Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice
This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily...
Saved in:
Published in | Food & function Vol. 12; no. 17; pp. 7897 - 798 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aimed to elucidate the effect of punicic acid (PUA,
cis
9,
trans
11,
cis
13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of
Firmicutes
to
Bacteroidetes
, whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family
Desulfovibrionaceae
and
Helicobacteraceae
, and the downregulation in
Muribaculaceae
and
Bacteroidaceae
induced by HFD. Correspondingly, the family of
Desulfovibrionaceae
was positively related, whereas
Muribaculaceae
was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family
Helicobacteraceae
was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of
Anaerotruncus
,
Faecalibaculim
,
Mucispirillum
, and the decrease in the population of
Lactobacillus
,
Roseburia
,
Oscillibacter
at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition.
PUA could ameliorate obesity and liver steatosis in mice induced by HFD
via
regulating the gut microbiota composition. |
---|---|
AbstractList | This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13–18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes, whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae, and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus, Faecalibaculim, Mucispirillum, and the decrease in the population of Lactobacillus, Roseburia, Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition. This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13–18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes , whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae , and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus , Faecalibaculim , Mucispirillum , and the decrease in the population of Lactobacillus , Roseburia , Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition. This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes , whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae , and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus , Faecalibaculim , Mucispirillum , and the decrease in the population of Lactobacillus , Roseburia , Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition. PUA could ameliorate obesity and liver steatosis in mice induced by HFD via regulating the gut microbiota composition. |
Author | Tan, Meijuan Chen, Xiaoe Yuan, Gaofeng |
AuthorAffiliation | Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University College of Food and Medicine |
AuthorAffiliation_xml | – name: College of Food and Medicine – name: Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province – name: Zhejiang Ocean University |
Author_xml | – sequence: 1 givenname: Gaofeng surname: Yuan fullname: Yuan, Gaofeng – sequence: 2 givenname: Meijuan surname: Tan fullname: Tan, Meijuan – sequence: 3 givenname: Xiaoe surname: Chen fullname: Chen, Xiaoe |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34241611$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s9rFDEUB_AgLbbWXrwrAS8irL78mMzkWKrVQqEeFLwNmeTNkjKTrEmmsP-92W5boQjNJYF83oN8X16RgxADEvKGwScGQn92bIzAWMPNC3LMQfKVauD3wcNZanVETnO-gbqE1p3uXpIjIblkirFjgj-W4K231FjvqJlx8jGZgpnGAbMvW2qCo5O_xURzQVNi9pkOW5pwvUym-LCm66XQ2dsUBx-LoTbOm6qKj4H6sLvB1-RwNFPG0_v9hPy6-Prz_Pvq6vrb5fnZ1cqKFsqq5doxO4KT2HXSwNiOwJQE55w2o2CDFFpAA6DbYWgRW2YG2VkjOLfadYM4IR_2fTcp_lkwl3722eI0mYBxyT1XQknGleyep00DXLUSeKXvn9CbuKRQH1KVUryRnRJVvbtXyzCj6zfJzyZt-4esK_i4BzWpnBOOj4RBv5tl_4VdXN_N8qxieIKtL2aXaUnGT_8vebsvSdk-tv73PcRfb-apkg |
CitedBy_id | crossref_primary_10_1016_j_fbio_2024_105359 crossref_primary_10_3390_foods12040865 crossref_primary_10_3390_nu14163445 crossref_primary_10_1016_j_cjca_2022_08_231 crossref_primary_10_1016_j_jep_2023_116681 crossref_primary_10_1002_mnfr_202400577 crossref_primary_10_1016_j_bioorg_2024_107487 crossref_primary_10_1021_acs_jafc_2c07239 crossref_primary_10_3390_foods11244108 crossref_primary_10_3390_obesities2030025 crossref_primary_10_1002_jsfa_13380 crossref_primary_10_1016_j_foodchem_2024_141434 crossref_primary_10_1016_j_ijbiomac_2022_03_077 crossref_primary_10_1016_j_ijbiomac_2023_124650 crossref_primary_10_1021_acs_jafc_3c08771 crossref_primary_10_1002_jsfa_12538 crossref_primary_10_3390_microorganisms11051292 crossref_primary_10_3390_foods11223728 crossref_primary_10_1039_D3FO01016C crossref_primary_10_2217_fmb_2023_0133 crossref_primary_10_3390_foods11010027 crossref_primary_10_1016_j_jep_2023_116145 crossref_primary_10_1016_j_ijbiomac_2022_12_211 crossref_primary_10_1039_D1FO03147C crossref_primary_10_1039_D3FO01651J crossref_primary_10_1016_j_toxicon_2024_107854 crossref_primary_10_1021_acs_jafc_4c07283 crossref_primary_10_1016_j_foodres_2023_113364 crossref_primary_10_1021_acs_jafc_3c00596 crossref_primary_10_3389_fvets_2024_1383801 crossref_primary_10_1021_acs_jafc_4c06638 crossref_primary_10_1080_10408398_2023_2198006 crossref_primary_10_3389_fnut_2022_913016 crossref_primary_10_3390_foods14010092 crossref_primary_10_3390_molecules27154958 crossref_primary_10_1039_D2FO03031D crossref_primary_10_3389_fnut_2024_1511660 crossref_primary_10_3389_fmicb_2022_947757 crossref_primary_10_3390_foods10123022 crossref_primary_10_1016_j_ijbiomac_2024_138168 crossref_primary_10_1039_D2FO01723G crossref_primary_10_1039_D4FO00727A crossref_primary_10_3390_molecules28134949 crossref_primary_10_1021_acs_jafc_3c07902 crossref_primary_10_3389_fcimb_2023_1298264 crossref_primary_10_3390_nu16162660 crossref_primary_10_1039_D2FO03019E crossref_primary_10_1039_D3FO04985J crossref_primary_10_1016_j_jff_2024_106348 |
Cites_doi | 10.1016/j.chom.2012.10.012 10.1073/pnas.0504978102 10.1017/S0007114514004206 10.1080/10408398.2018.1481821 10.1016/j.chom.2019.07.004 10.1021/jf063264z 10.1039/c4fo00037d 10.2217/fmb-2016-0130 10.1371/journal.pone.0092193 10.1002/ejlt.202000224 10.1039/D0FO02448A 10.1016/j.freeradbiomed.2016.11.037 10.1038/4441022a 10.1016/j.pharmthera.2017.07.007 10.1079/BJN20041365 10.1194/jlr.M044032 10.1371/journal.pone.0125091 10.3389/fnut.2020.583608 10.1016/j.plefa.2017.09.011 10.1038/ismej.2009.112 10.1002/fsn3.1941 10.1038/srep08096 10.1371/journal.pone.0020944 10.1002/ejlt.200800200 10.1021/jf305076v 10.1017/S0007114512005612 10.1038/s41598-020-58048-w 10.1016/j.cell.2006.02.017 10.1126/science.aau5812 10.1002/hep.20701 10.1016/j.fct.2011.03.037 10.1002/mnfr.201801135 10.3390/nu11040872 10.1097/MOL.0000000000000278 10.2147/DMSO.S146339 10.1111/jpi.12399 10.1017/S0007114508159001 10.1016/j.fct.2009.07.012 10.1021/jf505050c 10.1186/1476-511X-3-24 10.1136/gut.2010.215665 10.2337/db07-1403 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
DOI | 10.1039/d1fo01152a |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oncogenes and Growth Factors Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts CrossRef MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 798 |
ExternalDocumentID | 34241611 10_1039_D1FO01152A d1fo01152a |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ACPRK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- HZ H~N J3I JG O-G O9- P2P RCNCU RIG RNS RPMJG RRC RSCEA SKF SKH SKJ SKM SKR SKZ SLC SLF --- 0R~ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY -JG CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-729d1cf0d4e884a0f7f01640ddd9af31b4393050097bb7ee71ab48ca322c9d8b3 |
ISSN | 2042-6496 2042-650X |
IngestDate | Thu Jul 10 19:01:57 EDT 2025 Fri Jul 11 03:01:18 EDT 2025 Mon Jun 30 12:02:03 EDT 2025 Wed Feb 19 02:27:14 EST 2025 Tue Jul 01 03:02:30 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Mon Apr 11 02:55:56 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-729d1cf0d4e884a0f7f01640ddd9af31b4393050097bb7ee71ab48ca322c9d8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4442-3764 |
PMID | 34241611 |
PQID | 2566254863 |
PQPubID | 2047526 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2566254863 pubmed_primary_34241611 proquest_miscellaneous_2636412648 proquest_miscellaneous_2550267402 crossref_primary_10_1039_D1FO01152A rsc_primary_d1fo01152a crossref_citationtrail_10_1039_D1FO01152A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-07 |
PublicationDateYYYYMMDD | 2021-09-07 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | McFarlin (D1FO01152A/cit14) 2009; 102 Wang (D1FO01152A/cit36) 2020; 64 Jump (D1FO01152A/cit11) 2018; 181 Sarwar (D1FO01152A/cit10) 2018; 11 Mujico (D1FO01152A/cit40) 2013; 110 Ley (D1FO01152A/cit28) 2005; 102 Miranda (D1FO01152A/cit17) 2013; 61 Yuan (D1FO01152A/cit1) 2014; 5 Murphy (D1FO01152A/cit23) 2010; 59 Saha (D1FO01152A/cit22) 2009; 47 Zhang (D1FO01152A/cit24) 2020; 8 Gentile (D1FO01152A/cit5) 2018; 362 Li (D1FO01152A/cit33) 2020; 10 Bailén (D1FO01152A/cit37) 2020; 7 Yang (D1FO01152A/cit16) 2005; 93 Ley (D1FO01152A/cit26) 2006; 124 Ghazalpour (D1FO01152A/cit6) 2016; 27 Wei (D1FO01152A/cit18) 2021; 12 Thingholm (D1FO01152A/cit38) 2019; 26 Guo (D1FO01152A/cit9) 2018; 136 Evans (D1FO01152A/cit32) 2014; 9 Vroegrijk (D1FO01152A/cit15) 2011; 49 Chaplin (D1FO01152A/cit30) 2015; 10 Koba (D1FO01152A/cit13) 2007; 55 Arao (D1FO01152A/cit12) 2004; 3 Cani (D1FO01152A/cit25) 2008; 57 Yuan (D1FO01152A/cit2) 2015; 63 Zhang (D1FO01152A/cit31) 2010; 4 Yuan (D1FO01152A/cit7) 2021; 123 Marques (D1FO01152A/cit29) 2015; 113 Porras (D1FO01152A/cit35) 2017; 102 Ley (D1FO01152A/cit42) 2006; 444 Bäckhed (D1FO01152A/cit27) 2012; 12 Tamanai-Shacoori (D1FO01152A/cit43) 2017; 12 Zhuang (D1FO01152A/cit19) 2019; 63 Xu (D1FO01152A/cit34) 2017; 62 Neyrinck (D1FO01152A/cit41) 2011; 6 Yuan (D1FO01152A/cit3) 2009; 111 Coelho (D1FO01152A/cit4) 2019; 59 Jiang (D1FO01152A/cit39) 2015; 5 Yang (D1FO01152A/cit21) 2019; 11 Kleiner (D1FO01152A/cit8) 2005; 41 Mollica (D1FO01152A/cit20) 2014; 55 |
References_xml | – volume: 12 start-page: 611 year: 2012 ident: D1FO01152A/cit27 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.10.012 – volume: 102 start-page: 11070 year: 2005 ident: D1FO01152A/cit28 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504978102 – volume: 113 start-page: 728 year: 2015 ident: D1FO01152A/cit29 publication-title: Br. J. Nutr. doi: 10.1017/S0007114514004206 – volume: 59 start-page: 3045 year: 2019 ident: D1FO01152A/cit4 publication-title: Crit. Rev. Food Sci. doi: 10.1080/10408398.2018.1481821 – volume: 26 start-page: 252 year: 2019 ident: D1FO01152A/cit38 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.07.004 – volume: 55 start-page: 3741 year: 2007 ident: D1FO01152A/cit13 publication-title: J. Agric. Food Chem. doi: 10.1021/jf063264z – volume: 5 start-page: 1360 year: 2014 ident: D1FO01152A/cit1 publication-title: Food Funct. doi: 10.1039/c4fo00037d – volume: 12 start-page: 157 year: 2017 ident: D1FO01152A/cit43 publication-title: Future Microbiol. doi: 10.2217/fmb-2016-0130 – volume: 9 start-page: e92193 year: 2014 ident: D1FO01152A/cit32 publication-title: PLoS One doi: 10.1371/journal.pone.0092193 – volume: 123 start-page: 2000224 year: 2021 ident: D1FO01152A/cit7 publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.202000224 – volume: 12 start-page: 1614 year: 2021 ident: D1FO01152A/cit18 publication-title: Food Funct. doi: 10.1039/D0FO02448A – volume: 102 start-page: 188 year: 2017 ident: D1FO01152A/cit35 publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2016.11.037 – volume: 444 start-page: 1022 year: 2006 ident: D1FO01152A/cit42 publication-title: Nature doi: 10.1038/4441022a – volume: 181 start-page: 108 year: 2018 ident: D1FO01152A/cit11 publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2017.07.007 – volume: 93 start-page: 433 year: 2005 ident: D1FO01152A/cit16 publication-title: Br. J. Nutr. doi: 10.1079/BJN20041365 – volume: 55 start-page: 837 year: 2014 ident: D1FO01152A/cit20 publication-title: J. Lipid Res. doi: 10.1194/jlr.M044032 – volume: 10 start-page: e0125091 year: 2015 ident: D1FO01152A/cit30 publication-title: PLoS One doi: 10.1371/journal.pone.0125091 – volume: 7 start-page: 583608 year: 2020 ident: D1FO01152A/cit37 publication-title: Front. Nutr. doi: 10.3389/fnut.2020.583608 – volume: 136 start-page: 47 year: 2018 ident: D1FO01152A/cit9 publication-title: Prostaglandins Leukot. Essent. Fatty Acids doi: 10.1016/j.plefa.2017.09.011 – volume: 4 start-page: 232 year: 2010 ident: D1FO01152A/cit31 publication-title: ISME J. doi: 10.1038/ismej.2009.112 – volume: 8 start-page: 6513 year: 2020 ident: D1FO01152A/cit24 publication-title: Food Sci. Nutr. doi: 10.1002/fsn3.1941 – volume: 64 start-page: 3525 year: 2020 ident: D1FO01152A/cit36 publication-title: Food Nutr. Res. – volume: 5 start-page: 8096 year: 2015 ident: D1FO01152A/cit39 publication-title: Sci. Rep. doi: 10.1038/srep08096 – volume: 6 start-page: e20944 year: 2011 ident: D1FO01152A/cit41 publication-title: PLoS One doi: 10.1371/journal.pone.0020944 – volume: 111 start-page: 537 year: 2009 ident: D1FO01152A/cit3 publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.200800200 – volume: 61 start-page: 5089 year: 2013 ident: D1FO01152A/cit17 publication-title: J. Agric. Food Chem. doi: 10.1021/jf305076v – volume: 110 start-page: 711 year: 2013 ident: D1FO01152A/cit40 publication-title: Br. J. Nutr. doi: 10.1017/S0007114512005612 – volume: 10 start-page: 978 year: 2020 ident: D1FO01152A/cit33 publication-title: Sci. Rep. doi: 10.1038/s41598-020-58048-w – volume: 124 start-page: 837 year: 2006 ident: D1FO01152A/cit26 publication-title: Cell doi: 10.1016/j.cell.2006.02.017 – volume: 362 start-page: 776 year: 2018 ident: D1FO01152A/cit5 publication-title: Science doi: 10.1126/science.aau5812 – volume: 41 start-page: 1313 year: 2005 ident: D1FO01152A/cit8 publication-title: Hepatology doi: 10.1002/hep.20701 – volume: 49 start-page: 1426 year: 2011 ident: D1FO01152A/cit15 publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2011.03.037 – volume: 63 start-page: e1801135 year: 2019 ident: D1FO01152A/cit19 publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201801135 – volume: 11 start-page: 872 year: 2019 ident: D1FO01152A/cit21 publication-title: Nutrients doi: 10.3390/nu11040872 – volume: 27 start-page: 141 year: 2016 ident: D1FO01152A/cit6 publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000278 – volume: 11 start-page: 533 year: 2018 ident: D1FO01152A/cit10 publication-title: Diabetes, Metab. Syndr. Obes.: Targets Ther. doi: 10.2147/DMSO.S146339 – volume: 62 start-page: e12399 year: 2017 ident: D1FO01152A/cit34 publication-title: J. Pineal Res. doi: 10.1111/jpi.12399 – volume: 102 start-page: 54 year: 2009 ident: D1FO01152A/cit14 publication-title: Br. J. Nutr. doi: 10.1017/S0007114508159001 – volume: 47 start-page: 2551 year: 2009 ident: D1FO01152A/cit22 publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2009.07.012 – volume: 63 start-page: 1883 year: 2015 ident: D1FO01152A/cit2 publication-title: J. Agric. Food Chem. doi: 10.1021/jf505050c – volume: 3 start-page: 24 year: 2004 ident: D1FO01152A/cit12 publication-title: Lipids Health Dis. doi: 10.1186/1476-511X-3-24 – volume: 59 start-page: 1635 year: 2010 ident: D1FO01152A/cit23 publication-title: Gut doi: 10.1136/gut.2010.215665 – volume: 57 start-page: 1470 year: 2008 ident: D1FO01152A/cit25 publication-title: Diabetes doi: 10.2337/db07-1403 |
SSID | ssj0000399898 |
Score | 2.4939237 |
Snippet | This study aimed to elucidate the effect of punicic acid (PUA,
cis
9,
trans
11,
cis
13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet... This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13–18 : 3) on obesity and liver steatosis in mice induced by high-fat diet... This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet... This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13–18 : 3) on obesity and liver steatosis in mice induced by high-fat diet... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7897 |
SubjectTerms | Animals Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Bacteroidaceae Body weight body weight changes Body weight gain Cholesterol Composition Desulfovibrionaceae Diet Diet, High-Fat - adverse effects Dietary supplements epididymis Fatty liver Fatty Liver - diet therapy Fatty Liver - etiology Fatty Liver - metabolism Fatty Liver - microbiology Gastrointestinal Microbiome Helicobacteraceae High fat diet Humans Intestinal microflora intestinal microorganisms Lactobacillus Linolenic Acids - metabolism Liver Liver - drug effects Liver - metabolism Male Mice Mice, Inbred ICR Microbiota Mucispirillum Obesity Obesity - diet therapy Obesity - etiology Obesity - metabolism Obesity - microbiology Plant Oils - chemistry Plant Oils - metabolism Pomegranate - chemistry Pomegranate - metabolism punicic acid Roseburia Seeds - chemistry Seeds - metabolism Steatosis triacylglycerols Triglycerides |
Title | Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34241611 https://www.proquest.com/docview/2566254863 https://www.proquest.com/docview/2550267402 https://www.proquest.com/docview/2636412648 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu3BBDBgEBjICIaEqw_lo7BzLtm6C0XFoRTlFju1MQW0zdekB_nreS5yPaRMaXKLKtqw07-f35fdByDsUa3EkPDfKJBgooHG4Ik5jN_RZlkploqyqrv91Gp3Ow8-L0aJpcW-zS8r0QP2-Na_kf6gKY0BXzJL9B8q2m8IA_Ab6whMoDM870fgbpnZgwVWV66FcmSXm26MjtajL_Vc3A0uMvBgiMcsCq4-AvrmpG9Cjl-BiWw5XeV2NqZRVhLkN40JPyMpGxnWNPAtdgQXFYf8K_8e2dqSeyCIzVhhW_oA6VNjkP7cdDA9tRsgil4Xpux18r4qr4h138jGvB9S7xTVW6vchw4eXB1zE3OUxEz0miWM9gdvM3mDmLMBaqNrLCtRb_Z7Iaq7pp-fJZH52lsyOF7P7ZMcHU8EfkJ3xl08n31tPG2yDTTKxy2Dzzk2d2iD-2G1_XTO5YW6A8rFpmsJUysfsEXlorQY6riGwS-6Z9WPiHOWmpO-pLe26pNOms8ITYiw0KEKD9qBBLTQoQINW0KAtNGj6i3bQoAAN2kGD9qBB8zXOmKdkPjmeHZ66tqOGqwLOSuxbrD2VMR0aIULJMp5hiTWmtY5lFngpqKcgADC5J025MdyTaSiUBK6vYi3SYI8M1sXaPCeUBVz7asSUHgXA91UsJZMeZ7FQDM63cMiH5msmypabx64ny6QKewji5MibnFdffuyQt-3ay7rIyq2r9huiJPYQXiWgsYMFH4oocMibdhpYJN57ybUptrhmhH3WQub_ZU0URKGH4Z4OeVYTvH0V-H_oBvAcsgcIaIc75Ly4w7YvyYPuGO2TQbnZmlegz5bpawvYP2wdoPc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Punicic+acid+ameliorates+obesity+and+liver+steatosis+by+regulating+gut+microbiota+composition+in+mice&rft.jtitle=Food+%26+function&rft.au=Yuan%2C+Gaofeng&rft.au=Tan%2C+Meijuan&rft.au=Chen%2C+Xiaoe&rft.date=2021-09-07&rft.issn=2042-650X&rft.volume=12&rft.issue=17+p.7897-7908&rft.spage=7897&rft.epage=7908&rft_id=info:doi/10.1039%2Fd1fo01152a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |