10_1007_s11356_023_25867_z
crossref_primary_10_1016_j_jaap_2024_106801
crossref_primary_10_1016_j_wasman_2019_09_009
crossref_primary_10_1016_j_wasman_2021_01_026
crossref_primary_10_3390_pr8101201
crossref_primary_10_1016_j_envres_2023_116777
crossref_primary_10_1016_j_jclepro_2024_141735
crossref_primary_10_1016_j_energy_2019_07_178
crossref_primary_10_1016_j_jwpe_2019_100813
crossref_primary_10_1016_j_jenvman_2023_119132
crossref_primary_10_3390_en13164142
crossref_primary_10_1016_j_scp_2023_101420
crossref_primary_10_1016_j_energy_2020_117717
crossref_primary_10_1016_j_jece_2018_102833
crossref_primary_10_1016_j_fuel_2022_123189
crossref_primary_10_1016_j_polymdegradstab_2025_111224
crossref_primary_10_1016_j_energy_2019_116696
crossref_primary_10_1016_j_jclepro_2021_128087
crossref_primary_10_1016_j_biortech_2018_02_021
crossref_primary_10_1016_j_enconman_2017_05_015
crossref_primary_10_1007_s12649_020_01212_0
crossref_primary_10_1080_15226514_2024_2377809
crossref_primary_10_1007_s11356_024_34217_6
crossref_primary_10_1371_journal_pone_0269935
crossref_primary_10_1016_j_biombioe_2024_107061
crossref_primary_10_1016_j_fuproc_2020_106456
crossref_primary_10_1016_j_biortech_2019_122653
crossref_primary_10_3390_molecules25153534
crossref_primary_10_1016_j_jaap_2020_104771
crossref_primary_10_1016_j_wasman_2023_08_009
crossref_primary_10_3390_w14152344
crossref_primary_10_1016_j_biortech_2020_123734
crossref_primary_10_1007_s13399_022_02365_9
crossref_primary_10_1016_j_tca_2019_178470
crossref_primary_10_1016_j_fuel_2018_04_127
crossref_primary_10_1007_s40201_021_00751_5
crossref_primary_10_1039_C7GC03676K
crossref_primary_10_3390_en16052483
crossref_primary_10_3390_en15103629
crossref_primary_10_1016_j_resconrec_2023_107359
crossref_primary_10_1016_j_energy_2024_130234
crossref_primary_10_1016_j_jenvman_2023_119834
crossref_primary_10_1016_j_jenvman_2024_122168
crossref_primary_10_1016_j_enconman_2020_113218
crossref_primary_10_1021_acs_energyfuels_8b03335
crossref_primary_10_1016_j_wasman_2018_09_021
crossref_primary_10_1021_acssuschemeng_8b02118
crossref_primary_10_1080_10643389_2018_1561104
crossref_primary_10_3390_en10111876
crossref_primary_10_3390_en11061379
crossref_primary_10_1007_s13399_020_01231_w
crossref_primary_10_1016_j_jclepro_2021_125781
crossref_primary_10_1007_s13399_020_00743_9
crossref_primary_10_1016_j_jclepro_2020_121020
crossref_primary_10_1016_j_scitotenv_2022_157082
crossref_primary_10_1016_j_biteb_2021_100638
crossref_primary_10_1016_j_jece_2023_111545
crossref_primary_10_1016_j_scitotenv_2021_152181
crossref_primary_10_1061_JHTRBP_HZENG_1385
crossref_primary_10_1016_j_enconman_2021_114631
crossref_primary_10_1016_j_jenvman_2021_114058
crossref_primary_10_1016_j_jenvman_2019_01_005
crossref_primary_10_1016_j_jenvman_2021_111981
crossref_primary_10_1016_j_renene_2019_07_142
crossref_primary_10_1016_j_indcrop_2023_117519
crossref_primary_10_1016_j_nexus_2023_100199
crossref_primary_10_1007_s12649_020_01255_3
crossref_primary_10_1016_j_jaap_2023_106315
crossref_primary_10_1016_j_biombioe_2022_106590
crossref_primary_10_1016_j_wasman_2024_01_052
crossref_primary_10_1016_j_jaap_2024_106732
crossref_primary_10_1016_j_sajce_2022_10_008
crossref_primary_10_1016_j_cej_2024_149779
crossref_primary_10_1016_j_envpol_2023_121751
crossref_primary_10_3390_su16020850
crossref_primary_10_1016_j_apenergy_2024_124292
crossref_primary_10_3390_app112210983
crossref_primary_10_1108_HFF_11_2016_0459
crossref_primary_10_1007_s11356_017_0366_7
crossref_primary_10_1016_j_scitotenv_2021_148816
crossref_primary_10_1016_j_jece_2018_07_053
crossref_primary_10_3390_en13112890
crossref_primary_10_1016_j_biortech_2017_11_058
crossref_primary_10_1016_j_jenvman_2020_110067
crossref_primary_10_1016_j_biombioe_2020_105593
crossref_primary_10_1002_cjce_24812
crossref_primary_10_1016_j_cattod_2023_01_018
crossref_primary_10_1016_j_jece_2019_103599
crossref_primary_10_1016_j_energy_2021_120213
crossref_primary_10_3390_polym16111529
crossref_primary_10_1016_j_renene_2024_120509
crossref_primary_10_3390_en14102962
Cites_doi 10.1016/j.biortech.2013.01.154
10.1016/S0960-8524(98)00110-2
10.1016/j.cej.2012.04.068
10.1016/j.enconman.2015.08.031
10.3390/su6117866
10.1016/j.apenergy.2014.08.094
10.1039/C5GC02296G
10.1016/j.fuproc.2011.11.009
10.1016/j.jaap.2015.03.012
10.1016/j.energy.2015.12.123
10.1016/j.apenergy.2013.04.084
10.1039/C4CS00232F
10.1016/S0165-2370(02)00062-1
10.1016/j.jaap.2014.11.004
10.1016/j.wasman.2015.05.013
10.1016/j.fuel.2012.07.069
10.1016/j.biortech.2015.02.024
10.1016/j.cbpa.2013.05.004
10.1016/j.jaap.2006.01.001
10.1002/ceat.200800278
10.1016/j.wasman.2015.04.016
10.1016/j.proenv.2012.10.022
10.1021/ie900964u
10.1016/j.energy.2006.03.008
10.1039/b807009a
10.1016/j.apenergy.2013.06.027
10.1016/j.fuel.2006.12.013
10.1016/j.jaap.2015.01.031
10.1016/j.jaap.2006.01.002
10.1016/j.cherd.2014.05.024
10.1016/S0960-8524(98)00134-5
10.1016/j.wasman.2016.01.012
10.1016/j.energy.2016.04.034
10.1016/j.biortech.2015.01.118
10.1016/j.enpol.2015.12.039
10.1039/c1gc15742f
10.1016/j.apenergy.2013.08.087
10.1016/j.apenergy.2015.06.022
10.1016/j.biombioe.2012.12.004
10.1016/j.cattod.2014.09.024
10.1039/c2ee21166a
10.1016/j.energy.2015.05.062
10.1016/j.energy.2015.01.011
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jaap.2017.02.022
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-250X
EndPage 72
ExternalDocumentID 10_1016_j_jaap_2017_02_022
S0165237016308415
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
WUQ
YK3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c370t-823349b569148fb332e6f748cf54ca2a9239e2eae63713af696cdf0044b5d8d63
IEDL.DBID AIKHN
ISSN 0165-2370
IngestDate Thu Sep 04 19:19:58 EDT 2025
Tue Jul 01 01:23:47 EDT 2025
Thu Apr 24 22:51:10 EDT 2025
Fri Feb 23 02:25:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solid biofuel
Olive waste
Biomass
Hydrothermal carbonization
Secondary char
Wet torrefaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-823349b569148fb332e6f748cf54ca2a9239e2eae63713af696cdf0044b5d8d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000496608
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2000496608
crossref_citationtrail_10_1016_j_jaap_2017_02_022
crossref_primary_10_1016_j_jaap_2017_02_022
elsevier_sciencedirect_doi_10_1016_j_jaap_2017_02_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of analytical and applied pyrolysis
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Poerschmann, Baskyr, Weiner, Koehler, Wedwitschka, Kopinke (bib0025) 2013; 133
Falco, Baccile, Titirici (bib0200) 2011; 13
Volpe, D’Anna, Messineo, Volpe, Messineo (bib0215) 2014; 6
Basso, Patuzzi, Castello, Baratieri, Rada, Weiss-Hortala, Fiori (bib0105) 2016; 47
Prins, Ptasinski, Janssen (bib0040) 2006; 77
Reza, Rottler, Herklotz, Wirth (bib0175) 2015; 182
Liu, Quek, Hoekman, Balasubramanian (bib0120) 2013; 103
Benavente, Calabuig, Fullana (bib0070) 2015; 113
Liu, Balasubramanian (bib0075) 2014; 114
(Accessed 25 November 25 2016).
Titirici, White, Falco, Sevilla (bib0150) 2012; 5
Vitolo, Petarca, Bresci (bib0015) 1999; 67
Prins, Ptasinski, Janssen (bib0030) 2006; 31
Guizani, Jeguirim, Colin, Limousy (bib0050) 2016; 107
Burguete, Corma, Hitzl, Modrego, Ponce, Renz (bib0085) 2016; 18
Kambo, Dutta (bib0060) 2015; 105
Fiori, Basso, Castello, Baratieri (bib0170) 2014; 37
Liu, Balasubramanian (bib0220) 2012; 16
Bach, Tran, Skreiberg, Trinh (bib0195) 2015; 88
Toledano, Serrano, Labidi (bib0190) 2012; 193–194
Prins, Ptasinski, Janssen (bib0035) 2006; 77
Liu, Quek, Balasubramanian (bib0055) 2014; 113
Álvarez-Murillo, Román, Ledesma, Sabio (bib0110) 2015; 113
van Krevelen (bib0180) 1950; 29
Basso, Weiss-Hortala, Patuzzi, Castello, Baratieri, Fiori (bib0100) 2015; 182
Castello, Kruse, Fiori (bib0155) 2014; 92
Karayildirim, Sinaǧ, Kruse (bib0145) 2008; 31
Titirici, White, Brun, Budarin, Su, Del Monte, Clark, MacLachlan (bib0080) 2015; 44
Knezevic, van Swaaij, Kersten (bib0140) 2010; 49
Yang, Yan, Chen, Lee, Zheng (bib0205) 2007; 86
Titirici (bib0235) 2012
Gao, Zhou, Meng, Zhang, Liu, Zhang, Xue (bib0115) 2016; 97
Kambo, Dutta (bib0230) 2014; 135
Paiano, Lagioia (bib0005) 2016; 91
Bolaños, Felizón, Heredia, Guillén, Jimenéz (bib0185) 1999; 68
Kruse, Funke, Titirici (bib0225) 2013; 17
Titirici, Antonietti, Baccile (bib0160) 2008; 10
Branca, Di Blasi (bib0210) 2003; 67
Hitzl, Corma, Pomares, Renz (bib0090) 2015; 257
Sabio, Álvarez-Murillo, Román, Ledesma (bib0095) 2016; 47
Regioni.it. Olio di oliva: stime positive per produzione 2015–2016.
Christoforou, Fokaides (bib0020) 2015; 49
Volpe, Messineo, Millan, Volpe, Kandiyoti (bib0045) 2015; 82
Mäkelä, Benavente, Fullana (bib0130) 2015; 155
Reza, Lynam, Uddin, Coronella (bib0065) 2013; 49
Román, Nabais, Laginhas, Ledesma, González (bib0125) 2012; 103
He, Giannis, Wang (bib0135) 2013; 111
Sermyagina, Saari, Kaikko, Vakkilainen (bib0165) 2015; 113
Kambo (10.1016/j.jaap.2017.02.022_bib0230) 2014; 135
Basso (10.1016/j.jaap.2017.02.022_bib0100) 2015; 182
Prins (10.1016/j.jaap.2017.02.022_bib0035) 2006; 77
Castello (10.1016/j.jaap.2017.02.022_bib0155) 2014; 92
Reza (10.1016/j.jaap.2017.02.022_bib0175) 2015; 182
Sermyagina (10.1016/j.jaap.2017.02.022_bib0165) 2015; 113
Poerschmann (10.1016/j.jaap.2017.02.022_bib0025) 2013; 133
He (10.1016/j.jaap.2017.02.022_bib0135) 2013; 111
Fiori (10.1016/j.jaap.2017.02.022_bib0170) 2014; 37
Volpe (10.1016/j.jaap.2017.02.022_bib0045) 2015; 82
Basso (10.1016/j.jaap.2017.02.022_bib0105) 2016; 47
Paiano (10.1016/j.jaap.2017.02.022_bib0005) 2016; 91
Álvarez-Murillo (10.1016/j.jaap.2017.02.022_bib0110) 2015; 113
Gao (10.1016/j.jaap.2017.02.022_bib0115) 2016; 97
Christoforou (10.1016/j.jaap.2017.02.022_bib0020) 2015; 49
Titirici (10.1016/j.jaap.2017.02.022_bib0080) 2015; 44
Román (10.1016/j.jaap.2017.02.022_bib0125) 2012; 103
Liu (10.1016/j.jaap.2017.02.022_bib0220) 2012; 16
Kambo (10.1016/j.jaap.2017.02.022_bib0060) 2015; 105
Sabio (10.1016/j.jaap.2017.02.022_bib0095) 2016; 47
Liu (10.1016/j.jaap.2017.02.022_bib0120) 2013; 103
10.1016/j.jaap.2017.02.022_bib0010
Toledano (10.1016/j.jaap.2017.02.022_bib0190) 2012; 193–194
Bach (10.1016/j.jaap.2017.02.022_bib0195) 2015; 88
Benavente (10.1016/j.jaap.2017.02.022_bib0070) 2015; 113
Burguete (10.1016/j.jaap.2017.02.022_bib0085) 2016; 18
Vitolo (10.1016/j.jaap.2017.02.022_bib0015) 1999; 67
Karayildirim (10.1016/j.jaap.2017.02.022_bib0145) 2008; 31
Prins (10.1016/j.jaap.2017.02.022_bib0040) 2006; 77
Volpe (10.1016/j.jaap.2017.02.022_bib0215) 2014; 6
Titirici (10.1016/j.jaap.2017.02.022_bib0150) 2012; 5
Titirici (10.1016/j.jaap.2017.02.022_bib0235) 2012
Guizani (10.1016/j.jaap.2017.02.022_bib0050) 2016; 107
Liu (10.1016/j.jaap.2017.02.022_bib0055) 2014; 113
Kruse (10.1016/j.jaap.2017.02.022_bib0225) 2013; 17
Branca (10.1016/j.jaap.2017.02.022_bib0210) 2003; 67
Prins (10.1016/j.jaap.2017.02.022_bib0030) 2006; 31
Reza (10.1016/j.jaap.2017.02.022_bib0065) 2013; 49
van Krevelen (10.1016/j.jaap.2017.02.022_bib0180) 1950; 29
Falco (10.1016/j.jaap.2017.02.022_bib0200) 2011; 13
Titirici (10.1016/j.jaap.2017.02.022_bib0160) 2008; 10
Knezevic (10.1016/j.jaap.2017.02.022_bib0140) 2010; 49
Bolaños (10.1016/j.jaap.2017.02.022_bib0185) 1999; 68
Mäkelä (10.1016/j.jaap.2017.02.022_bib0130) 2015; 155
Hitzl (10.1016/j.jaap.2017.02.022_bib0090) 2015; 257
Liu (10.1016/j.jaap.2017.02.022_bib0075) 2014; 114
Yang (10.1016/j.jaap.2017.02.022_bib0205) 2007; 86
References_xml – volume: 113
  start-page: 307
  year: 2015
  end-page: 314
  ident: bib0110
  article-title: Study of variables in energy densification of olive stone by hydrothermal carbonization
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 91
  start-page: 161
  year: 2016
  end-page: 173
  ident: bib0005
  article-title: Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case
  publication-title: Energy Policy
– reference: Regioni.it. Olio di oliva: stime positive per produzione 2015–2016.
– volume: 47
  start-page: 114
  year: 2016
  end-page: 121
  ident: bib0105
  article-title: Agro-industrial waste to solid biofuel through hydrothermal carbonization
  publication-title: Waste Manag.
– volume: 67
  start-page: 129
  year: 1999
  end-page: 137
  ident: bib0015
  article-title: Treatment of olive oil industry wastes
  publication-title: Bioresour. Technol.
– volume: 49
  start-page: 86
  year: 2013
  end-page: 94
  ident: bib0065
  article-title: Hydrothermal carbonization: fate of inorganics
  publication-title: Biomass Bioenergy
– volume: 67
  start-page: 207
  year: 2003
  end-page: 219
  ident: bib0210
  article-title: Kinetics of the isothermal degradation of wood in the temperature range 528–708
  publication-title: J Anal. Appl. Pyrolysis
– volume: 113
  start-page: 1315
  year: 2014
  end-page: 1322
  ident: bib0055
  article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars
  publication-title: Appl. Energy
– volume: 155
  start-page: 576
  year: 2015
  end-page: 584
  ident: bib0130
  article-title: Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties
  publication-title: Appl. Energy
– volume: 103
  start-page: 78
  year: 2012
  end-page: 83
  ident: bib0125
  article-title: Hydrothermal carbonization as an effective way of densifying the energy content of biomass
  publication-title: Fuel Process. Technol.
– volume: 113
  start-page: 551
  year: 2015
  end-page: 556
  ident: bib0165
  article-title: Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 88
  start-page: 443
  year: 2015
  end-page: 456
  ident: bib0195
  article-title: Effects of wet torrefaction on pyrolysis of woody biomass fuels
  publication-title: Energy
– volume: 133
  start-page: 581
  year: 2013
  end-page: 588
  ident: bib0025
  article-title: Hydrothermal carbonization of olive mill wastewater
  publication-title: Bioresour. Technol.
– volume: 31
  start-page: 3458
  year: 2006
  end-page: 3470
  ident: bib0030
  article-title: More efficient biomass gasification via torrefaction
  publication-title: Energy
– volume: 135
  start-page: 182
  year: 2014
  end-page: 191
  ident: bib0230
  article-title: Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization
  publication-title: Appl. Energy
– volume: 5
  start-page: 6796
  year: 2012
  end-page: 6822
  ident: bib0150
  article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage
  publication-title: Energy Environ. Sci.
– volume: 37
  start-page: 55
  year: 2014
  end-page: 60
  ident: bib0170
  article-title: Hydrothermal carbonization of biomass: design of a batch reactor and preliminary experimental results
  publication-title: Chem. Eng. Trans.
– volume: 13
  start-page: 3273
  year: 2011
  end-page: 3281
  ident: bib0200
  article-title: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons
  publication-title: Green Chem.
– volume: 97
  start-page: 238
  year: 2016
  end-page: 245
  ident: bib0115
  article-title: Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization
  publication-title: Energy
– volume: 103
  start-page: 943
  year: 2013
  end-page: 949
  ident: bib0120
  article-title: Production of solid biochar fuel from waste biomass by hydrothermal carbonization
  publication-title: Fuel
– volume: 113
  start-page: 89
  year: 2015
  end-page: 98
  ident: bib0070
  article-title: Upgrading of moist agro-industrial wastes by hydrothermal carbonization
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 257
  start-page: 154
  year: 2015
  end-page: 159
  ident: bib0090
  article-title: The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass
  publication-title: Catal. Today
– reference: (Accessed 25 November 25 2016).
– volume: 107
  start-page: 453
  year: 2016
  end-page: 463
  ident: bib0050
  article-title: Combustion characteristics and kinetics of torrefied olive pomace
  publication-title: Energy
– volume: 44
  start-page: 250
  year: 2015
  end-page: 290
  ident: bib0080
  article-title: Sustainable carbon materials
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1204
  year: 2008
  end-page: 1212
  ident: bib0160
  article-title: Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses
  publication-title: Green Chem.
– start-page: 351
  year: 2012
  end-page: 399
  ident: bib0235
  article-title: Hydrothermal carbons: synthesis, characterization, and applications
  publication-title: Nov. Carbon Adsorbents
– volume: 82
  start-page: 119
  year: 2015
  end-page: 127
  ident: bib0045
  article-title: Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown
  publication-title: Energy
– volume: 49
  start-page: 104
  year: 2010
  end-page: 112
  ident: bib0140
  article-title: Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water
  publication-title: Ind. Eng. Chem. Res.
– volume: 86
  start-page: 1781
  year: 2007
  end-page: 1788
  ident: bib0205
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 6
  start-page: 7866
  year: 2014
  end-page: 7882
  ident: bib0215
  article-title: Sustainable production of bio-combustibles from pyrolysis of agro-industrial wastes
  publication-title: Sustainability
– volume: 17
  start-page: 515
  year: 2013
  end-page: 521
  ident: bib0225
  article-title: Hydrothermal conversion of biomass to fuels and energetic materials
  publication-title: Curr. Opin. Chem. Biol.
– volume: 29
  start-page: 269
  year: 1950
  end-page: 284
  ident: bib0180
  article-title: Graphical statistical method for the study of structure and reaction processes of coal
  publication-title: Fuel
– volume: 47
  start-page: 122
  year: 2016
  end-page: 132
  ident: bib0095
  article-title: Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables
  publication-title: Waste Manag.
– volume: 182
  start-page: 336
  year: 2015
  end-page: 344
  ident: bib0175
  article-title: Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide
  publication-title: Bioresour. Technol.
– volume: 92
  start-page: 1864
  year: 2014
  end-page: 1875
  ident: bib0155
  article-title: Supercritical water gasification of hydrochar
  publication-title: Chem. Eng. Res. Des.
– volume: 114
  start-page: 857
  year: 2014
  end-page: 864
  ident: bib0075
  article-title: Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation
  publication-title: Appl. Energy
– volume: 193–194
  start-page: 396
  year: 2012
  end-page: 403
  ident: bib0190
  article-title: Process for olive tree pruning lignin revalorisation
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 346
  year: 2015
  end-page: 363
  ident: bib0020
  article-title: A review of olive mill solid wastes to energy utilization techniques
  publication-title: Waste Manag.
– volume: 182
  start-page: 217
  year: 2015
  end-page: 224
  ident: bib0100
  article-title: Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment
  publication-title: Bioresour. Technol.
– volume: 18
  start-page: 1051
  year: 2016
  end-page: 1060
  ident: bib0085
  article-title: Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization
  publication-title: Green Chem.
– volume: 16
  start-page: 159
  year: 2012
  end-page: 166
  ident: bib0220
  article-title: Hydrothermal carbonization of waste biomass for energy production
  publication-title: Procedia Environ. Sci.
– volume: 77
  start-page: 28
  year: 2006
  end-page: 34
  ident: bib0035
  article-title: Torrefaction of wood part 1
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 111
  start-page: 257
  year: 2013
  end-page: 266
  ident: bib0135
  article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior
  publication-title: Appl. Energy
– volume: 31
  start-page: 1561
  year: 2008
  end-page: 1568
  ident: bib0145
  article-title: Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification
  publication-title: Chem. Eng. Technol.
– volume: 77
  start-page: 35
  year: 2006
  end-page: 40
  ident: bib0040
  article-title: Torrefaction of wood part 2. analysis of products
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 105
  start-page: 746
  year: 2015
  end-page: 755
  ident: bib0060
  article-title: Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel
  publication-title: Energy Convers. Manag.
– volume: 68
  start-page: 121
  year: 1999
  end-page: 132
  ident: bib0185
  article-title: Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones
  publication-title: Bioresour. Technol.
– volume: 133
  start-page: 581
  year: 2013
  ident: 10.1016/j.jaap.2017.02.022_bib0025
  article-title: Hydrothermal carbonization of olive mill wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.01.154
– volume: 67
  start-page: 129
  year: 1999
  ident: 10.1016/j.jaap.2017.02.022_bib0015
  article-title: Treatment of olive oil industry wastes
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(98)00110-2
– volume: 193–194
  start-page: 396
  year: 2012
  ident: 10.1016/j.jaap.2017.02.022_bib0190
  article-title: Process for olive tree pruning lignin revalorisation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.04.068
– volume: 105
  start-page: 746
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0060
  article-title: Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.08.031
– volume: 6
  start-page: 7866
  year: 2014
  ident: 10.1016/j.jaap.2017.02.022_bib0215
  article-title: Sustainable production of bio-combustibles from pyrolysis of agro-industrial wastes
  publication-title: Sustainability
  doi: 10.3390/su6117866
– volume: 135
  start-page: 182
  year: 2014
  ident: 10.1016/j.jaap.2017.02.022_bib0230
  article-title: Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.08.094
– volume: 18
  start-page: 1051
  year: 2016
  ident: 10.1016/j.jaap.2017.02.022_bib0085
  article-title: Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization
  publication-title: Green Chem.
  doi: 10.1039/C5GC02296G
– volume: 103
  start-page: 78
  year: 2012
  ident: 10.1016/j.jaap.2017.02.022_bib0125
  article-title: Hydrothermal carbonization as an effective way of densifying the energy content of biomass
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2011.11.009
– volume: 113
  start-page: 551
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0165
  article-title: Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2015.03.012
– volume: 97
  start-page: 238
  year: 2016
  ident: 10.1016/j.jaap.2017.02.022_bib0115
  article-title: Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.123
– volume: 111
  start-page: 257
  year: 2013
  ident: 10.1016/j.jaap.2017.02.022_bib0135
  article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.04.084
– volume: 44
  start-page: 250
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0080
  article-title: Sustainable carbon materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00232F
– volume: 67
  start-page: 207
  year: 2003
  ident: 10.1016/j.jaap.2017.02.022_bib0210
  article-title: Kinetics of the isothermal degradation of wood in the temperature range 528–708K
  publication-title: J Anal. Appl. Pyrolysis
  doi: 10.1016/S0165-2370(02)00062-1
– volume: 113
  start-page: 89
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0070
  article-title: Upgrading of moist agro-industrial wastes by hydrothermal carbonization
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2014.11.004
– volume: 47
  start-page: 114
  year: 2016
  ident: 10.1016/j.jaap.2017.02.022_bib0105
  article-title: Agro-industrial waste to solid biofuel through hydrothermal carbonization
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.05.013
– volume: 103
  start-page: 943
  year: 2013
  ident: 10.1016/j.jaap.2017.02.022_bib0120
  article-title: Production of solid biochar fuel from waste biomass by hydrothermal carbonization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.07.069
– volume: 182
  start-page: 336
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0175
  article-title: Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.02.024
– volume: 17
  start-page: 515
  year: 2013
  ident: 10.1016/j.jaap.2017.02.022_bib0225
  article-title: Hydrothermal conversion of biomass to fuels and energetic materials
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2013.05.004
– volume: 77
  start-page: 35
  year: 2006
  ident: 10.1016/j.jaap.2017.02.022_bib0040
  article-title: Torrefaction of wood part 2. analysis of products
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2006.01.001
– volume: 31
  start-page: 1561
  year: 2008
  ident: 10.1016/j.jaap.2017.02.022_bib0145
  article-title: Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200800278
– volume: 47
  start-page: 122
  year: 2016
  ident: 10.1016/j.jaap.2017.02.022_bib0095
  article-title: Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.04.016
– start-page: 351
  year: 2012
  ident: 10.1016/j.jaap.2017.02.022_bib0235
  article-title: Hydrothermal carbons: synthesis, characterization, and applications
– volume: 16
  start-page: 159
  year: 2012
  ident: 10.1016/j.jaap.2017.02.022_bib0220
  article-title: Hydrothermal carbonization of waste biomass for energy production
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2012.10.022
– ident: 10.1016/j.jaap.2017.02.022_bib0010
– volume: 49
  start-page: 104
  year: 2010
  ident: 10.1016/j.jaap.2017.02.022_bib0140
  article-title: Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie900964u
– volume: 31
  start-page: 3458
  year: 2006
  ident: 10.1016/j.jaap.2017.02.022_bib0030
  article-title: More efficient biomass gasification via torrefaction
  publication-title: Energy
  doi: 10.1016/j.energy.2006.03.008
– volume: 10
  start-page: 1204
  year: 2008
  ident: 10.1016/j.jaap.2017.02.022_bib0160
  article-title: Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses
  publication-title: Green Chem.
  doi: 10.1039/b807009a
– volume: 114
  start-page: 857
  year: 2014
  ident: 10.1016/j.jaap.2017.02.022_bib0075
  article-title: Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.06.027
– volume: 86
  start-page: 1781
  year: 2007
  ident: 10.1016/j.jaap.2017.02.022_bib0205
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.013
– volume: 113
  start-page: 307
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0110
  article-title: Study of variables in energy densification of olive stone by hydrothermal carbonization
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2015.01.031
– volume: 77
  start-page: 28
  year: 2006
  ident: 10.1016/j.jaap.2017.02.022_bib0035
  article-title: Torrefaction of wood part 1wt loss kinetics
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2006.01.002
– volume: 92
  start-page: 1864
  year: 2014
  ident: 10.1016/j.jaap.2017.02.022_bib0155
  article-title: Supercritical water gasification of hydrochar
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2014.05.024
– volume: 68
  start-page: 121
  year: 1999
  ident: 10.1016/j.jaap.2017.02.022_bib0185
  article-title: Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(98)00134-5
– volume: 49
  start-page: 346
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0020
  article-title: A review of olive mill solid wastes to energy utilization techniques
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2016.01.012
– volume: 107
  start-page: 453
  year: 2016
  ident: 10.1016/j.jaap.2017.02.022_bib0050
  article-title: Combustion characteristics and kinetics of torrefied olive pomace
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.034
– volume: 182
  start-page: 217
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0100
  article-title: Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.01.118
– volume: 37
  start-page: 55
  year: 2014
  ident: 10.1016/j.jaap.2017.02.022_bib0170
  article-title: Hydrothermal carbonization of biomass: design of a batch reactor and preliminary experimental results
  publication-title: Chem. Eng. Trans.
– volume: 91
  start-page: 161
  year: 2016
  ident: 10.1016/j.jaap.2017.02.022_bib0005
  article-title: Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.12.039
– volume: 13
  start-page: 3273
  year: 2011
  ident: 10.1016/j.jaap.2017.02.022_bib0200
  article-title: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons
  publication-title: Green Chem.
  doi: 10.1039/c1gc15742f
– volume: 113
  start-page: 1315
  year: 2014
  ident: 10.1016/j.jaap.2017.02.022_bib0055
  article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.087
– volume: 155
  start-page: 576
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0130
  article-title: Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.06.022
– volume: 29
  start-page: 269
  year: 1950
  ident: 10.1016/j.jaap.2017.02.022_bib0180
  article-title: Graphical statistical method for the study of structure and reaction processes of coal
  publication-title: Fuel
– volume: 49
  start-page: 86
  year: 2013
  ident: 10.1016/j.jaap.2017.02.022_bib0065
  article-title: Hydrothermal carbonization: fate of inorganics
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.12.004
– volume: 257
  start-page: 154
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0090
  article-title: The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2014.09.024
– volume: 5
  start-page: 6796
  year: 2012
  ident: 10.1016/j.jaap.2017.02.022_bib0150
  article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21166a
– volume: 88
  start-page: 443
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0195
  article-title: Effects of wet torrefaction on pyrolysis of woody biomass fuels
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.062
– volume: 82
  start-page: 119
  year: 2015
  ident: 10.1016/j.jaap.2017.02.022_bib0045
  article-title: Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.011
SSID ssj0006618
Score 2.569043
Snippet [Display omitted] •Tests at 7T (range: 120–250°C) and 4 biomass to water ratios (B/W range 7–25%).•Solid load (B/W) and T: crucial parameters for the energy...
Hydrothermal carbonisation was used to upgrade fuels from two types of agro-industrial wastes: olive tree trimmings and olive pulp. Hydrochar yield, elemental...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms agricultural wastes
biofuels
Biomass
carbon
energy
energy-dispersive X-ray analysis
hydrochars
Hydrothermal carbonization
Olea europaea
olive pulp
Olive waste
olives
pyrolysis
Secondary char
Solid biofuel
temperature
thermal stability
Wet torrefaction
Title From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties
URI https://dx.doi.org/10.1016/j.jaap.2017.02.022
https://www.proquest.com/docview/2000496608
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tD2UNK0JUnTMIXeirtryZLl3MLSZdvSXNpAbkbWg27YWIuzS8klv6c_syNZXtpCcigYjIUlG80wDzTfN4S841Y3BuOArJw0RVYEbI9ET5JR7tBgoscysdr967mYXxSfL_nlDpkOWJhQVplsf2_To7VOI-O0m-PVYjH-FoA4lJV4YxMZgea7lFWCj8ju2acv8_OtQUYXJHuKb56FCQk705d5XSkVaCvzMlJ3Unqff_rHUkf3M9sjz1LcCGf9rz0nO7bdJ4-nQ7u2ffL0D2bBF-TXrPPX4Jdoy-CnQknC2gOq2cJAs_BuY5eQOvTAj1vTRRjWNa6vVdf4NpX4nAIqEYT6Q_AOAolVYmAG1Zq02tIrA76Fm5BYG9XdQsBxwRYTGV-Nn4jjNkINYRWOALrA5fqSXMw-fp_Os9SUIdO4dWuUJGNF1XBRYSLlGsaoFa4spHa80IoqDBgrS62ygmH-q5yohDYunBs33Egj2Csyan1rDwhIWVgqnMm5poUqVeUoU1ybXDZGl7k6JPkgilonxvLQOGNZD6VpV3UQXx3EV08oXvSQvN_OWfV8HQ--zQcJ139pXY0O5cF5bwd1qFHM4YxFtdZvbkJXT8y5hJjIo_9c-zV5Ep76OrdjMlp3G_sGA591c0IefbjLT5J6_wZYtAUE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigcEBQQ5TlI3FDYjR07CTe0YrVA2wut1Fvk-CG22sardFeoF34PP5MZxykPiR6QIkVKbCfyjGZs-fu-Yey1dKa1uA7IymlbZAVxeyrMJBmXHgMmZiwb0e5Hx2pxWnw6k2c7bDZyYQhWmWL_ENNjtE5PJmk2J-vlcvKFiDhclHgT0yoSzW8VUpSE63v7_RfOAxNQNQh8y4yaJ-bMAPI615pEK_MyCndy_q_s9Fecjslnfo_dTatGeD_82H2247p9tjcbi7Xtszu_6Qo-YD_mfbiAsMJIBt802hE2AdDJlhbaZfBbt4JUnwe-Xtk-krAucHyj-zZ0CeDzDtCFgNCHEDyQhFXSXwbd2TTaKmgLoYNL2lZb3V8BsbjgmhEZm8ZPxOcuEg1hTQcAPSm5PmSn8w8ns0WWSjJkBqdug3YUoqhbqWrcRvlWCO6UL4vKeFkYzTUuF2vHnXZK4O5Xe1UrYz2dGrfSVlaJR2y3C517zKCqCseVt7k0vNClrj0XWhqbV601Za4PWD6aojFJr5zKZqyaEZh23pD5GjJfM-V48QP25rrPelDruLG1HC3c_OFzDaaTG_u9Gt2hQTPTCYvuXNheUk1P3HEpNa2e_OfYL9ne4uTosDn8ePz5KbtNbwbE2zO2u-m37jkugTbti-jiPwGWdgXP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+olive+waste+to+solid+biofuel+through+hydrothermal+carbonisation%3A+The+role+of+temperature+and+solid+load+on+secondary+char+formation+and+hydrochar+energy+properties&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Volpe%2C+Maurizio&rft.au=Fiori%2C+Luca&rft.date=2017-03-01&rft.issn=0165-2370&rft.volume=124&rft.spage=63&rft.epage=72&rft_id=info:doi/10.1016%2Fj.jaap.2017.02.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jaap_2017_02_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon