Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel
In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250°C and strain rates of 0.01–1s−1. By multiple linear regressions of the flow...
Saved in:
Published in | Materials characterization Vol. 118; pp. 92 - 101 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250°C and strain rates of 0.01–1s−1. By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and then grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration.
•Establish the DRX mathematical models of nuclear grade 316LN stainless steel•Determine the DRX mechanism of this steel•Subgrains are formed through dislocations polygonization.•Subgrains grow up through subgrain boundaries migration and coalescence mechanism.•DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. |
---|---|
AbstractList | In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900-1250 degree C and strain rates of 0.01-1s-1. By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and then grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250°C and strain rates of 0.01–1s−1. By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and then grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. •Establish the DRX mathematical models of nuclear grade 316LN stainless steel•Determine the DRX mechanism of this steel•Subgrains are formed through dislocations polygonization.•Subgrains grow up through subgrain boundaries migration and coalescence mechanism.•DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250 °C and strain rates of 0.01–1 s{sup −1}. By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and then grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. - Highlights: •Establish the DRX mathematical models of nuclear grade 316LN stainless steel •Determine the DRX mechanism of this steel •Subgrains are formed through dislocations polygonization. •Subgrains grow up through subgrain boundaries migration and coalescence mechanism. •DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. |
Author | Wu, Huanchun Zhang, Mingxian Yang, Bin Wang, Shenglong |
Author_xml | – sequence: 1 givenname: Shenglong surname: Wang fullname: Wang, Shenglong organization: State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083, China – sequence: 2 givenname: Mingxian surname: Zhang fullname: Zhang, Mingxian organization: State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083, China – sequence: 3 givenname: Huanchun surname: Wu fullname: Wu, Huanchun organization: State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083, China – sequence: 4 givenname: Bin surname: Yang fullname: Yang, Bin email: byang@ustb.edu.cn organization: State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083, China |
BackLink | https://www.osti.gov/biblio/22689571$$D View this record in Osti.gov |
BookMark | eNqFkUFr3DAQhUVJoUmanxAQ9JKLXY0ly95TCaFJC0t7aHsWWmnU1SJLqSQXtr8-Wjb3nmYGvfnmiXdFLmKKSMgtsB4YyI-HftHV7HXuhzb2bOwZjG_IJcwT7wTMm4vWMyG6cWb8Hbkq5cAYkzNMlyT8qKs90hRp3SO1x6gXb2hGk4-l6hD8P119e12SxUB1tHTBdir6stDkaFxNQJ3p76wtUg5y-43qtVSMvjZOQ_gYsJTWIYb35K3ToeDNa70mvx4__3z40m2_P319uN92hk-sdpMQVjixY86AATHtABzXbCc515LDBMZsZhQTOik3EgdnpNbOSYSZW2skvyYfztxUqlfF-No8mxQjmqqGQc6bcYKmujurnnP6s2KpavHFYAg6YlqLarRRDkJw3qTjWWpyKiWjU8_ZLzofFTB1ykAd1GsG6pSBYqNqGbS9T-c9bL_96zGfzGA0aH0-ebHJ_4fwAlCllWk |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_11_295 crossref_primary_10_1088_2053_1591_abf531 crossref_primary_10_3390_met10050613 crossref_primary_10_1007_s11665_020_05213_x crossref_primary_10_1016_j_anucene_2018_07_009 crossref_primary_10_1016_j_jallcom_2017_11_299 crossref_primary_10_1016_j_mechmat_2019_103073 crossref_primary_10_1016_j_jmrt_2022_04_060 crossref_primary_10_1016_j_commatsci_2019_05_015 crossref_primary_10_1080_09603409_2018_1457603 crossref_primary_10_1177_09544089221125575 crossref_primary_10_1016_j_jmrt_2022_07_039 crossref_primary_10_1088_2053_1591_aab8ea crossref_primary_10_1016_j_jmrt_2022_07_036 crossref_primary_10_1016_j_msea_2020_139925 crossref_primary_10_3390_app11073204 crossref_primary_10_1016_j_ijplas_2022_103244 crossref_primary_10_1016_j_jmrt_2024_04_028 crossref_primary_10_1016_j_jmrt_2020_02_059 crossref_primary_10_3390_met6090223 crossref_primary_10_1016_j_matdes_2021_110057 crossref_primary_10_1016_j_matchar_2019_05_009 crossref_primary_10_1177_03019233241258423 crossref_primary_10_3390_met10091255 crossref_primary_10_1007_s42243_018_0203_3 crossref_primary_10_1016_j_mtla_2018_100188 crossref_primary_10_1007_s41365_023_01193_4 crossref_primary_10_1007_s12289_020_01590_9 crossref_primary_10_1080_02670836_2018_1465635 crossref_primary_10_2139_ssrn_4135079 crossref_primary_10_1007_s11837_017_2472_x crossref_primary_10_1016_j_vacuum_2017_11_007 crossref_primary_10_1007_s42243_020_00462_5 crossref_primary_10_3390_ma14102562 crossref_primary_10_1016_j_jmapro_2018_01_021 crossref_primary_10_1007_s11661_018_05103_x crossref_primary_10_1016_j_jics_2024_101224 crossref_primary_10_1016_j_msea_2020_140500 crossref_primary_10_3390_ma16072810 crossref_primary_10_1007_s10853_021_05792_7 crossref_primary_10_1016_j_jmrt_2021_02_026 crossref_primary_10_1016_j_jmrt_2022_02_129 crossref_primary_10_1016_S1003_6326_21_65625_X crossref_primary_10_1016_j_msea_2024_146684 crossref_primary_10_1016_j_mtcomm_2021_103073 crossref_primary_10_1016_j_msea_2016_12_095 crossref_primary_10_1016_j_mtcomm_2024_109075 crossref_primary_10_1016_j_ijfatigue_2020_105718 crossref_primary_10_1016_j_jmrt_2023_01_108 crossref_primary_10_1007_s12613_023_2714_6 crossref_primary_10_1016_j_jmrt_2023_12_278 crossref_primary_10_1088_2053_1591_abb151 crossref_primary_10_3390_ma17102313 crossref_primary_10_1016_j_matdes_2016_09_008 crossref_primary_10_1016_j_mtcomm_2021_102777 crossref_primary_10_1088_2053_1591_abb152 crossref_primary_10_1002_srin_201800208 crossref_primary_10_1016_j_mtcomm_2023_105648 crossref_primary_10_1016_j_matdes_2018_05_029 crossref_primary_10_3390_cryst12010081 crossref_primary_10_1016_j_mtcomm_2023_107503 crossref_primary_10_1016_j_jma_2021_08_018 crossref_primary_10_1557_jmr_2017_389 crossref_primary_10_1016_j_matchar_2024_113939 crossref_primary_10_1007_s11665_018_3234_9 crossref_primary_10_3390_cryst9070358 crossref_primary_10_1002_srin_202200574 crossref_primary_10_1088_2053_1591_ab296c crossref_primary_10_1007_s00170_022_09946_y crossref_primary_10_1016_j_vacuum_2018_07_010 crossref_primary_10_1002_adem_202101348 crossref_primary_10_1016_j_matdes_2017_09_050 crossref_primary_10_3390_met8040243 crossref_primary_10_1002_srin_202200935 crossref_primary_10_1016_j_fusengdes_2017_02_052 crossref_primary_10_1080_09500839_2019_1640402 crossref_primary_10_1016_j_msea_2019_05_028 crossref_primary_10_1002_srin_202000338 crossref_primary_10_1007_s10853_023_08916_3 crossref_primary_10_1016_j_matdes_2022_110458 crossref_primary_10_1016_j_matchar_2018_10_031 crossref_primary_10_1007_s42243_022_00857_6 crossref_primary_10_1016_j_jmapro_2020_09_021 crossref_primary_10_1016_j_vacuum_2018_07_005 crossref_primary_10_1016_j_matchar_2021_111564 crossref_primary_10_1007_s11661_023_07019_7 crossref_primary_10_1007_s11665_020_04571_w crossref_primary_10_1016_j_msea_2020_140565 crossref_primary_10_1007_s11661_021_06520_1 crossref_primary_10_1016_j_msea_2021_141231 |
Cites_doi | 10.1016/S0921-5093(01)00917-0 10.1016/j.commatsci.2013.11.029 10.1016/j.msea.2007.08.026 10.1016/j.anucene.2015.07.042 10.1016/j.nucengdes.2006.03.049 10.1016/S1359-6462(98)00124-9 10.1016/0036-9748(87)90341-3 10.1016/j.matchar.2015.07.003 10.1016/0924-0136(90)90005-F 10.1016/j.matchar.2014.08.022 10.4028/www.scientific.net/MSF.850.341 10.1016/j.matchar.2012.01.004 10.1016/0924-0136(95)01992-N 10.1063/1.1707363 10.1139/p67-091 10.1016/j.msea.2015.03.026 10.1016/S1359-6454(97)00100-6 10.1016/j.jnucmat.2008.12.307 10.1179/030634572790445894 10.1016/j.msea.2012.08.102 10.1016/j.msea.2008.09.073 10.1179/026708303225008284 10.1007/s11661-998-0169-z 10.1016/S0921-5093(01)01117-0 10.1016/S1359-6462(02)00023-4 10.1016/S1359-6454(96)00156-5 10.1007/s11661-008-9512-7 10.1016/j.msea.2007.07.023 10.1016/j.matchar.2012.04.018 10.1016/j.matdes.2011.04.043 10.1179/095066069790138056 10.1016/j.matdes.2010.05.052 10.1179/cmq.1990.29.2.147 10.1016/j.msea.2011.08.012 10.1016/S0921-5093(03)00165-5 10.1016/j.commatsci.2011.10.023 10.1016/S1359-6462(97)00344-8 10.1016/j.msea.2013.06.037 10.4028/www.scientific.net/MSF.113-115.435 10.1103/PhysRevLett.86.842 10.1016/S1006-706X(15)30063-7 10.1016/S0921-5093(98)00784-9 10.1016/0001-6160(84)90049-X 10.1016/S0921-5093(00)01015-7 10.1016/j.msea.2013.08.078 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. |
Copyright_xml | – notice: 2016 Elsevier Inc. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 OTOTI |
DOI | 10.1016/j.matchar.2016.05.015 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4189 |
EndPage | 101 |
ExternalDocumentID | 22689571 10_1016_j_matchar_2016_05_015 S104458031630153X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HX~ HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SSQ SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SR 8BQ 8FD JG9 AALMO ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c370t-744d4f4b0fc1c147b11f3a0b633a63171cc98e47ef6696e2fc6aaff6e183ddc63 |
IEDL.DBID | AIKHN |
ISSN | 1044-5803 |
IngestDate | Thu May 18 18:39:12 EDT 2023 Thu Oct 24 23:23:19 EDT 2024 Thu Sep 26 18:31:16 EDT 2024 Fri Feb 23 02:28:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic recrystallization Stainless steel Mechanism 316LN |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-744d4f4b0fc1c147b11f3a0b633a63171cc98e47ef6696e2fc6aaff6e183ddc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1835624433 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_22689571 proquest_miscellaneous_1835624433 crossref_primary_10_1016_j_matchar_2016_05_015 elsevier_sciencedirect_doi_10_1016_j_matchar_2016_05_015 |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Materials characterization |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang, Feng, Wang, Liu (bb0075) 2014; 9 Dehghan-Manshadi, Barnett, Hodgson (bb0160) 2008; 485 Dehghan-Manshadi, Barnett, Hodgson (bb0250) 2008; 39 Samantaray, Mandal, Phaniraj (bb0095) 2011; 528 Humphrey, Hatherly (bb0120) 2004 Mirzadeh, Najafizadeh (bb0195) 2010; 31 Sakai (bb0155) 1995; 53 Dong, Kang, Liu, Wang, Cheng (bb0140) 2012; 65 Schulz (bb0050) 2006; 236 Chen, Qi, Cui, Lai (bb0065) 2014; 83 Sellars, Tegart (bb0210) 1966; 63 Ryan, McQueen (bb0240) 1990; 8 McQueen, Ryan, Evangelista (bb0085) 1993; 113 Souza, Silva, Jorge, Cabrera, Balancin (bb0110) 2013; 582 Sakai, Jonas (bb0150) 1984; 32 Cho, Kim, Kim, Jang (bb0040) 2008; 476 Yazdipour, Hodgson (bb0070) 2012; 54 Wang, Yang, Zhang, Wu (bb0260) 2016; 850 Wang, Liu (bb0025) 2004; 2 McQueen, Bergerson (bb0165) 1972; 6 Yang, Wang, Zhang (bb0185) 2010; 31 Sellars, Davies (bb0255) 1980 Shirdel, Mirzadeh, Parsa (bb0135) 2014; 97 Paggi, Angella, Donnini (bb0125) 2015; 107 Valiev, Ivanisenko, Rauch (bb0170) 1996; 44 Poliak, Jones (bb0245) 1990; 29 Kim, Lee, Jang (bb0090) 2003; 357 Belyakov, Miura, Sakai (bb0145) 1998; 255 Zhang, Sun, Zhao, Wang, Wang, Fu (bb0020) 2011; 32 Prasad, Sasidhara (bb0200) 1997 Rao, Klanica (bb0055) 2007 Brünger, Wang, Gottstein (bb0190) 1998; 38 Derby, Ashby (bb0265) 1987; 21 Duan, Liu (bb0015) 2013; 588 Iwahashi, Horita, Nemoto (bb0175) 1997; 45 Mwembela, Konopleva, McQueen (bb0220) 1997; 37 Kim, Yoo (bb0235) 2001; 311 Kruml, Polák, Degallaix (bb0005) 2000; 293 Tikhonova, Kaibyshev, Fang, Wang, Belyakov (bb0130) 2012; 70 McQueen, Ryan (bb0215) 2002; 322 Song (bb0275) 2008 Zener, Hollomon (bb0205) 1944; 15 Belyakov, Sakai, Kaibyshev (bb0180) 1998; 29 Wu, Yang, Wang, Zhang (bb0030) 2015; 633 Samuel, Choudhary, Rao (bb0035) 2002; 46 He, Wang, Xie, Yang, Zhang (bb0080) 2015; 22 Jonas, Sellars, Tegart (bb0225) 1969; 14 Jafari, Najafizadeh (bb0105) 2009; 501 Wang, Yang, Zhang, Wu, Peng, Gao (bb0060) 2016; 87 Jafari, Najafizadeh, Rasti (bb0100) 2007; 4 Zhang, Zhang, Li, Liu (bb0010) 2013; 559 McQueen, Wong, Jonas (bb0230) 1967; 45 Krill, Helfen, Michels (bb0270) 2001; 86 Kim, Ko, Lee, Hwang, Yoo (bb0115) 2003; 19 Kim, Kim, Lee (bb0045) 2009; 386 Sakai (10.1016/j.matchar.2016.05.015_bb0155) 1995; 53 Belyakov (10.1016/j.matchar.2016.05.015_bb0180) 1998; 29 McQueen (10.1016/j.matchar.2016.05.015_bb0215) 2002; 322 Jafari (10.1016/j.matchar.2016.05.015_bb0105) 2009; 501 Brünger (10.1016/j.matchar.2016.05.015_bb0190) 1998; 38 Wang (10.1016/j.matchar.2016.05.015_bb0025) 2004; 2 Dehghan-Manshadi (10.1016/j.matchar.2016.05.015_bb0160) 2008; 485 Belyakov (10.1016/j.matchar.2016.05.015_bb0145) 1998; 255 Shirdel (10.1016/j.matchar.2016.05.015_bb0135) 2014; 97 Paggi (10.1016/j.matchar.2016.05.015_bb0125) 2015; 107 McQueen (10.1016/j.matchar.2016.05.015_bb0085) 1993; 113 Krill (10.1016/j.matchar.2016.05.015_bb0270) 2001; 86 Yang (10.1016/j.matchar.2016.05.015_bb0185) 2010; 31 Zener (10.1016/j.matchar.2016.05.015_bb0205) 1944; 15 Rao (10.1016/j.matchar.2016.05.015_bb0055) 2007 Zhang (10.1016/j.matchar.2016.05.015_bb0075) 2014; 9 Derby (10.1016/j.matchar.2016.05.015_bb0265) 1987; 21 Tikhonova (10.1016/j.matchar.2016.05.015_bb0130) 2012; 70 Duan (10.1016/j.matchar.2016.05.015_bb0015) 2013; 588 Iwahashi (10.1016/j.matchar.2016.05.015_bb0175) 1997; 45 Yazdipour (10.1016/j.matchar.2016.05.015_bb0070) 2012; 54 Cho (10.1016/j.matchar.2016.05.015_bb0040) 2008; 476 He (10.1016/j.matchar.2016.05.015_bb0080) 2015; 22 Jonas (10.1016/j.matchar.2016.05.015_bb0225) 1969; 14 Poliak (10.1016/j.matchar.2016.05.015_bb0245) 1990; 29 Wu (10.1016/j.matchar.2016.05.015_bb0030) 2015; 633 Prasad (10.1016/j.matchar.2016.05.015_bb0200) 1997 Zhang (10.1016/j.matchar.2016.05.015_bb0010) 2013; 559 Kruml (10.1016/j.matchar.2016.05.015_bb0005) 2000; 293 Schulz (10.1016/j.matchar.2016.05.015_bb0050) 2006; 236 Wang (10.1016/j.matchar.2016.05.015_bb0260) 2016; 850 Mirzadeh (10.1016/j.matchar.2016.05.015_bb0195) 2010; 31 Samantaray (10.1016/j.matchar.2016.05.015_bb0095) 2011; 528 Samuel (10.1016/j.matchar.2016.05.015_bb0035) 2002; 46 Souza (10.1016/j.matchar.2016.05.015_bb0110) 2013; 582 Humphrey (10.1016/j.matchar.2016.05.015_bb0120) 2004 Dong (10.1016/j.matchar.2016.05.015_bb0140) 2012; 65 Zhang (10.1016/j.matchar.2016.05.015_bb0020) 2011; 32 Song (10.1016/j.matchar.2016.05.015_bb0275) 2008 Sellars (10.1016/j.matchar.2016.05.015_bb0255) 1980 Valiev (10.1016/j.matchar.2016.05.015_bb0170) 1996; 44 Sellars (10.1016/j.matchar.2016.05.015_bb0210) 1966; 63 Kim (10.1016/j.matchar.2016.05.015_bb0045) 2009; 386 Kim (10.1016/j.matchar.2016.05.015_bb0115) 2003; 19 Jafari (10.1016/j.matchar.2016.05.015_bb0100) 2007; 4 Mwembela (10.1016/j.matchar.2016.05.015_bb0220) 1997; 37 Chen (10.1016/j.matchar.2016.05.015_bb0065) 2014; 83 McQueen (10.1016/j.matchar.2016.05.015_bb0165) 1972; 6 Wang (10.1016/j.matchar.2016.05.015_bb0060) 2016; 87 Ryan (10.1016/j.matchar.2016.05.015_bb0240) 1990; 8 Kim (10.1016/j.matchar.2016.05.015_bb0235) 2001; 311 Sakai (10.1016/j.matchar.2016.05.015_bb0150) 1984; 32 Kim (10.1016/j.matchar.2016.05.015_bb0090) 2003; 357 McQueen (10.1016/j.matchar.2016.05.015_bb0230) 1967; 45 Dehghan-Manshadi (10.1016/j.matchar.2016.05.015_bb0250) 2008; 39 |
References_xml | – volume: 46 start-page: 507 year: 2002 end-page: 512 ident: bb0035 article-title: Influence of temperature and strain rate on tensile work hardening behaviour of type 316 LN austenitic stainless steel publication-title: Scripta Mater. contributor: fullname: Rao – volume: 37 start-page: 1789 year: 1997 end-page: 1795 ident: bb0220 article-title: Microstructural development in Mg alloy AZ31 during hot working publication-title: Scripta Mater. contributor: fullname: McQueen – volume: 357 start-page: 235 year: 2003 end-page: 239 ident: bb0090 article-title: Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling publication-title: Mater. Sci. Eng.: A contributor: fullname: Jang – volume: 38 start-page: 1843 year: 1998 end-page: 1849 ident: bb0190 article-title: Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H publication-title: Scripta Mater contributor: fullname: Gottstein – volume: 236 start-page: 1547 year: 2006 end-page: 1557 ident: bb0050 article-title: Westinghouse AP1000 advanced passive plant publication-title: Nucl. Eng. Des. contributor: fullname: Schulz – volume: 29 start-page: 161 year: 1998 end-page: 167 ident: bb0180 article-title: New grain formation during warm deformation of ferritic stainless steel publication-title: Metall. Mater. Trans. A contributor: fullname: Kaibyshev – volume: 22 start-page: 721 year: 2015 end-page: 729 ident: bb0080 article-title: Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation publication-title: J. Iron Steel Res. Int. contributor: fullname: Zhang – volume: 87 start-page: 176 year: 2016 end-page: 185 ident: bb0060 article-title: Numerical simulation and experimental verification of microstructure evolution in large forged pipe used for AP1000 nuclear power plants publication-title: Ann. Nucl. Energy contributor: fullname: Gao – volume: 633 start-page: 176 year: 2015 end-page: 183 ident: bb0030 article-title: Effect of oxidation behavior on the corrosion fatigue crack initiation and propagation of 316LN austenitic stainless steel in high temperature water publication-title: Mater. Sci. Eng.: A contributor: fullname: Zhang – volume: 53 start-page: 349 year: 1995 end-page: 361 ident: bb0155 article-title: Dynamic recrystallization microstructures under hot working conditions publication-title: J Mater Process Tech contributor: fullname: Sakai – volume: 32 start-page: 4173 year: 2011 end-page: 4179 ident: bb0020 article-title: Hot deformation behavior of a Nb-containing 316LN stainless steel publication-title: Mater Des contributor: fullname: Fu – volume: 14 start-page: 1 year: 1969 end-page: 24 ident: bb0225 article-title: Strength and structure under hot-working conditions publication-title: Metal. Rev. contributor: fullname: Tegart – volume: 65 start-page: 62 year: 2012 end-page: 72 ident: bb0140 article-title: Dislocation evolution in 316L stainless steel during multiaxial ratchetting deformation publication-title: Mater Charact contributor: fullname: Cheng – volume: 31 start-page: 51 year: 2010 end-page: 55 ident: bb0185 article-title: Recovery and recrystallization mechanism in austenitic stainless steel publication-title: Trans Mater Heat Treat contributor: fullname: Zhang – volume: 54 start-page: 56 year: 2012 end-page: 65 ident: bb0070 article-title: Modeling post-deformation softening kinetics of 304 austenitic stainless steel using cellular automata publication-title: Comp. Mater. Sci. contributor: fullname: Hodgson – volume: 70 start-page: 14 year: 2012 end-page: 20 ident: bb0130 article-title: Grain boundary assembles developed in an austenitic stainless steel during large strain warm working publication-title: Mater Charact contributor: fullname: Belyakov – volume: 21 start-page: 879 year: 1987 end-page: 884 ident: bb0265 article-title: On dynamic recrystallisation publication-title: Scripta Metall. contributor: fullname: Ashby – volume: 113 start-page: 435 year: 1993 end-page: 440 ident: bb0085 article-title: Dynamic recrystallization in austenitic stainless steels publication-title: Mater. Sci. Forum contributor: fullname: Evangelista – volume: 255 start-page: 139 year: 1998 end-page: 147 ident: bb0145 article-title: Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel publication-title: Mater. Sci. Eng.: A contributor: fullname: Sakai – volume: 386 start-page: 650 year: 2009 end-page: 653 ident: bb0045 article-title: Study on the weld characteristics of 316LN by magnetization measurement publication-title: J. Nucl. Mater. contributor: fullname: Lee – volume: 476 start-page: 248 year: 2008 end-page: 256 ident: bb0040 article-title: Low cycle fatigue behaviors of type 316LN austenitic stainless steel in 310 publication-title: Mater. Sci. Eng.: A contributor: fullname: Jang – volume: 32 start-page: 189 year: 1984 end-page: 209 ident: bb0150 article-title: Dynamic recrystallization: mechanical and microstructural considerations publication-title: Acta Metall contributor: fullname: Jonas – volume: 97 start-page: 11 year: 2014 end-page: 17 ident: bb0135 article-title: Abnormal grain growth in AISI 304L stainless steel publication-title: Mater Charact contributor: fullname: Parsa – year: 2007 ident: bb0055 article-title: AP1000 SA376 TP316LN Hot Leg Forging Full Mockup Qualification Test Specification contributor: fullname: Klanica – volume: 322 start-page: 43 year: 2002 end-page: 63 ident: bb0215 article-title: Constitutive analysis in hot working publication-title: Mater. Sci. Eng.: A contributor: fullname: Ryan – year: 2008 ident: bb0275 article-title: Metallography Principle contributor: fullname: Song – volume: 107 start-page: 174 year: 2015 end-page: 181 ident: bb0125 article-title: Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization publication-title: Mater Charact contributor: fullname: Donnini – volume: 45 start-page: 1225 year: 1967 end-page: 1234 ident: bb0230 article-title: Deformation of aluminium at high temperatures and strain rates publication-title: Canad. J. Physics contributor: fullname: Jonas – volume: 45 start-page: 4733 year: 1997 end-page: 4741 ident: bb0175 article-title: An investigation of microstructural evolution during equal-channel angular pressing publication-title: Acta Mater contributor: fullname: Nemoto – volume: 63 year: 1966 ident: bb0210 article-title: Relationship between strength and structure in deformation at elevated temperatures publication-title: Mem. Sci. Rev. Met. contributor: fullname: Tegart – volume: 588 start-page: 265 year: 2013 end-page: 271 ident: bb0015 article-title: Research on damage evolution and damage model of 316LN steel during forging publication-title: Mater. Sci. Eng.: A contributor: fullname: Liu – volume: 39 start-page: 1359 year: 2008 end-page: 1370 ident: bb0250 article-title: Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization publication-title: Metall. Mater. Trans. A contributor: fullname: Hodgson – volume: 83 start-page: 331 year: 2014 end-page: 340 ident: bb0065 article-title: Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method publication-title: Comp Mater Sci contributor: fullname: Lai – volume: 44 start-page: 4705 year: 1996 end-page: 4712 ident: bb0170 article-title: Structure and deformation behavior of Armco iron subjected to severe plastic deformation publication-title: Acta Mater contributor: fullname: Rauch – volume: 4 start-page: 16 year: 2007 end-page: 23 ident: bb0100 article-title: Dynamic recrystallization by necklace mechanism during hot deformation of 316 stainless steel publication-title: Int. J. Iron & Steel Soc. Iran contributor: fullname: Rasti – volume: 19 start-page: 1648 year: 2003 end-page: 1652 ident: bb0115 article-title: Evolution of dynamic recrystallisation in AISI 304 stainless steel publication-title: Mater. Sci. Tech. contributor: fullname: Yoo – volume: 86 start-page: 842 year: 2001 end-page: 845 ident: bb0270 article-title: Size-dependent grain-growth kinetics observed in nanocrystalline Fe publication-title: Phys Rev Lett contributor: fullname: Michels – volume: 2 start-page: 51 year: 2004 end-page: 54 ident: bb0025 article-title: The application of Nb in stainless steel publication-title: Heavy Casting and Forging contributor: fullname: Liu – volume: 582 start-page: 96 year: 2013 end-page: 107 ident: bb0110 article-title: Dynamic recovery and dynamic recrystallization competition on a Nb- and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature publication-title: Mater. Sci. Eng.: A contributor: fullname: Balancin – volume: 311 start-page: 108 year: 2001 end-page: 113 ident: bb0235 article-title: Dynamic recrystallization behavior of AISI 304 stainless steel publication-title: Mater. Sci. Eng.: A contributor: fullname: Yoo – volume: 31 start-page: 4577 year: 2010 end-page: 4583 ident: bb0195 article-title: The rate of dynamic recrystallization in 17-4 PH stainless steel publication-title: Mater. Des. contributor: fullname: Najafizadeh – volume: 485 start-page: 664 year: 2008 end-page: 672 ident: bb0160 article-title: Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation publication-title: Mater. Sci. Eng.: A contributor: fullname: Hodgson – volume: 528 start-page: 8565 year: 2011 end-page: 8572 ident: bb0095 article-title: Flow behavior and microstructural evolution during hot deformation of AISI Type 316 L (N) austenitic stainless steel publication-title: Mater. Sci. Eng.: A contributor: fullname: Phaniraj – volume: 9 year: 2014 ident: bb0075 article-title: On the constitutive model of nitrogen-containing austenitic stainless steel 316LN at elevated temperature publication-title: PLoS One contributor: fullname: Liu – year: 1997 ident: bb0200 article-title: Hotworking Guide: A Compendium of Processing Maps, ASM Int contributor: fullname: Sasidhara – volume: 559 start-page: 301 year: 2013 end-page: 306 ident: bb0010 article-title: Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation publication-title: Mater. Sci. Eng.: A contributor: fullname: Liu – volume: 6 start-page: 25 year: 1972 end-page: 29 ident: bb0165 article-title: Dynamic recrystallization of copper during hot torsion publication-title: Metal Sci contributor: fullname: Bergerson – volume: 29 start-page: 147 year: 1990 end-page: 162 ident: bb0245 article-title: Dynamic softening mechanisms in 304 austenitic stainless steel publication-title: Can. Metall. Quart. contributor: fullname: Jones – volume: 15 start-page: 22 year: 1944 end-page: 32 ident: bb0205 article-title: Effect of strain rate upon plastic flow of steel publication-title: J Appl Phys contributor: fullname: Hollomon – volume: 8 start-page: 177 year: 1990 end-page: 199 ident: bb0240 article-title: Flow stress, dynamic restoration, stain hardening and ductility in hot working of 316 steel publication-title: J. Mater. Process. Tech. contributor: fullname: McQueen – volume: 501 start-page: 16 year: 2009 end-page: 25 ident: bb0105 article-title: Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel publication-title: Mater. Sci. Eng.: A contributor: fullname: Najafizadeh – year: 2004 ident: bb0120 article-title: Recrystallisation and Related Annealing Phenomena contributor: fullname: Hatherly – volume: 850 start-page: 341 year: 2016 end-page: 347 ident: bb0260 article-title: The establishment and application of 316LN stainless steel database used for the forged AP1000 primary coolant pipes publication-title: Mater Sci Forum contributor: fullname: Wu – volume: 293 start-page: 275 year: 2000 end-page: 280 ident: bb0005 article-title: Microstructure in 316LN stainless steel fatigued at low temperature publication-title: Mater. Sci. Eng.: A contributor: fullname: Degallaix – year: 1980 ident: bb0255 article-title: Hot Working and Forming Processes: Proceedings of an International Conference on Hot Working and Forming Processes contributor: fullname: Davies – volume: 2 start-page: 51 year: 2004 ident: 10.1016/j.matchar.2016.05.015_bb0025 article-title: The application of Nb in stainless steel publication-title: Heavy Casting and Forging contributor: fullname: Wang – volume: 311 start-page: 108 year: 2001 ident: 10.1016/j.matchar.2016.05.015_bb0235 article-title: Dynamic recrystallization behavior of AISI 304 stainless steel publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(01)00917-0 contributor: fullname: Kim – volume: 83 start-page: 331 year: 2014 ident: 10.1016/j.matchar.2016.05.015_bb0065 article-title: Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method publication-title: Comp Mater Sci doi: 10.1016/j.commatsci.2013.11.029 contributor: fullname: Chen – volume: 485 start-page: 664 year: 2008 ident: 10.1016/j.matchar.2016.05.015_bb0160 article-title: Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2007.08.026 contributor: fullname: Dehghan-Manshadi – volume: 87 start-page: 176 year: 2016 ident: 10.1016/j.matchar.2016.05.015_bb0060 article-title: Numerical simulation and experimental verification of microstructure evolution in large forged pipe used for AP1000 nuclear power plants publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2015.07.042 contributor: fullname: Wang – volume: 236 start-page: 1547 year: 2006 ident: 10.1016/j.matchar.2016.05.015_bb0050 article-title: Westinghouse AP1000 advanced passive plant publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2006.03.049 contributor: fullname: Schulz – volume: 38 start-page: 1843 year: 1998 ident: 10.1016/j.matchar.2016.05.015_bb0190 article-title: Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H publication-title: Scripta Mater doi: 10.1016/S1359-6462(98)00124-9 contributor: fullname: Brünger – year: 2008 ident: 10.1016/j.matchar.2016.05.015_bb0275 contributor: fullname: Song – volume: 21 start-page: 879 year: 1987 ident: 10.1016/j.matchar.2016.05.015_bb0265 article-title: On dynamic recrystallisation publication-title: Scripta Metall. doi: 10.1016/0036-9748(87)90341-3 contributor: fullname: Derby – volume: 107 start-page: 174 year: 2015 ident: 10.1016/j.matchar.2016.05.015_bb0125 article-title: Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization publication-title: Mater Charact doi: 10.1016/j.matchar.2015.07.003 contributor: fullname: Paggi – volume: 8 start-page: 177 year: 1990 ident: 10.1016/j.matchar.2016.05.015_bb0240 article-title: Flow stress, dynamic restoration, stain hardening and ductility in hot working of 316 steel publication-title: J. Mater. Process. Tech. doi: 10.1016/0924-0136(90)90005-F contributor: fullname: Ryan – volume: 97 start-page: 11 year: 2014 ident: 10.1016/j.matchar.2016.05.015_bb0135 article-title: Abnormal grain growth in AISI 304L stainless steel publication-title: Mater Charact doi: 10.1016/j.matchar.2014.08.022 contributor: fullname: Shirdel – volume: 850 start-page: 341 year: 2016 ident: 10.1016/j.matchar.2016.05.015_bb0260 article-title: The establishment and application of 316LN stainless steel database used for the forged AP1000 primary coolant pipes publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.850.341 contributor: fullname: Wang – volume: 65 start-page: 62 year: 2012 ident: 10.1016/j.matchar.2016.05.015_bb0140 article-title: Dislocation evolution in 316L stainless steel during multiaxial ratchetting deformation publication-title: Mater Charact doi: 10.1016/j.matchar.2012.01.004 contributor: fullname: Dong – volume: 53 start-page: 349 year: 1995 ident: 10.1016/j.matchar.2016.05.015_bb0155 article-title: Dynamic recrystallization microstructures under hot working conditions publication-title: J Mater Process Tech doi: 10.1016/0924-0136(95)01992-N contributor: fullname: Sakai – volume: 15 start-page: 22 year: 1944 ident: 10.1016/j.matchar.2016.05.015_bb0205 article-title: Effect of strain rate upon plastic flow of steel publication-title: J Appl Phys doi: 10.1063/1.1707363 contributor: fullname: Zener – volume: 45 start-page: 1225 year: 1967 ident: 10.1016/j.matchar.2016.05.015_bb0230 article-title: Deformation of aluminium at high temperatures and strain rates publication-title: Canad. J. Physics doi: 10.1139/p67-091 contributor: fullname: McQueen – volume: 633 start-page: 176 year: 2015 ident: 10.1016/j.matchar.2016.05.015_bb0030 article-title: Effect of oxidation behavior on the corrosion fatigue crack initiation and propagation of 316LN austenitic stainless steel in high temperature water publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2015.03.026 contributor: fullname: Wu – volume: 45 start-page: 4733 year: 1997 ident: 10.1016/j.matchar.2016.05.015_bb0175 article-title: An investigation of microstructural evolution during equal-channel angular pressing publication-title: Acta Mater doi: 10.1016/S1359-6454(97)00100-6 contributor: fullname: Iwahashi – volume: 386 start-page: 650 year: 2009 ident: 10.1016/j.matchar.2016.05.015_bb0045 article-title: Study on the weld characteristics of 316LN by magnetization measurement publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.12.307 contributor: fullname: Kim – volume: 9 year: 2014 ident: 10.1016/j.matchar.2016.05.015_bb0075 article-title: On the constitutive model of nitrogen-containing austenitic stainless steel 316LN at elevated temperature publication-title: PLoS One contributor: fullname: Zhang – volume: 6 start-page: 25 year: 1972 ident: 10.1016/j.matchar.2016.05.015_bb0165 article-title: Dynamic recrystallization of copper during hot torsion publication-title: Metal Sci doi: 10.1179/030634572790445894 contributor: fullname: McQueen – volume: 559 start-page: 301 year: 2013 ident: 10.1016/j.matchar.2016.05.015_bb0010 article-title: Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2012.08.102 contributor: fullname: Zhang – volume: 501 start-page: 16 year: 2009 ident: 10.1016/j.matchar.2016.05.015_bb0105 article-title: Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2008.09.073 contributor: fullname: Jafari – year: 1980 ident: 10.1016/j.matchar.2016.05.015_bb0255 contributor: fullname: Sellars – volume: 19 start-page: 1648 year: 2003 ident: 10.1016/j.matchar.2016.05.015_bb0115 article-title: Evolution of dynamic recrystallisation in AISI 304 stainless steel publication-title: Mater. Sci. Tech. doi: 10.1179/026708303225008284 contributor: fullname: Kim – volume: 29 start-page: 161 year: 1998 ident: 10.1016/j.matchar.2016.05.015_bb0180 article-title: New grain formation during warm deformation of ferritic stainless steel publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-998-0169-z contributor: fullname: Belyakov – volume: 322 start-page: 43 year: 2002 ident: 10.1016/j.matchar.2016.05.015_bb0215 article-title: Constitutive analysis in hot working publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(01)01117-0 contributor: fullname: McQueen – volume: 46 start-page: 507 year: 2002 ident: 10.1016/j.matchar.2016.05.015_bb0035 article-title: Influence of temperature and strain rate on tensile work hardening behaviour of type 316 LN austenitic stainless steel publication-title: Scripta Mater. doi: 10.1016/S1359-6462(02)00023-4 contributor: fullname: Samuel – volume: 44 start-page: 4705 year: 1996 ident: 10.1016/j.matchar.2016.05.015_bb0170 article-title: Structure and deformation behavior of Armco iron subjected to severe plastic deformation publication-title: Acta Mater doi: 10.1016/S1359-6454(96)00156-5 contributor: fullname: Valiev – volume: 31 start-page: 51 year: 2010 ident: 10.1016/j.matchar.2016.05.015_bb0185 article-title: Recovery and recrystallization mechanism in austenitic stainless steel publication-title: Trans Mater Heat Treat contributor: fullname: Yang – volume: 39 start-page: 1359 year: 2008 ident: 10.1016/j.matchar.2016.05.015_bb0250 article-title: Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-008-9512-7 contributor: fullname: Dehghan-Manshadi – volume: 476 start-page: 248 year: 2008 ident: 10.1016/j.matchar.2016.05.015_bb0040 article-title: Low cycle fatigue behaviors of type 316LN austenitic stainless steel in 310°C deaerated water–fatigue life and dislocation structure development publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2007.07.023 contributor: fullname: Cho – year: 1997 ident: 10.1016/j.matchar.2016.05.015_bb0200 contributor: fullname: Prasad – volume: 70 start-page: 14 year: 2012 ident: 10.1016/j.matchar.2016.05.015_bb0130 article-title: Grain boundary assembles developed in an austenitic stainless steel during large strain warm working publication-title: Mater Charact doi: 10.1016/j.matchar.2012.04.018 contributor: fullname: Tikhonova – volume: 32 start-page: 4173 year: 2011 ident: 10.1016/j.matchar.2016.05.015_bb0020 article-title: Hot deformation behavior of a Nb-containing 316LN stainless steel publication-title: Mater Des doi: 10.1016/j.matdes.2011.04.043 contributor: fullname: Zhang – volume: 14 start-page: 1 year: 1969 ident: 10.1016/j.matchar.2016.05.015_bb0225 article-title: Strength and structure under hot-working conditions publication-title: Metal. Rev. doi: 10.1179/095066069790138056 contributor: fullname: Jonas – volume: 31 start-page: 4577 year: 2010 ident: 10.1016/j.matchar.2016.05.015_bb0195 article-title: The rate of dynamic recrystallization in 17-4 PH stainless steel publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.05.052 contributor: fullname: Mirzadeh – volume: 29 start-page: 147 year: 1990 ident: 10.1016/j.matchar.2016.05.015_bb0245 article-title: Dynamic softening mechanisms in 304 austenitic stainless steel publication-title: Can. Metall. Quart. doi: 10.1179/cmq.1990.29.2.147 contributor: fullname: Poliak – volume: 528 start-page: 8565 year: 2011 ident: 10.1016/j.matchar.2016.05.015_bb0095 article-title: Flow behavior and microstructural evolution during hot deformation of AISI Type 316 L (N) austenitic stainless steel publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2011.08.012 contributor: fullname: Samantaray – volume: 63 year: 1966 ident: 10.1016/j.matchar.2016.05.015_bb0210 article-title: Relationship between strength and structure in deformation at elevated temperatures publication-title: Mem. Sci. Rev. Met. contributor: fullname: Sellars – volume: 357 start-page: 235 year: 2003 ident: 10.1016/j.matchar.2016.05.015_bb0090 article-title: Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(03)00165-5 contributor: fullname: Kim – volume: 54 start-page: 56 year: 2012 ident: 10.1016/j.matchar.2016.05.015_bb0070 article-title: Modeling post-deformation softening kinetics of 304 austenitic stainless steel using cellular automata publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2011.10.023 contributor: fullname: Yazdipour – volume: 37 start-page: 1789 year: 1997 ident: 10.1016/j.matchar.2016.05.015_bb0220 article-title: Microstructural development in Mg alloy AZ31 during hot working publication-title: Scripta Mater. doi: 10.1016/S1359-6462(97)00344-8 contributor: fullname: Mwembela – volume: 582 start-page: 96 year: 2013 ident: 10.1016/j.matchar.2016.05.015_bb0110 article-title: Dynamic recovery and dynamic recrystallization competition on a Nb- and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2013.06.037 contributor: fullname: Souza – year: 2004 ident: 10.1016/j.matchar.2016.05.015_bb0120 contributor: fullname: Humphrey – volume: 113 start-page: 435 year: 1993 ident: 10.1016/j.matchar.2016.05.015_bb0085 article-title: Dynamic recrystallization in austenitic stainless steels publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.113-115.435 contributor: fullname: McQueen – volume: 4 start-page: 16 year: 2007 ident: 10.1016/j.matchar.2016.05.015_bb0100 article-title: Dynamic recrystallization by necklace mechanism during hot deformation of 316 stainless steel publication-title: Int. J. Iron & Steel Soc. Iran contributor: fullname: Jafari – volume: 86 start-page: 842 year: 2001 ident: 10.1016/j.matchar.2016.05.015_bb0270 article-title: Size-dependent grain-growth kinetics observed in nanocrystalline Fe publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.842 contributor: fullname: Krill – volume: 22 start-page: 721 year: 2015 ident: 10.1016/j.matchar.2016.05.015_bb0080 article-title: Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(15)30063-7 contributor: fullname: He – volume: 255 start-page: 139 year: 1998 ident: 10.1016/j.matchar.2016.05.015_bb0145 article-title: Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(98)00784-9 contributor: fullname: Belyakov – volume: 32 start-page: 189 year: 1984 ident: 10.1016/j.matchar.2016.05.015_bb0150 article-title: Dynamic recrystallization: mechanical and microstructural considerations publication-title: Acta Metall doi: 10.1016/0001-6160(84)90049-X contributor: fullname: Sakai – volume: 293 start-page: 275 year: 2000 ident: 10.1016/j.matchar.2016.05.015_bb0005 article-title: Microstructure in 316LN stainless steel fatigued at low temperature publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(00)01015-7 contributor: fullname: Kruml – volume: 588 start-page: 265 year: 2013 ident: 10.1016/j.matchar.2016.05.015_bb0015 article-title: Research on damage evolution and damage model of 316LN steel during forging publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2013.08.078 contributor: fullname: Duan – year: 2007 ident: 10.1016/j.matchar.2016.05.015_bb0055 contributor: fullname: Rao |
SSID | ssj0006817 |
Score | 2.4985044 |
Snippet | In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 92 |
SubjectTerms | 316LN Austenitic stainless steels DENSITY DISLOCATIONS Dynamic recrystallization FLOW STRESS GRAIN BOUNDARIES Grain boundary migration MATERIALS SCIENCE MATHEMATICAL MODELS Mechanism NUCLEATION RECRYSTALLIZATION Stainless steel STAINLESS STEEL-316L Steels Strain rate STRAINS Stress-strain relationships TEMPERATURE RANGE 1000-4000 K |
Title | Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel |
URI | https://dx.doi.org/10.1016/j.matchar.2016.05.015 https://search.proquest.com/docview/1835624433 https://www.osti.gov/biblio/22689571 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcqAcKkqLWKDISL1m104cJzmiFWjpYy-AtDfLcexqUTZBy3Lgwm9nJo8WhCqk3pIok8Qzk8-f5XkAfOM58oQkFwFOhiaQ0oRBJrMwsIkoQp95w5vC879manojv8_j-QZM-lwYCqvssL_F9AatuyvjTpvju8VifIULCRmn6JQKnTSO5puw1WwSDWDr7PLHdPYHkFXaNN6l-wMS-JvIM74dIS-k_CYK8lJtDc_4X1PUoMa_7g1mNxPRxS587BgkO2s_8hNsuGoPtid947Y92HlRY_AzlBQp-MjqiiHVY0XbgJ7hmFePSAzLssvDZE1LHGaqgi0dZQMv7pes9qyiesdmxX6vTOEYauHnjFGpIEdBR5Y12VcloiUeOVd-gZuL8-vJNOhaLAQ2Svg6SKQspJc591ZYIdFowkeG5yqKjEJqIazNUicT55XKlAu9VcZ4rxwiQVFYFe3DoKordwAsldaI2Cob4oOQp5mcK5tw53MjFfd-CKNeq_quraSh-xCzW92ZQZMZNI81mmEIaa97_colNKL9e6LHZCsSo1K4lmKGUA6pZprFiRjCaW9DjbahLRJTufrhXuOwkBBKGUWH___2I_hAZ22Y4DEM1qsH9xWpyzo_gc3RkzjpHPQZNunuyQ |
link.rule.ids | 230,315,783,787,888,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3RcEg5VJC2Ii0fW6lXJ2t7vbaPKAIFCLmQSLmt1uvdKsjYKIQDF357Z_whWlWoEjfL9tremfHss_zmDcBPniFOiDPfw8VQe0LowEtFGngm9vPApU7zWnj-Zi6nS3G1ilY7MOlqYYhW2eb-JqfX2brdM26tOX5Yr8e3-CEhogSDUmKQRuHqA-wK0s_CoB69vPI8ZFK33aWzPTr9tYxnfDdCVEjVTUTxko2CZ_TWAtWr8J37J2PXy9DFPnxq8SM7ax7xAHZsOYD-pGvbNoC9PxQGP0NBPMFnVpUMgR7Lm_bzDGe8eUZYWBRtFSarG-IwXebs3lIt8PrxnlWOlaR2rDfs10bnlqENZnNGQkGWKEeG1bVXBeZK3LK2-ALLi_PFZOq1DRY8E8Z868VC5MKJjDvjG1-gy3wXap7JMNQSgYVvTJpYEVsnZSpt4IzU2jlpMQ_kuZHhV-iVVWkPgSXCaD8y0gR4IURpOuPSxNy6TAvJnRvCqLOqemh0NFRHMLtTrRsUuUHxSKEbhpB0tld_BYTCXP-_oUfkKxpGQriGGEM4DoFmkkaxP4QfnQ8V-oZ-kOjSVk-PCqeFcFCIMPz2_rufQn-6uJmp2eX8-jt8pCMNYfAIetvNkz1GELPNTuog_Q17m--r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+dynamic+recrystallization+model+and+mechanism+of+nuclear+grade+316LN+austenitic+stainless+steel&rft.jtitle=Materials+characterization&rft.au=Wang%2C+Shenglong&rft.au=Zhang%2C+Mingxian&rft.au=Wu%2C+Huanchun&rft.au=Yang%2C+Bin&rft.date=2016-08-01&rft.issn=1044-5803&rft.volume=118&rft.spage=92&rft.epage=101&rft_id=info:doi/10.1016%2Fj.matchar.2016.05.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchar_2016_05_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon |