Inhibited Aggregation of Lithium Salt in Spiro-OMeTAD for Perovskite Solar Cells
High-efficiency and stable hole transport materials (HTMs) play an essential role in high-performance planar perovskite solar cells (PSCs). 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobi-fluorene (Spiro-OMeTAD) is often used as HTMs in perovskite solar cells because of its excellent chara...
Saved in:
Published in | Crystals (Basel) Vol. 12; no. 2; p. 290 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-efficiency and stable hole transport materials (HTMs) play an essential role in high-performance planar perovskite solar cells (PSCs). 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobi-fluorene (Spiro-OMeTAD) is often used as HTMs in perovskite solar cells because of its excellent characteristics, such as energy level matching with perovskite, good film-forming ability, and high solubility. However, the accumulation and hydrolysis of the common additive Li-TFSI in Spiro-OMeTAD can cause voids/pinholes in the hole transport layer (HTL), which reduces the efficiency of the PSCs. In order to improve the functional characteristics of HTMs, in this work, we first used CsI as a dopant to modify the HTL and reduce the voids in the HTL. A small amount of CsI is introduced into Spiro-OMeTAD together with Li-TFSI and 4-tert-butylpyridine (TBP). It is found that CsI and TBP formed a complex, which prevented the rapid evaporation of TBP and eliminated some cracks in Spiro-OMeTAD. Moreover, the uniformly dispersed TBP inhibits the agglomeration of Li-TFSI in Spiro-OMeTAD, so that the effective oxidation reaction between Spiro-OMeTAD and air produces Spiro-OMeTAD+ in the oxidation state, thereby increasing the conductivity and adjusting the HTL energy. Correspondingly, the PCE of the planar PSC of the CsI-modified Spiro-OMeTAD is up to 13.31%. In contrast, the PSC without CsI modification showed a poor PCE of 10.01%. More importantly, the PSC of Spiro-OMeTAD treated with CsI has negligible hysteresis and excellent long-term stability. Our work provides a low-cost, simple, and effective method for improving the performance of hole transport materials and perovskite solar cells. |
---|---|
AbstractList | High-efficiency and stable hole transport materials (HTMs) play an essential role in high-performance planar perovskite solar cells (PSCs). 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobi-fluorene (Spiro-OMeTAD) is often used as HTMs in perovskite solar cells because of its excellent characteristics, such as energy level matching with perovskite, good film-forming ability, and high solubility. However, the accumulation and hydrolysis of the common additive Li-TFSI in Spiro-OMeTAD can cause voids/pinholes in the hole transport layer (HTL), which reduces the efficiency of the PSCs. In order to improve the functional characteristics of HTMs, in this work, we first used CsI as a dopant to modify the HTL and reduce the voids in the HTL. A small amount of CsI is introduced into Spiro-OMeTAD together with Li-TFSI and 4-tert-butylpyridine (TBP). It is found that CsI and TBP formed a complex, which prevented the rapid evaporation of TBP and eliminated some cracks in Spiro-OMeTAD. Moreover, the uniformly dispersed TBP inhibits the agglomeration of Li-TFSI in Spiro-OMeTAD, so that the effective oxidation reaction between Spiro-OMeTAD and air produces Spiro-OMeTAD+ in the oxidation state, thereby increasing the conductivity and adjusting the HTL energy. Correspondingly, the PCE of the planar PSC of the CsI-modified Spiro-OMeTAD is up to 13.31%. In contrast, the PSC without CsI modification showed a poor PCE of 10.01%. More importantly, the PSC of Spiro-OMeTAD treated with CsI has negligible hysteresis and excellent long-term stability. Our work provides a low-cost, simple, and effective method for improving the performance of hole transport materials and perovskite solar cells. |
Author | Li, Guoxin Huang, Lixiang Zeng, Ruosheng Sun, Wenhong Wang, Yukun |
Author_xml | – sequence: 1 givenname: Guoxin surname: Li fullname: Li, Guoxin – sequence: 2 givenname: Yukun surname: Wang fullname: Wang, Yukun – sequence: 3 givenname: Lixiang surname: Huang fullname: Huang, Lixiang – sequence: 4 givenname: Ruosheng surname: Zeng fullname: Zeng, Ruosheng – sequence: 5 givenname: Wenhong surname: Sun fullname: Sun, Wenhong |
BookMark | eNptUU1LAzEQDaJg_Th6D3hezeajyR5L_SpUKlTPIZvMtqnbTU1SwX_vahVUnDnMMLz3eMw7Qvtd6AChs5JcMFaRSxvfUi4p6bsie2hAiWQFZ4Lu_9gP0WlKK9KXHBIpywF6mHRLX_sMDo8WiwgLk33ocGjw1Oel367x3LQZ-w7PNz6GYnYPj6Mr3ISIHyCG1_Tcc_E8tCbiMbRtOkEHjWkTnH7NY_R0c_04viums9vJeDQtLJMkF5IJCcooVYNsKsN6d4ZzkIoqCc4SzmvRVI2pBK1ACSGFUwIqZWvOSF0zdowmO10XzEpvol-b-KaD8frzEOJCm5i9bUET4QxjZSmHTnJnayOpFZITAU5RR0Svdb7T2sTwsoWU9SpsY9fb13TI6FAxIXiPYjuUjSGlCI22Pn--K0fjW10S_ZGE_pVEzyr-sL69_o9_B6s_iz4 |
CitedBy_id | crossref_primary_10_1021_acsomega_4c06061 crossref_primary_10_1002_adom_202402175 crossref_primary_10_1002_solr_202400201 crossref_primary_10_1021_acsami_4c00631 crossref_primary_10_3390_cryst13020350 crossref_primary_10_1088_1361_6641_ad9f9c crossref_primary_10_3390_cryst12050703 crossref_primary_10_1021_acsaem_2c03452 crossref_primary_10_1016_j_mser_2024_100875 crossref_primary_10_1049_ote2_12104 crossref_primary_10_3390_ma16113934 |
Cites_doi | 10.1007/s10853-021-05840-2 10.1039/c2cp41855j 10.1126/science.aaa0472 10.1021/jp306433g 10.1039/C8TC02093K 10.1021/jz4020162 10.1021/acsenergylett.8b00786 10.1021/jz500113x 10.1021/acs.chemrev.8b00336 10.1021/acs.jpcc.1c04888 10.4236/epe.2020.126016 10.1016/j.jallcom.2020.156500 10.1021/acsami.9b11039 10.1002/adfm.201200185 10.1039/C9EE00872A 10.1002/adma.201300947 10.1002/aenm.201601451 10.1021/jp811196h 10.1002/ente.201901171 10.1039/C4EE00762J 10.1039/c3ta12681a 10.1021/acsenergylett.8b00270 10.1126/science.aaa5760 10.1021/acs.chemmater.6b01777 10.1039/C8RA01879K 10.1039/C8SC05284K 10.1021/jp207968b 10.1016/j.orgel.2019.05.021 10.1021/acsaem.1c02037 10.1002/adma.200700917 10.1021/ja207367t 10.1016/j.solmat.2019.01.020 10.1063/1.3231928 10.1016/j.nanoen.2020.104483 10.1021/jz500414m 10.1007/s12274-021-3488-7 10.1039/C7EE00757D 10.1021/nl302509q 10.1039/C9EE02043H 10.1021/acs.chemmater.5b00660 10.1039/D0RA06618D 10.1021/acs.nanolett.6b02158 10.1002/adfm.200900541 10.1038/nphys3357 10.1021/jp510837q 10.1039/C9TA01070J 10.1039/C6CS00942E 10.1016/j.joule.2019.01.007 10.1021/jp406506d 10.1002/adma.202108616 10.1021/ja809598r 10.1038/ncomms6404 10.1021/acsami.8b13777 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/cryst12020290 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4352 |
ExternalDocumentID | oai_doaj_org_article_05da331176d74dcba72c57405ed82d05 10_3390_cryst12020290 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I EDO GROUPED_DOAJ HCIFZ IAO IGS ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC TUS 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c370t-7357e8a88be7f9a3435a44e78287edc044b5f9fa9529e85575d85e98cb430bb33 |
IEDL.DBID | DOA |
ISSN | 2073-4352 |
IngestDate | Wed Aug 27 01:00:47 EDT 2025 Fri Jul 25 12:04:50 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Tue Jul 01 03:49:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-7357e8a88be7f9a3435a44e78287edc044b5f9fa9529e85575d85e98cb430bb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/05da331176d74dcba72c57405ed82d05 |
PQID | 2632683554 |
PQPubID | 2032412 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_05da331176d74dcba72c57405ed82d05 proquest_journals_2632683554 crossref_citationtrail_10_3390_cryst12020290 crossref_primary_10_3390_cryst12020290 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Crystals (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Dou (ref_34) 2019; 11 Yang (ref_30) 2018; 6 Snaith (ref_49) 2014; 5 Liu (ref_22) 2020; 70 Chen (ref_27) 2012; 14 Fantacci (ref_41) 2011; 115 Schloemer (ref_20) 2019; 10 Xu (ref_26) 2013; 117 Leyden (ref_31) 2016; 28 Boyd (ref_32) 2019; 119 ref_17 Bai (ref_50) 2018; 3 McMeekin (ref_9) 2019; 3 Cappel (ref_33) 2012; 12 Zhou (ref_14) 2019; 193 Ghosh (ref_15) 2019; 71 Noh (ref_25) 2013; 1 Dou (ref_46) 2014; 5 Niu (ref_29) 2019; 7 Li (ref_47) 2017; 7 Miyata (ref_3) 2015; 11 Nie (ref_10) 2015; 347 Liu (ref_48) 2019; 12 Khadka (ref_52) 2021; 4 Guo (ref_13) 2018; 10 Cappel (ref_40) 2009; 113 Snaith (ref_7) 2013; 4 Scully (ref_42) 2007; 19 Yu (ref_16) 2022; 15 Song (ref_8) 2017; 10 Karlsson (ref_37) 2012; 116 Zhang (ref_28) 2018; 3 (ref_39) 2018; 8 Hamwi (ref_43) 2009; 95 Burschka (ref_19) 2011; 133 Dong (ref_4) 2015; 347 Zhu (ref_6) 2020; 12 Huang (ref_1) 2021; 125 Leijtens (ref_18) 2013; 25 Zhao (ref_5) 2021; 56 Yuan (ref_23) 2020; 8 Peng (ref_35) 2017; 46 Zhao (ref_2) 2020; 10 Ding (ref_36) 2009; 19 Kojima (ref_11) 2009; 131 Wang (ref_24) 2016; 16 Leguy (ref_53) 2015; 27 Fu (ref_51) 2019; 12 Ono (ref_21) 2014; 5 Small (ref_44) 2012; 22 Ryu (ref_12) 2014; 7 Li (ref_38) 2020; 847 Pockett (ref_45) 2015; 119 |
References_xml | – volume: 56 start-page: 9242 year: 2021 ident: ref_5 article-title: Methylammonium Chloride reduces the bandgap width and trap densities for efficient perovskite photodetectors publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-05840-2 – volume: 14 start-page: 11689 year: 2012 ident: ref_27 article-title: Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41855j – volume: 347 start-page: 522 year: 2015 ident: ref_10 article-title: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains publication-title: Science doi: 10.1126/science.aaa0472 – volume: 116 start-page: 26300 year: 2012 ident: ref_37 article-title: Energy Level Shifts in Spiro-OMeTAD Molecular Thin Films When Adding Li-TFSI publication-title: J. Phys. Chem. C doi: 10.1021/jp306433g – volume: 6 start-page: 6739 year: 2018 ident: ref_30 article-title: Flexible all-inorganic photoconductor detectors based on perovskite/hole-conducting layer heterostructures publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02093K – volume: 4 start-page: 3623 year: 2013 ident: ref_7 article-title: Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4020162 – volume: 3 start-page: 1677 year: 2018 ident: ref_28 article-title: 4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00786 – volume: 5 start-page: 1511 year: 2014 ident: ref_49 article-title: Anomalous Hysteresis in Perovskite Solar Cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500113x – volume: 119 start-page: 3418 year: 2019 ident: ref_32 article-title: Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00336 – volume: 125 start-page: 16066 year: 2021 ident: ref_1 article-title: Mg-Doped Nickel Oxide as Efficient Hole-Transport Layer for Perovskite Photodetectors publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c04888 – volume: 12 start-page: 257 year: 2020 ident: ref_6 article-title: Perovskite Self-Passivation with PCBM for Small Open-Circuit Voltage Loss publication-title: Energy Power Eng. doi: 10.4236/epe.2020.126016 – volume: 847 start-page: 156500 year: 2020 ident: ref_38 article-title: Highly efficient and stable perovskite solar cells using thionyl chloride as a p-type dopant for spiro-OMeTAD publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156500 – volume: 11 start-page: 32159 year: 2019 ident: ref_34 article-title: Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11039 – volume: 22 start-page: 3261 year: 2012 ident: ref_44 article-title: Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200185 – volume: 12 start-page: 1622 year: 2019 ident: ref_48 article-title: 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00872A – volume: 25 start-page: 3227 year: 2013 ident: ref_18 article-title: Charge Density Dependent Mobility of Organic Hole-Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye-Sensitized and Organic Solar Cells publication-title: Adv. Mater. doi: 10.1002/adma.201300947 – volume: 7 start-page: 1601451 year: 2017 ident: ref_47 article-title: Acid Additives Enhancing the Conductivity of Spiro-OMeTAD Toward High-Efficiency and Hysteresis-Less Planar Perovskite Solar Cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601451 – volume: 113 start-page: 6275 year: 2009 ident: ref_40 article-title: Dye Regeneration by Spiro-MeOTAD in Solid State Dye-Sensitized Solar Cells Studied by Photoinduced Absorption Spectroscopy and Spectroelectrochemistry publication-title: J. Phys. Chem. C doi: 10.1021/jp811196h – volume: 8 start-page: 1901171 year: 2020 ident: ref_23 article-title: High-Performance Perovskite Solar Cells Using Iodine as Effective Dopant for Spiro-OMeTAD publication-title: Energy Technol. doi: 10.1002/ente.201901171 – volume: 7 start-page: 2614 year: 2014 ident: ref_12 article-title: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00762J – volume: 1 start-page: 11842 year: 2013 ident: ref_25 article-title: Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12681a – volume: 3 start-page: 970 year: 2018 ident: ref_50 article-title: Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbI2Br Solar Cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00270 – volume: 347 start-page: 967 year: 2015 ident: ref_4 article-title: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals publication-title: Science doi: 10.1126/science.aaa5760 – volume: 28 start-page: 5702 year: 2016 ident: ref_31 article-title: Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01777 – volume: 8 start-page: 18234 year: 2018 ident: ref_39 article-title: How the change of OMe substituent position affects the performance of spiro-OMeTAD in neutral and oxidized forms: Theoretical approaches publication-title: RSC Adv. doi: 10.1039/C8RA01879K – volume: 10 start-page: 1904 year: 2019 ident: ref_20 article-title: Doping strategies for small molecule organic hole-transport materials: Impacts on perovskite solar cell performance and stability publication-title: Chem. Sci. doi: 10.1039/C8SC05284K – volume: 115 start-page: 23126 year: 2011 ident: ref_41 article-title: Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation publication-title: J. Phys. Chem. C doi: 10.1021/jp207968b – volume: 71 start-page: 175 year: 2019 ident: ref_15 article-title: Plasmonic hole-transport-layer enabled self-powered hybrid perovskite photodetector using a modified perovskite deposition method in ambient air publication-title: Org. Electron. doi: 10.1016/j.orgel.2019.05.021 – volume: 4 start-page: 11121 year: 2021 ident: ref_52 article-title: Insights into Accelerated Degradation of Perovskite Solar Cells under Continuous Illumination Driven by Thermal Stress and Interfacial Junction publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c02037 – volume: 19 start-page: 2961 year: 2007 ident: ref_42 article-title: Long-Range Resonant Energy Transfer for Enhanced Exciton Harvesting for Organic Solar Cells publication-title: Adv. Mater. doi: 10.1002/adma.200700917 – volume: 133 start-page: 18042 year: 2011 ident: ref_19 article-title: Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207367t – volume: 193 start-page: 246 year: 2019 ident: ref_14 article-title: Ga-doped ZnO nanorod scaffold for high-performance, hole-transport-layer-free, self-powered CH3NH3PbI3 perovskite photodetectors publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.01.020 – volume: 95 start-page: 123301 year: 2009 ident: ref_43 article-title: Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3231928 – volume: 70 start-page: 104483 year: 2020 ident: ref_22 article-title: Inhibited aggregation of lithium salt in spiro-OMeTAD toward highly efficient perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104483 – volume: 5 start-page: 1374 year: 2014 ident: ref_21 article-title: Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500414m – volume: 15 start-page: 85 year: 2022 ident: ref_16 article-title: Recent advances on interface engineering of perovskite solar cells publication-title: Nano Res. doi: 10.1007/s12274-021-3488-7 – volume: 10 start-page: 1297 year: 2017 ident: ref_8 article-title: A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00757D – volume: 12 start-page: 4925 year: 2012 ident: ref_33 article-title: Oxygen-Induced Doping of Spiro-MeOTAD in Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance publication-title: Nano Lett. doi: 10.1021/nl302509q – volume: 12 start-page: 3074 year: 2019 ident: ref_51 article-title: I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02043H – volume: 27 start-page: 3397 year: 2015 ident: ref_53 article-title: Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00660 – volume: 10 start-page: 32976 year: 2020 ident: ref_2 article-title: Interface engineering for gain perovskite photodetectors with extremely high external quantum efficiency publication-title: RSC Adv. doi: 10.1039/D0RA06618D – volume: 16 start-page: 5594 year: 2016 ident: ref_24 article-title: Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02158 – volume: 19 start-page: 2431 year: 2009 ident: ref_36 article-title: Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900541 – volume: 11 start-page: 582 year: 2015 ident: ref_3 article-title: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites publication-title: Nat. Phys. doi: 10.1038/nphys3357 – volume: 119 start-page: 3456 year: 2015 ident: ref_45 article-title: Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/jp510837q – volume: 7 start-page: 7338 year: 2019 ident: ref_29 article-title: Temporal and spatial pinhole constraints in small-molecule hole transport layers for stable and efficient perovskite photovoltaics publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01070J – volume: 46 start-page: 5714 year: 2017 ident: ref_35 article-title: Insights into charge carrier dynamics in organo-metal halide perovskites: From neat films to solar cells publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00942E – volume: 3 start-page: 387 year: 2019 ident: ref_9 article-title: Solution-Processed All-Perovskite Multi-junction Solar Cells publication-title: Joule doi: 10.1016/j.joule.2019.01.007 – volume: 117 start-page: 22492 year: 2013 ident: ref_26 article-title: Improvement in Solid-State Dye Sensitized Solar Cells by p-Type Doping with Lewis Acid SnCl4 publication-title: J. Phys. Chem. C doi: 10.1021/jp406506d – ident: ref_17 doi: 10.1002/adma.202108616 – volume: 131 start-page: 6050 year: 2009 ident: ref_11 article-title: Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 5 start-page: 5404 year: 2014 ident: ref_46 article-title: Solution-processed hybrid perovskite photodetectors with high detectivity publication-title: Nat. Commun. doi: 10.1038/ncomms6404 – volume: 10 start-page: 35656 year: 2018 ident: ref_13 article-title: CuInSe2 Quantum Dots Hybrid Hole Transfer Layer for Halide Perovskite Photodetectors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13777 |
SSID | ssj0000760771 |
Score | 2.300038 |
Snippet | High-efficiency and stable hole transport materials (HTMs) play an essential role in high-performance planar perovskite solar cells (PSCs).... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 290 |
SubjectTerms | additive Agglomeration Efficiency Energy levels hole transfer material Lithium Molybdenum Morphology Oxidation perovskite solar cells Perovskites Photovoltaic cells Pinholes Solar cells Spiro-OMeTAD Valence |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELaWclkOiH0gypaVD6s9ETWN49o5rVoegtUC1bZI3CI_20glKUmKxL_Hk7pdVgiuiQ_WjOfxzdjfIPTDRQUbwRPlvhEkiJWwgaRGBdZGQguumWwa7VfX_Yvb-PcdvfMFt8pfq1z7xMZR60JBjbwLvOJ9DtHx1-IhgKlR0F31IzS20LZzwdyBr-3h2fXo76bKAn0nxnorck3i8H1XlU9V3XOQP4zAD78IRg1n_yuX3MSZ8z206xNEPFhp9BP6YPLPaOcFbeAXNLrMZ5mEXBEPpg4vTxvp4sLiP1k9y5b3eCzmNc5yPF5kZRHcXJnJ4BS79BSPTFk8VlCxxWMAtfjEzOfVV3R7fjY5uQj8ZIRAERbWASOUGS44l4bZRBCX84g4NgzY641WYRxLahMrEholhlOXkmlOTcKVjEkoJSH7qJUXuTlAOFQuYmsWh5ZaQENcgyHayOnKEEl1Gx2vRZQqTxsO0yvmqYMPINH0P4m20c_N8sWKL-OthUOQ92YR0Fw3H4pymnqrSUOqBSG9Huu7HWolBYsUdXulRvNIh7SNOmttpd72qvTfSTl8__c39DGCxwzNHewOatXl0hy5FKOW3_05egYmetFc priority: 102 providerName: ProQuest |
Title | Inhibited Aggregation of Lithium Salt in Spiro-OMeTAD for Perovskite Solar Cells |
URI | https://www.proquest.com/docview/2632683554 https://doaj.org/article/05da331176d74dcba72c57405ed82d05 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwGA1eXvRBvOJ0jjyIT5Z1TdOkj5s6L2xz2Am-lVy3wuzG1gn-e5O2SkXEF58K5YOW8yXfd06bnABwbrqC9uwW5UAx5PiCaYdjJRytPSYZlYTnP9r7g-Du2X94wS-Vo77smrDCHrgAruliyRBqtUggiS8FZ8QTmBiaoST1ZOFeanpeRUzlNZgELiGtwlQTGV3fFIv3ZdYyUt_1bP2tNKHcq_9HKc77S3cX7JTEELaLF9oDayrdB9sVu8ADMLxPJwm3HBG2x0Ynj3NU4UzDXpJNktUrjNg0g0kKo3mymDmPfTVqX0NDS-FQLWZvS_ulFkZWzMIrNZ0uD8Fz92Z0deeUJyI4AhE3cwjCRFFGKVdEhwwZrsN8XxHrWq-kcH2fYx1qFmIvVBQbKiYpViEV3Ecu5wgdgY10lqpjAF1hOrWB1NVYWxVEpZ2A2jM5UohjWQOXnxDForQLt6dWTGMjGyyi8TdEa-DiK3xe-GT8FtixeH8FWXvr_IZJelwmPf4r6TVQ_8xWXM65ZWyd5wNq-dPJfzzjFGx5dqtDvkK7DjayxUqdGQKS8QZYp93bBthsX_d7kbl2bgbDp0Y-Aj8AWLXcJQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAOiKcIFPABOLHqxo_Ye0AotISEJqVSUqm3xc90pbAbdreg_il-I57NbihCcOvV9sEaz-Obsf0NQi9DVPAEvigPnKIRM8pHmjsTeU-UVdIK3Vy0z44H41P26Yyf7aCf3V8YeFbZ-cTGUdvCQI18H3jFBxKi47v1twi6RsHtatdCY6MWR-7yR0jZqreTw3C-rwgZfVgcjKO2q0BkqIjrSFAunFRSaid8omjAC4oxJ4D53VkTM6a5T7xKOEmc5AHOWMldIo1mNNYaCqDB5d9glCZgUXL0cVvTgVsuIfobKs8wH--b8rKq-yRgMgJe_0roazoE_BUAmqg2uovutHAUDzf6cw_tuPw-un2FpPABOpnk55kGZIqHy5CdL5uzxIXH06w-zy6-4rla1TjL8XydlUX0eeYWw0McwDA-cWXxvYL6MJ5DCo0P3GpVPUSn1yKxR2g3L3L3GOHYBHxgBYs995B7SQtm70nQDEc1tz30phNRalqScuiVsUpDsgISTf-QaA-93i5fb9g5_rXwPch7uwhItZuBolymrY2mMbeK0n5fDMIOrdFKEMPDXrmzktiY99Bed1ppa-lV-lsvn_x_-gW6OV7Mpul0cnz0FN0i8I2ief29h3br8sI9C-Cm1s8bjcLoy3Wr8C_jRgxP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLamTkJwQPwUHYP5AJyImtpx7RwQ6tZVK9tKRTdpt-CfXaSSlCQD7V_jr8MvTbohBLddEx-s58_vfe_Z_h5Cb3xUcASeKA-spEGkpQsUszpwjkgjheGqPmg_nQ6OzqNPF-xiC_1q38LAtcrWJ9aO2uQaauQ90BUfCIiOPddci5iNxh9X3wPoIAUnrW07jTVEju31T5--lR8mI7_WbwkZH54dHAVNh4FAUx5WAaeMWyGFUJa7WFLPHWQUWQ4q8NboMIoUc7GTMSOxFcxTGyOYjYVWEQ2VgmKod__b3GdFYQdt7x9OZ182FR448-K8vxb2pDQOe7q4Lqs-8QyNQAy4FQjrfgF_hYM6xo0foYcNOcXDNZoeoy2bPUEPbkkWPkWzSXaZKuCpeLjwufqiXlmcO3ySVpfp1Tc8l8sKpxmer9IiDz6f2rPhCHtqjGe2yH-UUC3Gc0io8YFdLstn6PxObPYcdbI8sy8QDrVnC8ZbzzEHmZgw4AQc8TixVDHTRe9bEyW6kSyHzhnLxKcuYNHkD4t20bvN8NVaq-NfA_fB3ptBILFdf8iLRdLs2CRkRlLa7_OBn6HRSnKimZ8rs0YQE7Iu2m1XK2n2fZncoHTn_7_30D0P3-RkMj1-ie4TeFNRXwXfRZ2quLKvPNOp1OsGUhh9vWsU_wa-rhHh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibited+Aggregation+of+Lithium+Salt+in+Spiro-OMeTAD+for+Perovskite+Solar+Cells&rft.jtitle=Crystals+%28Basel%29&rft.au=Guoxin+Li&rft.au=Yukun+Wang&rft.au=Lixiang+Huang&rft.au=Ruosheng+Zeng&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2073-4352&rft.volume=12&rft.issue=2&rft.spage=290&rft_id=info:doi/10.3390%2Fcryst12020290&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_05da331176d74dcba72c57405ed82d05 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon |