Performance score based multi-objective optimization for thermal design of partially filled high porosity metal foam pipes under forced convection

•A numerical study on heat and fluid flow in a partially aluminum foam filled conduit is performed.•6 different Models with different aluminum foam layer thickness and different PPI for wide range of Reynolds number are considered.•TOPSIS method is used to find out the best score according to the la...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 182; p. 121911
Main Authors Jadhav, Prakash H., G, Trilok, Gnanasekaran, N, Mobedi, Moghtada
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A numerical study on heat and fluid flow in a partially aluminum foam filled conduit is performed.•6 different Models with different aluminum foam layer thickness and different PPI for wide range of Reynolds number are considered.•TOPSIS method is used to find out the best score according to the layer position, thickness and PPI as well as Reynolds number for 5 different weightage/priority criteria of heat transfer and pressure drop.•The best model is completely different for the studied weightage/priority criteria showing that no unique design can exist as the best model for partially porous media filled conduits. Optimization study in flow through metal foams for heat exchanging applications is very much essential as it involves variety of fluid flow and structural properties. Moreover, the identification of best combinations of structural parameters of metal foams for simultaneous improvement of heat transfer and pressure drop is a pressing situation. In this work, six different metal foam configurations are considered for the enhancement of heat transfer in a circular conduit. The foam is aluminum with PPI varying from 10 to 45 and almost the same porosity (0.90-0.95). The aluminum foams are chosen from the available literature and they are partially filled in the conduit to reduce the pressure drop. For a constant heat flux condition, the goal is to find out the efficient metal foam and configurations when air is considered as a working fluid. A special attention is paid to the preference between pressure drop and heat transfer enhancements. That is why TOPSIS optimization techniques with five different criteria (contains the combination of the weightage/priority of heat transfer and pressure drop) is used. Based on the numerical results of heat and fluid flow in conduit, it is found that when an equal importance is given to both heat transfer and friction effect, 30 PPI aluminum foam with 80% filling on the inner lateral of the pipe provides the best score as 0.8197. The best configuration and PPI for different preferences between friction and heat transfer enhancements is discussed in details. The Reynolds number varies from 4500 to 16500.
AbstractList •A numerical study on heat and fluid flow in a partially aluminum foam filled conduit is performed.•6 different Models with different aluminum foam layer thickness and different PPI for wide range of Reynolds number are considered.•TOPSIS method is used to find out the best score according to the layer position, thickness and PPI as well as Reynolds number for 5 different weightage/priority criteria of heat transfer and pressure drop.•The best model is completely different for the studied weightage/priority criteria showing that no unique design can exist as the best model for partially porous media filled conduits. Optimization study in flow through metal foams for heat exchanging applications is very much essential as it involves variety of fluid flow and structural properties. Moreover, the identification of best combinations of structural parameters of metal foams for simultaneous improvement of heat transfer and pressure drop is a pressing situation. In this work, six different metal foam configurations are considered for the enhancement of heat transfer in a circular conduit. The foam is aluminum with PPI varying from 10 to 45 and almost the same porosity (0.90-0.95). The aluminum foams are chosen from the available literature and they are partially filled in the conduit to reduce the pressure drop. For a constant heat flux condition, the goal is to find out the efficient metal foam and configurations when air is considered as a working fluid. A special attention is paid to the preference between pressure drop and heat transfer enhancements. That is why TOPSIS optimization techniques with five different criteria (contains the combination of the weightage/priority of heat transfer and pressure drop) is used. Based on the numerical results of heat and fluid flow in conduit, it is found that when an equal importance is given to both heat transfer and friction effect, 30 PPI aluminum foam with 80% filling on the inner lateral of the pipe provides the best score as 0.8197. The best configuration and PPI for different preferences between friction and heat transfer enhancements is discussed in details. The Reynolds number varies from 4500 to 16500.
Optimization study in flow through metal foams for heat exchanging applications is very much essential as it involves variety of fluid flow and structural properties. Moreover, the identification of best combinations of structural parameters of metal foams for simultaneous improvement of heat transfer and pressure drop is a pressing situation. In this work, six different metal foam configurations are considered for the enhancement of heat transfer in a circular conduit. The foam is aluminum with PPI varying from 10 to 45 and almost the same porosity (0.90-0.95). The aluminum foams are chosen from the available literature and they are partially filled in the conduit to reduce the pressure drop. For a constant heat flux condition, the goal is to find out the efficient metal foam and configurations when air is considered as a working fluid. A special attention is paid to the preference between pressure drop and heat transfer enhancements. That is why TOPSIS optimization techniques with five different criteria (contains the combination of the weightage/priority of heat transfer and pressure drop) is used. Based on the numerical results of heat and fluid flow in conduit, it is found that when an equal importance is given to both heat transfer and friction effect, 30 PPI aluminum foam with 80% filling on the inner lateral of the pipe provides the best score as 0.8197. The best configuration and PPI for different preferences between friction and heat transfer enhancements is discussed in details. The Reynolds number varies from 4500 to 16500.
ArticleNumber 121911
Author Mobedi, Moghtada
Gnanasekaran, N
G, Trilok
Jadhav, Prakash H.
Author_xml – sequence: 1
  givenname: Prakash H.
  surname: Jadhav
  fullname: Jadhav, Prakash H.
  email: jdvprakash@gmail.com
  organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India, 575025
– sequence: 2
  givenname: Trilok
  surname: G
  fullname: G, Trilok
  email: trilokg.197me506@nitk.edu.in
  organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India, 575025
– sequence: 3
  givenname: N
  surname: Gnanasekaran
  fullname: Gnanasekaran, N
  email: gnanasekaran@nitk.edu.in
  organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India, 575025
– sequence: 4
  givenname: Moghtada
  surname: Mobedi
  fullname: Mobedi, Moghtada
  email: Moghtada.mobedi@shizuoka.ac.jp
  organization: Mechanical Engineering Department, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi 432-8561, Japan
BookMark eNqNkc9q3DAQxkVIoJuk7yDIpRdvNPKuLd8aQv60BNpDcxayNMrK2JIjaRe2j9Enjsz21ktPwzDf_IZvvkty7oNHQr4AWwOD5nZYu2GHKk8qpRyVTxbjmjMOa-DQAZyRFYi2qziI7pysGIO26mpgn8hlSsPSsk2zIn9-YrQhTsprpEmHiLRXCQ2d9mN2VegH1NkdkIY5u8n9VtkFT8sGzTssayM1mNybp8HSWcXs1DgeqXXjWBg797ajc4ghuXykE-Yit0FNdHYzJrr3BuPC0kWrgz8sp4K_JhdWjQk__61X5PXx4df9c_Xy4-nb_d1LpeuW5UowVvfKNAJrZnmzFTWIrWB1jazj243u-4212goFuOWtMZob3jPU0HZtIWB9RW5O3DmG9z2mLIewj76clLyBhvNONLyovp5UuthIEa2co5tUPEpgcklCDvLfJOSShDwlURDfTwgsbg6uTJN2WB5uXCyWpQnu_2EfyrmkMA
CitedBy_id crossref_primary_10_1016_j_renene_2024_120370
crossref_primary_10_1080_10407782_2023_2294043
crossref_primary_10_1016_j_oceaneng_2024_118008
crossref_primary_10_1016_j_matpr_2021_10_451
crossref_primary_10_1016_j_energy_2022_125691
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124196
crossref_primary_10_1080_10407782_2023_2268831
crossref_primary_10_3390_en14248343
crossref_primary_10_3390_aerospace9050238
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125230
crossref_primary_10_1080_10407782_2024_2359060
crossref_primary_10_1016_j_applthermaleng_2023_122062
crossref_primary_10_1016_j_ijthermalsci_2024_108941
crossref_primary_10_3390_en15238952
crossref_primary_10_3390_en15072371
crossref_primary_10_1016_j_cej_2022_137437
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123715
crossref_primary_10_2174_0122127976289702240212040839
crossref_primary_10_1016_j_ijheatfluidflow_2024_109299
crossref_primary_10_3390_atmos14121812
Cites_doi 10.1016/j.ijheatmasstransfer.2016.04.047
10.1115/1.4040614
10.1016/j.enconman.2014.09.077
10.1016/j.procs.2015.07.054
10.1016/j.ijheatmasstransfer.2009.02.024
10.1007/s11242-013-0164-8
10.1016/j.ijheatmasstransfer.2017.10.009
10.1016/j.ijheatmasstransfer.2012.07.048
10.1016/j.icheatmasstransfer.2019.104336
10.1016/j.ijthermalsci.2018.06.014
10.1016/j.ijheatmasstransfer.2016.05.118
10.1016/j.ijheatmasstransfer.2015.04.016
10.1016/j.ijheatmasstransfer.2013.09.020
10.1016/j.egypro.2017.12.289
10.1016/j.applthermaleng.2020.116530
10.1016/j.ijthermalsci.2012.08.015
10.1115/1.4048622
10.1016/S0017-9310(02)00048-0
10.1016/j.ijthermalsci.2011.11.006
10.1016/j.ijheatmasstransfer.2011.04.044
10.1007/s11242-009-9497-8
10.1016/j.applthermaleng.2020.115961
10.1016/j.ijheatmasstransfer.2014.10.073
10.1016/j.icheatmasstransfer.2011.04.027
10.1016/j.ijheatmasstransfer.2011.08.020
10.1016/j.applthermaleng.2021.117081
10.1016/j.ijheatmasstransfer.2018.07.047
10.1016/j.ijheatmasstransfer.2009.10.038
10.1016/j.applthermaleng.2020.115609
10.1016/j.expthermflusci.2018.07.032
10.2298/TSCI121001056C
10.1115/1.1287793
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2021.121911
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2021_121911
S0017931021010164
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-8003bad68e30f265831858033e09254cbb4ffcf8a1e527ddc2d2b0ec1797c37e3
IEDL.DBID AIKHN
ISSN 0017-9310
IngestDate Thu Oct 10 16:32:16 EDT 2024
Thu Sep 26 17:16:32 EDT 2024
Fri Feb 23 02:40:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Internal Flow
LTNE
Metal Foam
Forced Convection
TOPSIS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-8003bad68e30f265831858033e09254cbb4ffcf8a1e527ddc2d2b0ec1797c37e3
PQID 2616229862
PQPubID 2045464
ParticipantIDs proquest_journals_2616229862
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121911
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121911
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xu, Qu, Tao (bib0003) 2011; 54
Celik, Mobedi (bib0017) 2015; 19
G. Imani, M. Maerefat, K. Hooman, Pore-Scale Numerical Experiment on the Effect of the Pertinent Parameters on Heat Flux Splitting at the Boundary of a Porous Medium, (2013) 631–649. https://doi.org/ 10.1007/s11242-013-0164-8.
Kamath, Balaji, Venkateshan (bib0027) 2013; 64
Hooman, Gurgenci (bib0015) 2010; 84
Ge, Liu, Liu (bib0023) 2016; 101
Imani, Maerefat, Hooman (bib0035) 2012; 54
Xu, Gong (bib0005) 2018; 133
Rastogi, Chauhan, Vaish, Kishan (bib0021) 2015; 89
Hetsroni, Mosyak, Segal, Ziskind (bib0001) 2002; 45
Kotresha, Gnanasekaran (bib0029) 2018; 140
Shirvan, Mirzakhanlari, Kalogirou, Oztop, Mamourian (bib0025) 2017; 121
Krohling, Pacheco (bib0020) 2015; 55
Calmidi, Mahajan (bib0033) 2002; 122
Neild, Bejan (bib0032) 2006
Jadhav, Gnanasekaran, Perumal, Mobedi (bib0007) 2021
Hu, Li, Tang, Zhu, Wang, Hu, Bai (bib0018) 2020; 178
Shokouhmand, Jam, Salimpour (bib0008) 2011; 38
Peng, Ming, Tao (bib0010) 2015; 81
Yang, Hwang (bib0030) 2009; 52
Lin, Xie, Yuan, Sundén (bib0031) 2016; 7632
(bib0038) 2019
Zheng, Li, He (bib0026) 2015; 87
Shi, Wang, Yang, Liu, Liu (bib0024) 2021; 188
Trilok, Gnanasekaran (bib0022) 2021; 159
Kamath, Balaji, Venkateshan (bib0028) 2011; 54
Qu, Xu, Tao (bib0002) 2012; 55
Shikh Anuar, Ashtiani Abdi, Hooman (bib0006) 2018; 127
Ghaneifar, Arasteh, Mashayekhi, Rahbari (bib0016) 2020; 181
Wang, Tian, Shu, Yu, Ma, Li (bib0019) 2017; 142
Huang, Nakayama, Yang, Yang, Liu (bib0034) 2010; 53
Zukauskas (bib0037) 1987
Shikh Anuar, Ashtiani Abdi, Odabaee, Hooman (bib0012) 2018; 99
Orihuela, Anuar, Abdi, Odabaee, Hooman (bib0009) 2018; 117
Jadhav, Gnanasekaran, Perumal (bib0014) 2021; 143
Xu, Qu, Tao (bib0039) 2011; 38
Mahmoudi, Karimi (bib0011) 2014; 68
Lu, Zhang, Yang (bib0004) 2016; 100
Ahmed, Fadhil, Salih (bib0013) 2019; 108
Lin (10.1016/j.ijheatmasstransfer.2021.121911_bib0031) 2016; 7632
Ahmed (10.1016/j.ijheatmasstransfer.2021.121911_bib0013) 2019; 108
Mahmoudi (10.1016/j.ijheatmasstransfer.2021.121911_bib0011) 2014; 68
Jadhav (10.1016/j.ijheatmasstransfer.2021.121911_bib0014) 2021; 143
Wang (10.1016/j.ijheatmasstransfer.2021.121911_bib0019) 2017; 142
Rastogi (10.1016/j.ijheatmasstransfer.2021.121911_bib0021) 2015; 89
Xu (10.1016/j.ijheatmasstransfer.2021.121911_bib0003) 2011; 54
Huang (10.1016/j.ijheatmasstransfer.2021.121911_bib0034) 2010; 53
Kamath (10.1016/j.ijheatmasstransfer.2021.121911_bib0028) 2011; 54
Jadhav (10.1016/j.ijheatmasstransfer.2021.121911_bib0007) 2021
Shikh Anuar (10.1016/j.ijheatmasstransfer.2021.121911_bib0012) 2018; 99
Shikh Anuar (10.1016/j.ijheatmasstransfer.2021.121911_bib0006) 2018; 127
Shi (10.1016/j.ijheatmasstransfer.2021.121911_bib0024) 2021; 188
10.1016/j.ijheatmasstransfer.2021.121911_bib0036
Hetsroni (10.1016/j.ijheatmasstransfer.2021.121911_bib0001) 2002; 45
Peng (10.1016/j.ijheatmasstransfer.2021.121911_bib0010) 2015; 81
Lu (10.1016/j.ijheatmasstransfer.2021.121911_bib0004) 2016; 100
Yang (10.1016/j.ijheatmasstransfer.2021.121911_bib0030) 2009; 52
Orihuela (10.1016/j.ijheatmasstransfer.2021.121911_bib0009) 2018; 117
Hooman (10.1016/j.ijheatmasstransfer.2021.121911_bib0015) 2010; 84
Krohling (10.1016/j.ijheatmasstransfer.2021.121911_bib0020) 2015; 55
Zheng (10.1016/j.ijheatmasstransfer.2021.121911_bib0026) 2015; 87
Shokouhmand (10.1016/j.ijheatmasstransfer.2021.121911_bib0008) 2011; 38
Imani (10.1016/j.ijheatmasstransfer.2021.121911_bib0035) 2012; 54
Hu (10.1016/j.ijheatmasstransfer.2021.121911_bib0018) 2020; 178
Ghaneifar (10.1016/j.ijheatmasstransfer.2021.121911_bib0016) 2020; 181
Trilok (10.1016/j.ijheatmasstransfer.2021.121911_bib0022) 2021; 159
Shirvan (10.1016/j.ijheatmasstransfer.2021.121911_bib0025) 2017; 121
(10.1016/j.ijheatmasstransfer.2021.121911_bib0038) 2019
Ge (10.1016/j.ijheatmasstransfer.2021.121911_bib0023) 2016; 101
Neild (10.1016/j.ijheatmasstransfer.2021.121911_bib0032) 2006
Xu (10.1016/j.ijheatmasstransfer.2021.121911_bib0005) 2018; 133
Xu (10.1016/j.ijheatmasstransfer.2021.121911_bib0039) 2011; 38
Kotresha (10.1016/j.ijheatmasstransfer.2021.121911_bib0029) 2018; 140
Celik (10.1016/j.ijheatmasstransfer.2021.121911_bib0017) 2015; 19
Calmidi (10.1016/j.ijheatmasstransfer.2021.121911_bib0033) 2002; 122
Kamath (10.1016/j.ijheatmasstransfer.2021.121911_bib0027) 2013; 64
Qu (10.1016/j.ijheatmasstransfer.2021.121911_bib0002) 2012; 55
Zukauskas (10.1016/j.ijheatmasstransfer.2021.121911_bib0037) 1987
References_xml – volume: 143
  start-page: 1
  year: 2021
  end-page: 16
  ident: bib0014
  article-title: Numerical Consideration of LTNE and Darcy Extended Forchheimer Models for the Analysis of Forced Convection in a Horizontal Pipe in the Presence of Metal Foam
  publication-title: Journal of Heat Transfer
  contributor:
    fullname: Perumal
– volume: 122
  start-page: 557
  year: 2002
  ident: bib0033
  article-title: Forced Convection in High Porosity Metal Foams
  publication-title: J. Heat Transfer.
  contributor:
    fullname: Mahajan
– volume: 127
  start-page: 1197
  year: 2018
  end-page: 1211
  ident: bib0006
  article-title: Flow visualization study of partially filled channel with aluminium foam block
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Hooman
– volume: 55
  start-page: 308
  year: 2015
  end-page: 317
  ident: bib0020
  article-title: A-TOPSIS - An approach based on TOPSIS for ranking evolutionary algorithms
  publication-title: Procedia Comput. Sci.
  contributor:
    fullname: Pacheco
– volume: 108
  year: 2019
  ident: bib0013
  article-title: Heat transfer and fl uid flow characteristics of tubular channel partially fi lled with grooved metal foams
  publication-title: Int. Commun. Heat Mass Transf.
  contributor:
    fullname: Salih
– volume: 99
  start-page: 117
  year: 2018
  end-page: 128
  ident: bib0012
  article-title: Experimental study of fluid flow behaviour and pressure drop in channels partially filled with metal foams
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Hooman
– volume: 38
  start-page: 868
  year: 2011
  end-page: 873
  ident: bib0039
  publication-title: Thermal transport analysis in parallel-plate channel filled with open-celled metallic foams
  contributor:
    fullname: Tao
– volume: 38
  start-page: 1162
  year: 2011
  end-page: 1167
  ident: bib0008
  article-title: The effect of porous insert position on the enhanced heat transfer in partially fi lled channels
  publication-title: Int. Commun. Heat Mass Transf.
  contributor:
    fullname: Salimpour
– year: 2019
  ident: bib0038
  article-title: ANSYSV R [ANSYS Fluent], 19.2, Help System, User'sGuide/Theory Guide
– volume: 117
  start-page: 95
  year: 2018
  end-page: 106
  ident: bib0009
  article-title: Thermohydraulics of a metal foam-filled annulus
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Hooman
– year: 1987
  ident: bib0037
  article-title: Convective heat transfer in cross-flow in
  publication-title: Handbook of Single-Phase Convective Heat Transfer
  contributor:
    fullname: Zukauskas
– volume: 54
  start-page: 5231
  year: 2011
  end-page: 5241
  ident: bib0028
  article-title: Experimental investigation of flow assisted mixed convection in high porosity foams in vertical channels
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Venkateshan
– volume: 53
  start-page: 1164
  year: 2010
  end-page: 1174
  ident: bib0034
  article-title: Transfer Enhancing heat transfer in the core flow by using porous medium insert in a tube
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Liu
– volume: 84
  start-page: 257
  year: 2010
  end-page: 273
  ident: bib0015
  article-title: Porous Medium Modeling of Air-Cooled Condensers
  publication-title: Transp Porous Med
  contributor:
    fullname: Gurgenci
– volume: 188
  year: 2021
  ident: bib0024
  article-title: Performance analysis and multi-objective optimization for tubes partially filled with gradient porous media
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Liu
– volume: 7632
  year: 2016
  ident: bib0031
  publication-title: Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model
  contributor:
    fullname: Sundén
– volume: 52
  start-page: 2956
  year: 2009
  end-page: 2965
  ident: bib0030
  article-title: Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Hwang
– volume: 101
  start-page: 981
  year: 2016
  end-page: 987
  ident: bib0023
  article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Liu
– volume: 45
  start-page: 3275
  year: 2002
  end-page: 3286
  ident: bib0001
  article-title: A uniform temperature heat sink for cooling of electronic devices
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Ziskind
– volume: 159
  year: 2021
  ident: bib0022
  article-title: Numerical study on maximizing heat transfer and minimizing flow resistance behavior of metal foams owing to their structural properties
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Gnanasekaran
– volume: 142
  start-page: 3863
  year: 2017
  end-page: 3869
  ident: bib0019
  article-title: Simulation and Optimization of Metal-foam Tube Banks for Heat Transfer Enhancement of Exhaust Heat Exchangers
  publication-title: Energy Procedia
  contributor:
    fullname: Li
– volume: 121
  start-page: 124
  year: 2017
  end-page: 137
  ident: bib0025
  publication-title: International Journal of Thermal Sciences Heat transfer and sensitivity analysis in a double pipe heat exchanger fi lled with porous medium
  contributor:
    fullname: Mamourian
– volume: 19
  start-page: 1005
  year: 2015
  end-page: 1016
  ident: bib0017
  article-title: Effect of an inserted porous layer on heat and fluid flow in a vertical channel with mixed convection
  publication-title: Therm. Sci.
  contributor:
    fullname: Mobedi
– volume: 64
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib0027
  article-title: Convection heat transfer from aluminium and copper foams in a vertical channel - An experimental study
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Venkateshan
– volume: 140
  year: 2018
  ident: bib0029
  article-title: Investigation of Mixed Convection Heat Transfer Through Metal Foams Partially Filled in a Vertical Channel by Using Computational Fluid Dynamics
  publication-title: J. Heat Transfer.
  contributor:
    fullname: Gnanasekaran
– volume: 54
  start-page: 109
  year: 2012
  end-page: 118
  ident: bib0035
  article-title: Estimation of heat fl ux bifurcation at the heated boundary of a porous medium using a pore-scale numerical simulation
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Hooman
– volume: 178
  year: 2020
  ident: bib0018
  article-title: Pore-scale investigation on the heat-storage characteristics of phase change material in graded copper foam
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Bai
– volume: 133
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0005
  article-title: Numerical investigation on forced convection of tubes partially filled with composite metal foams under local thermal non-equilibrium condition
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Gong
– volume: 54
  start-page: 3846
  year: 2011
  end-page: 3855
  ident: bib0003
  article-title: Analytical solution of forced convective heat transfer in tubes partially filled with metallic foam using the two-equation model
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Tao
– volume: 181
  year: 2020
  ident: bib0016
  article-title: Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition : Optimization of layers thickness
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Rahbari
– year: 2006
  ident: bib0032
  article-title: Convection in Porous Media
  contributor:
    fullname: Bejan
– volume: 100
  start-page: 718
  year: 2016
  end-page: 727
  ident: bib0004
  article-title: Analytical solution of forced convective heat transfer in parallel-plate channel partially filled with metallic foams
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Yang
– volume: 81
  start-page: 784
  year: 2015
  end-page: 796
  ident: bib0010
  article-title: Thermal and hydraulic performances of a tube filled with various thermal conductivities of porous media
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Tao
– volume: 87
  start-page: 376
  year: 2015
  end-page: 379
  ident: bib0026
  article-title: Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: He
– volume: 55
  start-page: 7508
  year: 2012
  end-page: 7519
  ident: bib0002
  article-title: Fully developed forced convective heat transfer in an annulus partially filled with metallic foams: An analytical solution
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Tao
– volume: 89
  start-page: 260
  year: 2015
  end-page: 269
  ident: bib0021
  article-title: Selection and performance assessment of Phase Change Materials for heating, ventilation and air-conditioning applications
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: Kishan
– year: 2021
  ident: bib0007
  article-title: Performance evaluation of partially filled high porosity metal foam configurations in a pipe
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Mobedi
– volume: 68
  start-page: 161
  year: 2014
  end-page: 173
  ident: bib0011
  article-title: Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Karimi
– volume: 100
  start-page: 718
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0004
  article-title: Analytical solution of forced convective heat transfer in parallel-plate channel partially filled with metallic foams
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.04.047
  contributor:
    fullname: Lu
– volume: 140
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0029
  article-title: Investigation of Mixed Convection Heat Transfer Through Metal Foams Partially Filled in a Vertical Channel by Using Computational Fluid Dynamics
  publication-title: J. Heat Transfer.
  doi: 10.1115/1.4040614
  contributor:
    fullname: Kotresha
– volume: 89
  start-page: 260
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0021
  article-title: Selection and performance assessment of Phase Change Materials for heating, ventilation and air-conditioning applications
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.09.077
  contributor:
    fullname: Rastogi
– volume: 55
  start-page: 308
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0020
  article-title: A-TOPSIS - An approach based on TOPSIS for ranking evolutionary algorithms
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.054
  contributor:
    fullname: Krohling
– volume: 52
  start-page: 2956
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0030
  article-title: Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.02.024
  contributor:
    fullname: Yang
– volume: 121
  start-page: 124
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0025
  publication-title: International Journal of Thermal Sciences Heat transfer and sensitivity analysis in a double pipe heat exchanger fi lled with porous medium
  contributor:
    fullname: Shirvan
– ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0036
  doi: 10.1007/s11242-013-0164-8
– volume: 117
  start-page: 95
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0009
  article-title: Thermohydraulics of a metal foam-filled annulus
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.009
  contributor:
    fullname: Orihuela
– volume: 55
  start-page: 7508
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0002
  article-title: Fully developed forced convective heat transfer in an annulus partially filled with metallic foams: An analytical solution
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.07.048
  contributor:
    fullname: Qu
– volume: 108
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0013
  article-title: Heat transfer and fl uid flow characteristics of tubular channel partially fi lled with grooved metal foams
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104336
  contributor:
    fullname: Ahmed
– volume: 159
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0022
  article-title: Numerical study on maximizing heat transfer and minimizing flow resistance behavior of metal foams owing to their structural properties
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Trilok
– volume: 133
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0005
  article-title: Numerical investigation on forced convection of tubes partially filled with composite metal foams under local thermal non-equilibrium condition
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.06.014
  contributor:
    fullname: Xu
– volume: 101
  start-page: 981
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0023
  article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.118
  contributor:
    fullname: Ge
– year: 1987
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0037
  article-title: Convective heat transfer in cross-flow in
  contributor:
    fullname: Zukauskas
– volume: 87
  start-page: 376
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0026
  article-title: Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.04.016
  contributor:
    fullname: Zheng
– volume: 68
  start-page: 161
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0011
  article-title: Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.09.020
  contributor:
    fullname: Mahmoudi
– volume: 142
  start-page: 3863
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0019
  article-title: Simulation and Optimization of Metal-foam Tube Banks for Heat Transfer Enhancement of Exhaust Heat Exchangers
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.289
  contributor:
    fullname: Wang
– volume: 38
  start-page: 868
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0039
  publication-title: Thermal transport analysis in parallel-plate channel filled with open-celled metallic foams
  contributor:
    fullname: Xu
– volume: 188
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0024
  article-title: Performance analysis and multi-objective optimization for tubes partially filled with gradient porous media
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116530
  contributor:
    fullname: Shi
– volume: 64
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0027
  article-title: Convection heat transfer from aluminium and copper foams in a vertical channel - An experimental study
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2012.08.015
  contributor:
    fullname: Kamath
– volume: 143
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0014
  article-title: Numerical Consideration of LTNE and Darcy Extended Forchheimer Models for the Analysis of Forced Convection in a Horizontal Pipe in the Presence of Metal Foam
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.4048622
  contributor:
    fullname: Jadhav
– volume: 45
  start-page: 3275
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0001
  article-title: A uniform temperature heat sink for cooling of electronic devices
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00048-0
  contributor:
    fullname: Hetsroni
– volume: 54
  start-page: 109
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0035
  article-title: Estimation of heat fl ux bifurcation at the heated boundary of a porous medium using a pore-scale numerical simulation
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.11.006
  contributor:
    fullname: Imani
– volume: 54
  start-page: 3846
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0003
  article-title: Analytical solution of forced convective heat transfer in tubes partially filled with metallic foam using the two-equation model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.04.044
  contributor:
    fullname: Xu
– volume: 84
  start-page: 257
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0015
  article-title: Porous Medium Modeling of Air-Cooled Condensers
  publication-title: Transp Porous Med
  doi: 10.1007/s11242-009-9497-8
  contributor:
    fullname: Hooman
– volume: 181
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0016
  article-title: Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition : Optimization of layers thickness
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115961
  contributor:
    fullname: Ghaneifar
– year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0032
  contributor:
    fullname: Neild
– volume: 81
  start-page: 784
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0010
  article-title: Thermal and hydraulic performances of a tube filled with various thermal conductivities of porous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.10.073
  contributor:
    fullname: Peng
– volume: 38
  start-page: 1162
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0008
  article-title: The effect of porous insert position on the enhanced heat transfer in partially fi lled channels
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2011.04.027
  contributor:
    fullname: Shokouhmand
– volume: 54
  start-page: 5231
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0028
  article-title: Experimental investigation of flow assisted mixed convection in high porosity foams in vertical channels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.08.020
  contributor:
    fullname: Kamath
– year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0007
  article-title: Performance evaluation of partially filled high porosity metal foam configurations in a pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117081
  contributor:
    fullname: Jadhav
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0038
– volume: 127
  start-page: 1197
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0006
  article-title: Flow visualization study of partially filled channel with aluminium foam block
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.07.047
  contributor:
    fullname: Shikh Anuar
– volume: 53
  start-page: 1164
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0034
  article-title: Transfer Enhancing heat transfer in the core flow by using porous medium insert in a tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.10.038
  contributor:
    fullname: Huang
– volume: 178
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0018
  article-title: Pore-scale investigation on the heat-storage characteristics of phase change material in graded copper foam
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115609
  contributor:
    fullname: Hu
– volume: 99
  start-page: 117
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0012
  article-title: Experimental study of fluid flow behaviour and pressure drop in channels partially filled with metal foams
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.07.032
  contributor:
    fullname: Shikh Anuar
– volume: 7632
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0031
  publication-title: Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model
  contributor:
    fullname: Lin
– volume: 19
  start-page: 1005
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0017
  article-title: Effect of an inserted porous layer on heat and fluid flow in a vertical channel with mixed convection
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI121001056C
  contributor:
    fullname: Celik
– volume: 122
  start-page: 557
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2021.121911_bib0033
  article-title: Forced Convection in High Porosity Metal Foams
  publication-title: J. Heat Transfer.
  doi: 10.1115/1.1287793
  contributor:
    fullname: Calmidi
SSID ssj0017046
Score 2.5292864
Snippet •A numerical study on heat and fluid flow in a partially aluminum foam filled conduit is performed.•6 different Models with different aluminum foam layer...
Optimization study in flow through metal foams for heat exchanging applications is very much essential as it involves variety of fluid flow and structural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 121911
SubjectTerms Aluminum
Configurations
Design optimization
Fluid dynamics
Fluid flow
Foamed metals
Forced Convection
Heat exchange
Heat flux
Heat transfer
Internal Flow
LTNE
Metal Foam
Metal foams
Multiple objective analysis
Optimization techniques
Parameter identification
Porosity
Pressure drop
Reynolds number
Thermal design
TOPSIS
Working fluids
Title Performance score based multi-objective optimization for thermal design of partially filled high porosity metal foam pipes under forced convection
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121911
https://www.proquest.com/docview/2616229862
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB4Sh5ZeQtMHTZuGOeTQixppV9bjGEyDW5MQSkNzW_YJNpEtYueQS35Ef3FnVlJCW3oo9CQQ7EjMrGa-1X7fLMCRqZwsbOUTWVmX5LrUSZVldaJLXxSBAHYZN9rPzovpZf7lany1BZNBC8O0yj73dzk9Zuv-znHvzeN2PmeNL08uPpo69knLt2GHylGej2Dn5PNsev6wmVCmnV6HEzIPeAofHmle8wUnvYaQ6iYiRc9NQkXGXRfqLPtbtfotb8didPocdnsUiSfdi-7Bll--gCeRzWnXL-HHxaMcANfcqBK5WjmM9MFkZRZdmsMVJYymV2IijUCGgw1ZdpHYgauALXtDX1_fYWDZoENucIyE2pntdYeNJ_ROQ3WD7bz1a2RR2g3bItdi5LRH5cQruDz99G0yTfrDFxIry3RDlSuVRrui8jINgnAKy6yrVEqf1rSotMbkIdhQ6cyPRemcFU6Y1FuKSUkWvHwNo-Vq6d8AGoIR4zp4SwZy7a3JUhucFtYFa6TU-1APTlZt12NDDeSzhfozQIoDpLoA7cNkiIr6Zd4oKgn_YOVgCKjqv-G1orVlIURNS763_-Uh7-CZYO1E_H9zAKPNza1_T4hmYw5h--N9dtjPW77Ovn6f_QRs_f9u
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JatxAEC2cMVkuJpuJlyR1yCEXYalbo-VoBptxbA852OBb0yvMYM0Iz-Tg38gXu6olxSQhh4Cvgi6Jrtar1-r3SgBfTOVkYSufyMq6JNelTqosqxNd-qIIRLDLeNB-OSum1_m3m_HNFkwGLwzLKnvs7zA9onV_5aifzaN2PmePLy8u_jV17JOWP4PtfFxmYgTbx2fn09mvw4Qy7fw6DMg84AV8fZR5zRcMeg0x1U1kip6bhIqMuy7UWfavavUHbsdidPoadnoWicfdg76BLb98C8-jmtOu38HP7492AFxzo0rkauUwygeTlVl0MIcrAoymd2IijUCmgw1FdlHYgauALc-Gvr29x8C2QYfc4BiJtbPa6x4bT-ydhuoG23nr18imtDuORVOLUdMenRPv4fr05GoyTfqfLyRWlumGKlcqjXZF5WUaBPEUtllXqZQ-rWlTaY3JQ7Ch0pkfi9I5K5wwqbeUk5IieLkLo-Vq6T8AGqIR4zp4SwFy7a3JUhucFtYFa6TUe1APk6zarseGGsRnC_V3ghQnSHUJ2oPJkBX127pRVBL-I8rhkFDVv8NrRXvLQoiatnz7T3KTz_ByenV5oS7OZucH8EqwjyJ-yzmE0ebuh_9I7GZjPvWr9wGQPv-7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+score+based+multi-objective+optimization+for+thermal+design+of+partially+filled+high+porosity+metal+foam+pipes+under+forced+convection&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Jadhav%2C+Prakash+H&rft.au=G%2C+Trilok&rft.au=Gnanasekaran%2C+N&rft.au=Mobedi%2C+Moghtada&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=182&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121911&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon