Design of superior phototheranostic agents guided by Jablonski diagrams

Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emissio...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 49; no. 22; pp. 8179 - 8234
Main Authors Feng, Guangxue, Zhang, Guo-Qiang, Ding, Dan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented. This review summarizes how Jablonski diagrams guide the design of advanced organic optical agents and improvement of disease phototheranostic efficacies.
AbstractList Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented.
Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented.
Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented.Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented.
Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented. This review summarizes how Jablonski diagrams guide the design of advanced organic optical agents and improvement of disease phototheranostic efficacies.
Author Feng, Guangxue
Zhang, Guo-Qiang
Ding, Dan
AuthorAffiliation Ministry of Education, and College of Life Sciences
AIE Institute
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
School of Materials Science and Engineering
Nankai University
Key Laboratory of Bioactive Materials
South China University of Technology
State Key Laboratory of Medicinal Chemical Biology
State Key Laboratory of Luminescent Materials and Devices
AuthorAffiliation_xml – name: South China University of Technology
– name: Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
– name: School of Materials Science and Engineering
– name: Ministry of Education, and College of Life Sciences
– name: AIE Institute
– name: Key Laboratory of Bioactive Materials
– name: State Key Laboratory of Luminescent Materials and Devices
– name: State Key Laboratory of Medicinal Chemical Biology
– name: Nankai University
Author_xml – sequence: 1
  givenname: Guangxue
  surname: Feng
  fullname: Feng, Guangxue
– sequence: 2
  givenname: Guo-Qiang
  surname: Zhang
  fullname: Zhang, Guo-Qiang
– sequence: 3
  givenname: Dan
  surname: Ding
  fullname: Ding, Dan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33196726$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctr3DAQBnBRUppN0kvvLYZcQsDtjPWyjmHzagj00PRsZFneVeqVtpJ82P8-3mweEAI9aQ6_-WD0HZA9H7wl5AvCdwSqfnRgEoCQuPxAZsgElEwytkdmQEGUAFjtk4OU7qcJpag-kX1KUQlZiRm5OrfJLXwR-iKNaxtdiMV6GXLISxu1Dyk7U-iF9TkVi9F1tivaTXGj2yH49NcVndOLqFfpiHzs9ZDs56f3kPy5vLibX5e3v65-zs9uS0Ml5FJoYJ1gXPGeck5bYVRLjZVdD9bQumaopOTIganKaEqhs6w2NVWKKg5c0UNysstdx_BvtCk3K5eMHQbtbRhTU3FErFEh-z9lAqdgxG3q8Rt6H8bop0O2CqSUKGBS357U2K5s16yjW-m4aZ5_cwKnO2BiSCna_oUgNNuqmnOY_36s6nrC8AYbl3V2weeo3fD-ytfdSkzmJfq1ffoASO6cOg
CitedBy_id crossref_primary_10_1002_adma_202406474
crossref_primary_10_1016_j_bios_2024_116801
crossref_primary_10_1016_j_actbio_2023_11_031
crossref_primary_10_1021_acs_chemmater_4c00482
crossref_primary_10_1016_j_actbio_2022_08_013
crossref_primary_10_1021_acsnano_4c07764
crossref_primary_10_3390_polym14142767
crossref_primary_10_1016_j_bios_2024_116802
crossref_primary_10_1002_bio_4655
crossref_primary_10_1016_j_biomaterials_2024_122969
crossref_primary_10_1039_D3CS00585B
crossref_primary_10_1021_acsabm_1c00155
crossref_primary_10_1002_ange_202209793
crossref_primary_10_1002_anie_202116174
crossref_primary_10_1002_adma_202415189
crossref_primary_10_1039_D1MA01052B
crossref_primary_10_1016_j_snb_2024_137104
crossref_primary_10_1016_j_biomaterials_2024_122847
crossref_primary_10_1016_j_matdes_2024_112815
crossref_primary_10_1002_adfm_202102213
crossref_primary_10_1088_1748_605X_abf980
crossref_primary_10_1002_anie_202200799
crossref_primary_10_1007_s41061_022_00386_6
crossref_primary_10_1002_anie_202202614
crossref_primary_10_2147_IJN_S479848
crossref_primary_10_1002_anie_202406651
crossref_primary_10_1039_D4MH00873A
crossref_primary_10_1016_j_dyepig_2021_109284
crossref_primary_10_1002_anie_202403258
crossref_primary_10_1039_D1SC00045D
crossref_primary_10_3390_nano14020186
crossref_primary_10_1039_D4SC03542A
crossref_primary_10_1002_ange_202408918
crossref_primary_10_1007_s12598_021_01795_0
crossref_primary_10_1016_j_mtchem_2025_102516
crossref_primary_10_2147_IJN_S337599
crossref_primary_10_1002_adfm_202306360
crossref_primary_10_1016_j_cej_2024_159137
crossref_primary_10_1002_cjoc_202300738
crossref_primary_10_1002_marc_202300496
crossref_primary_10_1039_D2NR05449C
crossref_primary_10_1021_jacs_3c08181
crossref_primary_10_1007_s12274_022_4735_2
crossref_primary_10_1039_D1CS00647A
crossref_primary_10_1021_acs_analchem_3c03305
crossref_primary_10_1021_acsnano_3c12316
crossref_primary_10_1016_j_inoche_2023_110693
crossref_primary_10_1039_D2TA09630G
crossref_primary_10_1016_j_ccr_2024_216006
crossref_primary_10_1039_D3NJ01063E
crossref_primary_10_1021_acs_nanolett_2c04084
crossref_primary_10_1039_D4CC02596B
crossref_primary_10_1007_s11426_023_1996_7
crossref_primary_10_1142_S1793545822400065
crossref_primary_10_1002_adma_202314021
crossref_primary_10_1039_D2BM00516F
crossref_primary_10_1039_D0QM01009J
crossref_primary_10_1016_j_dyepig_2022_110478
crossref_primary_10_1021_acs_accounts_4c00071
crossref_primary_10_1016_j_snb_2024_136264
crossref_primary_10_1016_j_talanta_2024_125991
crossref_primary_10_1002_advs_202301104
crossref_primary_10_1002_adfm_202315299
crossref_primary_10_1002_smo_20230014
crossref_primary_10_1021_jacs_1c13137
crossref_primary_10_1016_j_matpr_2023_06_083
crossref_primary_10_1021_acsami_1c22803
crossref_primary_10_1002_ange_202406651
crossref_primary_10_1039_D2CS00275B
crossref_primary_10_1002_asia_202401121
crossref_primary_10_1021_acs_analchem_3c04578
crossref_primary_10_1002_ange_202403258
crossref_primary_10_1016_j_ccr_2022_214803
crossref_primary_10_1039_D4TB01650E
crossref_primary_10_1016_j_cej_2025_161711
crossref_primary_10_1038_s41566_024_01538_4
crossref_primary_10_1002_adhm_202300327
crossref_primary_10_1002_anie_202408918
crossref_primary_10_2217_nnm_2023_0021
crossref_primary_10_1002_adma_202416590
crossref_primary_10_2217_nnm_2023_0261
crossref_primary_10_6023_cjoc202403059
crossref_primary_10_1186_s12951_021_01083_0
crossref_primary_10_1002_anie_202414259
crossref_primary_10_1016_j_jphotochem_2024_115659
crossref_primary_10_1021_acs_chemmater_2c01466
crossref_primary_10_1039_D1TB02738G
crossref_primary_10_1002_agt2_706
crossref_primary_10_1002_anie_202315217
crossref_primary_10_1016_j_biomaterials_2023_122261
crossref_primary_10_1016_j_biomaterials_2025_123193
crossref_primary_10_1016_j_dyepig_2022_110403
crossref_primary_10_1016_j_dyepig_2021_109480
crossref_primary_10_1002_cjoc_202100580
crossref_primary_10_1016_j_ccr_2022_214913
crossref_primary_10_1039_D1CS00600B
crossref_primary_10_1039_D1QM01270C
crossref_primary_10_1016_j_cclet_2021_08_015
crossref_primary_10_1007_s00289_023_05025_8
crossref_primary_10_1002_smll_202309589
crossref_primary_10_1021_acsami_1c03066
crossref_primary_10_3390_bios15030132
crossref_primary_10_34133_2021_9784053
crossref_primary_10_1002_ange_202116174
crossref_primary_10_1039_D1TB01310F
crossref_primary_10_1002_smll_202102646
crossref_primary_10_1039_D2SC02879D
crossref_primary_10_1016_j_biomaterials_2023_122276
crossref_primary_10_1039_D1BM01976G
crossref_primary_10_1021_acsnano_4c17582
crossref_primary_10_1021_acs_jpclett_4c03003
crossref_primary_10_1016_j_ccr_2022_214908
crossref_primary_10_1016_j_dyepig_2022_110543
crossref_primary_10_1002_adhm_202300541
crossref_primary_10_6023_cjoc202404003
crossref_primary_10_1002_adhm_202402381
crossref_primary_10_1002_adom_202300255
crossref_primary_10_1016_j_mtbio_2022_100481
crossref_primary_10_1002_adhm_202404322
crossref_primary_10_1039_D1CC01804C
crossref_primary_10_1016_j_mtbio_2022_100366
crossref_primary_10_1186_s12951_025_03204_5
crossref_primary_10_1002_smll_202309202
crossref_primary_10_1016_j_cclet_2021_08_001
crossref_primary_10_3390_photochem1030026
crossref_primary_10_1002_adfm_202401627
crossref_primary_10_1016_j_cej_2023_143814
crossref_primary_10_1039_D4MH00660G
crossref_primary_10_1021_acsami_2c02308
crossref_primary_10_2139_ssrn_4157595
crossref_primary_10_1039_D4NH00497C
crossref_primary_10_1021_accountsmr_0c00114
crossref_primary_10_1002_ange_202414259
crossref_primary_10_1002_smll_202307147
crossref_primary_10_1002_adma_202210179
crossref_primary_10_1002_adfm_202423165
crossref_primary_10_1002_cmdc_202400649
crossref_primary_10_1021_jacs_2c12738
crossref_primary_10_1016_j_bioactmat_2021_10_027
crossref_primary_10_1002_agt2_39
crossref_primary_10_1002_cjoc_202200714
crossref_primary_10_1002_anie_202503036
crossref_primary_10_1021_acsnano_1c10019
crossref_primary_10_1039_D4CC00681J
crossref_primary_10_1021_acsnano_1c08178
crossref_primary_10_1021_acsami_1c14020
crossref_primary_10_1039_D2SC06435A
crossref_primary_10_1016_j_addr_2023_114821
crossref_primary_10_1016_j_dyepig_2023_111411
crossref_primary_10_1016_j_biomaterials_2022_121595
crossref_primary_10_1002_adfm_202212380
crossref_primary_10_1021_acsnano_3c09695
crossref_primary_10_1021_acs_chemrev_1c00875
crossref_primary_10_1016_j_apcatb_2022_122025
crossref_primary_10_1021_acsapm_1c00456
crossref_primary_10_1002_adma_202309748
crossref_primary_10_1039_D1RA09393B
crossref_primary_10_1021_acsami_4c23023
crossref_primary_10_1021_acsnano_3c05080
crossref_primary_10_3390_molecules27196649
crossref_primary_10_1021_acsnano_1c00585
crossref_primary_10_1039_D1TB02282B
crossref_primary_10_1002_agt2_25
crossref_primary_10_1016_j_dyepig_2023_111517
crossref_primary_10_1016_j_snb_2022_132727
crossref_primary_10_1002_adhm_202301584
crossref_primary_10_1002_adfm_202200016
crossref_primary_10_1002_adhm_202402295
crossref_primary_10_1002_anse_202300045
crossref_primary_10_1021_acsabm_0c01322
crossref_primary_10_1039_D3CP05718F
crossref_primary_10_1016_j_ccr_2021_213888
crossref_primary_10_1038_s41598_024_75800_8
crossref_primary_10_1021_acsami_2c17525
crossref_primary_10_1002_anie_202416963
crossref_primary_10_1002_ange_202315217
crossref_primary_10_1016_j_mtchem_2023_101596
crossref_primary_10_1016_j_saa_2023_122572
crossref_primary_10_1021_acsami_2c05860
crossref_primary_10_1002_anie_202413219
crossref_primary_10_1002_adma_202200179
crossref_primary_10_1002_ange_202200799
crossref_primary_10_1002_ange_202202614
crossref_primary_10_1002_anie_202107076
crossref_primary_10_1039_D2BM01558G
crossref_primary_10_1002_chem_202303502
crossref_primary_10_1002_smll_202102044
crossref_primary_10_1016_j_ccr_2022_214552
crossref_primary_10_1016_j_cclet_2023_108974
crossref_primary_10_1002_adma_202201263
crossref_primary_10_1016_j_nantod_2021_101169
crossref_primary_10_3390_nano13091480
crossref_primary_10_1002_adma_202104615
crossref_primary_10_1016_j_cclet_2021_11_079
crossref_primary_10_1021_acs_analchem_1c04422
crossref_primary_10_1007_s11426_021_1189_9
crossref_primary_10_1016_j_cclet_2024_110098
crossref_primary_10_1016_j_colsurfb_2022_113106
crossref_primary_10_1039_D3QO00857F
crossref_primary_10_1007_s11696_023_02892_3
crossref_primary_10_1002_adma_202110283
crossref_primary_10_1111_odi_14525
crossref_primary_10_1016_j_jconrel_2023_08_056
crossref_primary_10_1002_smll_202200743
crossref_primary_10_1016_j_dyepig_2023_111745
crossref_primary_10_1007_s40242_024_3256_9
crossref_primary_10_1002_chem_202400741
crossref_primary_10_1039_D3NR02081A
crossref_primary_10_1016_j_cej_2022_141017
crossref_primary_10_1021_acsami_1c20722
crossref_primary_10_1016_j_colsurfb_2023_113516
crossref_primary_10_1016_j_jcis_2024_11_006
crossref_primary_10_1002_anie_202415735
crossref_primary_10_1016_j_biomaterials_2024_122771
crossref_primary_10_1002_anie_202416828
crossref_primary_10_1002_bkcs_12655
crossref_primary_10_1021_acsnano_1c11424
crossref_primary_10_1038_s41467_023_41050_x
crossref_primary_10_1021_acs_chemmater_3c02495
crossref_primary_10_1002_anie_202202005
crossref_primary_10_1021_acsmaterialslett_4c00162
crossref_primary_10_1021_acsinfecdis_1c00392
crossref_primary_10_1002_adhm_202303432
crossref_primary_10_1007_s10895_025_04223_z
crossref_primary_10_1016_j_actbio_2022_07_004
crossref_primary_10_1002_chem_202004957
crossref_primary_10_6023_A22060267
crossref_primary_10_1016_j_cclet_2021_02_017
crossref_primary_10_1016_j_bios_2025_117140
crossref_primary_10_1002_marc_202401098
crossref_primary_10_1002_ange_202416065
crossref_primary_10_1002_adma_202109111
crossref_primary_10_1002_ange_202406381
crossref_primary_10_1016_j_snb_2023_135091
crossref_primary_10_1039_D4OB00297K
crossref_primary_10_1002_adma_202418705
crossref_primary_10_1039_D1QM00328C
crossref_primary_10_1002_jbm_a_37638
crossref_primary_10_1002_adma_202311733
crossref_primary_10_1021_acsami_4c02254
crossref_primary_10_1016_j_cej_2022_140189
crossref_primary_10_1039_D2TB02295H
crossref_primary_10_1016_j_actbio_2024_09_001
crossref_primary_10_1002_cbic_202300653
crossref_primary_10_3390_pharmaceutics15082027
crossref_primary_10_1016_j_ijbiomac_2023_124486
crossref_primary_10_1021_acs_chemrev_3c00401
crossref_primary_10_1021_acsami_1c02260
crossref_primary_10_1016_j_ccr_2025_216579
crossref_primary_10_1016_j_ccr_2024_216056
crossref_primary_10_1002_aoc_6888
crossref_primary_10_1093_nsr_nwae192
crossref_primary_10_1002_adhm_202101066
crossref_primary_10_1016_j_ccr_2022_214754
crossref_primary_10_1016_j_ccr_2024_216054
crossref_primary_10_1021_acsnano_3c03925
crossref_primary_10_1016_j_jare_2022_02_006
crossref_primary_10_1021_acsomega_2c02868
crossref_primary_10_1039_D3MH01263H
crossref_primary_10_1016_j_cclet_2023_108934
crossref_primary_10_1021_acs_biomac_2c00361
crossref_primary_10_1039_D4SC03642E
crossref_primary_10_1002_smll_202407408
crossref_primary_10_1039_D1TB02610K
crossref_primary_10_1063_5_0185259
crossref_primary_10_1021_acs_jmedchem_2c01653
crossref_primary_10_1016_j_ccr_2022_214865
crossref_primary_10_1021_acsami_3c06853
crossref_primary_10_1021_acsnano_4c01600
crossref_primary_10_1002_anie_202400372
crossref_primary_10_1002_adhm_202101063
crossref_primary_10_1021_acsmaterialslett_4c01214
crossref_primary_10_1021_acs_jpca_4c01120
crossref_primary_10_1016_j_cej_2025_160692
crossref_primary_10_1016_j_jphotobiol_2024_113052
crossref_primary_10_1002_ange_202419785
crossref_primary_10_1002_agt2_576
crossref_primary_10_1039_D1QM00243K
crossref_primary_10_1039_D3AN01599H
crossref_primary_10_1039_D3TB00764B
crossref_primary_10_1002_VIW_20200121
crossref_primary_10_1021_acs_inorgchem_2c02920
crossref_primary_10_1021_acsnano_1c09301
crossref_primary_10_1016_j_xcrp_2023_101748
crossref_primary_10_1002_adma_202301739
crossref_primary_10_1002_smll_202407787
crossref_primary_10_1002_smll_202405470
crossref_primary_10_1016_j_dyepig_2023_111494
crossref_primary_10_1002_adma_202402434
crossref_primary_10_1007_s12274_024_6434_7
crossref_primary_10_1002_ange_202418047
crossref_primary_10_1021_acs_jmedchem_2c00105
crossref_primary_10_1039_D3TB00545C
crossref_primary_10_1039_D1QM00472G
crossref_primary_10_1016_j_saa_2024_124789
crossref_primary_10_1039_D1BM00172H
crossref_primary_10_1039_D1CS01138C
crossref_primary_10_1039_D2SC05982G
crossref_primary_10_1002_ange_202107076
crossref_primary_10_1039_D4QM00386A
crossref_primary_10_1016_j_dyepig_2023_111369
crossref_primary_10_1021_acsnano_1c10770
crossref_primary_10_1016_j_bioactmat_2024_09_031
crossref_primary_10_1039_D4TB02134G
crossref_primary_10_1002_anie_202401877
crossref_primary_10_1021_acsnano_2c03550
crossref_primary_10_1002_adma_202105999
crossref_primary_10_3390_bios13040494
crossref_primary_10_1021_acs_biomac_1c01516
crossref_primary_10_1002_advs_202205461
crossref_primary_10_1007_s00044_024_03309_w
crossref_primary_10_1016_j_biomaterials_2022_121780
crossref_primary_10_1016_j_biomaterials_2022_121535
crossref_primary_10_1039_D2CS00993E
crossref_primary_10_3390_chemosensors12070138
crossref_primary_10_1002_adma_202106994
crossref_primary_10_1016_j_ccr_2024_215718
crossref_primary_10_1016_j_cej_2021_133748
crossref_primary_10_1111_php_13404
crossref_primary_10_1016_j_jinorgbio_2024_112760
crossref_primary_10_1002_smll_202401905
crossref_primary_10_1021_acsbiomedchemau_1c00066
crossref_primary_10_1039_D2TA07628D
crossref_primary_10_1002_adhm_202303472
crossref_primary_10_1039_D3TB01438J
crossref_primary_10_1016_j_colsurfb_2022_113060
crossref_primary_10_1002_VIW_20220065
crossref_primary_10_1002_cjoc_202200660
crossref_primary_10_1016_j_ccr_2023_215652
crossref_primary_10_1016_j_cclet_2024_109841
crossref_primary_10_1002_anie_202418081
crossref_primary_10_2139_ssrn_4063729
crossref_primary_10_1021_acsami_3c08033
crossref_primary_10_1186_s12645_023_00191_w
crossref_primary_10_3390_polym15173570
crossref_primary_10_1002_asia_202200181
crossref_primary_10_1016_j_snb_2024_135976
crossref_primary_10_1039_D4MH01167H
crossref_primary_10_1016_j_biomaterials_2022_121528
crossref_primary_10_1002_ange_202401877
crossref_primary_10_1002_wnan_1862
crossref_primary_10_1016_j_jlumin_2021_118562
crossref_primary_10_1117_1_JBO_27_7_070901
crossref_primary_10_3390_pharmaceutics15092335
crossref_primary_10_3390_molecules29051040
crossref_primary_10_1002_cptc_202300213
crossref_primary_10_1002_ange_202110048
crossref_primary_10_1002_ange_202418081
crossref_primary_10_1016_j_nantod_2022_101620
crossref_primary_10_1016_j_trac_2023_117339
crossref_primary_10_3390_sym14050966
crossref_primary_10_1002_adfm_202113098
crossref_primary_10_1002_adfm_202418600
crossref_primary_10_1039_D4NA00931B
crossref_primary_10_2174_0109298673300702240805055930
crossref_primary_10_1002_adfm_202311365
crossref_primary_10_1038_s41598_023_50930_7
crossref_primary_10_1002_ejoc_202201131
crossref_primary_10_1002_adma_202302639
crossref_primary_10_1021_jacs_1c06275
crossref_primary_10_1039_D3BM00730H
crossref_primary_10_1039_D4TB02480J
crossref_primary_10_1002_adfm_202300340
crossref_primary_10_1016_j_trac_2023_117326
crossref_primary_10_1016_j_apsb_2024_12_017
crossref_primary_10_1016_j_ejmech_2022_114843
crossref_primary_10_34133_research_0061
crossref_primary_10_1021_acs_nanolett_4c01364
crossref_primary_10_1039_D4TB01198H
crossref_primary_10_1002_advs_202205780
crossref_primary_10_1002_anie_202110048
crossref_primary_10_1016_j_biomaterials_2022_121581
crossref_primary_10_1021_acsami_4c15017
crossref_primary_10_1002_advs_202204695
crossref_primary_10_1002_VIW_20200140
crossref_primary_10_1039_D1TB00855B
crossref_primary_10_1016_j_cjche_2024_05_010
crossref_primary_10_3390_nano13212872
crossref_primary_10_1016_j_drudis_2023_103598
crossref_primary_10_1002_adma_202104410
crossref_primary_10_1002_EXP_20230063
crossref_primary_10_1002_ange_202305564
crossref_primary_10_1016_j_saa_2022_120946
crossref_primary_10_1002_adma_202407199
crossref_primary_10_34133_research_0194
crossref_primary_10_1021_acs_analchem_1c00548
crossref_primary_10_1039_D2QM00630H
crossref_primary_10_1021_acs_chemrev_4c00244
crossref_primary_10_1038_s41392_023_01654_7
crossref_primary_10_1016_j_engreg_2021_11_001
crossref_primary_10_1002_smll_202307829
crossref_primary_10_1016_j_cclet_2024_109910
crossref_primary_10_1021_acsami_4c04131
crossref_primary_10_1021_acsami_4c06437
crossref_primary_10_1016_j_molstruc_2024_140813
crossref_primary_10_1002_agt2_295
crossref_primary_10_1021_acsnano_4c10277
crossref_primary_10_1111_php_13698
crossref_primary_10_1002_anie_202418047
crossref_primary_10_1021_acsabm_2c00394
crossref_primary_10_1002_anie_202305564
crossref_primary_10_1039_D1QM00089F
crossref_primary_10_1002_anie_202406381
crossref_primary_10_1002_asia_202401328
crossref_primary_10_1007_s12274_021_3480_2
crossref_primary_10_1002_advs_202410405
crossref_primary_10_1016_j_cej_2022_137762
crossref_primary_10_1002_smll_202306324
crossref_primary_10_1016_j_cis_2024_103356
crossref_primary_10_1021_acsmaterialslett_4c00759
crossref_primary_10_3390_molecules27030991
crossref_primary_10_1002_smll_202411643
crossref_primary_10_1002_slct_202204546
crossref_primary_10_1002_mabi_202300151
crossref_primary_10_1021_acs_chemrev_2c00062
crossref_primary_10_1002_agt2_503
crossref_primary_10_1038_s43246_021_00214_2
crossref_primary_10_1016_j_cej_2024_156392
crossref_primary_10_1021_jacsau_3c00667
crossref_primary_10_1039_D2CS00610C
crossref_primary_10_1515_rams_2022_0308
crossref_primary_10_1016_j_ijpharm_2024_124633
crossref_primary_10_1039_D3CS00251A
crossref_primary_10_1002_smtd_202201582
crossref_primary_10_1007_s40242_021_1172_9
crossref_primary_10_1002_cptc_202400156
crossref_primary_10_1002_smll_202305101
crossref_primary_10_1002_agt2_630
crossref_primary_10_1021_acsabm_3c00080
crossref_primary_10_1002_wnan_1960
crossref_primary_10_1039_D1TB02816B
crossref_primary_10_1002_agt2_518
crossref_primary_10_1016_j_pdpdt_2023_103328
crossref_primary_10_1016_j_xinn_2021_100082
crossref_primary_10_3390_polym16111583
crossref_primary_10_1002_adhm_202303183
crossref_primary_10_1002_smll_202105362
crossref_primary_10_1002_adma_202208229
crossref_primary_10_1016_j_actbio_2023_05_014
crossref_primary_10_1039_D2CC06932F
crossref_primary_10_1002_VIW_20200179
crossref_primary_10_1002_adma_202211632
crossref_primary_10_1016_j_ccr_2024_215677
crossref_primary_10_1002_adhm_202400201
crossref_primary_10_1002_asia_202200571
crossref_primary_10_1016_j_actbio_2021_08_002
crossref_primary_10_1002_adma_202208692
crossref_primary_10_1039_D4TB01867B
crossref_primary_10_1021_acsnano_0c09981
crossref_primary_10_1021_acsmacrolett_4c00031
crossref_primary_10_1039_D2MA00444E
crossref_primary_10_1021_acssensors_4c00561
crossref_primary_10_1002_advs_202302395
crossref_primary_10_1016_j_trac_2024_117801
crossref_primary_10_1021_jacs_1c05647
crossref_primary_10_1039_D1QM01385H
crossref_primary_10_1002_anie_202416065
crossref_primary_10_1021_acsami_2c11200
crossref_primary_10_1021_acsanm_2c03350
crossref_primary_10_1016_j_actbio_2024_07_032
crossref_primary_10_3390_bios12080646
crossref_primary_10_1039_D1BM00044F
crossref_primary_10_1166_jbn_2022_3371
crossref_primary_10_1016_j_ccr_2024_215866
crossref_primary_10_1002_adfm_202207145
crossref_primary_10_1016_j_dyepig_2024_112141
crossref_primary_10_1007_s40843_022_2143_2
crossref_primary_10_3390_bios12090683
crossref_primary_10_1039_D4SC05006A
crossref_primary_10_1021_acs_nanolett_4c01862
crossref_primary_10_1016_j_cclet_2023_109133
crossref_primary_10_1016_j_dyepig_2025_112664
crossref_primary_10_1039_D0QM01132K
crossref_primary_10_1021_acs_jpclett_1c02463
crossref_primary_10_1002_adom_202300623
crossref_primary_10_1016_j_pmatsci_2024_101347
crossref_primary_10_1016_j_recm_2024_01_001
crossref_primary_10_1021_acsnano_3c06542
crossref_primary_10_1039_D2TB02662G
crossref_primary_10_1002_ange_202413219
crossref_primary_10_1002_adfm_202200503
crossref_primary_10_1093_rb_rbad044
crossref_primary_10_1021_jacs_2c06538
crossref_primary_10_1002_anie_202419785
crossref_primary_10_1002_ange_202416963
crossref_primary_10_1016_j_pdpdt_2022_103103
crossref_primary_10_1002_agt2_540
crossref_primary_10_1002_agt2_420
crossref_primary_10_1016_j_ccr_2024_215734
crossref_primary_10_1016_j_biomaterials_2025_123113
crossref_primary_10_1002_ange_202503036
crossref_primary_10_1016_j_biomaterials_2025_123235
crossref_primary_10_1021_acsnano_1c07730
crossref_primary_10_1021_acsami_1c19008
crossref_primary_10_1039_D4BM00412D
crossref_primary_10_1021_jacs_1c03041
crossref_primary_10_1002_wnan_1906
crossref_primary_10_1016_j_jorganchem_2023_122819
crossref_primary_10_1002_adhm_202400593
crossref_primary_10_1021_acsami_3c10200
crossref_primary_10_1038_s41467_023_40996_2
crossref_primary_10_1016_j_jphotochem_2021_113661
crossref_primary_10_1039_D3CC00108C
crossref_primary_10_1016_j_pdpdt_2023_103520
crossref_primary_10_1002_btm2_10417
crossref_primary_10_1038_s41467_024_51506_3
crossref_primary_10_1016_j_partic_2022_06_001
crossref_primary_10_1038_s41598_024_51209_1
crossref_primary_10_1021_acsnano_3c05309
crossref_primary_10_1016_j_ccr_2023_215560
crossref_primary_10_1021_acsanm_3c05733
crossref_primary_10_1002_smll_202104073
crossref_primary_10_1007_s10921_025_01175_z
crossref_primary_10_1002_btm2_10652
crossref_primary_10_1002_agt2_7
crossref_primary_10_1021_jacs_4c15216
crossref_primary_10_1002_ange_202416828
crossref_primary_10_1039_D3QM00206C
crossref_primary_10_1002_adhm_202300941
crossref_primary_10_1002_ange_202415735
crossref_primary_10_1016_j_bioorg_2022_105725
crossref_primary_10_1039_D3PY00461A
crossref_primary_10_1039_D1SC01125A
crossref_primary_10_1002_agt2_320
crossref_primary_10_1002_adfm_202411838
crossref_primary_10_1002_adfm_202210664
crossref_primary_10_1039_D1NR00773D
crossref_primary_10_1016_j_cclet_2023_109223
crossref_primary_10_1002_ange_202202005
crossref_primary_10_1016_j_ccr_2023_215451
crossref_primary_10_1088_1748_605X_ad15e2
crossref_primary_10_1002_ange_202400372
crossref_primary_10_1016_j_molstruc_2025_141365
crossref_primary_10_1002_anie_202209793
crossref_primary_10_1016_j_actbio_2022_02_013
crossref_primary_10_1016_j_dyepig_2021_109307
crossref_primary_10_1002_smll_202307664
crossref_primary_10_1002_adfm_202406483
crossref_primary_10_1016_j_biomaterials_2022_121603
Cites_doi 10.1021/acsnano.9b00452
10.1021/acs.chemrev.7b00425
10.1002/anie.201706974
10.1002/adfm.201804956
10.1002/adma.201502442
10.1039/D0SC00785D
10.1002/anie.201810326
10.1021/jacs.8b13889
10.1016/j.isci.2019.11.022
10.1007/s12274-018-2175-9
10.1002/anie.201709347
10.7150/thno.36999
10.1073/pnas.1701976114
10.1016/j.biomaterials.2017.08.018
10.1038/s41563-019-0378-4
10.1016/j.biomaterials.2017.03.003
10.1039/c2nr31392h
10.1038/s41551-016-0010
10.1038/s41467-020-15095-1
10.1038/nmeth.3925
10.1039/C4CS00014E
10.1039/C3CS60271K
10.1021/jacs.6b00007
10.1039/D0NR02622K
10.1002/smtd.201900553
10.1039/C7SC05115H
10.1002/adma.201604100
10.1002/adfm.201604053
10.1073/pnas.1617990114
10.1038/nnano.2009.326
10.1021/acsami.9b06866
10.1002/adma.201906711
10.1039/C9CS00129H
10.1002/anie.201813002
10.1002/chem.201604741
10.1002/anie.201802143
10.1002/asia.201901658
10.1002/smll.201403395
10.1002/smll.201302161
10.1002/smtd.201600023
10.1016/j.chempr.2018.06.003
10.1002/anie.201712528
10.1002/anie.201916147
10.1002/adma.201805220
10.1038/nmat4259
10.1039/C4CC02767A
10.1002/anie.201903277
10.1002/adma.201606690
10.1002/anie.201910137
10.1002/anie.201706969
10.1039/C7QM00056A
10.1039/c3cs35531d
10.1038/nnano.2013.302
10.1002/adfm.201806877
10.1002/adfm.201704079
10.1039/C6CS00271D
10.1021/acs.nanolett.7b02106
10.1073/pnas.1417047112
10.1038/s41467-018-04222-8
10.1021/acsnano.7b03507
10.1002/anie.201809641
10.1002/adma.201601214
10.1002/advs.201700113
10.1021/cr900263j
10.1021/acsnano.6b00168
10.1002/adfm.201707519
10.1002/smll.201602747
10.1002/adma.201801065
10.1039/c1cc12775f
10.1002/adma.201807222
10.1039/C9SC02093D
10.1002/smll.201601637
10.1038/nmeth818
10.1063/1.4984020
10.1021/acsnano.6b08720
10.1039/C6SC01561A
10.1002/adma.201703403
10.1021/jacs.7b08710
10.1021/jacs.7b08446
10.1039/C7SC03351F
10.1021/acsnano.8b03138
10.1002/adfm.201901480
10.1002/adma.201502285
10.1002/advs.201600407
10.1038/s41467-019-08434-4
10.1002/smll.201602807
10.1002/adfm.201907077
10.1021/jp900665x
10.1021/acsnano.8b08398
10.1021/acsnano.9b01411
10.1073/pnas.1306241110
10.1021/acsami.8b03568
10.7150/thno.18861
10.1021/cr200166m
10.1002/adma.201808355
10.1021/acs.accounts.9b00064
10.1038/nchem.984
10.1002/anie.201907754
10.1038/nmat4476
10.1021/acsnano.7b00312
10.1002/adfm.201705045
10.1002/adma.201802394
10.1021/acsami.6b16801
10.1039/C8TB01750F
10.1002/anie.200805456
10.1038/nmeth.3929
10.1002/smll.201902352
10.1002/adma.201606857
10.1002/anie.201709887
10.1002/adma.201700487
10.7150/thno.19538
10.1002/adma.201805875
10.1002/anie.201801226
10.1002/adma.201802546
10.1021/acs.chemrev.5b00263
10.1016/j.biomaterials.2016.12.004
10.1016/j.nantod.2020.100851
10.1038/nchembio.85
10.1021/jacs.7b10334
10.1351/pac196511030371
10.1039/C8CS00618K
10.1039/C5CC03114A
10.1039/b704794k
10.1002/adma.201600706
10.1016/j.biomaterials.2017.08.007
10.1021/acsnano.7b08616
10.1002/adma.201800766
10.1002/adma.201904799
10.1002/adfm.201605397
10.1002/smll.201802991
10.1039/C8CC08096H
10.1002/adma.201606665
10.1002/anie.201916430
10.1039/C7MH00469A
10.1016/j.biomaterials.2017.11.025
10.1038/s41467-018-03505-4
10.1039/C8CS00001H
10.1021/acsnano.7b03062
10.1021/acs.chemmater.7b01075
10.1016/j.addr.2016.08.010
10.1002/adma.201705799
10.1021/acs.accounts.9b00305
10.1021/acs.chemmater.6b03738
10.1021/jacs.5b04069
10.1039/C6SC04384D
10.1002/adma.201602604
10.1002/adfm.201605094
10.1021/jacs.7b05916
10.1002/adfm.201702834
10.1016/j.biomaterials.2017.08.037
10.1021/jacs.8b13141
10.1039/C5CS00103J
10.1038/s41467-019-09561-8
10.1021/jacs.9b07162
10.1021/acsami.6b06136
10.1039/C9QM00036D
10.1002/adfm.201804901
10.1016/j.biomaterials.2017.10.031
10.1038/s41467-017-00545-0
10.1038/nbt.3987
10.1021/ar200019c
10.1002/anie.201705945
10.1002/adma.201705980
10.1038/s41467-019-09043-x
10.1002/adma.201605497
10.1038/nature24010
10.1016/S0010-8545(02)00034-6
10.1002/anie.201806551
10.1038/s41467-019-10056-9
10.1039/C7CS00594F
10.1016/j.biomaterials.2017.11.016
10.1002/adfm.201808365
10.1021/jacs.7b05019
10.1039/b105159h
10.1002/adfm.201606314
10.1021/acs.analchem.9b00317
10.1002/adma.201706856
10.1007/s12274-016-1332-2
10.1038/s41467-017-01951-0
10.1039/C9NR00552H
10.1002/adma.201907855
10.1021/jacs.8b08658
10.1038/s41467-018-03236-6
10.1002/adfm.201400647
10.1021/acs.nanolett.8b02767
10.1021/cr900266s
10.1021/jacs.8b10176
10.1021/acsnano.9b06208
10.1002/smll.201700710
10.1002/adma.201701244
10.1039/C7QM00092H
10.1002/anie.201914384
10.1021/acs.analchem.9b04002
10.1002/adma.201900321
10.1126/science.1216210
10.1021/acsnano.6b07927
10.1039/c3py01587d
10.1002/adma.201903530
10.1021/jacs.9b03649
10.1038/s41467-019-08722-z
10.1039/C7CS00525C
10.1038/s41467-019-10119-x
10.1002/anie.201805246
10.1002/anie.201908664
10.1002/adma.201904914
10.1021/jacs.7b13307
10.1021/acs.accounts.8b00060
10.1021/acs.analchem.9b02839
10.1002/anie.201810541
10.1002/anie.201900366
10.1002/anie.201909706
10.1039/C7CC04864E
10.1021/acscentsci.7b00058
10.1002/smll.201702299
10.1021/cm801911n
10.1021/acsami.6b14885
10.1002/adma.201801350
10.1002/adma.201604764
10.1002/adma.201402972
10.1039/C4CS00392F
10.1002/adma.201800365
10.1002/anie.201805446
10.1021/acs.analchem.6b01096
10.1039/C7SC04694D
10.1002/adma.201706320
10.1039/C8CC07768A
10.1038/s41467-019-10033-2
10.1039/c3cs60036j
10.1021/acs.chemrev.5b00140
10.1039/C6CS00908E
10.1021/ac502103t
10.1039/C7CP02118F
10.1021/jacs.7b00551
10.1002/anie.201002307
10.1002/adma.201806331
10.1002/anie.201905884
10.1039/C8CS00494C
10.1002/anie.201906288
10.1021/jacs.9b02580
10.1002/adma.201801140
10.1021/acs.biomac.7b01029
10.1002/anie.201803321
10.1002/adma.201700548
10.1002/adma.201703693
10.1021/acsnano.7b04685
10.1039/C7NR07495F
10.1002/adma.201902672
10.1038/nmat2986
10.1039/C9TC02879J
10.1021/acsami.8b01458
10.1021/acsami.8b00759
10.1007/s40843-019-9470-3
10.1021/acsami.9b01615
10.1038/ncomms15269
10.1021/acs.accounts.9b00104
10.1038/srep01150
10.1021/acsnano.7b07809
10.1021/jacs.9b10043
10.1021/acs.nanolett.8b03936
10.1016/j.chempr.2017.10.002
10.1021/jp909388y
10.1002/adbi.201800074
10.1039/C7SC04963C
10.1021/acs.accounts.8b00242
10.1021/jacs.6b11382
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d0cs00671h
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 8234
ExternalDocumentID 33196726
10_1039_D0CS00671H
d0cs00671h
Genre Journal Article
Review
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
-JG
CGR
CUY
CVF
ECM
EIF
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-6a04d64595f3553b6c9b3ce7df0ec388419775150492ca330de48c83993950593
ISSN 0306-0012
1460-4744
IngestDate Thu Jul 10 22:45:08 EDT 2025
Fri Jul 11 08:54:07 EDT 2025
Sun Jun 29 15:29:03 EDT 2025
Wed Feb 19 02:28:06 EST 2025
Thu Apr 24 23:00:18 EDT 2025
Tue Jul 01 04:18:44 EDT 2025
Sat Jan 08 03:48:18 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-6a04d64595f3553b6c9b3ce7df0ec388419775150492ca330de48c83993950593
Notes Guangxue Feng received his PhD degree from the Department of Chemical and Biomolecular Engineering at the National University of Singapore in 2016, followed by a postdoctoral study at the same university. After serving as the Chief Research Scientist in a start-up company LuminiCell Pte Ltd for two years, he joined the School of Materials Science and Engineering at South China University of Technology as a Professor in 2019. His research focuses on the development of semiconducting organic optical agents for phototheranostics.
Guo-Qiang Zhang received his PhD degree from the College of Pharmacy in Nankai University in 2018. He is currently a postdoctoral fellow under the supervision of Prof. Dan Ding in the State Key Laboratory of Medicinal Chemical Biology in Nankai University. His current research focuses on the design and synthesis of smart/functional molecular imaging probes and exploration of their biomedical applications.
Dan Ding received his PhD degree from the Department of Polymer Science and Engineering in Nanjing University in 2010. After a postdoctoral training in the National University of Singapore, he joined Nankai University, where he is currently a Professor in State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science. He also conducted his work in The Hong Kong University of Science and Technology as a visiting scholar. His current research focuses on the design and synthesis of smart/functional molecular imaging probes and exploration of their biomedical applications.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1873-6510
PMID 33196726
PQID 2460777160
PQPubID 2047503
PageCount 56
ParticipantIDs crossref_primary_10_1039_D0CS00671H
rsc_primary_d0cs00671h
proquest_miscellaneous_2461399119
proquest_journals_2460777160
proquest_miscellaneous_2511181914
pubmed_primary_33196726
crossref_citationtrail_10_1039_D0CS00671H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-21
PublicationDateYYYYMMDD 2020-11-21
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Moor (D0CS00671H-(cit9)/*[position()=1]) 2003
Wu (D0CS00671H-(cit109)/*[position()=1]) 2019; 55
Pu (D0CS00671H-(cit108)/*[position()=1]) 2015; 27
Jiang (D0CS00671H-(cit126)/*[position()=1]) 2018; 30
Zhao (D0CS00671H-(cit132)/*[position()=1]) 2019; 10
Helmchen (D0CS00671H-(cit61)/*[position()=1]) 2005; 2
Sheng (D0CS00671H-(cit54)/*[position()=1]) 2018; 30
Tang (D0CS00671H-(cit222)/*[position()=1]) 2017; 29
Wang (D0CS00671H-(cit246)/*[position()=1]) 2019; 10
Sun (D0CS00671H-(cit44)/*[position()=1]) 2016; 7
Park (D0CS00671H-(cit214)/*[position()=1]) 2016; 138
Szabo (D0CS00671H-(cit234)/*[position()=1]) 2013; 110
Hu (D0CS00671H-(cit157)/*[position()=1]) 2018; 30
Feng (D0CS00671H-(cit62)/*[position()=1]) 2016; 8
Zhu (D0CS00671H-(cit208)/*[position()=1]) 2017; 11
Liu (D0CS00671H-(cit40)/*[position()=1]) 2017; 8
Li (D0CS00671H-(cit220)/*[position()=1]) 2017; 7
Chen (D0CS00671H-(cit17)/*[position()=1]) 2020; 32
Gong (D0CS00671H-(cit248)/*[position()=1]) 2020; 32
Chen (D0CS00671H-(cit63)/*[position()=1]) 2020; 59
Filatov (D0CS00671H-(cit179)/*[position()=1]) 2017; 139
Hu (D0CS00671H-(cit245)/*[position()=1]) 2017; 144
Li (D0CS00671H-(cit107)/*[position()=1]) 2016; 28
Zhen (D0CS00671H-(cit172)/*[position()=1]) 2017; 29
Wang (D0CS00671H-(cit117)/*[position()=1]) 2019; 29
Miao (D0CS00671H-(cit251)/*[position()=1]) 2017; 35
Zhu (D0CS00671H-(cit34)/*[position()=1]) 2018; 30
Feng (D0CS00671H-(cit51)/*[position()=1]) 2017; 4
Liu (D0CS00671H-(cit89)/*[position()=1]) 2019; 58
Liu (D0CS00671H-(cit100)/*[position()=1]) 2019; 141
Qin (D0CS00671H-(cit139)/*[position()=1]) 2015; 11
Wu (D0CS00671H-(cit176)/*[position()=1]) 2017; 4
Green (D0CS00671H-(cit257)/*[position()=1]) 2017; 139
Yang (D0CS00671H-(cit69)/*[position()=1]) 2017; 23
Nicol (D0CS00671H-(cit169)/*[position()=1]) 2017; 139
Samuel (D0CS00671H-(cit200)/*[position()=1]) 2015; 112
Pan (D0CS00671H-(cit91)/*[position()=1]) 2018; 10
Feng (D0CS00671H-(cit53)/*[position()=1]) 2018; 152
Zhu (D0CS00671H-(cit21)/*[position()=1]) 2019; 31
Wang (D0CS00671H-(cit116)/*[position()=1]) 2019; 3
Li (D0CS00671H-(cit14)/*[position()=1]) 2014; 43
Luby (D0CS00671H-(cit23)/*[position()=1]) 2019; 58
Xu (D0CS00671H-(cit153)/*[position()=1]) 2016; 28
Luo (D0CS00671H-(cit37)/*[position()=1]) 2001
Xu (D0CS00671H-(cit120)/*[position()=1]) 2018; 10
Itoh (D0CS00671H-(cit151)/*[position()=1]) 2012; 112
Bolton (D0CS00671H-(cit158)/*[position()=1]) 2011; 3
Antaris (D0CS00671H-(cit41)/*[position()=1]) 2016; 15
Lyu (D0CS00671H-(cit140)/*[position()=1]) 2016; 10
An (D0CS00671H-(cit162)/*[position()=1]) 2015; 14
Chang (D0CS00671H-(cit103)/*[position()=1]) 2018; 10
Zhang (D0CS00671H-(cit42)/*[position()=1]) 2016; 28
Qi (D0CS00671H-(cit55)/*[position()=1]) 2018; 30
Cheng (D0CS00671H-(cit95)/*[position()=1]) 2019; 58
Cai (D0CS00671H-(cit13)/*[position()=1]) 2019; 48
Li (D0CS00671H-(cit33)/*[position()=1]) 2018; 57
Alifu (D0CS00671H-(cit198)/*[position()=1]) 2017; 1
Shi (D0CS00671H-(cit236)/*[position()=1]) 2018; 18
Fateminia (D0CS00671H-(cit76)/*[position()=1]) 2017; 29
Zhi (D0CS00671H-(cit152)/*[position()=1]) 2020; 15
Yang (D0CS00671H-(cit31)/*[position()=1]) 2017; 29
Lyu (D0CS00671H-(cit123)/*[position()=1]) 2018; 12
Cai (D0CS00671H-(cit134)/*[position()=1]) 2017; 1
Li (D0CS00671H-(cit28)/*[position()=1]) 2018; 155
Wang (D0CS00671H-(cit185)/*[position()=1]) 2018; 9
Würthner (D0CS00671H-(cit68)/*[position()=1]) 2011; 50
Huang (D0CS00671H-(cit253)/*[position()=1]) 2019; 18
Jiang (D0CS00671H-(cit82)/*[position()=1]) 2017; 13
Mao (D0CS00671H-(cit254)/*[position()=1]) 2017; 3
Xu (D0CS00671H-(cit188)/*[position()=1]) 2017; 53
Kang (D0CS00671H-(cit183)/*[position()=1]) 2019; 141
Hananya (D0CS00671H-(cit250)/*[position()=1]) 2017; 56
Gu (D0CS00671H-(cit205)/*[position()=1]) 2018; 30
Wu (D0CS00671H-(cit190)/*[position()=1]) 2017; 29
Xie (D0CS00671H-(cit229)/*[position()=1]) 2017; 29
Wan (D0CS00671H-(cit57)/*[position()=1]) 2018; 9
Zhuang (D0CS00671H-(cit204)/*[position()=1]) 2020; 11
Li (D0CS00671H-(cit242)/*[position()=1]) 2017; 139
Cai (D0CS00671H-(cit218)/*[position()=1]) 2018; 57
Sun (D0CS00671H-(cit86)/*[position()=1]) 2017; 18
Atchimnaidu (D0CS00671H-(cit145)/*[position()=1]) 2020; 12
Zou (D0CS00671H-(cit191)/*[position()=1]) 2018; 9
Ou (D0CS00671H-(cit84)/*[position()=1]) 2019; 62
Tang (D0CS00671H-(cit247)/*[position()=1]) 2015; 44
Lü (D0CS00671H-(cit122)/*[position()=1]) 2019; 10
Li (D0CS00671H-(cit184)/*[position()=1]) 2020; 59
Li (D0CS00671H-(cit181)/*[position()=1]) 2017; 11
Hu (D0CS00671H-(cit227)/*[position()=1]) 2018; 28
Hu (D0CS00671H-(cit186)/*[position()=1]) 2018; 57
Tang (D0CS00671H-(cit243)/*[position()=1]) 2018; 30
Feng (D0CS00671H-(cit206)/*[position()=1]) 2017; 13
Fan (D0CS00671H-(cit87)/*[position()=1]) 2015; 27
Smith (D0CS00671H-(cit30)/*[position()=1]) 2009; 4
Yang (D0CS00671H-(cit85)/*[position()=1]) 2019; 52
Ng (D0CS00671H-(cit2)/*[position()=1]) 2015; 115
Li (D0CS00671H-(cit18)/*[position()=1]) 2019; 48
Feng (D0CS00671H-(cit49)/*[position()=1]) 2012; 4
Zhang (D0CS00671H-(cit167)/*[position()=1]) 2019; 7
Liang (D0CS00671H-(cit119)/*[position()=1]) 2017; 8
Weber (D0CS00671H-(cit81)/*[position()=1]) 2016; 13
Zhu (D0CS00671H-(cit46)/*[position()=1]) 2017; 114
Mukherjee (D0CS00671H-(cit154)/*[position()=1]) 2015; 51
Zhang (D0CS00671H-(cit88)/*[position()=1]) 2017; 11
Feng (D0CS00671H-(cit59)/*[position()=1]) 2017; 4
Jiang (D0CS00671H-(cit15)/*[position()=1]) 2018; 51
Fateminia (D0CS00671H-(cit72)/*[position()=1]) 2017; 1
Liu (D0CS00671H-(cit104)/*[position()=1]) 2014; 5
Feng (D0CS00671H-(cit226)/*[position()=1]) 2019; 91
Hu (D0CS00671H-(cit182)/*[position()=1]) 2014; 86
Wu (D0CS00671H-(cit195)/*[position()=1]) 2018; 4
Zheng (D0CS00671H-(cit197)/*[position()=1]) 2018; 12
Wang (D0CS00671H-(cit79)/*[position()=1]) 2012; 335
Yuan (D0CS00671H-(cit180)/*[position()=1]) 2014; 50
Xu (D0CS00671H-(cit235)/*[position()=1]) 2018; 57
Cai (D0CS00671H-(cit106)/*[position()=1]) 2017; 10
Jiang (D0CS00671H-(cit125)/*[position()=1]) 2017; 17
Luo (D0CS00671H-(cit93)/*[position()=1]) 2017; 27
Li (D0CS00671H-(cit207)/*[position()=1]) 2019; 58
Liu (D0CS00671H-(cit192)/*[position()=1]) 2018; 57
Li (D0CS00671H-(cit144)/*[position()=1]) 2019; 13
Shi (D0CS00671H-(cit170)/*[position()=1]) 2019; 11
Huang (D0CS00671H-(cit264)/*[position()=1]) 2019; 58
Zhang (D0CS00671H-(cit113)/*[position()=1]) 2017; 27
Feng (D0CS00671H-(cit193)/*[position()=1]) 2013; 42
Gao (D0CS00671H-(cit27)/*[position()=1]) 2018; 2
Winterbourn (D0CS00671H-(cit224)/*[position()=1]) 2008; 4
Fu (D0CS00671H-(cit8)/*[position()=1]) 2019; 31
Feng (D0CS00671H-(cit16)/*[position()=1]) 2018; 51
Zhen (D0CS00671H-(cit149)/*[position()=1]) 2017; 127
Tao (D0CS00671H-(cit216)/*[position()=1]) 2018; 28
Kim (D0CS00671H-(cit78)/*[position()=1]) 2010; 110
Zhou (D0CS00671H-(cit11)/*[position()=1]) 2016; 45
Gong (D0CS00671H-(cit160)/*[position()=1]) 2015; 27
Zheng (D0CS00671H-(cit77)/*[position()=1]) 2019; 31
Wang (D0CS00671H-(cit101)/*[position()=1]) 2017; 56
Qian (D0CS00671H-(cit65)/*[position()=1]) 2008; 20
Lu (D0CS00671H-(cit215)/*[position()=1]) 2015; 137
Li (D0CS00671H-(cit112)/*[position()=1]) 2017; 7
Wang (D0CS00671H-(cit118)/*[position()=1]) 2019; 58
Li (D0CS00671H-(cit201)/*[position()=1]) 2018; 57
Yuan (D0CS00671H-(cit159)/*[position()=1]) 2010; 114
Xu (D0CS00671H-(cit36)/*[position()=1]) 2020; 32
Zou (D0CS00671H-(cit143)/*[position()=1]) 2017; 139
Zhang (D0CS00671H-(cit211)/*[position()=1]) 2019; 58
Wang (D0CS00671H-(cit80)/*[position()=1]) 2016; 13
Wang (D0CS00671H-(cit24)/*[position()=1]) 2019; 52
Zhao (D0CS00671H-(cit83)/*[position()=1]) 2019; 29
Cai (D0CS00671H-(cit163)/*[position()=1]) 2017; 29
Sun (D0CS00671H-(cit199)/*[position()=1]) 2017; 27
Cao (D0CS00671H-(cit127)/*[position()=1]) 2018; 155
Cai (D0CS00671H-(cit102)/*[position()=1]) 2017; 11
Wu (D0CS00671H-(cit129)/*[position()=1]) 2017; 29
Qi (D0CS00671H-(cit99)/*[position()=1]) 2017; 11
Jiang (D0CS00671H-(cit258)/*[position()=1]) 2019; 10
Zhen (D0CS00671H-(cit238)/*[position()=1]) 2018; 57
Guo (D0CS00671H-(cit131)/*[position()=1]) 2019; 31
Wu (D0CS00671H-(cit189)/*[position()=1]) 2017; 4
Mu (D0CS00671H-(cit148)/*[position()=1]) 2020; 32
Harmatys (D0CS00671H-(cit4)/*[position()=1]) 2019; 52
Roth-Konforti (D0CS00671H-(cit259)/*[position()=1]) 2017; 56
Chen (D0CS00671H-(cit231)/*[position()=1]) 2017; 114
Yang (D0CS00671H-(cit166)/*[position()=1]) 2018; 9
Wang (D0CS00671H-(cit233)/*[position()=1]) 2019; 13
Li (D0CS00671H-(cit12)/*[position()=1]) 2017; 29
Kobayashi (D0CS00671H-(cit6)/*[position()=1]) 2010; 110
Shao (D0CS00671H-(cit136)/*[position()=1]) 2019; 22
Wolfbeis (D0CS00671H-(cit25)/*[position()=1]) 2015; 44
Li (D0CS00671H-(cit244)/*[position()=1]) 2018; 12
An (D0CS00671H-(cit260)/*[position()=1]) 2019; 91
Wang (D0CS00671H-(cit60)/*[position()=1]) 2019; 29
Yan (D0CS00671H-(cit240)/*[position()=1]) 2019; 141
Zhang (D0CS00671H-(cit155)/*[position()=1]) 2018; 118
Zhao (D0CS00671H-(cit165)/*[position()=1]) 2019; 10
Bruemmer (D0CS00671H-(cit263)/*[position()=1]) 2018; 57
Qi (D0CS00671H-(cit249)/*[position()=1]) 2018; 9
Luby (D0CS00671H-(cit22)/*[position()=1]) 2017; 113
Ni (D0CS00671H-(cit39)/*[position()=1]) 2018; 30
Shi (D0CS00671H-(cit194)/*[position()=1]) 2014; 24
Guo (D0CS00671H-(cit29)/*[position()=1]) 2014; 43
Yan (D0CS00671H-(cit90)/*[position()=1]) 2018; 6
Zhang (D0CS00671H-(cit135)/*[position()=1]) 2018; 14
Xie (D0CS00671H-(cit105)/*[position()=1]) 2017; 119
Li (D0CS00671H-(cit228)/*[position()=1]) 2019; 91
Wan (D0CS00671H-(cit43)/*[position()=1]) 2018; 28
Kabe (D0CS00671H-(cit168)/*[position()=1]) 2017; 550
Cao (D0CS00671H-(cit261)/*[position()=1]) 2016; 88
Lovell (D0CS00671H-(cit96)/*[position()=1]) 2011; 10
Cai (D0CS00671H-(cit161)/*[position()=1]) 2018; 28
Wang (D0CS00671H-(cit196)/*[position()=1]) 2019; 13
Xie (D0CS00671H-(cit50)/*[position()=1]) 2017; 27
Cosco (D0CS00671H-(cit32)/*[position()=1]) 2017; 56
Hong (D0CS00671H-(cit26)/*[position()=1]) 2017; 1
Zhu (D0CS00671H-(cit45)/*[position()=1]) 2018; 30
Wang (D0CS00671H-(cit232)/*[position()=1]) 2019; 12
Zhao (D0CS00671H-(cit174)/*[position()=1]) 2013; 42
Yang (D0CS00671H-(cit47)/*[position()=1]) 2018; 140
Li (D0CS00671H-(cit121)/*[position()=1]) 2018; 9
He (D0CS00671H-(cit173)/*[position()=1]) 2019; 31
Li (D0CS00671H-(cit147)/*[po
References_xml – issn: 2003
  end-page: p 19-58
  publication-title: Photodynamic Therapy
  doi: Moor Ortel Hasan
– volume: 13
  start-page: 3691
  year: 2019
  ident: D0CS00671H-(cit144)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00452
– volume: 118
  start-page: 1770
  year: 2018
  ident: D0CS00671H-(cit155)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00425
– volume: 56
  start-page: 13126
  year: 2017
  ident: D0CS00671H-(cit32)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706974
– volume: 28
  start-page: 1804956
  year: 2018
  ident: D0CS00671H-(cit43)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804956
– volume: 27
  start-page: 6195
  year: 2015
  ident: D0CS00671H-(cit160)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502442
– volume: 11
  start-page: 3405
  year: 2020
  ident: D0CS00671H-(cit204)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00785D
– volume: 57
  start-page: 15189
  year: 2018
  ident: D0CS00671H-(cit192)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810326
– volume: 141
  start-page: 5359
  year: 2019
  ident: D0CS00671H-(cit100)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13889
– volume: 22
  start-page: 229
  year: 2019
  ident: D0CS00671H-(cit136)/*[position()=1]
  publication-title: iScience
  doi: 10.1016/j.isci.2019.11.022
– volume: 12
  start-page: 49
  year: 2019
  ident: D0CS00671H-(cit232)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2175-9
– volume: 56
  start-page: 15633
  year: 2017
  ident: D0CS00671H-(cit259)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709347
– volume: 10
  start-page: 166
  year: 2020
  ident: D0CS00671H-(cit223)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.36999
– volume: 114
  start-page: 5343
  year: 2017
  ident: D0CS00671H-(cit231)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1701976114
– volume: 144
  start-page: 53
  year: 2017
  ident: D0CS00671H-(cit245)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.08.018
– volume: 18
  start-page: 1133
  year: 2019
  ident: D0CS00671H-(cit253)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0378-4
– volume: 127
  start-page: 97
  year: 2017
  ident: D0CS00671H-(cit149)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.03.003
– volume: 4
  start-page: 6150
  year: 2012
  ident: D0CS00671H-(cit49)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr31392h
– volume: 1
  start-page: 0010
  year: 2017
  ident: D0CS00671H-(cit26)/*[position()=1]
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-016-0010
– volume: 11
  start-page: 1255
  year: 2020
  ident: D0CS00671H-(cit56)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15095-1
– volume: 13
  start-page: 627
  year: 2016
  ident: D0CS00671H-(cit80)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3925
– volume: 43
  start-page: 6570
  year: 2014
  ident: D0CS00671H-(cit14)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00014E
– volume: 43
  start-page: 16
  year: 2014
  ident: D0CS00671H-(cit29)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60271K
– volume: 138
  start-page: 3518
  year: 2016
  ident: D0CS00671H-(cit214)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00007
– volume: 12
  start-page: 11858
  year: 2020
  ident: D0CS00671H-(cit145)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/D0NR02622K
– volume: 3
  start-page: 1900553
  year: 2019
  ident: D0CS00671H-(cit124)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201900553
– volume: 9
  start-page: 2098
  year: 2018
  ident: D0CS00671H-(cit121)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC05115H
– volume: 29
  start-page: 1604100
  year: 2017
  ident: D0CS00671H-(cit76)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604100
– volume: 27
  start-page: 1604053
  year: 2017
  ident: D0CS00671H-(cit219)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604053
– volume: 114
  start-page: 962
  year: 2017
  ident: D0CS00671H-(cit46)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1617990114
– volume: 4
  start-page: 710
  year: 2009
  ident: D0CS00671H-(cit30)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.326
– volume: 11
  start-page: 21408
  year: 2019
  ident: D0CS00671H-(cit110)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06866
– volume: 32
  start-page: 1906711
  year: 2020
  ident: D0CS00671H-(cit148)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906711
– volume: 49
  start-page: 1041
  year: 2020
  ident: D0CS00671H-(cit146)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00129H
– volume: 58
  start-page: 2350
  year: 2019
  ident: D0CS00671H-(cit211)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813002
– volume: 23
  start-page: 4310
  year: 2017
  ident: D0CS00671H-(cit69)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201604741
– volume: 57
  start-page: 7508
  year: 2018
  ident: D0CS00671H-(cit263)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802143
– volume: 15
  start-page: 947
  year: 2020
  ident: D0CS00671H-(cit152)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201901658
– volume: 11
  start-page: 2675
  year: 2015
  ident: D0CS00671H-(cit139)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201403395
– volume: 10
  start-page: 1212
  year: 2014
  ident: D0CS00671H-(cit58)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201302161
– volume: 1
  start-page: 1600023
  year: 2017
  ident: D0CS00671H-(cit72)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201600023
– volume: 4
  start-page: 1937
  year: 2018
  ident: D0CS00671H-(cit195)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.06.003
– volume: 57
  start-page: 3626
  year: 2018
  ident: D0CS00671H-(cit235)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712528
– volume: 59
  start-page: 8630
  year: 2020
  ident: D0CS00671H-(cit147)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916147
– volume: 30
  start-page: 1805220
  year: 2018
  ident: D0CS00671H-(cit39)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805220
– volume: 14
  start-page: 685
  year: 2015
  ident: D0CS00671H-(cit162)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4259
– volume: 50
  start-page: 8757
  year: 2014
  ident: D0CS00671H-(cit180)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC02767A
– volume: 58
  start-page: 8799
  year: 2019
  ident: D0CS00671H-(cit212)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903277
– volume: 29
  start-page: 1606690
  year: 2017
  ident: D0CS00671H-(cit94)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606690
– volume: 58
  start-page: 17796
  year: 2019
  ident: D0CS00671H-(cit264)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201910137
– volume: 56
  start-page: 16454
  year: 2017
  ident: D0CS00671H-(cit250)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706969
– volume: 1
  start-page: 1556
  year: 2017
  ident: D0CS00671H-(cit134)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00056A
– volume: 42
  start-page: 5323
  year: 2013
  ident: D0CS00671H-(cit174)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35531d
– volume: 9
  start-page: 233
  year: 2014
  ident: D0CS00671H-(cit98)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.302
– volume-title: Photodynamic Therapy
  year: 2003
  ident: D0CS00671H-(cit9)/*[position()=1]
– volume: 29
  start-page: 1806877
  year: 2019
  ident: D0CS00671H-(cit83)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806877
– volume: 27
  start-page: 1704079
  year: 2017
  ident: D0CS00671H-(cit199)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704079
– volume: 45
  start-page: 6597
  year: 2016
  ident: D0CS00671H-(cit11)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00271D
– volume: 17
  start-page: 4964
  year: 2017
  ident: D0CS00671H-(cit125)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02106
– volume: 112
  start-page: 2343
  year: 2015
  ident: D0CS00671H-(cit200)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1417047112
– volume: 9
  start-page: 1848
  year: 2018
  ident: D0CS00671H-(cit249)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04222-8
– volume: 11
  start-page: 8998
  year: 2017
  ident: D0CS00671H-(cit208)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03507
– volume: 57
  start-page: 16396
  year: 2018
  ident: D0CS00671H-(cit218)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201809641
– volume: 28
  start-page: 7249
  year: 2016
  ident: D0CS00671H-(cit225)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601214
– volume: 4
  start-page: 1700113
  year: 2017
  ident: D0CS00671H-(cit176)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700113
– volume: 110
  start-page: 2620
  year: 2010
  ident: D0CS00671H-(cit6)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900263j
– volume: 10
  start-page: 4472
  year: 2016
  ident: D0CS00671H-(cit140)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00168
– volume: 28
  start-page: 1707519
  year: 2018
  ident: D0CS00671H-(cit227)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707519
– volume: 13
  start-page: 1602747
  year: 2017
  ident: D0CS00671H-(cit137)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201602747
– volume: 30
  start-page: 1801065
  year: 2018
  ident: D0CS00671H-(cit205)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801065
– volume: 47
  start-page: 8847
  year: 2011
  ident: D0CS00671H-(cit35)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc12775f
– volume: 31
  start-page: 1807222
  year: 2019
  ident: D0CS00671H-(cit173)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807222
– volume: 10
  start-page: 7222
  year: 2019
  ident: D0CS00671H-(cit246)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02093D
– volume: 12
  start-page: 6528
  year: 2016
  ident: D0CS00671H-(cit19)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201601637
– volume: 2
  start-page: 932
  year: 2005
  ident: D0CS00671H-(cit61)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth818
– volume: 4
  start-page: 021307
  year: 2017
  ident: D0CS00671H-(cit51)/*[position()=1]
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4984020
– volume: 11
  start-page: 3797
  year: 2017
  ident: D0CS00671H-(cit88)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08720
– volume: 7
  start-page: 6203
  year: 2016
  ident: D0CS00671H-(cit44)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01561A
– volume: 29
  start-page: 1703403
  year: 2017
  ident: D0CS00671H-(cit129)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703403
– volume: 139
  start-page: 14792
  year: 2017
  ident: D0CS00671H-(cit169)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08710
– volume: 139
  start-page: 13243
  year: 2017
  ident: D0CS00671H-(cit257)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08446
– volume: 8
  start-page: 7457
  year: 2017
  ident: D0CS00671H-(cit119)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC03351F
– volume: 12
  start-page: 8145
  year: 2018
  ident: D0CS00671H-(cit197)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03138
– volume: 29
  start-page: 1901480
  year: 2019
  ident: D0CS00671H-(cit117)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901480
– volume: 27
  start-page: 5184
  year: 2015
  ident: D0CS00671H-(cit108)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502285
– volume: 4
  start-page: 1600407
  year: 2017
  ident: D0CS00671H-(cit59)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600407
– volume: 10
  start-page: 767
  year: 2019
  ident: D0CS00671H-(cit122)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08434-4
– volume: 13
  start-page: 1602807
  year: 2017
  ident: D0CS00671H-(cit206)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201602807
– volume: 30
  start-page: 1907077
  year: 2020
  ident: D0CS00671H-(cit150)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907077
– volume: 113
  start-page: 9098
  year: 2009
  ident: D0CS00671H-(cit75)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp900665x
– volume: 13
  start-page: 3095
  year: 2019
  ident: D0CS00671H-(cit196)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08398
– volume: 13
  start-page: 5816
  year: 2019
  ident: D0CS00671H-(cit233)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01411
– volume: 110
  start-page: 12474
  year: 2013
  ident: D0CS00671H-(cit234)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1306241110
– volume: 10
  start-page: 16299
  year: 2018
  ident: D0CS00671H-(cit120)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03568
– volume: 7
  start-page: 2746
  year: 2017
  ident: D0CS00671H-(cit220)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.18861
– volume: 112
  start-page: 4541
  year: 2012
  ident: D0CS00671H-(cit151)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200166m
– volume: 31
  start-page: 1808355
  year: 2019
  ident: D0CS00671H-(cit131)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808355
– volume: 52
  start-page: 1245
  year: 2019
  ident: D0CS00671H-(cit85)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00064
– volume: 3
  start-page: 205
  year: 2011
  ident: D0CS00671H-(cit158)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.984
– volume: 58
  start-page: 13394
  year: 2019
  ident: D0CS00671H-(cit95)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907754
– volume: 15
  start-page: 235
  year: 2016
  ident: D0CS00671H-(cit41)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4476
– volume: 11
  start-page: 3922
  year: 2017
  ident: D0CS00671H-(cit181)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00312
– volume: 28
  start-page: 1705045
  year: 2018
  ident: D0CS00671H-(cit161)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705045
– volume: 30
  start-page: 1802394
  year: 2018
  ident: D0CS00671H-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802394
– volume: 9
  start-page: 5683
  year: 2017
  ident: D0CS00671H-(cit92)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16801
– volume: 6
  start-page: 7420
  year: 2018
  ident: D0CS00671H-(cit90)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01750F
– volume: 48
  start-page: 4300
  year: 2009
  ident: D0CS00671H-(cit48)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200805456
– volume: 13
  start-page: 639
  year: 2016
  ident: D0CS00671H-(cit81)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3929
– volume: 15
  start-page: 1902352
  year: 2019
  ident: D0CS00671H-(cit187)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201902352
– volume: 29
  start-page: 1606857
  year: 2017
  ident: D0CS00671H-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606857
– volume: 56
  start-page: 16063
  year: 2017
  ident: D0CS00671H-(cit101)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709887
– volume: 29
  start-page: 1700487
  year: 2017
  ident: D0CS00671H-(cit115)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700487
– volume: 7
  start-page: 4029
  year: 2017
  ident: D0CS00671H-(cit112)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.19538
– volume: 31
  start-page: 1805875
  year: 2019
  ident: D0CS00671H-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805875
– volume: 57
  start-page: 7483
  year: 2018
  ident: D0CS00671H-(cit33)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801226
– volume: 30
  start-page: 1802546
  year: 2018
  ident: D0CS00671H-(cit34)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802546
– volume: 115
  start-page: 11718
  year: 2015
  ident: D0CS00671H-(cit38)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00263
– volume: 119
  start-page: 1
  year: 2017
  ident: D0CS00671H-(cit105)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.12.004
– volume: 32
  start-page: 100851
  year: 2020
  ident: D0CS00671H-(cit248)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.100851
– volume: 4
  start-page: 278
  year: 2008
  ident: D0CS00671H-(cit224)/*[position()=1]
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.85
– volume: 140
  start-page: 1715
  year: 2018
  ident: D0CS00671H-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10334
– volume: 11
  start-page: 371
  year: 1965
  ident: D0CS00671H-(cit67)/*[position()=1]
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac196511030371
– volume: 48
  start-page: 2053
  year: 2019
  ident: D0CS00671H-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00618K
– volume: 51
  start-page: 10988
  year: 2015
  ident: D0CS00671H-(cit154)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03114A
– start-page: 3255
  year: 2007
  ident: D0CS00671H-(cit73)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b704794k
– volume: 28
  start-page: 6872
  year: 2016
  ident: D0CS00671H-(cit42)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600706
– volume: 144
  start-page: 42
  year: 2017
  ident: D0CS00671H-(cit114)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.08.007
– volume: 12
  start-page: 1801
  year: 2018
  ident: D0CS00671H-(cit123)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08616
– volume: 30
  start-page: 1800766
  year: 2018
  ident: D0CS00671H-(cit54)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800766
– volume: 31
  start-page: 1904799
  year: 2019
  ident: D0CS00671H-(cit77)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904799
– volume: 27
  start-page: 1605397
  year: 2017
  ident: D0CS00671H-(cit50)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605397
– volume: 14
  start-page: 1802991
  year: 2018
  ident: D0CS00671H-(cit135)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201802991
– volume: 54
  start-page: 13395
  year: 2018
  ident: D0CS00671H-(cit70)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08096H
– volume: 29
  start-page: 1606665
  year: 2017
  ident: D0CS00671H-(cit172)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606665
– volume: 59
  start-page: 10008
  year: 2020
  ident: D0CS00671H-(cit63)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916430
– volume: 4
  start-page: 1110
  year: 2017
  ident: D0CS00671H-(cit189)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00469A
– volume: 155
  start-page: 217
  year: 2018
  ident: D0CS00671H-(cit28)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.025
– volume: 9
  start-page: 1171
  year: 2018
  ident: D0CS00671H-(cit57)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03505-4
– volume: 48
  start-page: 38
  year: 2019
  ident: D0CS00671H-(cit18)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00001H
– volume: 11
  start-page: 7177
  year: 2017
  ident: D0CS00671H-(cit99)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03062
– volume: 29
  start-page: 5216
  year: 2017
  ident: D0CS00671H-(cit222)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01075
– volume: 113
  start-page: 97
  year: 2017
  ident: D0CS00671H-(cit22)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2016.08.010
– volume: 30
  start-page: 1705799
  year: 2018
  ident: D0CS00671H-(cit45)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705799
– volume: 52
  start-page: 2559
  year: 2019
  ident: D0CS00671H-(cit24)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00305
– volume: 28
  start-page: 8669
  year: 2016
  ident: D0CS00671H-(cit107)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03738
– volume: 137
  start-page: 7600
  year: 2015
  ident: D0CS00671H-(cit215)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04069
– volume: 8
  start-page: 2782
  year: 2017
  ident: D0CS00671H-(cit40)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC04384D
– volume: 28
  start-page: 9920
  year: 2016
  ident: D0CS00671H-(cit153)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602604
– volume: 27
  start-page: 1605094
  year: 2017
  ident: D0CS00671H-(cit113)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605094
– volume: 139
  start-page: 10880
  year: 2017
  ident: D0CS00671H-(cit242)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05916
– volume: 27
  start-page: 1702834
  year: 2017
  ident: D0CS00671H-(cit93)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702834
– volume: 145
  start-page: 168
  year: 2017
  ident: D0CS00671H-(cit141)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.08.037
– volume: 141
  start-page: 2695
  year: 2019
  ident: D0CS00671H-(cit203)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13141
– volume: 44
  start-page: 5003
  year: 2015
  ident: D0CS00671H-(cit247)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00103J
– volume: 10
  start-page: 1595
  year: 2019
  ident: D0CS00671H-(cit165)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09561-8
– volume: 141
  start-page: 16781
  year: 2019
  ident: D0CS00671H-(cit183)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07162
– volume: 8
  start-page: 21193
  year: 2016
  ident: D0CS00671H-(cit62)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06136
– volume: 3
  start-page: 650
  year: 2019
  ident: D0CS00671H-(cit116)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00036D
– volume: 28
  start-page: 1804901
  year: 2018
  ident: D0CS00671H-(cit216)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804901
– volume: 152
  start-page: 77
  year: 2018
  ident: D0CS00671H-(cit53)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.10.031
– volume: 8
  start-page: 470
  year: 2017
  ident: D0CS00671H-(cit266)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00545-0
– volume: 35
  start-page: 1102
  year: 2017
  ident: D0CS00671H-(cit251)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3987
– volume: 44
  start-page: 1029
  year: 2011
  ident: D0CS00671H-(cit1)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200019c
– volume: 56
  start-page: 12160
  year: 2017
  ident: D0CS00671H-(cit171)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705945
– volume: 30
  start-page: 1705980
  year: 2018
  ident: D0CS00671H-(cit126)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705980
– volume: 10
  start-page: 1058
  year: 2019
  ident: D0CS00671H-(cit221)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09043-x
– volume: 29
  start-page: 1605497
  year: 2017
  ident: D0CS00671H-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605497
– volume: 550
  start-page: 384
  year: 2017
  ident: D0CS00671H-(cit168)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature24010
– volume: 233–234
  start-page: 351
  year: 2002
  ident: D0CS00671H-(cit177)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(02)00034-6
– volume: 57
  start-page: 9885
  year: 2018
  ident: D0CS00671H-(cit201)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806551
– volume: 10
  start-page: 2206
  year: 2019
  ident: D0CS00671H-(cit66)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10056-9
– volume: 47
  start-page: 1174
  year: 2018
  ident: D0CS00671H-(cit209)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00594F
– volume: 155
  start-page: 103
  year: 2018
  ident: D0CS00671H-(cit127)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.016
– volume: 29
  start-page: 1808365
  year: 2019
  ident: D0CS00671H-(cit60)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808365
– volume: 139
  start-page: 13713
  year: 2017
  ident: D0CS00671H-(cit178)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05019
– start-page: 1740
  year: 2001
  ident: D0CS00671H-(cit37)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b105159h
– volume: 27
  start-page: 1606314
  year: 2017
  ident: D0CS00671H-(cit213)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606314
– volume: 91
  start-page: 4771
  year: 2019
  ident: D0CS00671H-(cit228)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b00317
– volume: 30
  start-page: 1706856
  year: 2018
  ident: D0CS00671H-(cit55)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706856
– volume: 10
  start-page: 794
  year: 2017
  ident: D0CS00671H-(cit106)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1332-2
– volume: 8
  start-page: 1794
  year: 2017
  ident: D0CS00671H-(cit241)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01951-0
– volume: 11
  start-page: 7754
  year: 2019
  ident: D0CS00671H-(cit130)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR00552H
– volume: 32
  start-page: 1907855
  year: 2020
  ident: D0CS00671H-(cit133)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907855
– volume: 140
  start-page: 14851
  year: 2018
  ident: D0CS00671H-(cit202)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08658
– volume: 9
  start-page: 840
  year: 2018
  ident: D0CS00671H-(cit166)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03236-6
– volume: 24
  start-page: 4823
  year: 2014
  ident: D0CS00671H-(cit194)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400647
– volume: 18
  start-page: 6411
  year: 2018
  ident: D0CS00671H-(cit236)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02767
– volume: 110
  start-page: 2756
  year: 2010
  ident: D0CS00671H-(cit78)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900266s
– volume: 140
  start-page: 16340
  year: 2018
  ident: D0CS00671H-(cit237)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10176
– volume: 13
  start-page: 12006
  year: 2019
  ident: D0CS00671H-(cit138)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06208
– volume: 13
  start-page: 1700710
  year: 2017
  ident: D0CS00671H-(cit82)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201700710
– volume: 29
  start-page: 1701244
  year: 2017
  ident: D0CS00671H-(cit163)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701244
– volume: 1
  start-page: 1746
  year: 2017
  ident: D0CS00671H-(cit198)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00092H
– volume: 59
  start-page: 8833
  year: 2020
  ident: D0CS00671H-(cit217)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914384
– volume: 91
  start-page: 15757
  year: 2019
  ident: D0CS00671H-(cit226)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b04002
– volume: 31
  start-page: 1900321
  year: 2019
  ident: D0CS00671H-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900321
– volume: 335
  start-page: 1458
  year: 2012
  ident: D0CS00671H-(cit79)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1216210
– volume: 11
  start-page: 1054
  year: 2017
  ident: D0CS00671H-(cit102)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07927
– volume: 5
  start-page: 2854
  year: 2014
  ident: D0CS00671H-(cit104)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c3py01587d
– volume: 32
  start-page: 1903530
  year: 2020
  ident: D0CS00671H-(cit36)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903530
– volume: 141
  start-page: 10331
  year: 2019
  ident: D0CS00671H-(cit240)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03649
– volume: 10
  start-page: 768
  year: 2019
  ident: D0CS00671H-(cit132)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08722-z
– volume: 46
  start-page: 6433
  year: 2017
  ident: D0CS00671H-(cit142)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00525C
– volume: 10
  start-page: 2064
  year: 2019
  ident: D0CS00671H-(cit258)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10119-x
– volume: 58
  start-page: 2558
  year: 2019
  ident: D0CS00671H-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805246
– volume: 58
  start-page: 14974
  year: 2019
  ident: D0CS00671H-(cit97)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908664
– volume: 31
  start-page: 1904914
  year: 2019
  ident: D0CS00671H-(cit175)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904914
– volume: 140
  start-page: 3505
  year: 2018
  ident: D0CS00671H-(cit239)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13307
– volume: 51
  start-page: 1404
  year: 2018
  ident: D0CS00671H-(cit16)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00060
– volume: 91
  start-page: 13639
  year: 2019
  ident: D0CS00671H-(cit260)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02839
– volume: 58
  start-page: 1638
  year: 2019
  ident: D0CS00671H-(cit89)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810541
– volume: 58
  start-page: 5628
  year: 2019
  ident: D0CS00671H-(cit118)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900366
– volume: 59
  start-page: 9470
  year: 2020
  ident: D0CS00671H-(cit184)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909706
– volume: 53
  start-page: 8727
  year: 2017
  ident: D0CS00671H-(cit188)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04864E
– volume: 3
  start-page: 349
  year: 2017
  ident: D0CS00671H-(cit256)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00058
– volume: 13
  start-page: 1702299
  year: 2017
  ident: D0CS00671H-(cit10)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201702299
– volume: 20
  start-page: 6208
  year: 2008
  ident: D0CS00671H-(cit65)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm801911n
– volume: 9
  start-page: 3463
  year: 2017
  ident: D0CS00671H-(cit210)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14885
– volume: 30
  start-page: 1801350
  year: 2018
  ident: D0CS00671H-(cit157)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801350
– volume: 29
  start-page: 1604764
  year: 2017
  ident: D0CS00671H-(cit230)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604764
– volume: 27
  start-page: 843
  year: 2015
  ident: D0CS00671H-(cit87)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402972
– volume: 44
  start-page: 4743
  year: 2015
  ident: D0CS00671H-(cit25)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00392F
– volume: 30
  start-page: 1800365
  year: 2018
  ident: D0CS00671H-(cit164)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800365
– volume: 57
  start-page: 10182
  year: 2018
  ident: D0CS00671H-(cit186)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805446
– volume: 88
  start-page: 4995
  year: 2016
  ident: D0CS00671H-(cit261)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b01096
– volume: 9
  start-page: 2188
  year: 2018
  ident: D0CS00671H-(cit191)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04694D
– volume: 30
  start-page: 1706320
  year: 2018
  ident: D0CS00671H-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706320
– volume: 55
  start-page: 790
  year: 2019
  ident: D0CS00671H-(cit109)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07768A
– volume: 10
  start-page: 2111
  year: 2019
  ident: D0CS00671H-(cit156)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10033-2
– volume: 42
  start-page: 6620
  year: 2013
  ident: D0CS00671H-(cit193)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60036j
– volume: 115
  start-page: 11012
  year: 2015
  ident: D0CS00671H-(cit2)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00140
– volume: 46
  start-page: 2237
  year: 2017
  ident: D0CS00671H-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00908E
– volume: 86
  start-page: 7987
  year: 2014
  ident: D0CS00671H-(cit182)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac502103t
– volume: 19
  start-page: 12928
  year: 2017
  ident: D0CS00671H-(cit74)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP02118F
– volume: 139
  start-page: 6282
  year: 2017
  ident: D0CS00671H-(cit179)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00551
– volume: 50
  start-page: 3376
  year: 2011
  ident: D0CS00671H-(cit68)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201002307
– volume: 32
  start-page: 1806331
  year: 2020
  ident: D0CS00671H-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806331
– volume: 58
  start-page: 10660
  year: 2019
  ident: D0CS00671H-(cit255)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905884
– volume: 48
  start-page: 22
  year: 2019
  ident: D0CS00671H-(cit13)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00494C
– volume: 58
  start-page: 12680
  year: 2019
  ident: D0CS00671H-(cit207)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906288
– volume: 141
  start-page: 10581
  year: 2019
  ident: D0CS00671H-(cit265)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02580
– volume: 30
  start-page: 1801140
  year: 2018
  ident: D0CS00671H-(cit243)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801140
– volume: 18
  start-page: 3375
  year: 2017
  ident: D0CS00671H-(cit86)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01029
– volume: 57
  start-page: 7804
  year: 2018
  ident: D0CS00671H-(cit238)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803321
– volume: 29
  start-page: 1700548
  year: 2017
  ident: D0CS00671H-(cit190)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700548
– volume: 29
  start-page: 1703693
  year: 2017
  ident: D0CS00671H-(cit229)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703693
– volume: 11
  start-page: 10124
  year: 2017
  ident: D0CS00671H-(cit111)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04685
– volume: 10
  start-page: 2115
  year: 2018
  ident: D0CS00671H-(cit91)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR07495F
– volume: 31
  start-page: 1902672
  year: 2019
  ident: D0CS00671H-(cit262)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902672
– volume: 10
  start-page: 324
  year: 2011
  ident: D0CS00671H-(cit96)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2986
– volume: 7
  start-page: 9095
  year: 2019
  ident: D0CS00671H-(cit167)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02879J
– volume: 10
  start-page: 7919
  year: 2018
  ident: D0CS00671H-(cit128)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01458
– volume: 10
  start-page: 7012
  year: 2018
  ident: D0CS00671H-(cit103)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00759
– volume: 62
  start-page: 1740
  year: 2019
  ident: D0CS00671H-(cit84)/*[position()=1]
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-9470-3
– volume: 11
  start-page: 18103
  year: 2019
  ident: D0CS00671H-(cit170)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01615
– volume: 8
  start-page: 15269
  year: 2017
  ident: D0CS00671H-(cit64)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15269
– volume: 52
  start-page: 1265
  year: 2019
  ident: D0CS00671H-(cit4)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00104
– volume: 3
  start-page: 1150
  year: 2013
  ident: D0CS00671H-(cit52)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01150
– volume: 12
  start-page: 681
  year: 2018
  ident: D0CS00671H-(cit244)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07809
– volume: 141
  start-page: 19221
  year: 2019
  ident: D0CS00671H-(cit71)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10043
– volume: 19
  start-page: 318
  year: 2019
  ident: D0CS00671H-(cit252)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03936
– volume: 3
  start-page: 991
  year: 2017
  ident: D0CS00671H-(cit254)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1016/j.chempr.2017.10.002
– volume: 114
  start-page: 6090
  year: 2010
  ident: D0CS00671H-(cit159)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp909388y
– volume: 2
  start-page: 1800074
  year: 2018
  ident: D0CS00671H-(cit27)/*[position()=1]
  publication-title: Adv. Biosyst.
  doi: 10.1002/adbi.201800074
– volume: 9
  start-page: 3685
  year: 2018
  ident: D0CS00671H-(cit185)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04963C
– volume: 51
  start-page: 1840
  year: 2018
  ident: D0CS00671H-(cit15)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00242
– volume: 139
  start-page: 1921
  year: 2017
  ident: D0CS00671H-(cit143)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11382
SSID ssj0011762
Score 2.7179697
SecondaryResourceType review_article
Snippet Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8179
SubjectTerms Animals
Biocompatibility
biosafety
Chemical compounds
crossing
Deactivation
design
deterioration
Drug Design
energy
Energy dissipation
Excitation
Fluorescence
fluorescent dyes
Humans
Molecular Structure
Multidisciplinary research
Nanoengineering
nanotechnology
Neoplasms - drug therapy
Neoplasms - metabolism
Phosphorescence
Photoacoustic Techniques
photons
Photosensitizing Agents - chemical synthesis
Photosensitizing Agents - chemistry
Photosensitizing Agents - therapeutic use
polymers
precision medicine
semiconductors
society
Theranostic Nanomedicine
Title Design of superior phototheranostic agents guided by Jablonski diagrams
URI https://www.ncbi.nlm.nih.gov/pubmed/33196726
https://www.proquest.com/docview/2460777160
https://www.proquest.com/docview/2461399119
https://www.proquest.com/docview/2511181914
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglaAXxKuQUpARXBBKa8fO61jtli4VICG2Um-R4zhbpJKsdhOp8OsZx4-UtiDgEkWOk135G0--cTzfIPSa1DImUuShkDwPeZxSmHN1FWYiIXkdScqHzeMfPyWzE358Gp-OlemG7JKu3JM_bswr-R9UoQ1w1Vmy_4Csfyg0wDngC0dAGI5_hfF02H6h-d6614rF7ert8qztTFJV064HMdbFkMO26L9Whmwei_K81eWq9bqr3pu1vkxQvYCA285p5UpHymicA5hWs7jovVn4heejvg0_g80tPEW2VVOm1g7tEgPEk5SGJm95Txm3yBMS8tQoNTq_aaRGrX2Y5GLrBTNqCsRcc8-EaXXTikhdhj2lZ5c7wdAuvw1AMe0W0uiKQrZ559pLt9FmBHEBOLbNg8P5-w_-wxEF5-5UaFm-P_7UFrrjbv6VglyLK4BlrFz1l4FlzO-jezY8wAcG6wfolmoeorsTV5XvEToymOO2xg5zfBVzbDDHBnNcfscec-wwf4xO3h3OJ7PQFsMIJUtJFyaC8Eor_8Q1UERWJjIvmVRpVRMlWZZxCkweyClEfJEUjJFK8Uxmmn_msa7buI02mrZRTxGmSrE6L0VSRoxzIYQCv0xUFgP5lCnJAvTGjU8hrVK8LlhyXgw7FlheTMnkyzCsswC98n2XRh_lxl67bpgLO3_WRQRGlaYQr5MAvfSXYTj1JyvRqLYf-kCIAi_k_A99IGaget2BB-iJgdD_FQd5gLYBU988msXOb295hrbGubCLNrpVr54DAe3KF9bofgK-coQZ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+superior+phototheranostic+agents+guided+by+Jablonski+diagrams&rft.jtitle=Chemical+Society+reviews&rft.au=Feng%2C+Guangxue&rft.au=Zhang%2C+Guo-Qiang&rft.au=Ding%2C+Dan&rft.date=2020-11-21&rft.eissn=1460-4744&rft.volume=49&rft.issue=22&rft.spage=8179&rft_id=info:doi/10.1039%2Fd0cs00671h&rft_id=info%3Apmid%2F33196726&rft.externalDocID=33196726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon