From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties
[Display omitted] •Tests at 7T (range: 120–250°C) and 4 biomass to water ratios (B/W range 7–25%).•Solid load (B/W) and T: crucial parameters for the energy properties of hydrochars.•The higher B/W, the higher the hydrochar carbon content, fixed carbon, HHV, yield.•High solid load and high reaction...
Saved in:
Published in | Journal of analytical and applied pyrolysis Vol. 124; pp. 63 - 72 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-2370 1873-250X |
DOI | 10.1016/j.jaap.2017.02.022 |
Cover
Abstract | [Display omitted]
•Tests at 7T (range: 120–250°C) and 4 biomass to water ratios (B/W range 7–25%).•Solid load (B/W) and T: crucial parameters for the energy properties of hydrochars.•The higher B/W, the higher the hydrochar carbon content, fixed carbon, HHV, yield.•High solid load and high reaction temperature promote secondary char formation.•C/O atomic ratio in secondary char is much higher than in primary char.
Hydrothermal carbonisation was used to upgrade fuels from two types of agro-industrial wastes: olive tree trimmings and olive pulp. Hydrochar yield, elemental and proximate analyses, thermal stability, higher heating value (HHV), and energy yield at different reaction temperatures (120, 150, 180, 200, 220, 235 and 250°C) and solid load (biomass to water ratios − B/W − equal to 7, 10, 15 and 25%) were assessed for a fixed reaction time of 30min. HHV varied linearly with hydrochar mass yield and reaction temperature in the temperature range 180–250°C. Solid load proved to be a crucial parameter in determining the energy properties of hydrochars. The higher B/W, the higher were the degree of carbonisation (in terms of fixed and total carbon), the hydrochar HHV, and the hydrochar yield. Elemental analysis showed that during HTC, olive pulp samples underwent a greater degree of carbonisation when compared to the corresponding olive tree trimmings residues. High solid load and high reaction temperature promoted secondary char formation. Secondary char showed a sphere-like structure formed by overlapping layers. EDS microanalysis showed that secondary char is characterised by a significantly higher carbon content than parent primary char, thus confirming its contribution towards enhancing the HHV of hydrochars. |
---|---|
AbstractList | Hydrothermal carbonisation was used to upgrade fuels from two types of agro-industrial wastes: olive tree trimmings and olive pulp. Hydrochar yield, elemental and proximate analyses, thermal stability, higher heating value (HHV), and energy yield at different reaction temperatures (120, 150, 180, 200, 220, 235 and 250°C) and solid load (biomass to water ratios − B/W − equal to 7, 10, 15 and 25%) were assessed for a fixed reaction time of 30min. HHV varied linearly with hydrochar mass yield and reaction temperature in the temperature range 180–250°C. Solid load proved to be a crucial parameter in determining the energy properties of hydrochars. The higher B/W, the higher were the degree of carbonisation (in terms of fixed and total carbon), the hydrochar HHV, and the hydrochar yield. Elemental analysis showed that during HTC, olive pulp samples underwent a greater degree of carbonisation when compared to the corresponding olive tree trimmings residues. High solid load and high reaction temperature promoted secondary char formation. Secondary char showed a sphere-like structure formed by overlapping layers. EDS microanalysis showed that secondary char is characterised by a significantly higher carbon content than parent primary char, thus confirming its contribution towards enhancing the HHV of hydrochars. [Display omitted] •Tests at 7T (range: 120–250°C) and 4 biomass to water ratios (B/W range 7–25%).•Solid load (B/W) and T: crucial parameters for the energy properties of hydrochars.•The higher B/W, the higher the hydrochar carbon content, fixed carbon, HHV, yield.•High solid load and high reaction temperature promote secondary char formation.•C/O atomic ratio in secondary char is much higher than in primary char. Hydrothermal carbonisation was used to upgrade fuels from two types of agro-industrial wastes: olive tree trimmings and olive pulp. Hydrochar yield, elemental and proximate analyses, thermal stability, higher heating value (HHV), and energy yield at different reaction temperatures (120, 150, 180, 200, 220, 235 and 250°C) and solid load (biomass to water ratios − B/W − equal to 7, 10, 15 and 25%) were assessed for a fixed reaction time of 30min. HHV varied linearly with hydrochar mass yield and reaction temperature in the temperature range 180–250°C. Solid load proved to be a crucial parameter in determining the energy properties of hydrochars. The higher B/W, the higher were the degree of carbonisation (in terms of fixed and total carbon), the hydrochar HHV, and the hydrochar yield. Elemental analysis showed that during HTC, olive pulp samples underwent a greater degree of carbonisation when compared to the corresponding olive tree trimmings residues. High solid load and high reaction temperature promoted secondary char formation. Secondary char showed a sphere-like structure formed by overlapping layers. EDS microanalysis showed that secondary char is characterised by a significantly higher carbon content than parent primary char, thus confirming its contribution towards enhancing the HHV of hydrochars. |
Author | Volpe, Maurizio Fiori, Luca |
Author_xml | – sequence: 1 givenname: Maurizio surname: Volpe fullname: Volpe, Maurizio – sequence: 2 givenname: Luca surname: Fiori fullname: Fiori, Luca email: luca.fiori@unitn.it |
BookMark | eNp9UcFq3DAQFSWFbtL-QE869uKtLNmyXXopoWkLgVxS6E3I0ijWYmu2kpyyf5TPrHY3pxwCA8MM773hzbskFwEDEPKxZtua1fLzbrvTer_lrO62jJfib8im7jtR8Zb9uSCbAmorLjr2jlymtGOMSVn3G_J0E3GhOPtHoP90ykAz0lRmS0ePboWZ5ini-jDR6WAj5gniomdqdBwx-KSzx_CF3k9AI85A0dEMyx6izmsEqoN9VptRW4qBJjAYrI4HaiYdqcMid9Q4QU8nTnsIEB8OdB-xaGUP6T156_Sc4MNzvyK_b77fX_-sbu9-_Lr-dluZYi5XPReiGcZWDnXTu1EIDtJ1TW9c2xjN9cDFABw0SNHVQjs5SGMdY00ztra3UlyRT2fdcvrvCimrxScD86wD4JoUL69rBilZX6D9GWoiphTBKePzyUyO2s-qZuoYjtqpYzjqGI5ivBQvVP6Cuo9-KV95nfT1TILi_9FDVMl4CAasj2Cysuhfo_8HgwOvIg |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_153854 crossref_primary_10_1016_j_fuel_2024_132256 crossref_primary_10_1016_j_scp_2025_101980 crossref_primary_10_1016_j_enconman_2018_12_009 crossref_primary_10_1016_j_renene_2020_04_050 crossref_primary_10_2139_ssrn_3973936 crossref_primary_10_1016_j_cherd_2023_04_007 crossref_primary_10_1016_j_scp_2023_101106 crossref_primary_10_1038_s41598_021_03501_7 crossref_primary_10_3390_su132212600 crossref_primary_10_1016_j_biteb_2023_101503 crossref_primary_10_1016_j_jwpe_2024_106692 crossref_primary_10_1016_j_biortech_2021_125972 crossref_primary_10_1016_j_jaap_2017_09_022 crossref_primary_10_1007_s13399_021_01782_6 crossref_primary_10_1016_j_energy_2021_122022 crossref_primary_10_1016_j_jenvman_2020_111164 crossref_primary_10_1016_j_wasman_2022_07_009 crossref_primary_10_3390_agronomy14020247 crossref_primary_10_1016_j_clet_2022_100467 crossref_primary_10_3390_app10103445 crossref_primary_10_3390_asi4010019 crossref_primary_10_3390_pr10020231 crossref_primary_10_1016_j_jaap_2019_03_007 crossref_primary_10_1016_j_fuel_2020_118069 crossref_primary_10_1016_j_jaap_2024_106459 crossref_primary_10_1088_1757_899X_1195_1_012024 crossref_primary_10_1002_cite_201900093 crossref_primary_10_1016_j_enconman_2024_119353 crossref_primary_10_3390_en12030516 crossref_primary_10_3390_su12125100 crossref_primary_10_1016_j_biortech_2018_04_066 crossref_primary_10_1016_j_renene_2020_03_112 crossref_primary_10_1016_j_gerr_2023_100034 crossref_primary_10_1166_jbmb_2021_2030 crossref_primary_10_3390_app142210670 crossref_primary_10_3390_app13031515 crossref_primary_10_1051_e3sconf_202560100012 crossref_primary_10_1007_s12649_018_00554_0 crossref_primary_10_1016_j_fuproc_2024_108167 crossref_primary_10_1016_j_jece_2018_04_015 crossref_primary_10_3390_pr8111432 crossref_primary_10_3390_en15186499 crossref_primary_10_1016_j_scitotenv_2021_150748 crossref_primary_10_1016_j_jaap_2020_104965 crossref_primary_10_1016_j_jece_2018_05_009 crossref_primary_10_1016_j_fuel_2025_134421 crossref_primary_10_1007_s13399_021_01330_2 crossref_primary_10_3390_en11113226 crossref_primary_10_1016_j_biortech_2021_126084 crossref_primary_10_1016_j_biombioe_2024_107166 crossref_primary_10_1299_jtst_23_00561 crossref_primary_10_1016_j_fuel_2021_122668 crossref_primary_10_1016_j_renene_2021_05_112 crossref_primary_10_1016_j_scitotenv_2022_155572 crossref_primary_10_1016_j_biortech_2018_10_084 crossref_primary_10_1021_acs_energyfuels_1c01681 crossref_primary_10_1016_j_fuel_2023_127486 crossref_primary_10_1016_j_psep_2023_02_085 crossref_primary_10_1016_j_rser_2021_111877 crossref_primary_10_1007_s13399_022_02874_7 crossref_primary_10_1007_s10668_024_05841_6 crossref_primary_10_1007_s11270_024_07023_6 crossref_primary_10_3390_en15030950 crossref_primary_10_1016_j_cej_2022_137827 crossref_primary_10_1007_s13399_021_01816_z crossref_primary_10_1007_s13399_019_00488_0 crossref_primary_10_1016_j_jelechem_2021_115616 crossref_primary_10_1080_17597269_2023_2201732 crossref_primary_10_1016_j_biortech_2017_09_072 crossref_primary_10_1016_j_fuel_2018_06_060 crossref_primary_10_1016_j_chemosphere_2020_128412 crossref_primary_10_1016_j_fuproc_2021_106795 crossref_primary_10_3390_app10103492 crossref_primary_10_3390_ijerph17186618 crossref_primary_10_1016_j_fuel_2023_129531 crossref_primary_10_1007_s11356_024_32468_x crossref_primary_10_1016_j_fuel_2023_129776 crossref_primary_10_1016_j_jaap_2017_07_023 crossref_primary_10_1016_j_biortech_2017_07_018 crossref_primary_10_3390_en13164098 crossref_primary_10_1016_j_energy_2024_132327 crossref_primary_10_3390_catal12060655 crossref_primary_10_1016_j_jfueco_2023_100090 crossref_primary_10_1016_j_energy_2023_127803 crossref_primary_10_1016_j_jclepro_2021_129020 crossref_primary_10_1016_j_renene_2024_120269 crossref_primary_10_1016_j_rser_2018_03_097 crossref_primary_10_3390_app8030331 crossref_primary_10_1016_j_fuel_2023_130643 crossref_primary_10_1007_s13399_023_04409_0 crossref_primary_10_1016_j_enconman_2018_04_073 crossref_primary_10_1016_j_scitotenv_2023_163193 crossref_primary_10_1007_s11356_023_25867_z crossref_primary_10_1016_j_jaap_2024_106801 crossref_primary_10_1016_j_wasman_2019_09_009 crossref_primary_10_1016_j_wasman_2021_01_026 crossref_primary_10_3390_pr8101201 crossref_primary_10_1016_j_envres_2023_116777 crossref_primary_10_1016_j_jclepro_2024_141735 crossref_primary_10_1016_j_energy_2019_07_178 crossref_primary_10_1016_j_jwpe_2019_100813 crossref_primary_10_1016_j_jenvman_2023_119132 crossref_primary_10_3390_en13164142 crossref_primary_10_1016_j_scp_2023_101420 crossref_primary_10_1016_j_energy_2020_117717 crossref_primary_10_1016_j_jece_2018_102833 crossref_primary_10_1016_j_fuel_2022_123189 crossref_primary_10_1016_j_polymdegradstab_2025_111224 crossref_primary_10_1016_j_energy_2019_116696 crossref_primary_10_1016_j_jclepro_2021_128087 crossref_primary_10_1016_j_biortech_2018_02_021 crossref_primary_10_1016_j_enconman_2017_05_015 crossref_primary_10_1007_s12649_020_01212_0 crossref_primary_10_1080_15226514_2024_2377809 crossref_primary_10_1007_s11356_024_34217_6 crossref_primary_10_1371_journal_pone_0269935 crossref_primary_10_1016_j_biombioe_2024_107061 crossref_primary_10_1016_j_fuproc_2020_106456 crossref_primary_10_1016_j_biortech_2019_122653 crossref_primary_10_3390_molecules25153534 crossref_primary_10_1016_j_jaap_2020_104771 crossref_primary_10_1016_j_wasman_2023_08_009 crossref_primary_10_3390_w14152344 crossref_primary_10_1016_j_biortech_2020_123734 crossref_primary_10_1007_s13399_022_02365_9 crossref_primary_10_1016_j_tca_2019_178470 crossref_primary_10_1016_j_fuel_2018_04_127 crossref_primary_10_1007_s40201_021_00751_5 crossref_primary_10_1039_C7GC03676K crossref_primary_10_3390_en16052483 crossref_primary_10_3390_en15103629 crossref_primary_10_1016_j_resconrec_2023_107359 crossref_primary_10_1016_j_energy_2024_130234 crossref_primary_10_1016_j_jenvman_2023_119834 crossref_primary_10_1016_j_jenvman_2024_122168 crossref_primary_10_1016_j_enconman_2020_113218 crossref_primary_10_1021_acs_energyfuels_8b03335 crossref_primary_10_1016_j_wasman_2018_09_021 crossref_primary_10_1021_acssuschemeng_8b02118 crossref_primary_10_1080_10643389_2018_1561104 crossref_primary_10_3390_en10111876 crossref_primary_10_3390_en11061379 crossref_primary_10_1007_s13399_020_01231_w crossref_primary_10_1016_j_jclepro_2021_125781 crossref_primary_10_1007_s13399_020_00743_9 crossref_primary_10_1016_j_jclepro_2020_121020 crossref_primary_10_1016_j_scitotenv_2022_157082 crossref_primary_10_1016_j_biteb_2021_100638 crossref_primary_10_1016_j_jece_2023_111545 crossref_primary_10_1016_j_scitotenv_2021_152181 crossref_primary_10_1061_JHTRBP_HZENG_1385 crossref_primary_10_1016_j_enconman_2021_114631 crossref_primary_10_1016_j_jenvman_2021_114058 crossref_primary_10_1016_j_jenvman_2019_01_005 crossref_primary_10_1016_j_jenvman_2021_111981 crossref_primary_10_1016_j_renene_2019_07_142 crossref_primary_10_1016_j_indcrop_2023_117519 crossref_primary_10_1016_j_nexus_2023_100199 crossref_primary_10_1007_s12649_020_01255_3 crossref_primary_10_1016_j_jaap_2023_106315 crossref_primary_10_1016_j_biombioe_2022_106590 crossref_primary_10_1016_j_wasman_2024_01_052 crossref_primary_10_1016_j_jaap_2024_106732 crossref_primary_10_1016_j_sajce_2022_10_008 crossref_primary_10_1016_j_cej_2024_149779 crossref_primary_10_1016_j_envpol_2023_121751 crossref_primary_10_3390_su16020850 crossref_primary_10_1016_j_apenergy_2024_124292 crossref_primary_10_3390_app112210983 crossref_primary_10_1108_HFF_11_2016_0459 crossref_primary_10_1007_s11356_017_0366_7 crossref_primary_10_1016_j_scitotenv_2021_148816 crossref_primary_10_1016_j_jece_2018_07_053 crossref_primary_10_3390_en13112890 crossref_primary_10_1016_j_biortech_2017_11_058 crossref_primary_10_1016_j_jenvman_2020_110067 crossref_primary_10_1016_j_biombioe_2020_105593 crossref_primary_10_1002_cjce_24812 crossref_primary_10_1016_j_cattod_2023_01_018 crossref_primary_10_1016_j_jece_2019_103599 crossref_primary_10_1016_j_energy_2021_120213 crossref_primary_10_3390_polym16111529 crossref_primary_10_1016_j_renene_2024_120509 crossref_primary_10_3390_en14102962 |
Cites_doi | 10.1016/j.biortech.2013.01.154 10.1016/S0960-8524(98)00110-2 10.1016/j.cej.2012.04.068 10.1016/j.enconman.2015.08.031 10.3390/su6117866 10.1016/j.apenergy.2014.08.094 10.1039/C5GC02296G 10.1016/j.fuproc.2011.11.009 10.1016/j.jaap.2015.03.012 10.1016/j.energy.2015.12.123 10.1016/j.apenergy.2013.04.084 10.1039/C4CS00232F 10.1016/S0165-2370(02)00062-1 10.1016/j.jaap.2014.11.004 10.1016/j.wasman.2015.05.013 10.1016/j.fuel.2012.07.069 10.1016/j.biortech.2015.02.024 10.1016/j.cbpa.2013.05.004 10.1016/j.jaap.2006.01.001 10.1002/ceat.200800278 10.1016/j.wasman.2015.04.016 10.1016/j.proenv.2012.10.022 10.1021/ie900964u 10.1016/j.energy.2006.03.008 10.1039/b807009a 10.1016/j.apenergy.2013.06.027 10.1016/j.fuel.2006.12.013 10.1016/j.jaap.2015.01.031 10.1016/j.jaap.2006.01.002 10.1016/j.cherd.2014.05.024 10.1016/S0960-8524(98)00134-5 10.1016/j.wasman.2016.01.012 10.1016/j.energy.2016.04.034 10.1016/j.biortech.2015.01.118 10.1016/j.enpol.2015.12.039 10.1039/c1gc15742f 10.1016/j.apenergy.2013.08.087 10.1016/j.apenergy.2015.06.022 10.1016/j.biombioe.2012.12.004 10.1016/j.cattod.2014.09.024 10.1039/c2ee21166a 10.1016/j.energy.2015.05.062 10.1016/j.energy.2015.01.011 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jaap.2017.02.022 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-250X |
EndPage | 72 |
ExternalDocumentID | 10_1016_j_jaap_2017_02_022 S0165237016308415 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SES SEW SPC SPCBC SSK SSZ T5K TN5 WUQ YK3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c370t-823349b569148fb332e6f748cf54ca2a9239e2eae63713af696cdf0044b5d8d63 |
IEDL.DBID | AIKHN |
ISSN | 0165-2370 |
IngestDate | Thu Sep 04 19:19:58 EDT 2025 Tue Jul 01 01:23:47 EDT 2025 Thu Apr 24 22:51:10 EDT 2025 Fri Feb 23 02:25:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solid biofuel Olive waste Biomass Hydrothermal carbonization Secondary char Wet torrefaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-823349b569148fb332e6f748cf54ca2a9239e2eae63713af696cdf0044b5d8d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000496608 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000496608 crossref_citationtrail_10_1016_j_jaap_2017_02_022 crossref_primary_10_1016_j_jaap_2017_02_022 elsevier_sciencedirect_doi_10_1016_j_jaap_2017_02_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of analytical and applied pyrolysis |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Poerschmann, Baskyr, Weiner, Koehler, Wedwitschka, Kopinke (bib0025) 2013; 133 Falco, Baccile, Titirici (bib0200) 2011; 13 Volpe, D’Anna, Messineo, Volpe, Messineo (bib0215) 2014; 6 Basso, Patuzzi, Castello, Baratieri, Rada, Weiss-Hortala, Fiori (bib0105) 2016; 47 Prins, Ptasinski, Janssen (bib0040) 2006; 77 Reza, Rottler, Herklotz, Wirth (bib0175) 2015; 182 Liu, Quek, Hoekman, Balasubramanian (bib0120) 2013; 103 Benavente, Calabuig, Fullana (bib0070) 2015; 113 Liu, Balasubramanian (bib0075) 2014; 114 (Accessed 25 November 25 2016). Titirici, White, Falco, Sevilla (bib0150) 2012; 5 Vitolo, Petarca, Bresci (bib0015) 1999; 67 Prins, Ptasinski, Janssen (bib0030) 2006; 31 Guizani, Jeguirim, Colin, Limousy (bib0050) 2016; 107 Burguete, Corma, Hitzl, Modrego, Ponce, Renz (bib0085) 2016; 18 Kambo, Dutta (bib0060) 2015; 105 Fiori, Basso, Castello, Baratieri (bib0170) 2014; 37 Liu, Balasubramanian (bib0220) 2012; 16 Bach, Tran, Skreiberg, Trinh (bib0195) 2015; 88 Toledano, Serrano, Labidi (bib0190) 2012; 193–194 Prins, Ptasinski, Janssen (bib0035) 2006; 77 Liu, Quek, Balasubramanian (bib0055) 2014; 113 Álvarez-Murillo, Román, Ledesma, Sabio (bib0110) 2015; 113 van Krevelen (bib0180) 1950; 29 Basso, Weiss-Hortala, Patuzzi, Castello, Baratieri, Fiori (bib0100) 2015; 182 Castello, Kruse, Fiori (bib0155) 2014; 92 Karayildirim, Sinaǧ, Kruse (bib0145) 2008; 31 Titirici, White, Brun, Budarin, Su, Del Monte, Clark, MacLachlan (bib0080) 2015; 44 Knezevic, van Swaaij, Kersten (bib0140) 2010; 49 Yang, Yan, Chen, Lee, Zheng (bib0205) 2007; 86 Titirici (bib0235) 2012 Gao, Zhou, Meng, Zhang, Liu, Zhang, Xue (bib0115) 2016; 97 Kambo, Dutta (bib0230) 2014; 135 Paiano, Lagioia (bib0005) 2016; 91 Bolaños, Felizón, Heredia, Guillén, Jimenéz (bib0185) 1999; 68 Kruse, Funke, Titirici (bib0225) 2013; 17 Titirici, Antonietti, Baccile (bib0160) 2008; 10 Branca, Di Blasi (bib0210) 2003; 67 Hitzl, Corma, Pomares, Renz (bib0090) 2015; 257 Sabio, Álvarez-Murillo, Román, Ledesma (bib0095) 2016; 47 Regioni.it. Olio di oliva: stime positive per produzione 2015–2016. Christoforou, Fokaides (bib0020) 2015; 49 Volpe, Messineo, Millan, Volpe, Kandiyoti (bib0045) 2015; 82 Mäkelä, Benavente, Fullana (bib0130) 2015; 155 Reza, Lynam, Uddin, Coronella (bib0065) 2013; 49 Román, Nabais, Laginhas, Ledesma, González (bib0125) 2012; 103 He, Giannis, Wang (bib0135) 2013; 111 Sermyagina, Saari, Kaikko, Vakkilainen (bib0165) 2015; 113 Kambo (10.1016/j.jaap.2017.02.022_bib0230) 2014; 135 Basso (10.1016/j.jaap.2017.02.022_bib0100) 2015; 182 Prins (10.1016/j.jaap.2017.02.022_bib0035) 2006; 77 Castello (10.1016/j.jaap.2017.02.022_bib0155) 2014; 92 Reza (10.1016/j.jaap.2017.02.022_bib0175) 2015; 182 Sermyagina (10.1016/j.jaap.2017.02.022_bib0165) 2015; 113 Poerschmann (10.1016/j.jaap.2017.02.022_bib0025) 2013; 133 He (10.1016/j.jaap.2017.02.022_bib0135) 2013; 111 Fiori (10.1016/j.jaap.2017.02.022_bib0170) 2014; 37 Volpe (10.1016/j.jaap.2017.02.022_bib0045) 2015; 82 Basso (10.1016/j.jaap.2017.02.022_bib0105) 2016; 47 Paiano (10.1016/j.jaap.2017.02.022_bib0005) 2016; 91 Álvarez-Murillo (10.1016/j.jaap.2017.02.022_bib0110) 2015; 113 Gao (10.1016/j.jaap.2017.02.022_bib0115) 2016; 97 Christoforou (10.1016/j.jaap.2017.02.022_bib0020) 2015; 49 Titirici (10.1016/j.jaap.2017.02.022_bib0080) 2015; 44 Román (10.1016/j.jaap.2017.02.022_bib0125) 2012; 103 Liu (10.1016/j.jaap.2017.02.022_bib0220) 2012; 16 Kambo (10.1016/j.jaap.2017.02.022_bib0060) 2015; 105 Sabio (10.1016/j.jaap.2017.02.022_bib0095) 2016; 47 Liu (10.1016/j.jaap.2017.02.022_bib0120) 2013; 103 10.1016/j.jaap.2017.02.022_bib0010 Toledano (10.1016/j.jaap.2017.02.022_bib0190) 2012; 193–194 Bach (10.1016/j.jaap.2017.02.022_bib0195) 2015; 88 Benavente (10.1016/j.jaap.2017.02.022_bib0070) 2015; 113 Burguete (10.1016/j.jaap.2017.02.022_bib0085) 2016; 18 Vitolo (10.1016/j.jaap.2017.02.022_bib0015) 1999; 67 Karayildirim (10.1016/j.jaap.2017.02.022_bib0145) 2008; 31 Prins (10.1016/j.jaap.2017.02.022_bib0040) 2006; 77 Volpe (10.1016/j.jaap.2017.02.022_bib0215) 2014; 6 Titirici (10.1016/j.jaap.2017.02.022_bib0150) 2012; 5 Titirici (10.1016/j.jaap.2017.02.022_bib0235) 2012 Guizani (10.1016/j.jaap.2017.02.022_bib0050) 2016; 107 Liu (10.1016/j.jaap.2017.02.022_bib0055) 2014; 113 Kruse (10.1016/j.jaap.2017.02.022_bib0225) 2013; 17 Branca (10.1016/j.jaap.2017.02.022_bib0210) 2003; 67 Prins (10.1016/j.jaap.2017.02.022_bib0030) 2006; 31 Reza (10.1016/j.jaap.2017.02.022_bib0065) 2013; 49 van Krevelen (10.1016/j.jaap.2017.02.022_bib0180) 1950; 29 Falco (10.1016/j.jaap.2017.02.022_bib0200) 2011; 13 Titirici (10.1016/j.jaap.2017.02.022_bib0160) 2008; 10 Knezevic (10.1016/j.jaap.2017.02.022_bib0140) 2010; 49 Bolaños (10.1016/j.jaap.2017.02.022_bib0185) 1999; 68 Mäkelä (10.1016/j.jaap.2017.02.022_bib0130) 2015; 155 Hitzl (10.1016/j.jaap.2017.02.022_bib0090) 2015; 257 Liu (10.1016/j.jaap.2017.02.022_bib0075) 2014; 114 Yang (10.1016/j.jaap.2017.02.022_bib0205) 2007; 86 |
References_xml | – volume: 113 start-page: 307 year: 2015 end-page: 314 ident: bib0110 article-title: Study of variables in energy densification of olive stone by hydrothermal carbonization publication-title: J. Anal. Appl. Pyrolysis – volume: 91 start-page: 161 year: 2016 end-page: 173 ident: bib0005 article-title: Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case publication-title: Energy Policy – reference: Regioni.it. Olio di oliva: stime positive per produzione 2015–2016. – volume: 47 start-page: 114 year: 2016 end-page: 121 ident: bib0105 article-title: Agro-industrial waste to solid biofuel through hydrothermal carbonization publication-title: Waste Manag. – volume: 67 start-page: 129 year: 1999 end-page: 137 ident: bib0015 article-title: Treatment of olive oil industry wastes publication-title: Bioresour. Technol. – volume: 49 start-page: 86 year: 2013 end-page: 94 ident: bib0065 article-title: Hydrothermal carbonization: fate of inorganics publication-title: Biomass Bioenergy – volume: 67 start-page: 207 year: 2003 end-page: 219 ident: bib0210 article-title: Kinetics of the isothermal degradation of wood in the temperature range 528–708 publication-title: J Anal. Appl. Pyrolysis – volume: 113 start-page: 1315 year: 2014 end-page: 1322 ident: bib0055 article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars publication-title: Appl. Energy – volume: 155 start-page: 576 year: 2015 end-page: 584 ident: bib0130 article-title: Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties publication-title: Appl. Energy – volume: 103 start-page: 78 year: 2012 end-page: 83 ident: bib0125 article-title: Hydrothermal carbonization as an effective way of densifying the energy content of biomass publication-title: Fuel Process. Technol. – volume: 113 start-page: 551 year: 2015 end-page: 556 ident: bib0165 article-title: Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields publication-title: J. Anal. Appl. Pyrolysis – volume: 88 start-page: 443 year: 2015 end-page: 456 ident: bib0195 article-title: Effects of wet torrefaction on pyrolysis of woody biomass fuels publication-title: Energy – volume: 133 start-page: 581 year: 2013 end-page: 588 ident: bib0025 article-title: Hydrothermal carbonization of olive mill wastewater publication-title: Bioresour. Technol. – volume: 31 start-page: 3458 year: 2006 end-page: 3470 ident: bib0030 article-title: More efficient biomass gasification via torrefaction publication-title: Energy – volume: 135 start-page: 182 year: 2014 end-page: 191 ident: bib0230 article-title: Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization publication-title: Appl. Energy – volume: 5 start-page: 6796 year: 2012 end-page: 6822 ident: bib0150 article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage publication-title: Energy Environ. Sci. – volume: 37 start-page: 55 year: 2014 end-page: 60 ident: bib0170 article-title: Hydrothermal carbonization of biomass: design of a batch reactor and preliminary experimental results publication-title: Chem. Eng. Trans. – volume: 13 start-page: 3273 year: 2011 end-page: 3281 ident: bib0200 article-title: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons publication-title: Green Chem. – volume: 97 start-page: 238 year: 2016 end-page: 245 ident: bib0115 article-title: Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization publication-title: Energy – volume: 103 start-page: 943 year: 2013 end-page: 949 ident: bib0120 article-title: Production of solid biochar fuel from waste biomass by hydrothermal carbonization publication-title: Fuel – volume: 113 start-page: 89 year: 2015 end-page: 98 ident: bib0070 article-title: Upgrading of moist agro-industrial wastes by hydrothermal carbonization publication-title: J. Anal. Appl. Pyrolysis – volume: 257 start-page: 154 year: 2015 end-page: 159 ident: bib0090 article-title: The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass publication-title: Catal. Today – reference: (Accessed 25 November 25 2016). – volume: 107 start-page: 453 year: 2016 end-page: 463 ident: bib0050 article-title: Combustion characteristics and kinetics of torrefied olive pomace publication-title: Energy – volume: 44 start-page: 250 year: 2015 end-page: 290 ident: bib0080 article-title: Sustainable carbon materials publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1204 year: 2008 end-page: 1212 ident: bib0160 article-title: Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses publication-title: Green Chem. – start-page: 351 year: 2012 end-page: 399 ident: bib0235 article-title: Hydrothermal carbons: synthesis, characterization, and applications publication-title: Nov. Carbon Adsorbents – volume: 82 start-page: 119 year: 2015 end-page: 127 ident: bib0045 article-title: Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown publication-title: Energy – volume: 49 start-page: 104 year: 2010 end-page: 112 ident: bib0140 article-title: Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water publication-title: Ind. Eng. Chem. Res. – volume: 86 start-page: 1781 year: 2007 end-page: 1788 ident: bib0205 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel – volume: 6 start-page: 7866 year: 2014 end-page: 7882 ident: bib0215 article-title: Sustainable production of bio-combustibles from pyrolysis of agro-industrial wastes publication-title: Sustainability – volume: 17 start-page: 515 year: 2013 end-page: 521 ident: bib0225 article-title: Hydrothermal conversion of biomass to fuels and energetic materials publication-title: Curr. Opin. Chem. Biol. – volume: 29 start-page: 269 year: 1950 end-page: 284 ident: bib0180 article-title: Graphical statistical method for the study of structure and reaction processes of coal publication-title: Fuel – volume: 47 start-page: 122 year: 2016 end-page: 132 ident: bib0095 article-title: Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables publication-title: Waste Manag. – volume: 182 start-page: 336 year: 2015 end-page: 344 ident: bib0175 article-title: Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide publication-title: Bioresour. Technol. – volume: 92 start-page: 1864 year: 2014 end-page: 1875 ident: bib0155 article-title: Supercritical water gasification of hydrochar publication-title: Chem. Eng. Res. Des. – volume: 114 start-page: 857 year: 2014 end-page: 864 ident: bib0075 article-title: Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation publication-title: Appl. Energy – volume: 193–194 start-page: 396 year: 2012 end-page: 403 ident: bib0190 article-title: Process for olive tree pruning lignin revalorisation publication-title: Chem. Eng. J. – volume: 49 start-page: 346 year: 2015 end-page: 363 ident: bib0020 article-title: A review of olive mill solid wastes to energy utilization techniques publication-title: Waste Manag. – volume: 182 start-page: 217 year: 2015 end-page: 224 ident: bib0100 article-title: Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment publication-title: Bioresour. Technol. – volume: 18 start-page: 1051 year: 2016 end-page: 1060 ident: bib0085 article-title: Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization publication-title: Green Chem. – volume: 16 start-page: 159 year: 2012 end-page: 166 ident: bib0220 article-title: Hydrothermal carbonization of waste biomass for energy production publication-title: Procedia Environ. Sci. – volume: 77 start-page: 28 year: 2006 end-page: 34 ident: bib0035 article-title: Torrefaction of wood part 1 publication-title: J. Anal. Appl. Pyrolysis – volume: 111 start-page: 257 year: 2013 end-page: 266 ident: bib0135 article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior publication-title: Appl. Energy – volume: 31 start-page: 1561 year: 2008 end-page: 1568 ident: bib0145 article-title: Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification publication-title: Chem. Eng. Technol. – volume: 77 start-page: 35 year: 2006 end-page: 40 ident: bib0040 article-title: Torrefaction of wood part 2. analysis of products publication-title: J. Anal. Appl. Pyrolysis – volume: 105 start-page: 746 year: 2015 end-page: 755 ident: bib0060 article-title: Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel publication-title: Energy Convers. Manag. – volume: 68 start-page: 121 year: 1999 end-page: 132 ident: bib0185 article-title: Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones publication-title: Bioresour. Technol. – volume: 133 start-page: 581 year: 2013 ident: 10.1016/j.jaap.2017.02.022_bib0025 article-title: Hydrothermal carbonization of olive mill wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.01.154 – volume: 67 start-page: 129 year: 1999 ident: 10.1016/j.jaap.2017.02.022_bib0015 article-title: Treatment of olive oil industry wastes publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(98)00110-2 – volume: 193–194 start-page: 396 year: 2012 ident: 10.1016/j.jaap.2017.02.022_bib0190 article-title: Process for olive tree pruning lignin revalorisation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.04.068 – volume: 105 start-page: 746 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0060 article-title: Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.08.031 – volume: 6 start-page: 7866 year: 2014 ident: 10.1016/j.jaap.2017.02.022_bib0215 article-title: Sustainable production of bio-combustibles from pyrolysis of agro-industrial wastes publication-title: Sustainability doi: 10.3390/su6117866 – volume: 135 start-page: 182 year: 2014 ident: 10.1016/j.jaap.2017.02.022_bib0230 article-title: Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.08.094 – volume: 18 start-page: 1051 year: 2016 ident: 10.1016/j.jaap.2017.02.022_bib0085 article-title: Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization publication-title: Green Chem. doi: 10.1039/C5GC02296G – volume: 103 start-page: 78 year: 2012 ident: 10.1016/j.jaap.2017.02.022_bib0125 article-title: Hydrothermal carbonization as an effective way of densifying the energy content of biomass publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2011.11.009 – volume: 113 start-page: 551 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0165 article-title: Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2015.03.012 – volume: 97 start-page: 238 year: 2016 ident: 10.1016/j.jaap.2017.02.022_bib0115 article-title: Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization publication-title: Energy doi: 10.1016/j.energy.2015.12.123 – volume: 111 start-page: 257 year: 2013 ident: 10.1016/j.jaap.2017.02.022_bib0135 article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.084 – volume: 44 start-page: 250 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0080 article-title: Sustainable carbon materials publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00232F – volume: 67 start-page: 207 year: 2003 ident: 10.1016/j.jaap.2017.02.022_bib0210 article-title: Kinetics of the isothermal degradation of wood in the temperature range 528–708K publication-title: J Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(02)00062-1 – volume: 113 start-page: 89 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0070 article-title: Upgrading of moist agro-industrial wastes by hydrothermal carbonization publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2014.11.004 – volume: 47 start-page: 114 year: 2016 ident: 10.1016/j.jaap.2017.02.022_bib0105 article-title: Agro-industrial waste to solid biofuel through hydrothermal carbonization publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.05.013 – volume: 103 start-page: 943 year: 2013 ident: 10.1016/j.jaap.2017.02.022_bib0120 article-title: Production of solid biochar fuel from waste biomass by hydrothermal carbonization publication-title: Fuel doi: 10.1016/j.fuel.2012.07.069 – volume: 182 start-page: 336 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0175 article-title: Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.02.024 – volume: 17 start-page: 515 year: 2013 ident: 10.1016/j.jaap.2017.02.022_bib0225 article-title: Hydrothermal conversion of biomass to fuels and energetic materials publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2013.05.004 – volume: 77 start-page: 35 year: 2006 ident: 10.1016/j.jaap.2017.02.022_bib0040 article-title: Torrefaction of wood part 2. analysis of products publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2006.01.001 – volume: 31 start-page: 1561 year: 2008 ident: 10.1016/j.jaap.2017.02.022_bib0145 article-title: Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200800278 – volume: 47 start-page: 122 year: 2016 ident: 10.1016/j.jaap.2017.02.022_bib0095 article-title: Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.04.016 – start-page: 351 year: 2012 ident: 10.1016/j.jaap.2017.02.022_bib0235 article-title: Hydrothermal carbons: synthesis, characterization, and applications – volume: 16 start-page: 159 year: 2012 ident: 10.1016/j.jaap.2017.02.022_bib0220 article-title: Hydrothermal carbonization of waste biomass for energy production publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2012.10.022 – ident: 10.1016/j.jaap.2017.02.022_bib0010 – volume: 49 start-page: 104 year: 2010 ident: 10.1016/j.jaap.2017.02.022_bib0140 article-title: Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900964u – volume: 31 start-page: 3458 year: 2006 ident: 10.1016/j.jaap.2017.02.022_bib0030 article-title: More efficient biomass gasification via torrefaction publication-title: Energy doi: 10.1016/j.energy.2006.03.008 – volume: 10 start-page: 1204 year: 2008 ident: 10.1016/j.jaap.2017.02.022_bib0160 article-title: Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses publication-title: Green Chem. doi: 10.1039/b807009a – volume: 114 start-page: 857 year: 2014 ident: 10.1016/j.jaap.2017.02.022_bib0075 article-title: Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.06.027 – volume: 86 start-page: 1781 year: 2007 ident: 10.1016/j.jaap.2017.02.022_bib0205 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – volume: 113 start-page: 307 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0110 article-title: Study of variables in energy densification of olive stone by hydrothermal carbonization publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2015.01.031 – volume: 77 start-page: 28 year: 2006 ident: 10.1016/j.jaap.2017.02.022_bib0035 article-title: Torrefaction of wood part 1wt loss kinetics publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2006.01.002 – volume: 92 start-page: 1864 year: 2014 ident: 10.1016/j.jaap.2017.02.022_bib0155 article-title: Supercritical water gasification of hydrochar publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2014.05.024 – volume: 68 start-page: 121 year: 1999 ident: 10.1016/j.jaap.2017.02.022_bib0185 article-title: Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(98)00134-5 – volume: 49 start-page: 346 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0020 article-title: A review of olive mill solid wastes to energy utilization techniques publication-title: Waste Manag. doi: 10.1016/j.wasman.2016.01.012 – volume: 107 start-page: 453 year: 2016 ident: 10.1016/j.jaap.2017.02.022_bib0050 article-title: Combustion characteristics and kinetics of torrefied olive pomace publication-title: Energy doi: 10.1016/j.energy.2016.04.034 – volume: 182 start-page: 217 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0100 article-title: Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.01.118 – volume: 37 start-page: 55 year: 2014 ident: 10.1016/j.jaap.2017.02.022_bib0170 article-title: Hydrothermal carbonization of biomass: design of a batch reactor and preliminary experimental results publication-title: Chem. Eng. Trans. – volume: 91 start-page: 161 year: 2016 ident: 10.1016/j.jaap.2017.02.022_bib0005 article-title: Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case publication-title: Energy Policy doi: 10.1016/j.enpol.2015.12.039 – volume: 13 start-page: 3273 year: 2011 ident: 10.1016/j.jaap.2017.02.022_bib0200 article-title: Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons publication-title: Green Chem. doi: 10.1039/c1gc15742f – volume: 113 start-page: 1315 year: 2014 ident: 10.1016/j.jaap.2017.02.022_bib0055 article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.08.087 – volume: 155 start-page: 576 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0130 article-title: Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.06.022 – volume: 29 start-page: 269 year: 1950 ident: 10.1016/j.jaap.2017.02.022_bib0180 article-title: Graphical statistical method for the study of structure and reaction processes of coal publication-title: Fuel – volume: 49 start-page: 86 year: 2013 ident: 10.1016/j.jaap.2017.02.022_bib0065 article-title: Hydrothermal carbonization: fate of inorganics publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.12.004 – volume: 257 start-page: 154 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0090 article-title: The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass publication-title: Catal. Today doi: 10.1016/j.cattod.2014.09.024 – volume: 5 start-page: 6796 year: 2012 ident: 10.1016/j.jaap.2017.02.022_bib0150 article-title: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21166a – volume: 88 start-page: 443 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0195 article-title: Effects of wet torrefaction on pyrolysis of woody biomass fuels publication-title: Energy doi: 10.1016/j.energy.2015.05.062 – volume: 82 start-page: 119 year: 2015 ident: 10.1016/j.jaap.2017.02.022_bib0045 article-title: Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown publication-title: Energy doi: 10.1016/j.energy.2015.01.011 |
SSID | ssj0006618 |
Score | 2.569043 |
Snippet | [Display omitted]
•Tests at 7T (range: 120–250°C) and 4 biomass to water ratios (B/W range 7–25%).•Solid load (B/W) and T: crucial parameters for the energy... Hydrothermal carbonisation was used to upgrade fuels from two types of agro-industrial wastes: olive tree trimmings and olive pulp. Hydrochar yield, elemental... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 63 |
SubjectTerms | agricultural wastes biofuels Biomass carbon energy energy-dispersive X-ray analysis hydrochars Hydrothermal carbonization Olea europaea olive pulp Olive waste olives pyrolysis Secondary char Solid biofuel temperature thermal stability Wet torrefaction |
Title | From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties |
URI | https://dx.doi.org/10.1016/j.jaap.2017.02.022 https://www.proquest.com/docview/2000496608 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tD2UNK0JUnTMIXeirtryZLl3MLSZdvSXNpAbkbWg27YWIuzS8klv6c_syNZXtpCcigYjIUlG80wDzTfN4S841Y3BuOArJw0RVYEbI9ET5JR7tBgoscysdr967mYXxSfL_nlDpkOWJhQVplsf2_To7VOI-O0m-PVYjH-FoA4lJV4YxMZgea7lFWCj8ju2acv8_OtQUYXJHuKb56FCQk705d5XSkVaCvzMlJ3Unqff_rHUkf3M9sjz1LcCGf9rz0nO7bdJ4-nQ7u2ffL0D2bBF-TXrPPX4Jdoy-CnQknC2gOq2cJAs_BuY5eQOvTAj1vTRRjWNa6vVdf4NpX4nAIqEYT6Q_AOAolVYmAG1Zq02tIrA76Fm5BYG9XdQsBxwRYTGV-Nn4jjNkINYRWOALrA5fqSXMw-fp_Os9SUIdO4dWuUJGNF1XBRYSLlGsaoFa4spHa80IoqDBgrS62ygmH-q5yohDYunBs33Egj2Csyan1rDwhIWVgqnMm5poUqVeUoU1ybXDZGl7k6JPkgilonxvLQOGNZD6VpV3UQXx3EV08oXvSQvN_OWfV8HQ--zQcJ139pXY0O5cF5bwd1qFHM4YxFtdZvbkJXT8y5hJjIo_9c-zV5Ep76OrdjMlp3G_sGA591c0IefbjLT5J6_wZYtAUE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigcEBQQ5TlI3FDYjR07CTe0YrVA2wut1Fvk-CG22sardFeoF34PP5MZxykPiR6QIkVKbCfyjGZs-fu-Yey1dKa1uA7IymlbZAVxeyrMJBmXHgMmZiwb0e5Hx2pxWnw6k2c7bDZyYQhWmWL_ENNjtE5PJmk2J-vlcvKFiDhclHgT0yoSzW8VUpSE63v7_RfOAxNQNQh8y4yaJ-bMAPI615pEK_MyCndy_q_s9Fecjslnfo_dTatGeD_82H2247p9tjcbi7Xtszu_6Qo-YD_mfbiAsMJIBt802hE2AdDJlhbaZfBbt4JUnwe-Xtk-krAucHyj-zZ0CeDzDtCFgNCHEDyQhFXSXwbd2TTaKmgLoYNL2lZb3V8BsbjgmhEZm8ZPxOcuEg1hTQcAPSm5PmSn8w8ns0WWSjJkBqdug3YUoqhbqWrcRvlWCO6UL4vKeFkYzTUuF2vHnXZK4O5Xe1UrYz2dGrfSVlaJR2y3C517zKCqCseVt7k0vNClrj0XWhqbV601Za4PWD6aojFJr5zKZqyaEZh23pD5GjJfM-V48QP25rrPelDruLG1HC3c_OFzDaaTG_u9Gt2hQTPTCYvuXNheUk1P3HEpNa2e_OfYL9ne4uTosDn8ePz5KbtNbwbE2zO2u-m37jkugTbti-jiPwGWdgXP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+olive+waste+to+solid+biofuel+through+hydrothermal+carbonisation%3A+The+role+of+temperature+and+solid+load+on+secondary+char+formation+and+hydrochar+energy+properties&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Volpe%2C+Maurizio&rft.au=Fiori%2C+Luca&rft.date=2017-03-01&rft.issn=0165-2370&rft.volume=124&rft.spage=63&rft.epage=72&rft_id=info:doi/10.1016%2Fj.jaap.2017.02.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jaap_2017_02_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon |