Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice

This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 12; no. 17; pp. 7897 - 798
Main Authors Yuan, Gaofeng, Tan, Meijuan, Chen, Xiaoe
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes , whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae , and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus , Faecalibaculim , Mucispirillum , and the decrease in the population of Lactobacillus , Roseburia , Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition. PUA could ameliorate obesity and liver steatosis in mice induced by HFD via regulating the gut microbiota composition.
AbstractList This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13–18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes, whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae, and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus, Faecalibaculim, Mucispirillum, and the decrease in the population of Lactobacillus, Roseburia, Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition.
This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13–18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes , whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae , and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus , Faecalibaculim , Mucispirillum , and the decrease in the population of Lactobacillus , Roseburia , Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition.
This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes , whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae , and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus , Faecalibaculim , Mucispirillum , and the decrease in the population of Lactobacillus , Roseburia , Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition. PUA could ameliorate obesity and liver steatosis in mice induced by HFD via regulating the gut microbiota composition.
Author Tan, Meijuan
Chen, Xiaoe
Yuan, Gaofeng
AuthorAffiliation Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
Zhejiang Ocean University
College of Food and Medicine
AuthorAffiliation_xml – name: College of Food and Medicine
– name: Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
– name: Zhejiang Ocean University
Author_xml – sequence: 1
  givenname: Gaofeng
  surname: Yuan
  fullname: Yuan, Gaofeng
– sequence: 2
  givenname: Meijuan
  surname: Tan
  fullname: Tan, Meijuan
– sequence: 3
  givenname: Xiaoe
  surname: Chen
  fullname: Chen, Xiaoe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34241611$$D View this record in MEDLINE/PubMed
BookMark eNqF0s9rFDEUB_AgLbbWXrwrAS8irL78mMzkWKrVQqEeFLwNmeTNkjKTrEmmsP-92W5boQjNJYF83oN8X16RgxADEvKGwScGQn92bIzAWMPNC3LMQfKVauD3wcNZanVETnO-gbqE1p3uXpIjIblkirFjgj-W4K231FjvqJlx8jGZgpnGAbMvW2qCo5O_xURzQVNi9pkOW5pwvUym-LCm66XQ2dsUBx-LoTbOm6qKj4H6sLvB1-RwNFPG0_v9hPy6-Prz_Pvq6vrb5fnZ1cqKFsqq5doxO4KT2HXSwNiOwJQE55w2o2CDFFpAA6DbYWgRW2YG2VkjOLfadYM4IR_2fTcp_lkwl3722eI0mYBxyT1XQknGleyep00DXLUSeKXvn9CbuKRQH1KVUryRnRJVvbtXyzCj6zfJzyZt-4esK_i4BzWpnBOOj4RBv5tl_4VdXN_N8qxieIKtL2aXaUnGT_8vebsvSdk-tv73PcRfb-apkg
CitedBy_id crossref_primary_10_1016_j_fbio_2024_105359
crossref_primary_10_3390_foods12040865
crossref_primary_10_3390_nu14163445
crossref_primary_10_1016_j_cjca_2022_08_231
crossref_primary_10_1016_j_jep_2023_116681
crossref_primary_10_1002_mnfr_202400577
crossref_primary_10_1016_j_bioorg_2024_107487
crossref_primary_10_1021_acs_jafc_2c07239
crossref_primary_10_3390_foods11244108
crossref_primary_10_3390_obesities2030025
crossref_primary_10_1002_jsfa_13380
crossref_primary_10_1016_j_foodchem_2024_141434
crossref_primary_10_1016_j_ijbiomac_2022_03_077
crossref_primary_10_1016_j_ijbiomac_2023_124650
crossref_primary_10_1021_acs_jafc_3c08771
crossref_primary_10_1002_jsfa_12538
crossref_primary_10_3390_microorganisms11051292
crossref_primary_10_3390_foods11223728
crossref_primary_10_1039_D3FO01016C
crossref_primary_10_2217_fmb_2023_0133
crossref_primary_10_3390_foods11010027
crossref_primary_10_1016_j_jep_2023_116145
crossref_primary_10_1016_j_ijbiomac_2022_12_211
crossref_primary_10_1039_D1FO03147C
crossref_primary_10_1039_D3FO01651J
crossref_primary_10_1016_j_toxicon_2024_107854
crossref_primary_10_1021_acs_jafc_4c07283
crossref_primary_10_1016_j_foodres_2023_113364
crossref_primary_10_1021_acs_jafc_3c00596
crossref_primary_10_3389_fvets_2024_1383801
crossref_primary_10_1021_acs_jafc_4c06638
crossref_primary_10_1080_10408398_2023_2198006
crossref_primary_10_3389_fnut_2022_913016
crossref_primary_10_3390_foods14010092
crossref_primary_10_3390_molecules27154958
crossref_primary_10_1039_D2FO03031D
crossref_primary_10_3389_fnut_2024_1511660
crossref_primary_10_3389_fmicb_2022_947757
crossref_primary_10_3390_foods10123022
crossref_primary_10_1016_j_ijbiomac_2024_138168
crossref_primary_10_1039_D2FO01723G
crossref_primary_10_1039_D4FO00727A
crossref_primary_10_3390_molecules28134949
crossref_primary_10_1021_acs_jafc_3c07902
crossref_primary_10_3389_fcimb_2023_1298264
crossref_primary_10_3390_nu16162660
crossref_primary_10_1039_D2FO03019E
crossref_primary_10_1039_D3FO04985J
crossref_primary_10_1016_j_jff_2024_106348
Cites_doi 10.1016/j.chom.2012.10.012
10.1073/pnas.0504978102
10.1017/S0007114514004206
10.1080/10408398.2018.1481821
10.1016/j.chom.2019.07.004
10.1021/jf063264z
10.1039/c4fo00037d
10.2217/fmb-2016-0130
10.1371/journal.pone.0092193
10.1002/ejlt.202000224
10.1039/D0FO02448A
10.1016/j.freeradbiomed.2016.11.037
10.1038/4441022a
10.1016/j.pharmthera.2017.07.007
10.1079/BJN20041365
10.1194/jlr.M044032
10.1371/journal.pone.0125091
10.3389/fnut.2020.583608
10.1016/j.plefa.2017.09.011
10.1038/ismej.2009.112
10.1002/fsn3.1941
10.1038/srep08096
10.1371/journal.pone.0020944
10.1002/ejlt.200800200
10.1021/jf305076v
10.1017/S0007114512005612
10.1038/s41598-020-58048-w
10.1016/j.cell.2006.02.017
10.1126/science.aau5812
10.1002/hep.20701
10.1016/j.fct.2011.03.037
10.1002/mnfr.201801135
10.3390/nu11040872
10.1097/MOL.0000000000000278
10.2147/DMSO.S146339
10.1111/jpi.12399
10.1017/S0007114508159001
10.1016/j.fct.2009.07.012
10.1021/jf505050c
10.1186/1476-511X-3-24
10.1136/gut.2010.215665
10.2337/db07-1403
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
DOI 10.1039/d1fo01152a
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Oncogenes and Growth Factors Abstracts
CrossRef
MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2042-650X
EndPage 798
ExternalDocumentID 34241611
10_1039_D1FO01152A
d1fo01152a
Genre Journal Article
GroupedDBID -
0-7
0R
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ACPRK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
HZ
H~N
J3I
JG
O-G
O9-
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
---
0R~
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
-JG
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-729d1cf0d4e884a0f7f01640ddd9af31b4393050097bb7ee71ab48ca322c9d8b3
ISSN 2042-6496
2042-650X
IngestDate Thu Jul 10 19:01:57 EDT 2025
Fri Jul 11 03:01:18 EDT 2025
Mon Jun 30 12:02:03 EDT 2025
Wed Feb 19 02:27:14 EST 2025
Tue Jul 01 03:02:30 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Mon Apr 11 02:55:56 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-729d1cf0d4e884a0f7f01640ddd9af31b4393050097bb7ee71ab48ca322c9d8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4442-3764
PMID 34241611
PQID 2566254863
PQPubID 2047526
PageCount 12
ParticipantIDs proquest_journals_2566254863
pubmed_primary_34241611
proquest_miscellaneous_2636412648
proquest_miscellaneous_2550267402
crossref_primary_10_1039_D1FO01152A
rsc_primary_d1fo01152a
crossref_citationtrail_10_1039_D1FO01152A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-07
PublicationDateYYYYMMDD 2021-09-07
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References McFarlin (D1FO01152A/cit14) 2009; 102
Wang (D1FO01152A/cit36) 2020; 64
Jump (D1FO01152A/cit11) 2018; 181
Sarwar (D1FO01152A/cit10) 2018; 11
Mujico (D1FO01152A/cit40) 2013; 110
Ley (D1FO01152A/cit28) 2005; 102
Miranda (D1FO01152A/cit17) 2013; 61
Yuan (D1FO01152A/cit1) 2014; 5
Murphy (D1FO01152A/cit23) 2010; 59
Saha (D1FO01152A/cit22) 2009; 47
Zhang (D1FO01152A/cit24) 2020; 8
Gentile (D1FO01152A/cit5) 2018; 362
Li (D1FO01152A/cit33) 2020; 10
Bailén (D1FO01152A/cit37) 2020; 7
Yang (D1FO01152A/cit16) 2005; 93
Ley (D1FO01152A/cit26) 2006; 124
Ghazalpour (D1FO01152A/cit6) 2016; 27
Wei (D1FO01152A/cit18) 2021; 12
Thingholm (D1FO01152A/cit38) 2019; 26
Guo (D1FO01152A/cit9) 2018; 136
Evans (D1FO01152A/cit32) 2014; 9
Vroegrijk (D1FO01152A/cit15) 2011; 49
Chaplin (D1FO01152A/cit30) 2015; 10
Koba (D1FO01152A/cit13) 2007; 55
Arao (D1FO01152A/cit12) 2004; 3
Cani (D1FO01152A/cit25) 2008; 57
Yuan (D1FO01152A/cit2) 2015; 63
Zhang (D1FO01152A/cit31) 2010; 4
Yuan (D1FO01152A/cit7) 2021; 123
Marques (D1FO01152A/cit29) 2015; 113
Porras (D1FO01152A/cit35) 2017; 102
Ley (D1FO01152A/cit42) 2006; 444
Bäckhed (D1FO01152A/cit27) 2012; 12
Tamanai-Shacoori (D1FO01152A/cit43) 2017; 12
Zhuang (D1FO01152A/cit19) 2019; 63
Xu (D1FO01152A/cit34) 2017; 62
Neyrinck (D1FO01152A/cit41) 2011; 6
Yuan (D1FO01152A/cit3) 2009; 111
Coelho (D1FO01152A/cit4) 2019; 59
Jiang (D1FO01152A/cit39) 2015; 5
Yang (D1FO01152A/cit21) 2019; 11
Kleiner (D1FO01152A/cit8) 2005; 41
Mollica (D1FO01152A/cit20) 2014; 55
References_xml – volume: 12
  start-page: 611
  year: 2012
  ident: D1FO01152A/cit27
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.10.012
– volume: 102
  start-page: 11070
  year: 2005
  ident: D1FO01152A/cit28
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504978102
– volume: 113
  start-page: 728
  year: 2015
  ident: D1FO01152A/cit29
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114514004206
– volume: 59
  start-page: 3045
  year: 2019
  ident: D1FO01152A/cit4
  publication-title: Crit. Rev. Food Sci.
  doi: 10.1080/10408398.2018.1481821
– volume: 26
  start-page: 252
  year: 2019
  ident: D1FO01152A/cit38
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.07.004
– volume: 55
  start-page: 3741
  year: 2007
  ident: D1FO01152A/cit13
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf063264z
– volume: 5
  start-page: 1360
  year: 2014
  ident: D1FO01152A/cit1
  publication-title: Food Funct.
  doi: 10.1039/c4fo00037d
– volume: 12
  start-page: 157
  year: 2017
  ident: D1FO01152A/cit43
  publication-title: Future Microbiol.
  doi: 10.2217/fmb-2016-0130
– volume: 9
  start-page: e92193
  year: 2014
  ident: D1FO01152A/cit32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092193
– volume: 123
  start-page: 2000224
  year: 2021
  ident: D1FO01152A/cit7
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.202000224
– volume: 12
  start-page: 1614
  year: 2021
  ident: D1FO01152A/cit18
  publication-title: Food Funct.
  doi: 10.1039/D0FO02448A
– volume: 102
  start-page: 188
  year: 2017
  ident: D1FO01152A/cit35
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.11.037
– volume: 444
  start-page: 1022
  year: 2006
  ident: D1FO01152A/cit42
  publication-title: Nature
  doi: 10.1038/4441022a
– volume: 181
  start-page: 108
  year: 2018
  ident: D1FO01152A/cit11
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2017.07.007
– volume: 93
  start-page: 433
  year: 2005
  ident: D1FO01152A/cit16
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN20041365
– volume: 55
  start-page: 837
  year: 2014
  ident: D1FO01152A/cit20
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M044032
– volume: 10
  start-page: e0125091
  year: 2015
  ident: D1FO01152A/cit30
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125091
– volume: 7
  start-page: 583608
  year: 2020
  ident: D1FO01152A/cit37
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2020.583608
– volume: 136
  start-page: 47
  year: 2018
  ident: D1FO01152A/cit9
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
  doi: 10.1016/j.plefa.2017.09.011
– volume: 4
  start-page: 232
  year: 2010
  ident: D1FO01152A/cit31
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.112
– volume: 8
  start-page: 6513
  year: 2020
  ident: D1FO01152A/cit24
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.1941
– volume: 64
  start-page: 3525
  year: 2020
  ident: D1FO01152A/cit36
  publication-title: Food Nutr. Res.
– volume: 5
  start-page: 8096
  year: 2015
  ident: D1FO01152A/cit39
  publication-title: Sci. Rep.
  doi: 10.1038/srep08096
– volume: 6
  start-page: e20944
  year: 2011
  ident: D1FO01152A/cit41
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020944
– volume: 111
  start-page: 537
  year: 2009
  ident: D1FO01152A/cit3
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200800200
– volume: 61
  start-page: 5089
  year: 2013
  ident: D1FO01152A/cit17
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf305076v
– volume: 110
  start-page: 711
  year: 2013
  ident: D1FO01152A/cit40
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114512005612
– volume: 10
  start-page: 978
  year: 2020
  ident: D1FO01152A/cit33
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58048-w
– volume: 124
  start-page: 837
  year: 2006
  ident: D1FO01152A/cit26
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.017
– volume: 362
  start-page: 776
  year: 2018
  ident: D1FO01152A/cit5
  publication-title: Science
  doi: 10.1126/science.aau5812
– volume: 41
  start-page: 1313
  year: 2005
  ident: D1FO01152A/cit8
  publication-title: Hepatology
  doi: 10.1002/hep.20701
– volume: 49
  start-page: 1426
  year: 2011
  ident: D1FO01152A/cit15
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2011.03.037
– volume: 63
  start-page: e1801135
  year: 2019
  ident: D1FO01152A/cit19
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201801135
– volume: 11
  start-page: 872
  year: 2019
  ident: D1FO01152A/cit21
  publication-title: Nutrients
  doi: 10.3390/nu11040872
– volume: 27
  start-page: 141
  year: 2016
  ident: D1FO01152A/cit6
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000278
– volume: 11
  start-page: 533
  year: 2018
  ident: D1FO01152A/cit10
  publication-title: Diabetes, Metab. Syndr. Obes.: Targets Ther.
  doi: 10.2147/DMSO.S146339
– volume: 62
  start-page: e12399
  year: 2017
  ident: D1FO01152A/cit34
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12399
– volume: 102
  start-page: 54
  year: 2009
  ident: D1FO01152A/cit14
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114508159001
– volume: 47
  start-page: 2551
  year: 2009
  ident: D1FO01152A/cit22
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2009.07.012
– volume: 63
  start-page: 1883
  year: 2015
  ident: D1FO01152A/cit2
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf505050c
– volume: 3
  start-page: 24
  year: 2004
  ident: D1FO01152A/cit12
  publication-title: Lipids Health Dis.
  doi: 10.1186/1476-511X-3-24
– volume: 59
  start-page: 1635
  year: 2010
  ident: D1FO01152A/cit23
  publication-title: Gut
  doi: 10.1136/gut.2010.215665
– volume: 57
  start-page: 1470
  year: 2008
  ident: D1FO01152A/cit25
  publication-title: Diabetes
  doi: 10.2337/db07-1403
SSID ssj0000399898
Score 2.4939237
Snippet This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet...
This study aimed to elucidate the effect of punicic acid (PUA, cis 9, trans 11, cis 13–18 : 3) on obesity and liver steatosis in mice induced by high-fat diet...
This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet...
This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13–18 : 3) on obesity and liver steatosis in mice induced by high-fat diet...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7897
SubjectTerms Animals
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
Bacteroidaceae
Body weight
body weight changes
Body weight gain
Cholesterol
Composition
Desulfovibrionaceae
Diet
Diet, High-Fat - adverse effects
Dietary supplements
epididymis
Fatty liver
Fatty Liver - diet therapy
Fatty Liver - etiology
Fatty Liver - metabolism
Fatty Liver - microbiology
Gastrointestinal Microbiome
Helicobacteraceae
High fat diet
Humans
Intestinal microflora
intestinal microorganisms
Lactobacillus
Linolenic Acids - metabolism
Liver
Liver - drug effects
Liver - metabolism
Male
Mice
Mice, Inbred ICR
Microbiota
Mucispirillum
Obesity
Obesity - diet therapy
Obesity - etiology
Obesity - metabolism
Obesity - microbiology
Plant Oils - chemistry
Plant Oils - metabolism
Pomegranate - chemistry
Pomegranate - metabolism
punicic acid
Roseburia
Seeds - chemistry
Seeds - metabolism
Steatosis
triacylglycerols
Triglycerides
Title Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice
URI https://www.ncbi.nlm.nih.gov/pubmed/34241611
https://www.proquest.com/docview/2566254863
https://www.proquest.com/docview/2550267402
https://www.proquest.com/docview/2636412648
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu3BBDBgEBjICIaEqw_lo7BzLtm6C0XFoRTlFju1MQW0zdekB_nreS5yPaRMaXKLKtqw07-f35fdByDsUa3EkPDfKJBgooHG4Ik5jN_RZlkploqyqrv91Gp3Ow8-L0aJpcW-zS8r0QP2-Na_kf6gKY0BXzJL9B8q2m8IA_Ab6whMoDM870fgbpnZgwVWV66FcmSXm26MjtajL_Vc3A0uMvBgiMcsCq4-AvrmpG9Cjl-BiWw5XeV2NqZRVhLkN40JPyMpGxnWNPAtdgQXFYf8K_8e2dqSeyCIzVhhW_oA6VNjkP7cdDA9tRsgil4Xpux18r4qr4h138jGvB9S7xTVW6vchw4eXB1zE3OUxEz0miWM9gdvM3mDmLMBaqNrLCtRb_Z7Iaq7pp-fJZH52lsyOF7P7ZMcHU8EfkJ3xl08n31tPG2yDTTKxy2Dzzk2d2iD-2G1_XTO5YW6A8rFpmsJUysfsEXlorQY6riGwS-6Z9WPiHOWmpO-pLe26pNOms8ITYiw0KEKD9qBBLTQoQINW0KAtNGj6i3bQoAAN2kGD9qBB8zXOmKdkPjmeHZ66tqOGqwLOSuxbrD2VMR0aIULJMp5hiTWmtY5lFngpqKcgADC5J025MdyTaSiUBK6vYi3SYI8M1sXaPCeUBVz7asSUHgXA91UsJZMeZ7FQDM63cMiH5msmypabx64ny6QKewji5MibnFdffuyQt-3ay7rIyq2r9huiJPYQXiWgsYMFH4oocMibdhpYJN57ybUptrhmhH3WQub_ZU0URKGH4Z4OeVYTvH0V-H_oBvAcsgcIaIc75Ly4w7YvyYPuGO2TQbnZmlegz5bpawvYP2wdoPc
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Punicic+acid+ameliorates+obesity+and+liver+steatosis+by+regulating+gut+microbiota+composition+in+mice&rft.jtitle=Food+%26+function&rft.au=Yuan%2C+Gaofeng&rft.au=Tan%2C+Meijuan&rft.au=Chen%2C+Xiaoe&rft.date=2021-09-07&rft.issn=2042-650X&rft.volume=12&rft.issue=17+p.7897-7908&rft.spage=7897&rft.epage=7908&rft_id=info:doi/10.1039%2Fd1fo01152a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon