Design of superior phototheranostic agents guided by Jablonski diagrams
Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emissio...
Saved in:
Published in | Chemical Society reviews Vol. 49; no. 22; pp. 8179 - 8234 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens,
etc.
with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented.
This review summarizes how Jablonski diagrams guide the design of advanced organic optical agents and improvement of disease phototheranostic efficacies. |
---|---|
AbstractList | Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented. Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented. Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented.Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented. Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented. This review summarizes how Jablonski diagrams guide the design of advanced organic optical agents and improvement of disease phototheranostic efficacies. |
Author | Feng, Guangxue Zhang, Guo-Qiang Ding, Dan |
AuthorAffiliation | Ministry of Education, and College of Life Sciences AIE Institute Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates School of Materials Science and Engineering Nankai University Key Laboratory of Bioactive Materials South China University of Technology State Key Laboratory of Medicinal Chemical Biology State Key Laboratory of Luminescent Materials and Devices |
AuthorAffiliation_xml | – name: South China University of Technology – name: Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates – name: School of Materials Science and Engineering – name: Ministry of Education, and College of Life Sciences – name: AIE Institute – name: Key Laboratory of Bioactive Materials – name: State Key Laboratory of Luminescent Materials and Devices – name: State Key Laboratory of Medicinal Chemical Biology – name: Nankai University |
Author_xml | – sequence: 1 givenname: Guangxue surname: Feng fullname: Feng, Guangxue – sequence: 2 givenname: Guo-Qiang surname: Zhang fullname: Zhang, Guo-Qiang – sequence: 3 givenname: Dan surname: Ding fullname: Ding, Dan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33196726$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctr3DAQBnBRUppN0kvvLYZcQsDtjPWyjmHzagj00PRsZFneVeqVtpJ82P8-3mweEAI9aQ6_-WD0HZA9H7wl5AvCdwSqfnRgEoCQuPxAZsgElEwytkdmQEGUAFjtk4OU7qcJpag-kX1KUQlZiRm5OrfJLXwR-iKNaxtdiMV6GXLISxu1Dyk7U-iF9TkVi9F1tivaTXGj2yH49NcVndOLqFfpiHzs9ZDs56f3kPy5vLibX5e3v65-zs9uS0Ml5FJoYJ1gXPGeck5bYVRLjZVdD9bQumaopOTIganKaEqhs6w2NVWKKg5c0UNysstdx_BvtCk3K5eMHQbtbRhTU3FErFEh-z9lAqdgxG3q8Rt6H8bop0O2CqSUKGBS357U2K5s16yjW-m4aZ5_cwKnO2BiSCna_oUgNNuqmnOY_36s6nrC8AYbl3V2weeo3fD-ytfdSkzmJfq1ffoASO6cOg |
CitedBy_id | crossref_primary_10_1002_adma_202406474 crossref_primary_10_1016_j_bios_2024_116801 crossref_primary_10_1016_j_actbio_2023_11_031 crossref_primary_10_1021_acs_chemmater_4c00482 crossref_primary_10_1016_j_actbio_2022_08_013 crossref_primary_10_1021_acsnano_4c07764 crossref_primary_10_3390_polym14142767 crossref_primary_10_1016_j_bios_2024_116802 crossref_primary_10_1002_bio_4655 crossref_primary_10_1016_j_biomaterials_2024_122969 crossref_primary_10_1039_D3CS00585B crossref_primary_10_1021_acsabm_1c00155 crossref_primary_10_1002_ange_202209793 crossref_primary_10_1002_anie_202116174 crossref_primary_10_1002_adma_202415189 crossref_primary_10_1039_D1MA01052B crossref_primary_10_1016_j_snb_2024_137104 crossref_primary_10_1016_j_biomaterials_2024_122847 crossref_primary_10_1016_j_matdes_2024_112815 crossref_primary_10_1002_adfm_202102213 crossref_primary_10_1088_1748_605X_abf980 crossref_primary_10_1002_anie_202200799 crossref_primary_10_1007_s41061_022_00386_6 crossref_primary_10_1002_anie_202202614 crossref_primary_10_2147_IJN_S479848 crossref_primary_10_1002_anie_202406651 crossref_primary_10_1039_D4MH00873A crossref_primary_10_1016_j_dyepig_2021_109284 crossref_primary_10_1002_anie_202403258 crossref_primary_10_1039_D1SC00045D crossref_primary_10_3390_nano14020186 crossref_primary_10_1039_D4SC03542A crossref_primary_10_1002_ange_202408918 crossref_primary_10_1007_s12598_021_01795_0 crossref_primary_10_1016_j_mtchem_2025_102516 crossref_primary_10_2147_IJN_S337599 crossref_primary_10_1002_adfm_202306360 crossref_primary_10_1016_j_cej_2024_159137 crossref_primary_10_1002_cjoc_202300738 crossref_primary_10_1002_marc_202300496 crossref_primary_10_1039_D2NR05449C crossref_primary_10_1021_jacs_3c08181 crossref_primary_10_1007_s12274_022_4735_2 crossref_primary_10_1039_D1CS00647A crossref_primary_10_1021_acs_analchem_3c03305 crossref_primary_10_1021_acsnano_3c12316 crossref_primary_10_1016_j_inoche_2023_110693 crossref_primary_10_1039_D2TA09630G crossref_primary_10_1016_j_ccr_2024_216006 crossref_primary_10_1039_D3NJ01063E crossref_primary_10_1021_acs_nanolett_2c04084 crossref_primary_10_1039_D4CC02596B crossref_primary_10_1007_s11426_023_1996_7 crossref_primary_10_1142_S1793545822400065 crossref_primary_10_1002_adma_202314021 crossref_primary_10_1039_D2BM00516F crossref_primary_10_1039_D0QM01009J crossref_primary_10_1016_j_dyepig_2022_110478 crossref_primary_10_1021_acs_accounts_4c00071 crossref_primary_10_1016_j_snb_2024_136264 crossref_primary_10_1016_j_talanta_2024_125991 crossref_primary_10_1002_advs_202301104 crossref_primary_10_1002_adfm_202315299 crossref_primary_10_1002_smo_20230014 crossref_primary_10_1021_jacs_1c13137 crossref_primary_10_1016_j_matpr_2023_06_083 crossref_primary_10_1021_acsami_1c22803 crossref_primary_10_1002_ange_202406651 crossref_primary_10_1039_D2CS00275B crossref_primary_10_1002_asia_202401121 crossref_primary_10_1021_acs_analchem_3c04578 crossref_primary_10_1002_ange_202403258 crossref_primary_10_1016_j_ccr_2022_214803 crossref_primary_10_1039_D4TB01650E crossref_primary_10_1016_j_cej_2025_161711 crossref_primary_10_1038_s41566_024_01538_4 crossref_primary_10_1002_adhm_202300327 crossref_primary_10_1002_anie_202408918 crossref_primary_10_2217_nnm_2023_0021 crossref_primary_10_1002_adma_202416590 crossref_primary_10_2217_nnm_2023_0261 crossref_primary_10_6023_cjoc202403059 crossref_primary_10_1186_s12951_021_01083_0 crossref_primary_10_1002_anie_202414259 crossref_primary_10_1016_j_jphotochem_2024_115659 crossref_primary_10_1021_acs_chemmater_2c01466 crossref_primary_10_1039_D1TB02738G crossref_primary_10_1002_agt2_706 crossref_primary_10_1002_anie_202315217 crossref_primary_10_1016_j_biomaterials_2023_122261 crossref_primary_10_1016_j_biomaterials_2025_123193 crossref_primary_10_1016_j_dyepig_2022_110403 crossref_primary_10_1016_j_dyepig_2021_109480 crossref_primary_10_1002_cjoc_202100580 crossref_primary_10_1016_j_ccr_2022_214913 crossref_primary_10_1039_D1CS00600B crossref_primary_10_1039_D1QM01270C crossref_primary_10_1016_j_cclet_2021_08_015 crossref_primary_10_1007_s00289_023_05025_8 crossref_primary_10_1002_smll_202309589 crossref_primary_10_1021_acsami_1c03066 crossref_primary_10_3390_bios15030132 crossref_primary_10_34133_2021_9784053 crossref_primary_10_1002_ange_202116174 crossref_primary_10_1039_D1TB01310F crossref_primary_10_1002_smll_202102646 crossref_primary_10_1039_D2SC02879D crossref_primary_10_1016_j_biomaterials_2023_122276 crossref_primary_10_1039_D1BM01976G crossref_primary_10_1021_acsnano_4c17582 crossref_primary_10_1021_acs_jpclett_4c03003 crossref_primary_10_1016_j_ccr_2022_214908 crossref_primary_10_1016_j_dyepig_2022_110543 crossref_primary_10_1002_adhm_202300541 crossref_primary_10_6023_cjoc202404003 crossref_primary_10_1002_adhm_202402381 crossref_primary_10_1002_adom_202300255 crossref_primary_10_1016_j_mtbio_2022_100481 crossref_primary_10_1002_adhm_202404322 crossref_primary_10_1039_D1CC01804C crossref_primary_10_1016_j_mtbio_2022_100366 crossref_primary_10_1186_s12951_025_03204_5 crossref_primary_10_1002_smll_202309202 crossref_primary_10_1016_j_cclet_2021_08_001 crossref_primary_10_3390_photochem1030026 crossref_primary_10_1002_adfm_202401627 crossref_primary_10_1016_j_cej_2023_143814 crossref_primary_10_1039_D4MH00660G crossref_primary_10_1021_acsami_2c02308 crossref_primary_10_2139_ssrn_4157595 crossref_primary_10_1039_D4NH00497C crossref_primary_10_1021_accountsmr_0c00114 crossref_primary_10_1002_ange_202414259 crossref_primary_10_1002_smll_202307147 crossref_primary_10_1002_adma_202210179 crossref_primary_10_1002_adfm_202423165 crossref_primary_10_1002_cmdc_202400649 crossref_primary_10_1021_jacs_2c12738 crossref_primary_10_1016_j_bioactmat_2021_10_027 crossref_primary_10_1002_agt2_39 crossref_primary_10_1002_cjoc_202200714 crossref_primary_10_1002_anie_202503036 crossref_primary_10_1021_acsnano_1c10019 crossref_primary_10_1039_D4CC00681J crossref_primary_10_1021_acsnano_1c08178 crossref_primary_10_1021_acsami_1c14020 crossref_primary_10_1039_D2SC06435A crossref_primary_10_1016_j_addr_2023_114821 crossref_primary_10_1016_j_dyepig_2023_111411 crossref_primary_10_1016_j_biomaterials_2022_121595 crossref_primary_10_1002_adfm_202212380 crossref_primary_10_1021_acsnano_3c09695 crossref_primary_10_1021_acs_chemrev_1c00875 crossref_primary_10_1016_j_apcatb_2022_122025 crossref_primary_10_1021_acsapm_1c00456 crossref_primary_10_1002_adma_202309748 crossref_primary_10_1039_D1RA09393B crossref_primary_10_1021_acsami_4c23023 crossref_primary_10_1021_acsnano_3c05080 crossref_primary_10_3390_molecules27196649 crossref_primary_10_1021_acsnano_1c00585 crossref_primary_10_1039_D1TB02282B crossref_primary_10_1002_agt2_25 crossref_primary_10_1016_j_dyepig_2023_111517 crossref_primary_10_1016_j_snb_2022_132727 crossref_primary_10_1002_adhm_202301584 crossref_primary_10_1002_adfm_202200016 crossref_primary_10_1002_adhm_202402295 crossref_primary_10_1002_anse_202300045 crossref_primary_10_1021_acsabm_0c01322 crossref_primary_10_1039_D3CP05718F crossref_primary_10_1016_j_ccr_2021_213888 crossref_primary_10_1038_s41598_024_75800_8 crossref_primary_10_1021_acsami_2c17525 crossref_primary_10_1002_anie_202416963 crossref_primary_10_1002_ange_202315217 crossref_primary_10_1016_j_mtchem_2023_101596 crossref_primary_10_1016_j_saa_2023_122572 crossref_primary_10_1021_acsami_2c05860 crossref_primary_10_1002_anie_202413219 crossref_primary_10_1002_adma_202200179 crossref_primary_10_1002_ange_202200799 crossref_primary_10_1002_ange_202202614 crossref_primary_10_1002_anie_202107076 crossref_primary_10_1039_D2BM01558G crossref_primary_10_1002_chem_202303502 crossref_primary_10_1002_smll_202102044 crossref_primary_10_1016_j_ccr_2022_214552 crossref_primary_10_1016_j_cclet_2023_108974 crossref_primary_10_1002_adma_202201263 crossref_primary_10_1016_j_nantod_2021_101169 crossref_primary_10_3390_nano13091480 crossref_primary_10_1002_adma_202104615 crossref_primary_10_1016_j_cclet_2021_11_079 crossref_primary_10_1021_acs_analchem_1c04422 crossref_primary_10_1007_s11426_021_1189_9 crossref_primary_10_1016_j_cclet_2024_110098 crossref_primary_10_1016_j_colsurfb_2022_113106 crossref_primary_10_1039_D3QO00857F crossref_primary_10_1007_s11696_023_02892_3 crossref_primary_10_1002_adma_202110283 crossref_primary_10_1111_odi_14525 crossref_primary_10_1016_j_jconrel_2023_08_056 crossref_primary_10_1002_smll_202200743 crossref_primary_10_1016_j_dyepig_2023_111745 crossref_primary_10_1007_s40242_024_3256_9 crossref_primary_10_1002_chem_202400741 crossref_primary_10_1039_D3NR02081A crossref_primary_10_1016_j_cej_2022_141017 crossref_primary_10_1021_acsami_1c20722 crossref_primary_10_1016_j_colsurfb_2023_113516 crossref_primary_10_1016_j_jcis_2024_11_006 crossref_primary_10_1002_anie_202415735 crossref_primary_10_1016_j_biomaterials_2024_122771 crossref_primary_10_1002_anie_202416828 crossref_primary_10_1002_bkcs_12655 crossref_primary_10_1021_acsnano_1c11424 crossref_primary_10_1038_s41467_023_41050_x crossref_primary_10_1021_acs_chemmater_3c02495 crossref_primary_10_1002_anie_202202005 crossref_primary_10_1021_acsmaterialslett_4c00162 crossref_primary_10_1021_acsinfecdis_1c00392 crossref_primary_10_1002_adhm_202303432 crossref_primary_10_1007_s10895_025_04223_z crossref_primary_10_1016_j_actbio_2022_07_004 crossref_primary_10_1002_chem_202004957 crossref_primary_10_6023_A22060267 crossref_primary_10_1016_j_cclet_2021_02_017 crossref_primary_10_1016_j_bios_2025_117140 crossref_primary_10_1002_marc_202401098 crossref_primary_10_1002_ange_202416065 crossref_primary_10_1002_adma_202109111 crossref_primary_10_1002_ange_202406381 crossref_primary_10_1016_j_snb_2023_135091 crossref_primary_10_1039_D4OB00297K crossref_primary_10_1002_adma_202418705 crossref_primary_10_1039_D1QM00328C crossref_primary_10_1002_jbm_a_37638 crossref_primary_10_1002_adma_202311733 crossref_primary_10_1021_acsami_4c02254 crossref_primary_10_1016_j_cej_2022_140189 crossref_primary_10_1039_D2TB02295H crossref_primary_10_1016_j_actbio_2024_09_001 crossref_primary_10_1002_cbic_202300653 crossref_primary_10_3390_pharmaceutics15082027 crossref_primary_10_1016_j_ijbiomac_2023_124486 crossref_primary_10_1021_acs_chemrev_3c00401 crossref_primary_10_1021_acsami_1c02260 crossref_primary_10_1016_j_ccr_2025_216579 crossref_primary_10_1016_j_ccr_2024_216056 crossref_primary_10_1002_aoc_6888 crossref_primary_10_1093_nsr_nwae192 crossref_primary_10_1002_adhm_202101066 crossref_primary_10_1016_j_ccr_2022_214754 crossref_primary_10_1016_j_ccr_2024_216054 crossref_primary_10_1021_acsnano_3c03925 crossref_primary_10_1016_j_jare_2022_02_006 crossref_primary_10_1021_acsomega_2c02868 crossref_primary_10_1039_D3MH01263H crossref_primary_10_1016_j_cclet_2023_108934 crossref_primary_10_1021_acs_biomac_2c00361 crossref_primary_10_1039_D4SC03642E crossref_primary_10_1002_smll_202407408 crossref_primary_10_1039_D1TB02610K crossref_primary_10_1063_5_0185259 crossref_primary_10_1021_acs_jmedchem_2c01653 crossref_primary_10_1016_j_ccr_2022_214865 crossref_primary_10_1021_acsami_3c06853 crossref_primary_10_1021_acsnano_4c01600 crossref_primary_10_1002_anie_202400372 crossref_primary_10_1002_adhm_202101063 crossref_primary_10_1021_acsmaterialslett_4c01214 crossref_primary_10_1021_acs_jpca_4c01120 crossref_primary_10_1016_j_cej_2025_160692 crossref_primary_10_1016_j_jphotobiol_2024_113052 crossref_primary_10_1002_ange_202419785 crossref_primary_10_1002_agt2_576 crossref_primary_10_1039_D1QM00243K crossref_primary_10_1039_D3AN01599H crossref_primary_10_1039_D3TB00764B crossref_primary_10_1002_VIW_20200121 crossref_primary_10_1021_acs_inorgchem_2c02920 crossref_primary_10_1021_acsnano_1c09301 crossref_primary_10_1016_j_xcrp_2023_101748 crossref_primary_10_1002_adma_202301739 crossref_primary_10_1002_smll_202407787 crossref_primary_10_1002_smll_202405470 crossref_primary_10_1016_j_dyepig_2023_111494 crossref_primary_10_1002_adma_202402434 crossref_primary_10_1007_s12274_024_6434_7 crossref_primary_10_1002_ange_202418047 crossref_primary_10_1021_acs_jmedchem_2c00105 crossref_primary_10_1039_D3TB00545C crossref_primary_10_1039_D1QM00472G crossref_primary_10_1016_j_saa_2024_124789 crossref_primary_10_1039_D1BM00172H crossref_primary_10_1039_D1CS01138C crossref_primary_10_1039_D2SC05982G crossref_primary_10_1002_ange_202107076 crossref_primary_10_1039_D4QM00386A crossref_primary_10_1016_j_dyepig_2023_111369 crossref_primary_10_1021_acsnano_1c10770 crossref_primary_10_1016_j_bioactmat_2024_09_031 crossref_primary_10_1039_D4TB02134G crossref_primary_10_1002_anie_202401877 crossref_primary_10_1021_acsnano_2c03550 crossref_primary_10_1002_adma_202105999 crossref_primary_10_3390_bios13040494 crossref_primary_10_1021_acs_biomac_1c01516 crossref_primary_10_1002_advs_202205461 crossref_primary_10_1007_s00044_024_03309_w crossref_primary_10_1016_j_biomaterials_2022_121780 crossref_primary_10_1016_j_biomaterials_2022_121535 crossref_primary_10_1039_D2CS00993E crossref_primary_10_3390_chemosensors12070138 crossref_primary_10_1002_adma_202106994 crossref_primary_10_1016_j_ccr_2024_215718 crossref_primary_10_1016_j_cej_2021_133748 crossref_primary_10_1111_php_13404 crossref_primary_10_1016_j_jinorgbio_2024_112760 crossref_primary_10_1002_smll_202401905 crossref_primary_10_1021_acsbiomedchemau_1c00066 crossref_primary_10_1039_D2TA07628D crossref_primary_10_1002_adhm_202303472 crossref_primary_10_1039_D3TB01438J crossref_primary_10_1016_j_colsurfb_2022_113060 crossref_primary_10_1002_VIW_20220065 crossref_primary_10_1002_cjoc_202200660 crossref_primary_10_1016_j_ccr_2023_215652 crossref_primary_10_1016_j_cclet_2024_109841 crossref_primary_10_1002_anie_202418081 crossref_primary_10_2139_ssrn_4063729 crossref_primary_10_1021_acsami_3c08033 crossref_primary_10_1186_s12645_023_00191_w crossref_primary_10_3390_polym15173570 crossref_primary_10_1002_asia_202200181 crossref_primary_10_1016_j_snb_2024_135976 crossref_primary_10_1039_D4MH01167H crossref_primary_10_1016_j_biomaterials_2022_121528 crossref_primary_10_1002_ange_202401877 crossref_primary_10_1002_wnan_1862 crossref_primary_10_1016_j_jlumin_2021_118562 crossref_primary_10_1117_1_JBO_27_7_070901 crossref_primary_10_3390_pharmaceutics15092335 crossref_primary_10_3390_molecules29051040 crossref_primary_10_1002_cptc_202300213 crossref_primary_10_1002_ange_202110048 crossref_primary_10_1002_ange_202418081 crossref_primary_10_1016_j_nantod_2022_101620 crossref_primary_10_1016_j_trac_2023_117339 crossref_primary_10_3390_sym14050966 crossref_primary_10_1002_adfm_202113098 crossref_primary_10_1002_adfm_202418600 crossref_primary_10_1039_D4NA00931B crossref_primary_10_2174_0109298673300702240805055930 crossref_primary_10_1002_adfm_202311365 crossref_primary_10_1038_s41598_023_50930_7 crossref_primary_10_1002_ejoc_202201131 crossref_primary_10_1002_adma_202302639 crossref_primary_10_1021_jacs_1c06275 crossref_primary_10_1039_D3BM00730H crossref_primary_10_1039_D4TB02480J crossref_primary_10_1002_adfm_202300340 crossref_primary_10_1016_j_trac_2023_117326 crossref_primary_10_1016_j_apsb_2024_12_017 crossref_primary_10_1016_j_ejmech_2022_114843 crossref_primary_10_34133_research_0061 crossref_primary_10_1021_acs_nanolett_4c01364 crossref_primary_10_1039_D4TB01198H crossref_primary_10_1002_advs_202205780 crossref_primary_10_1002_anie_202110048 crossref_primary_10_1016_j_biomaterials_2022_121581 crossref_primary_10_1021_acsami_4c15017 crossref_primary_10_1002_advs_202204695 crossref_primary_10_1002_VIW_20200140 crossref_primary_10_1039_D1TB00855B crossref_primary_10_1016_j_cjche_2024_05_010 crossref_primary_10_3390_nano13212872 crossref_primary_10_1016_j_drudis_2023_103598 crossref_primary_10_1002_adma_202104410 crossref_primary_10_1002_EXP_20230063 crossref_primary_10_1002_ange_202305564 crossref_primary_10_1016_j_saa_2022_120946 crossref_primary_10_1002_adma_202407199 crossref_primary_10_34133_research_0194 crossref_primary_10_1021_acs_analchem_1c00548 crossref_primary_10_1039_D2QM00630H crossref_primary_10_1021_acs_chemrev_4c00244 crossref_primary_10_1038_s41392_023_01654_7 crossref_primary_10_1016_j_engreg_2021_11_001 crossref_primary_10_1002_smll_202307829 crossref_primary_10_1016_j_cclet_2024_109910 crossref_primary_10_1021_acsami_4c04131 crossref_primary_10_1021_acsami_4c06437 crossref_primary_10_1016_j_molstruc_2024_140813 crossref_primary_10_1002_agt2_295 crossref_primary_10_1021_acsnano_4c10277 crossref_primary_10_1111_php_13698 crossref_primary_10_1002_anie_202418047 crossref_primary_10_1021_acsabm_2c00394 crossref_primary_10_1002_anie_202305564 crossref_primary_10_1039_D1QM00089F crossref_primary_10_1002_anie_202406381 crossref_primary_10_1002_asia_202401328 crossref_primary_10_1007_s12274_021_3480_2 crossref_primary_10_1002_advs_202410405 crossref_primary_10_1016_j_cej_2022_137762 crossref_primary_10_1002_smll_202306324 crossref_primary_10_1016_j_cis_2024_103356 crossref_primary_10_1021_acsmaterialslett_4c00759 crossref_primary_10_3390_molecules27030991 crossref_primary_10_1002_smll_202411643 crossref_primary_10_1002_slct_202204546 crossref_primary_10_1002_mabi_202300151 crossref_primary_10_1021_acs_chemrev_2c00062 crossref_primary_10_1002_agt2_503 crossref_primary_10_1038_s43246_021_00214_2 crossref_primary_10_1016_j_cej_2024_156392 crossref_primary_10_1021_jacsau_3c00667 crossref_primary_10_1039_D2CS00610C crossref_primary_10_1515_rams_2022_0308 crossref_primary_10_1016_j_ijpharm_2024_124633 crossref_primary_10_1039_D3CS00251A crossref_primary_10_1002_smtd_202201582 crossref_primary_10_1007_s40242_021_1172_9 crossref_primary_10_1002_cptc_202400156 crossref_primary_10_1002_smll_202305101 crossref_primary_10_1002_agt2_630 crossref_primary_10_1021_acsabm_3c00080 crossref_primary_10_1002_wnan_1960 crossref_primary_10_1039_D1TB02816B crossref_primary_10_1002_agt2_518 crossref_primary_10_1016_j_pdpdt_2023_103328 crossref_primary_10_1016_j_xinn_2021_100082 crossref_primary_10_3390_polym16111583 crossref_primary_10_1002_adhm_202303183 crossref_primary_10_1002_smll_202105362 crossref_primary_10_1002_adma_202208229 crossref_primary_10_1016_j_actbio_2023_05_014 crossref_primary_10_1039_D2CC06932F crossref_primary_10_1002_VIW_20200179 crossref_primary_10_1002_adma_202211632 crossref_primary_10_1016_j_ccr_2024_215677 crossref_primary_10_1002_adhm_202400201 crossref_primary_10_1002_asia_202200571 crossref_primary_10_1016_j_actbio_2021_08_002 crossref_primary_10_1002_adma_202208692 crossref_primary_10_1039_D4TB01867B crossref_primary_10_1021_acsnano_0c09981 crossref_primary_10_1021_acsmacrolett_4c00031 crossref_primary_10_1039_D2MA00444E crossref_primary_10_1021_acssensors_4c00561 crossref_primary_10_1002_advs_202302395 crossref_primary_10_1016_j_trac_2024_117801 crossref_primary_10_1021_jacs_1c05647 crossref_primary_10_1039_D1QM01385H crossref_primary_10_1002_anie_202416065 crossref_primary_10_1021_acsami_2c11200 crossref_primary_10_1021_acsanm_2c03350 crossref_primary_10_1016_j_actbio_2024_07_032 crossref_primary_10_3390_bios12080646 crossref_primary_10_1039_D1BM00044F crossref_primary_10_1166_jbn_2022_3371 crossref_primary_10_1016_j_ccr_2024_215866 crossref_primary_10_1002_adfm_202207145 crossref_primary_10_1016_j_dyepig_2024_112141 crossref_primary_10_1007_s40843_022_2143_2 crossref_primary_10_3390_bios12090683 crossref_primary_10_1039_D4SC05006A crossref_primary_10_1021_acs_nanolett_4c01862 crossref_primary_10_1016_j_cclet_2023_109133 crossref_primary_10_1016_j_dyepig_2025_112664 crossref_primary_10_1039_D0QM01132K crossref_primary_10_1021_acs_jpclett_1c02463 crossref_primary_10_1002_adom_202300623 crossref_primary_10_1016_j_pmatsci_2024_101347 crossref_primary_10_1016_j_recm_2024_01_001 crossref_primary_10_1021_acsnano_3c06542 crossref_primary_10_1039_D2TB02662G crossref_primary_10_1002_ange_202413219 crossref_primary_10_1002_adfm_202200503 crossref_primary_10_1093_rb_rbad044 crossref_primary_10_1021_jacs_2c06538 crossref_primary_10_1002_anie_202419785 crossref_primary_10_1002_ange_202416963 crossref_primary_10_1016_j_pdpdt_2022_103103 crossref_primary_10_1002_agt2_540 crossref_primary_10_1002_agt2_420 crossref_primary_10_1016_j_ccr_2024_215734 crossref_primary_10_1016_j_biomaterials_2025_123113 crossref_primary_10_1002_ange_202503036 crossref_primary_10_1016_j_biomaterials_2025_123235 crossref_primary_10_1021_acsnano_1c07730 crossref_primary_10_1021_acsami_1c19008 crossref_primary_10_1039_D4BM00412D crossref_primary_10_1021_jacs_1c03041 crossref_primary_10_1002_wnan_1906 crossref_primary_10_1016_j_jorganchem_2023_122819 crossref_primary_10_1002_adhm_202400593 crossref_primary_10_1021_acsami_3c10200 crossref_primary_10_1038_s41467_023_40996_2 crossref_primary_10_1016_j_jphotochem_2021_113661 crossref_primary_10_1039_D3CC00108C crossref_primary_10_1016_j_pdpdt_2023_103520 crossref_primary_10_1002_btm2_10417 crossref_primary_10_1038_s41467_024_51506_3 crossref_primary_10_1016_j_partic_2022_06_001 crossref_primary_10_1038_s41598_024_51209_1 crossref_primary_10_1021_acsnano_3c05309 crossref_primary_10_1016_j_ccr_2023_215560 crossref_primary_10_1021_acsanm_3c05733 crossref_primary_10_1002_smll_202104073 crossref_primary_10_1007_s10921_025_01175_z crossref_primary_10_1002_btm2_10652 crossref_primary_10_1002_agt2_7 crossref_primary_10_1021_jacs_4c15216 crossref_primary_10_1002_ange_202416828 crossref_primary_10_1039_D3QM00206C crossref_primary_10_1002_adhm_202300941 crossref_primary_10_1002_ange_202415735 crossref_primary_10_1016_j_bioorg_2022_105725 crossref_primary_10_1039_D3PY00461A crossref_primary_10_1039_D1SC01125A crossref_primary_10_1002_agt2_320 crossref_primary_10_1002_adfm_202411838 crossref_primary_10_1002_adfm_202210664 crossref_primary_10_1039_D1NR00773D crossref_primary_10_1016_j_cclet_2023_109223 crossref_primary_10_1002_ange_202202005 crossref_primary_10_1016_j_ccr_2023_215451 crossref_primary_10_1088_1748_605X_ad15e2 crossref_primary_10_1002_ange_202400372 crossref_primary_10_1016_j_molstruc_2025_141365 crossref_primary_10_1002_anie_202209793 crossref_primary_10_1016_j_actbio_2022_02_013 crossref_primary_10_1016_j_dyepig_2021_109307 crossref_primary_10_1002_smll_202307664 crossref_primary_10_1002_adfm_202406483 crossref_primary_10_1016_j_biomaterials_2022_121603 |
Cites_doi | 10.1021/acsnano.9b00452 10.1021/acs.chemrev.7b00425 10.1002/anie.201706974 10.1002/adfm.201804956 10.1002/adma.201502442 10.1039/D0SC00785D 10.1002/anie.201810326 10.1021/jacs.8b13889 10.1016/j.isci.2019.11.022 10.1007/s12274-018-2175-9 10.1002/anie.201709347 10.7150/thno.36999 10.1073/pnas.1701976114 10.1016/j.biomaterials.2017.08.018 10.1038/s41563-019-0378-4 10.1016/j.biomaterials.2017.03.003 10.1039/c2nr31392h 10.1038/s41551-016-0010 10.1038/s41467-020-15095-1 10.1038/nmeth.3925 10.1039/C4CS00014E 10.1039/C3CS60271K 10.1021/jacs.6b00007 10.1039/D0NR02622K 10.1002/smtd.201900553 10.1039/C7SC05115H 10.1002/adma.201604100 10.1002/adfm.201604053 10.1073/pnas.1617990114 10.1038/nnano.2009.326 10.1021/acsami.9b06866 10.1002/adma.201906711 10.1039/C9CS00129H 10.1002/anie.201813002 10.1002/chem.201604741 10.1002/anie.201802143 10.1002/asia.201901658 10.1002/smll.201403395 10.1002/smll.201302161 10.1002/smtd.201600023 10.1016/j.chempr.2018.06.003 10.1002/anie.201712528 10.1002/anie.201916147 10.1002/adma.201805220 10.1038/nmat4259 10.1039/C4CC02767A 10.1002/anie.201903277 10.1002/adma.201606690 10.1002/anie.201910137 10.1002/anie.201706969 10.1039/C7QM00056A 10.1039/c3cs35531d 10.1038/nnano.2013.302 10.1002/adfm.201806877 10.1002/adfm.201704079 10.1039/C6CS00271D 10.1021/acs.nanolett.7b02106 10.1073/pnas.1417047112 10.1038/s41467-018-04222-8 10.1021/acsnano.7b03507 10.1002/anie.201809641 10.1002/adma.201601214 10.1002/advs.201700113 10.1021/cr900263j 10.1021/acsnano.6b00168 10.1002/adfm.201707519 10.1002/smll.201602747 10.1002/adma.201801065 10.1039/c1cc12775f 10.1002/adma.201807222 10.1039/C9SC02093D 10.1002/smll.201601637 10.1038/nmeth818 10.1063/1.4984020 10.1021/acsnano.6b08720 10.1039/C6SC01561A 10.1002/adma.201703403 10.1021/jacs.7b08710 10.1021/jacs.7b08446 10.1039/C7SC03351F 10.1021/acsnano.8b03138 10.1002/adfm.201901480 10.1002/adma.201502285 10.1002/advs.201600407 10.1038/s41467-019-08434-4 10.1002/smll.201602807 10.1002/adfm.201907077 10.1021/jp900665x 10.1021/acsnano.8b08398 10.1021/acsnano.9b01411 10.1073/pnas.1306241110 10.1021/acsami.8b03568 10.7150/thno.18861 10.1021/cr200166m 10.1002/adma.201808355 10.1021/acs.accounts.9b00064 10.1038/nchem.984 10.1002/anie.201907754 10.1038/nmat4476 10.1021/acsnano.7b00312 10.1002/adfm.201705045 10.1002/adma.201802394 10.1021/acsami.6b16801 10.1039/C8TB01750F 10.1002/anie.200805456 10.1038/nmeth.3929 10.1002/smll.201902352 10.1002/adma.201606857 10.1002/anie.201709887 10.1002/adma.201700487 10.7150/thno.19538 10.1002/adma.201805875 10.1002/anie.201801226 10.1002/adma.201802546 10.1021/acs.chemrev.5b00263 10.1016/j.biomaterials.2016.12.004 10.1016/j.nantod.2020.100851 10.1038/nchembio.85 10.1021/jacs.7b10334 10.1351/pac196511030371 10.1039/C8CS00618K 10.1039/C5CC03114A 10.1039/b704794k 10.1002/adma.201600706 10.1016/j.biomaterials.2017.08.007 10.1021/acsnano.7b08616 10.1002/adma.201800766 10.1002/adma.201904799 10.1002/adfm.201605397 10.1002/smll.201802991 10.1039/C8CC08096H 10.1002/adma.201606665 10.1002/anie.201916430 10.1039/C7MH00469A 10.1016/j.biomaterials.2017.11.025 10.1038/s41467-018-03505-4 10.1039/C8CS00001H 10.1021/acsnano.7b03062 10.1021/acs.chemmater.7b01075 10.1016/j.addr.2016.08.010 10.1002/adma.201705799 10.1021/acs.accounts.9b00305 10.1021/acs.chemmater.6b03738 10.1021/jacs.5b04069 10.1039/C6SC04384D 10.1002/adma.201602604 10.1002/adfm.201605094 10.1021/jacs.7b05916 10.1002/adfm.201702834 10.1016/j.biomaterials.2017.08.037 10.1021/jacs.8b13141 10.1039/C5CS00103J 10.1038/s41467-019-09561-8 10.1021/jacs.9b07162 10.1021/acsami.6b06136 10.1039/C9QM00036D 10.1002/adfm.201804901 10.1016/j.biomaterials.2017.10.031 10.1038/s41467-017-00545-0 10.1038/nbt.3987 10.1021/ar200019c 10.1002/anie.201705945 10.1002/adma.201705980 10.1038/s41467-019-09043-x 10.1002/adma.201605497 10.1038/nature24010 10.1016/S0010-8545(02)00034-6 10.1002/anie.201806551 10.1038/s41467-019-10056-9 10.1039/C7CS00594F 10.1016/j.biomaterials.2017.11.016 10.1002/adfm.201808365 10.1021/jacs.7b05019 10.1039/b105159h 10.1002/adfm.201606314 10.1021/acs.analchem.9b00317 10.1002/adma.201706856 10.1007/s12274-016-1332-2 10.1038/s41467-017-01951-0 10.1039/C9NR00552H 10.1002/adma.201907855 10.1021/jacs.8b08658 10.1038/s41467-018-03236-6 10.1002/adfm.201400647 10.1021/acs.nanolett.8b02767 10.1021/cr900266s 10.1021/jacs.8b10176 10.1021/acsnano.9b06208 10.1002/smll.201700710 10.1002/adma.201701244 10.1039/C7QM00092H 10.1002/anie.201914384 10.1021/acs.analchem.9b04002 10.1002/adma.201900321 10.1126/science.1216210 10.1021/acsnano.6b07927 10.1039/c3py01587d 10.1002/adma.201903530 10.1021/jacs.9b03649 10.1038/s41467-019-08722-z 10.1039/C7CS00525C 10.1038/s41467-019-10119-x 10.1002/anie.201805246 10.1002/anie.201908664 10.1002/adma.201904914 10.1021/jacs.7b13307 10.1021/acs.accounts.8b00060 10.1021/acs.analchem.9b02839 10.1002/anie.201810541 10.1002/anie.201900366 10.1002/anie.201909706 10.1039/C7CC04864E 10.1021/acscentsci.7b00058 10.1002/smll.201702299 10.1021/cm801911n 10.1021/acsami.6b14885 10.1002/adma.201801350 10.1002/adma.201604764 10.1002/adma.201402972 10.1039/C4CS00392F 10.1002/adma.201800365 10.1002/anie.201805446 10.1021/acs.analchem.6b01096 10.1039/C7SC04694D 10.1002/adma.201706320 10.1039/C8CC07768A 10.1038/s41467-019-10033-2 10.1039/c3cs60036j 10.1021/acs.chemrev.5b00140 10.1039/C6CS00908E 10.1021/ac502103t 10.1039/C7CP02118F 10.1021/jacs.7b00551 10.1002/anie.201002307 10.1002/adma.201806331 10.1002/anie.201905884 10.1039/C8CS00494C 10.1002/anie.201906288 10.1021/jacs.9b02580 10.1002/adma.201801140 10.1021/acs.biomac.7b01029 10.1002/anie.201803321 10.1002/adma.201700548 10.1002/adma.201703693 10.1021/acsnano.7b04685 10.1039/C7NR07495F 10.1002/adma.201902672 10.1038/nmat2986 10.1039/C9TC02879J 10.1021/acsami.8b01458 10.1021/acsami.8b00759 10.1007/s40843-019-9470-3 10.1021/acsami.9b01615 10.1038/ncomms15269 10.1021/acs.accounts.9b00104 10.1038/srep01150 10.1021/acsnano.7b07809 10.1021/jacs.9b10043 10.1021/acs.nanolett.8b03936 10.1016/j.chempr.2017.10.002 10.1021/jp909388y 10.1002/adbi.201800074 10.1039/C7SC04963C 10.1021/acs.accounts.8b00242 10.1021/jacs.6b11382 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d0cs00671h |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 8234 |
ExternalDocumentID | 33196726 10_1039_D0CS00671H d0cs00671h |
Genre | Journal Article Review |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 -JG CGR CUY CVF ECM EIF NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-6a04d64595f3553b6c9b3ce7df0ec388419775150492ca330de48c83993950593 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Thu Jul 10 22:45:08 EDT 2025 Fri Jul 11 08:54:07 EDT 2025 Sun Jun 29 15:29:03 EDT 2025 Wed Feb 19 02:28:06 EST 2025 Thu Apr 24 23:00:18 EDT 2025 Tue Jul 01 04:18:44 EDT 2025 Sat Jan 08 03:48:18 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-6a04d64595f3553b6c9b3ce7df0ec388419775150492ca330de48c83993950593 |
Notes | Guangxue Feng received his PhD degree from the Department of Chemical and Biomolecular Engineering at the National University of Singapore in 2016, followed by a postdoctoral study at the same university. After serving as the Chief Research Scientist in a start-up company LuminiCell Pte Ltd for two years, he joined the School of Materials Science and Engineering at South China University of Technology as a Professor in 2019. His research focuses on the development of semiconducting organic optical agents for phototheranostics. Guo-Qiang Zhang received his PhD degree from the College of Pharmacy in Nankai University in 2018. He is currently a postdoctoral fellow under the supervision of Prof. Dan Ding in the State Key Laboratory of Medicinal Chemical Biology in Nankai University. His current research focuses on the design and synthesis of smart/functional molecular imaging probes and exploration of their biomedical applications. Dan Ding received his PhD degree from the Department of Polymer Science and Engineering in Nanjing University in 2010. After a postdoctoral training in the National University of Singapore, he joined Nankai University, where he is currently a Professor in State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science. He also conducted his work in The Hong Kong University of Science and Technology as a visiting scholar. His current research focuses on the design and synthesis of smart/functional molecular imaging probes and exploration of their biomedical applications. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1873-6510 |
PMID | 33196726 |
PQID | 2460777160 |
PQPubID | 2047503 |
PageCount | 56 |
ParticipantIDs | crossref_primary_10_1039_D0CS00671H rsc_primary_d0cs00671h proquest_miscellaneous_2461399119 proquest_journals_2460777160 proquest_miscellaneous_2511181914 pubmed_primary_33196726 crossref_citationtrail_10_1039_D0CS00671H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-21 |
PublicationDateYYYYMMDD | 2020-11-21 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Moor (D0CS00671H-(cit9)/*[position()=1]) 2003 Wu (D0CS00671H-(cit109)/*[position()=1]) 2019; 55 Pu (D0CS00671H-(cit108)/*[position()=1]) 2015; 27 Jiang (D0CS00671H-(cit126)/*[position()=1]) 2018; 30 Zhao (D0CS00671H-(cit132)/*[position()=1]) 2019; 10 Helmchen (D0CS00671H-(cit61)/*[position()=1]) 2005; 2 Sheng (D0CS00671H-(cit54)/*[position()=1]) 2018; 30 Tang (D0CS00671H-(cit222)/*[position()=1]) 2017; 29 Wang (D0CS00671H-(cit246)/*[position()=1]) 2019; 10 Sun (D0CS00671H-(cit44)/*[position()=1]) 2016; 7 Park (D0CS00671H-(cit214)/*[position()=1]) 2016; 138 Szabo (D0CS00671H-(cit234)/*[position()=1]) 2013; 110 Hu (D0CS00671H-(cit157)/*[position()=1]) 2018; 30 Feng (D0CS00671H-(cit62)/*[position()=1]) 2016; 8 Zhu (D0CS00671H-(cit208)/*[position()=1]) 2017; 11 Liu (D0CS00671H-(cit40)/*[position()=1]) 2017; 8 Li (D0CS00671H-(cit220)/*[position()=1]) 2017; 7 Chen (D0CS00671H-(cit17)/*[position()=1]) 2020; 32 Gong (D0CS00671H-(cit248)/*[position()=1]) 2020; 32 Chen (D0CS00671H-(cit63)/*[position()=1]) 2020; 59 Filatov (D0CS00671H-(cit179)/*[position()=1]) 2017; 139 Hu (D0CS00671H-(cit245)/*[position()=1]) 2017; 144 Li (D0CS00671H-(cit107)/*[position()=1]) 2016; 28 Zhen (D0CS00671H-(cit172)/*[position()=1]) 2017; 29 Wang (D0CS00671H-(cit117)/*[position()=1]) 2019; 29 Miao (D0CS00671H-(cit251)/*[position()=1]) 2017; 35 Zhu (D0CS00671H-(cit34)/*[position()=1]) 2018; 30 Feng (D0CS00671H-(cit51)/*[position()=1]) 2017; 4 Liu (D0CS00671H-(cit89)/*[position()=1]) 2019; 58 Liu (D0CS00671H-(cit100)/*[position()=1]) 2019; 141 Qin (D0CS00671H-(cit139)/*[position()=1]) 2015; 11 Wu (D0CS00671H-(cit176)/*[position()=1]) 2017; 4 Green (D0CS00671H-(cit257)/*[position()=1]) 2017; 139 Yang (D0CS00671H-(cit69)/*[position()=1]) 2017; 23 Nicol (D0CS00671H-(cit169)/*[position()=1]) 2017; 139 Samuel (D0CS00671H-(cit200)/*[position()=1]) 2015; 112 Pan (D0CS00671H-(cit91)/*[position()=1]) 2018; 10 Feng (D0CS00671H-(cit53)/*[position()=1]) 2018; 152 Zhu (D0CS00671H-(cit21)/*[position()=1]) 2019; 31 Wang (D0CS00671H-(cit116)/*[position()=1]) 2019; 3 Li (D0CS00671H-(cit14)/*[position()=1]) 2014; 43 Luby (D0CS00671H-(cit23)/*[position()=1]) 2019; 58 Xu (D0CS00671H-(cit153)/*[position()=1]) 2016; 28 Luo (D0CS00671H-(cit37)/*[position()=1]) 2001 Xu (D0CS00671H-(cit120)/*[position()=1]) 2018; 10 Itoh (D0CS00671H-(cit151)/*[position()=1]) 2012; 112 Bolton (D0CS00671H-(cit158)/*[position()=1]) 2011; 3 Antaris (D0CS00671H-(cit41)/*[position()=1]) 2016; 15 Lyu (D0CS00671H-(cit140)/*[position()=1]) 2016; 10 An (D0CS00671H-(cit162)/*[position()=1]) 2015; 14 Chang (D0CS00671H-(cit103)/*[position()=1]) 2018; 10 Zhang (D0CS00671H-(cit42)/*[position()=1]) 2016; 28 Qi (D0CS00671H-(cit55)/*[position()=1]) 2018; 30 Cheng (D0CS00671H-(cit95)/*[position()=1]) 2019; 58 Cai (D0CS00671H-(cit13)/*[position()=1]) 2019; 48 Li (D0CS00671H-(cit33)/*[position()=1]) 2018; 57 Alifu (D0CS00671H-(cit198)/*[position()=1]) 2017; 1 Shi (D0CS00671H-(cit236)/*[position()=1]) 2018; 18 Fateminia (D0CS00671H-(cit76)/*[position()=1]) 2017; 29 Zhi (D0CS00671H-(cit152)/*[position()=1]) 2020; 15 Yang (D0CS00671H-(cit31)/*[position()=1]) 2017; 29 Lyu (D0CS00671H-(cit123)/*[position()=1]) 2018; 12 Cai (D0CS00671H-(cit134)/*[position()=1]) 2017; 1 Li (D0CS00671H-(cit28)/*[position()=1]) 2018; 155 Wang (D0CS00671H-(cit185)/*[position()=1]) 2018; 9 Würthner (D0CS00671H-(cit68)/*[position()=1]) 2011; 50 Huang (D0CS00671H-(cit253)/*[position()=1]) 2019; 18 Jiang (D0CS00671H-(cit82)/*[position()=1]) 2017; 13 Mao (D0CS00671H-(cit254)/*[position()=1]) 2017; 3 Xu (D0CS00671H-(cit188)/*[position()=1]) 2017; 53 Kang (D0CS00671H-(cit183)/*[position()=1]) 2019; 141 Hananya (D0CS00671H-(cit250)/*[position()=1]) 2017; 56 Gu (D0CS00671H-(cit205)/*[position()=1]) 2018; 30 Wu (D0CS00671H-(cit190)/*[position()=1]) 2017; 29 Xie (D0CS00671H-(cit229)/*[position()=1]) 2017; 29 Wan (D0CS00671H-(cit57)/*[position()=1]) 2018; 9 Zhuang (D0CS00671H-(cit204)/*[position()=1]) 2020; 11 Li (D0CS00671H-(cit242)/*[position()=1]) 2017; 139 Cai (D0CS00671H-(cit218)/*[position()=1]) 2018; 57 Sun (D0CS00671H-(cit86)/*[position()=1]) 2017; 18 Atchimnaidu (D0CS00671H-(cit145)/*[position()=1]) 2020; 12 Zou (D0CS00671H-(cit191)/*[position()=1]) 2018; 9 Ou (D0CS00671H-(cit84)/*[position()=1]) 2019; 62 Tang (D0CS00671H-(cit247)/*[position()=1]) 2015; 44 Lü (D0CS00671H-(cit122)/*[position()=1]) 2019; 10 Li (D0CS00671H-(cit184)/*[position()=1]) 2020; 59 Li (D0CS00671H-(cit181)/*[position()=1]) 2017; 11 Hu (D0CS00671H-(cit227)/*[position()=1]) 2018; 28 Hu (D0CS00671H-(cit186)/*[position()=1]) 2018; 57 Tang (D0CS00671H-(cit243)/*[position()=1]) 2018; 30 Feng (D0CS00671H-(cit206)/*[position()=1]) 2017; 13 Fan (D0CS00671H-(cit87)/*[position()=1]) 2015; 27 Smith (D0CS00671H-(cit30)/*[position()=1]) 2009; 4 Yang (D0CS00671H-(cit85)/*[position()=1]) 2019; 52 Ng (D0CS00671H-(cit2)/*[position()=1]) 2015; 115 Li (D0CS00671H-(cit18)/*[position()=1]) 2019; 48 Feng (D0CS00671H-(cit49)/*[position()=1]) 2012; 4 Zhang (D0CS00671H-(cit167)/*[position()=1]) 2019; 7 Liang (D0CS00671H-(cit119)/*[position()=1]) 2017; 8 Weber (D0CS00671H-(cit81)/*[position()=1]) 2016; 13 Zhu (D0CS00671H-(cit46)/*[position()=1]) 2017; 114 Mukherjee (D0CS00671H-(cit154)/*[position()=1]) 2015; 51 Zhang (D0CS00671H-(cit88)/*[position()=1]) 2017; 11 Feng (D0CS00671H-(cit59)/*[position()=1]) 2017; 4 Jiang (D0CS00671H-(cit15)/*[position()=1]) 2018; 51 Fateminia (D0CS00671H-(cit72)/*[position()=1]) 2017; 1 Liu (D0CS00671H-(cit104)/*[position()=1]) 2014; 5 Feng (D0CS00671H-(cit226)/*[position()=1]) 2019; 91 Hu (D0CS00671H-(cit182)/*[position()=1]) 2014; 86 Wu (D0CS00671H-(cit195)/*[position()=1]) 2018; 4 Zheng (D0CS00671H-(cit197)/*[position()=1]) 2018; 12 Wang (D0CS00671H-(cit79)/*[position()=1]) 2012; 335 Yuan (D0CS00671H-(cit180)/*[position()=1]) 2014; 50 Xu (D0CS00671H-(cit235)/*[position()=1]) 2018; 57 Cai (D0CS00671H-(cit106)/*[position()=1]) 2017; 10 Jiang (D0CS00671H-(cit125)/*[position()=1]) 2017; 17 Luo (D0CS00671H-(cit93)/*[position()=1]) 2017; 27 Li (D0CS00671H-(cit207)/*[position()=1]) 2019; 58 Liu (D0CS00671H-(cit192)/*[position()=1]) 2018; 57 Li (D0CS00671H-(cit144)/*[position()=1]) 2019; 13 Shi (D0CS00671H-(cit170)/*[position()=1]) 2019; 11 Huang (D0CS00671H-(cit264)/*[position()=1]) 2019; 58 Zhang (D0CS00671H-(cit113)/*[position()=1]) 2017; 27 Feng (D0CS00671H-(cit193)/*[position()=1]) 2013; 42 Gao (D0CS00671H-(cit27)/*[position()=1]) 2018; 2 Winterbourn (D0CS00671H-(cit224)/*[position()=1]) 2008; 4 Fu (D0CS00671H-(cit8)/*[position()=1]) 2019; 31 Feng (D0CS00671H-(cit16)/*[position()=1]) 2018; 51 Zhen (D0CS00671H-(cit149)/*[position()=1]) 2017; 127 Tao (D0CS00671H-(cit216)/*[position()=1]) 2018; 28 Kim (D0CS00671H-(cit78)/*[position()=1]) 2010; 110 Zhou (D0CS00671H-(cit11)/*[position()=1]) 2016; 45 Gong (D0CS00671H-(cit160)/*[position()=1]) 2015; 27 Zheng (D0CS00671H-(cit77)/*[position()=1]) 2019; 31 Wang (D0CS00671H-(cit101)/*[position()=1]) 2017; 56 Qian (D0CS00671H-(cit65)/*[position()=1]) 2008; 20 Lu (D0CS00671H-(cit215)/*[position()=1]) 2015; 137 Li (D0CS00671H-(cit112)/*[position()=1]) 2017; 7 Wang (D0CS00671H-(cit118)/*[position()=1]) 2019; 58 Li (D0CS00671H-(cit201)/*[position()=1]) 2018; 57 Yuan (D0CS00671H-(cit159)/*[position()=1]) 2010; 114 Xu (D0CS00671H-(cit36)/*[position()=1]) 2020; 32 Zou (D0CS00671H-(cit143)/*[position()=1]) 2017; 139 Zhang (D0CS00671H-(cit211)/*[position()=1]) 2019; 58 Wang (D0CS00671H-(cit80)/*[position()=1]) 2016; 13 Wang (D0CS00671H-(cit24)/*[position()=1]) 2019; 52 Zhao (D0CS00671H-(cit83)/*[position()=1]) 2019; 29 Cai (D0CS00671H-(cit163)/*[position()=1]) 2017; 29 Sun (D0CS00671H-(cit199)/*[position()=1]) 2017; 27 Cao (D0CS00671H-(cit127)/*[position()=1]) 2018; 155 Cai (D0CS00671H-(cit102)/*[position()=1]) 2017; 11 Wu (D0CS00671H-(cit129)/*[position()=1]) 2017; 29 Qi (D0CS00671H-(cit99)/*[position()=1]) 2017; 11 Jiang (D0CS00671H-(cit258)/*[position()=1]) 2019; 10 Zhen (D0CS00671H-(cit238)/*[position()=1]) 2018; 57 Guo (D0CS00671H-(cit131)/*[position()=1]) 2019; 31 Wu (D0CS00671H-(cit189)/*[position()=1]) 2017; 4 Mu (D0CS00671H-(cit148)/*[position()=1]) 2020; 32 Harmatys (D0CS00671H-(cit4)/*[position()=1]) 2019; 52 Roth-Konforti (D0CS00671H-(cit259)/*[position()=1]) 2017; 56 Chen (D0CS00671H-(cit231)/*[position()=1]) 2017; 114 Yang (D0CS00671H-(cit166)/*[position()=1]) 2018; 9 Wang (D0CS00671H-(cit233)/*[position()=1]) 2019; 13 Li (D0CS00671H-(cit12)/*[position()=1]) 2017; 29 Kobayashi (D0CS00671H-(cit6)/*[position()=1]) 2010; 110 Shao (D0CS00671H-(cit136)/*[position()=1]) 2019; 22 Wolfbeis (D0CS00671H-(cit25)/*[position()=1]) 2015; 44 Li (D0CS00671H-(cit244)/*[position()=1]) 2018; 12 An (D0CS00671H-(cit260)/*[position()=1]) 2019; 91 Wang (D0CS00671H-(cit60)/*[position()=1]) 2019; 29 Yan (D0CS00671H-(cit240)/*[position()=1]) 2019; 141 Zhang (D0CS00671H-(cit155)/*[position()=1]) 2018; 118 Zhao (D0CS00671H-(cit165)/*[position()=1]) 2019; 10 Bruemmer (D0CS00671H-(cit263)/*[position()=1]) 2018; 57 Qi (D0CS00671H-(cit249)/*[position()=1]) 2018; 9 Luby (D0CS00671H-(cit22)/*[position()=1]) 2017; 113 Ni (D0CS00671H-(cit39)/*[position()=1]) 2018; 30 Shi (D0CS00671H-(cit194)/*[position()=1]) 2014; 24 Guo (D0CS00671H-(cit29)/*[position()=1]) 2014; 43 Yan (D0CS00671H-(cit90)/*[position()=1]) 2018; 6 Zhang (D0CS00671H-(cit135)/*[position()=1]) 2018; 14 Xie (D0CS00671H-(cit105)/*[position()=1]) 2017; 119 Li (D0CS00671H-(cit228)/*[position()=1]) 2019; 91 Wan (D0CS00671H-(cit43)/*[position()=1]) 2018; 28 Kabe (D0CS00671H-(cit168)/*[position()=1]) 2017; 550 Cao (D0CS00671H-(cit261)/*[position()=1]) 2016; 88 Lovell (D0CS00671H-(cit96)/*[position()=1]) 2011; 10 Cai (D0CS00671H-(cit161)/*[position()=1]) 2018; 28 Wang (D0CS00671H-(cit196)/*[position()=1]) 2019; 13 Xie (D0CS00671H-(cit50)/*[position()=1]) 2017; 27 Cosco (D0CS00671H-(cit32)/*[position()=1]) 2017; 56 Hong (D0CS00671H-(cit26)/*[position()=1]) 2017; 1 Zhu (D0CS00671H-(cit45)/*[position()=1]) 2018; 30 Wang (D0CS00671H-(cit232)/*[position()=1]) 2019; 12 Zhao (D0CS00671H-(cit174)/*[position()=1]) 2013; 42 Yang (D0CS00671H-(cit47)/*[position()=1]) 2018; 140 Li (D0CS00671H-(cit121)/*[position()=1]) 2018; 9 He (D0CS00671H-(cit173)/*[position()=1]) 2019; 31 Li (D0CS00671H-(cit147)/*[po |
References_xml | – issn: 2003 end-page: p 19-58 publication-title: Photodynamic Therapy doi: Moor Ortel Hasan – volume: 13 start-page: 3691 year: 2019 ident: D0CS00671H-(cit144)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b00452 – volume: 118 start-page: 1770 year: 2018 ident: D0CS00671H-(cit155)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00425 – volume: 56 start-page: 13126 year: 2017 ident: D0CS00671H-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706974 – volume: 28 start-page: 1804956 year: 2018 ident: D0CS00671H-(cit43)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804956 – volume: 27 start-page: 6195 year: 2015 ident: D0CS00671H-(cit160)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502442 – volume: 11 start-page: 3405 year: 2020 ident: D0CS00671H-(cit204)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC00785D – volume: 57 start-page: 15189 year: 2018 ident: D0CS00671H-(cit192)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810326 – volume: 141 start-page: 5359 year: 2019 ident: D0CS00671H-(cit100)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13889 – volume: 22 start-page: 229 year: 2019 ident: D0CS00671H-(cit136)/*[position()=1] publication-title: iScience doi: 10.1016/j.isci.2019.11.022 – volume: 12 start-page: 49 year: 2019 ident: D0CS00671H-(cit232)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-018-2175-9 – volume: 56 start-page: 15633 year: 2017 ident: D0CS00671H-(cit259)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709347 – volume: 10 start-page: 166 year: 2020 ident: D0CS00671H-(cit223)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.36999 – volume: 114 start-page: 5343 year: 2017 ident: D0CS00671H-(cit231)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1701976114 – volume: 144 start-page: 53 year: 2017 ident: D0CS00671H-(cit245)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.08.018 – volume: 18 start-page: 1133 year: 2019 ident: D0CS00671H-(cit253)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-019-0378-4 – volume: 127 start-page: 97 year: 2017 ident: D0CS00671H-(cit149)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.03.003 – volume: 4 start-page: 6150 year: 2012 ident: D0CS00671H-(cit49)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31392h – volume: 1 start-page: 0010 year: 2017 ident: D0CS00671H-(cit26)/*[position()=1] publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-016-0010 – volume: 11 start-page: 1255 year: 2020 ident: D0CS00671H-(cit56)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-15095-1 – volume: 13 start-page: 627 year: 2016 ident: D0CS00671H-(cit80)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth.3925 – volume: 43 start-page: 6570 year: 2014 ident: D0CS00671H-(cit14)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00014E – volume: 43 start-page: 16 year: 2014 ident: D0CS00671H-(cit29)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60271K – volume: 138 start-page: 3518 year: 2016 ident: D0CS00671H-(cit214)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00007 – volume: 12 start-page: 11858 year: 2020 ident: D0CS00671H-(cit145)/*[position()=1] publication-title: Nanoscale doi: 10.1039/D0NR02622K – volume: 3 start-page: 1900553 year: 2019 ident: D0CS00671H-(cit124)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201900553 – volume: 9 start-page: 2098 year: 2018 ident: D0CS00671H-(cit121)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC05115H – volume: 29 start-page: 1604100 year: 2017 ident: D0CS00671H-(cit76)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604100 – volume: 27 start-page: 1604053 year: 2017 ident: D0CS00671H-(cit219)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604053 – volume: 114 start-page: 962 year: 2017 ident: D0CS00671H-(cit46)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1617990114 – volume: 4 start-page: 710 year: 2009 ident: D0CS00671H-(cit30)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.326 – volume: 11 start-page: 21408 year: 2019 ident: D0CS00671H-(cit110)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06866 – volume: 32 start-page: 1906711 year: 2020 ident: D0CS00671H-(cit148)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201906711 – volume: 49 start-page: 1041 year: 2020 ident: D0CS00671H-(cit146)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00129H – volume: 58 start-page: 2350 year: 2019 ident: D0CS00671H-(cit211)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813002 – volume: 23 start-page: 4310 year: 2017 ident: D0CS00671H-(cit69)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201604741 – volume: 57 start-page: 7508 year: 2018 ident: D0CS00671H-(cit263)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802143 – volume: 15 start-page: 947 year: 2020 ident: D0CS00671H-(cit152)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201901658 – volume: 11 start-page: 2675 year: 2015 ident: D0CS00671H-(cit139)/*[position()=1] publication-title: Small doi: 10.1002/smll.201403395 – volume: 10 start-page: 1212 year: 2014 ident: D0CS00671H-(cit58)/*[position()=1] publication-title: Small doi: 10.1002/smll.201302161 – volume: 1 start-page: 1600023 year: 2017 ident: D0CS00671H-(cit72)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201600023 – volume: 4 start-page: 1937 year: 2018 ident: D0CS00671H-(cit195)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.06.003 – volume: 57 start-page: 3626 year: 2018 ident: D0CS00671H-(cit235)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712528 – volume: 59 start-page: 8630 year: 2020 ident: D0CS00671H-(cit147)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916147 – volume: 30 start-page: 1805220 year: 2018 ident: D0CS00671H-(cit39)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201805220 – volume: 14 start-page: 685 year: 2015 ident: D0CS00671H-(cit162)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4259 – volume: 50 start-page: 8757 year: 2014 ident: D0CS00671H-(cit180)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC02767A – volume: 58 start-page: 8799 year: 2019 ident: D0CS00671H-(cit212)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903277 – volume: 29 start-page: 1606690 year: 2017 ident: D0CS00671H-(cit94)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606690 – volume: 58 start-page: 17796 year: 2019 ident: D0CS00671H-(cit264)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201910137 – volume: 56 start-page: 16454 year: 2017 ident: D0CS00671H-(cit250)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706969 – volume: 1 start-page: 1556 year: 2017 ident: D0CS00671H-(cit134)/*[position()=1] publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00056A – volume: 42 start-page: 5323 year: 2013 ident: D0CS00671H-(cit174)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35531d – volume: 9 start-page: 233 year: 2014 ident: D0CS00671H-(cit98)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.302 – volume-title: Photodynamic Therapy year: 2003 ident: D0CS00671H-(cit9)/*[position()=1] – volume: 29 start-page: 1806877 year: 2019 ident: D0CS00671H-(cit83)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806877 – volume: 27 start-page: 1704079 year: 2017 ident: D0CS00671H-(cit199)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704079 – volume: 45 start-page: 6597 year: 2016 ident: D0CS00671H-(cit11)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00271D – volume: 17 start-page: 4964 year: 2017 ident: D0CS00671H-(cit125)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02106 – volume: 112 start-page: 2343 year: 2015 ident: D0CS00671H-(cit200)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1417047112 – volume: 9 start-page: 1848 year: 2018 ident: D0CS00671H-(cit249)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04222-8 – volume: 11 start-page: 8998 year: 2017 ident: D0CS00671H-(cit208)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b03507 – volume: 57 start-page: 16396 year: 2018 ident: D0CS00671H-(cit218)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809641 – volume: 28 start-page: 7249 year: 2016 ident: D0CS00671H-(cit225)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601214 – volume: 4 start-page: 1700113 year: 2017 ident: D0CS00671H-(cit176)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700113 – volume: 110 start-page: 2620 year: 2010 ident: D0CS00671H-(cit6)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900263j – volume: 10 start-page: 4472 year: 2016 ident: D0CS00671H-(cit140)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b00168 – volume: 28 start-page: 1707519 year: 2018 ident: D0CS00671H-(cit227)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707519 – volume: 13 start-page: 1602747 year: 2017 ident: D0CS00671H-(cit137)/*[position()=1] publication-title: Small doi: 10.1002/smll.201602747 – volume: 30 start-page: 1801065 year: 2018 ident: D0CS00671H-(cit205)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801065 – volume: 47 start-page: 8847 year: 2011 ident: D0CS00671H-(cit35)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc12775f – volume: 31 start-page: 1807222 year: 2019 ident: D0CS00671H-(cit173)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807222 – volume: 10 start-page: 7222 year: 2019 ident: D0CS00671H-(cit246)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC02093D – volume: 12 start-page: 6528 year: 2016 ident: D0CS00671H-(cit19)/*[position()=1] publication-title: Small doi: 10.1002/smll.201601637 – volume: 2 start-page: 932 year: 2005 ident: D0CS00671H-(cit61)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth818 – volume: 4 start-page: 021307 year: 2017 ident: D0CS00671H-(cit51)/*[position()=1] publication-title: Appl. Phys. Rev. doi: 10.1063/1.4984020 – volume: 11 start-page: 3797 year: 2017 ident: D0CS00671H-(cit88)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b08720 – volume: 7 start-page: 6203 year: 2016 ident: D0CS00671H-(cit44)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC01561A – volume: 29 start-page: 1703403 year: 2017 ident: D0CS00671H-(cit129)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703403 – volume: 139 start-page: 14792 year: 2017 ident: D0CS00671H-(cit169)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08710 – volume: 139 start-page: 13243 year: 2017 ident: D0CS00671H-(cit257)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08446 – volume: 8 start-page: 7457 year: 2017 ident: D0CS00671H-(cit119)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC03351F – volume: 12 start-page: 8145 year: 2018 ident: D0CS00671H-(cit197)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b03138 – volume: 29 start-page: 1901480 year: 2019 ident: D0CS00671H-(cit117)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901480 – volume: 27 start-page: 5184 year: 2015 ident: D0CS00671H-(cit108)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502285 – volume: 4 start-page: 1600407 year: 2017 ident: D0CS00671H-(cit59)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201600407 – volume: 10 start-page: 767 year: 2019 ident: D0CS00671H-(cit122)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-08434-4 – volume: 13 start-page: 1602807 year: 2017 ident: D0CS00671H-(cit206)/*[position()=1] publication-title: Small doi: 10.1002/smll.201602807 – volume: 30 start-page: 1907077 year: 2020 ident: D0CS00671H-(cit150)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907077 – volume: 113 start-page: 9098 year: 2009 ident: D0CS00671H-(cit75)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp900665x – volume: 13 start-page: 3095 year: 2019 ident: D0CS00671H-(cit196)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b08398 – volume: 13 start-page: 5816 year: 2019 ident: D0CS00671H-(cit233)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b01411 – volume: 110 start-page: 12474 year: 2013 ident: D0CS00671H-(cit234)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1306241110 – volume: 10 start-page: 16299 year: 2018 ident: D0CS00671H-(cit120)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03568 – volume: 7 start-page: 2746 year: 2017 ident: D0CS00671H-(cit220)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.18861 – volume: 112 start-page: 4541 year: 2012 ident: D0CS00671H-(cit151)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200166m – volume: 31 start-page: 1808355 year: 2019 ident: D0CS00671H-(cit131)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201808355 – volume: 52 start-page: 1245 year: 2019 ident: D0CS00671H-(cit85)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00064 – volume: 3 start-page: 205 year: 2011 ident: D0CS00671H-(cit158)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.984 – volume: 58 start-page: 13394 year: 2019 ident: D0CS00671H-(cit95)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907754 – volume: 15 start-page: 235 year: 2016 ident: D0CS00671H-(cit41)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4476 – volume: 11 start-page: 3922 year: 2017 ident: D0CS00671H-(cit181)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00312 – volume: 28 start-page: 1705045 year: 2018 ident: D0CS00671H-(cit161)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705045 – volume: 30 start-page: 1802394 year: 2018 ident: D0CS00671H-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802394 – volume: 9 start-page: 5683 year: 2017 ident: D0CS00671H-(cit92)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16801 – volume: 6 start-page: 7420 year: 2018 ident: D0CS00671H-(cit90)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01750F – volume: 48 start-page: 4300 year: 2009 ident: D0CS00671H-(cit48)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805456 – volume: 13 start-page: 639 year: 2016 ident: D0CS00671H-(cit81)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth.3929 – volume: 15 start-page: 1902352 year: 2019 ident: D0CS00671H-(cit187)/*[position()=1] publication-title: Small doi: 10.1002/smll.201902352 – volume: 29 start-page: 1606857 year: 2017 ident: D0CS00671H-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606857 – volume: 56 start-page: 16063 year: 2017 ident: D0CS00671H-(cit101)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709887 – volume: 29 start-page: 1700487 year: 2017 ident: D0CS00671H-(cit115)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700487 – volume: 7 start-page: 4029 year: 2017 ident: D0CS00671H-(cit112)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.19538 – volume: 31 start-page: 1805875 year: 2019 ident: D0CS00671H-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201805875 – volume: 57 start-page: 7483 year: 2018 ident: D0CS00671H-(cit33)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801226 – volume: 30 start-page: 1802546 year: 2018 ident: D0CS00671H-(cit34)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802546 – volume: 115 start-page: 11718 year: 2015 ident: D0CS00671H-(cit38)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00263 – volume: 119 start-page: 1 year: 2017 ident: D0CS00671H-(cit105)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.12.004 – volume: 32 start-page: 100851 year: 2020 ident: D0CS00671H-(cit248)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2020.100851 – volume: 4 start-page: 278 year: 2008 ident: D0CS00671H-(cit224)/*[position()=1] publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.85 – volume: 140 start-page: 1715 year: 2018 ident: D0CS00671H-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10334 – volume: 11 start-page: 371 year: 1965 ident: D0CS00671H-(cit67)/*[position()=1] publication-title: Pure Appl. Chem. doi: 10.1351/pac196511030371 – volume: 48 start-page: 2053 year: 2019 ident: D0CS00671H-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00618K – volume: 51 start-page: 10988 year: 2015 ident: D0CS00671H-(cit154)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC03114A – start-page: 3255 year: 2007 ident: D0CS00671H-(cit73)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b704794k – volume: 28 start-page: 6872 year: 2016 ident: D0CS00671H-(cit42)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600706 – volume: 144 start-page: 42 year: 2017 ident: D0CS00671H-(cit114)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.08.007 – volume: 12 start-page: 1801 year: 2018 ident: D0CS00671H-(cit123)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b08616 – volume: 30 start-page: 1800766 year: 2018 ident: D0CS00671H-(cit54)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800766 – volume: 31 start-page: 1904799 year: 2019 ident: D0CS00671H-(cit77)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904799 – volume: 27 start-page: 1605397 year: 2017 ident: D0CS00671H-(cit50)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605397 – volume: 14 start-page: 1802991 year: 2018 ident: D0CS00671H-(cit135)/*[position()=1] publication-title: Small doi: 10.1002/smll.201802991 – volume: 54 start-page: 13395 year: 2018 ident: D0CS00671H-(cit70)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC08096H – volume: 29 start-page: 1606665 year: 2017 ident: D0CS00671H-(cit172)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606665 – volume: 59 start-page: 10008 year: 2020 ident: D0CS00671H-(cit63)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916430 – volume: 4 start-page: 1110 year: 2017 ident: D0CS00671H-(cit189)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C7MH00469A – volume: 155 start-page: 217 year: 2018 ident: D0CS00671H-(cit28)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.025 – volume: 9 start-page: 1171 year: 2018 ident: D0CS00671H-(cit57)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03505-4 – volume: 48 start-page: 38 year: 2019 ident: D0CS00671H-(cit18)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00001H – volume: 11 start-page: 7177 year: 2017 ident: D0CS00671H-(cit99)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b03062 – volume: 29 start-page: 5216 year: 2017 ident: D0CS00671H-(cit222)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01075 – volume: 113 start-page: 97 year: 2017 ident: D0CS00671H-(cit22)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2016.08.010 – volume: 30 start-page: 1705799 year: 2018 ident: D0CS00671H-(cit45)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705799 – volume: 52 start-page: 2559 year: 2019 ident: D0CS00671H-(cit24)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00305 – volume: 28 start-page: 8669 year: 2016 ident: D0CS00671H-(cit107)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03738 – volume: 137 start-page: 7600 year: 2015 ident: D0CS00671H-(cit215)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04069 – volume: 8 start-page: 2782 year: 2017 ident: D0CS00671H-(cit40)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC04384D – volume: 28 start-page: 9920 year: 2016 ident: D0CS00671H-(cit153)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602604 – volume: 27 start-page: 1605094 year: 2017 ident: D0CS00671H-(cit113)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605094 – volume: 139 start-page: 10880 year: 2017 ident: D0CS00671H-(cit242)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05916 – volume: 27 start-page: 1702834 year: 2017 ident: D0CS00671H-(cit93)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702834 – volume: 145 start-page: 168 year: 2017 ident: D0CS00671H-(cit141)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.08.037 – volume: 141 start-page: 2695 year: 2019 ident: D0CS00671H-(cit203)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13141 – volume: 44 start-page: 5003 year: 2015 ident: D0CS00671H-(cit247)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00103J – volume: 10 start-page: 1595 year: 2019 ident: D0CS00671H-(cit165)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09561-8 – volume: 141 start-page: 16781 year: 2019 ident: D0CS00671H-(cit183)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07162 – volume: 8 start-page: 21193 year: 2016 ident: D0CS00671H-(cit62)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06136 – volume: 3 start-page: 650 year: 2019 ident: D0CS00671H-(cit116)/*[position()=1] publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00036D – volume: 28 start-page: 1804901 year: 2018 ident: D0CS00671H-(cit216)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804901 – volume: 152 start-page: 77 year: 2018 ident: D0CS00671H-(cit53)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.031 – volume: 8 start-page: 470 year: 2017 ident: D0CS00671H-(cit266)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00545-0 – volume: 35 start-page: 1102 year: 2017 ident: D0CS00671H-(cit251)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3987 – volume: 44 start-page: 1029 year: 2011 ident: D0CS00671H-(cit1)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200019c – volume: 56 start-page: 12160 year: 2017 ident: D0CS00671H-(cit171)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705945 – volume: 30 start-page: 1705980 year: 2018 ident: D0CS00671H-(cit126)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705980 – volume: 10 start-page: 1058 year: 2019 ident: D0CS00671H-(cit221)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09043-x – volume: 29 start-page: 1605497 year: 2017 ident: D0CS00671H-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605497 – volume: 550 start-page: 384 year: 2017 ident: D0CS00671H-(cit168)/*[position()=1] publication-title: Nature doi: 10.1038/nature24010 – volume: 233–234 start-page: 351 year: 2002 ident: D0CS00671H-(cit177)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(02)00034-6 – volume: 57 start-page: 9885 year: 2018 ident: D0CS00671H-(cit201)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806551 – volume: 10 start-page: 2206 year: 2019 ident: D0CS00671H-(cit66)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10056-9 – volume: 47 start-page: 1174 year: 2018 ident: D0CS00671H-(cit209)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00594F – volume: 155 start-page: 103 year: 2018 ident: D0CS00671H-(cit127)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.016 – volume: 29 start-page: 1808365 year: 2019 ident: D0CS00671H-(cit60)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808365 – volume: 139 start-page: 13713 year: 2017 ident: D0CS00671H-(cit178)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05019 – start-page: 1740 year: 2001 ident: D0CS00671H-(cit37)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b105159h – volume: 27 start-page: 1606314 year: 2017 ident: D0CS00671H-(cit213)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606314 – volume: 91 start-page: 4771 year: 2019 ident: D0CS00671H-(cit228)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00317 – volume: 30 start-page: 1706856 year: 2018 ident: D0CS00671H-(cit55)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706856 – volume: 10 start-page: 794 year: 2017 ident: D0CS00671H-(cit106)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1332-2 – volume: 8 start-page: 1794 year: 2017 ident: D0CS00671H-(cit241)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-01951-0 – volume: 11 start-page: 7754 year: 2019 ident: D0CS00671H-(cit130)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR00552H – volume: 32 start-page: 1907855 year: 2020 ident: D0CS00671H-(cit133)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201907855 – volume: 140 start-page: 14851 year: 2018 ident: D0CS00671H-(cit202)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08658 – volume: 9 start-page: 840 year: 2018 ident: D0CS00671H-(cit166)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03236-6 – volume: 24 start-page: 4823 year: 2014 ident: D0CS00671H-(cit194)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400647 – volume: 18 start-page: 6411 year: 2018 ident: D0CS00671H-(cit236)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02767 – volume: 110 start-page: 2756 year: 2010 ident: D0CS00671H-(cit78)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900266s – volume: 140 start-page: 16340 year: 2018 ident: D0CS00671H-(cit237)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10176 – volume: 13 start-page: 12006 year: 2019 ident: D0CS00671H-(cit138)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b06208 – volume: 13 start-page: 1700710 year: 2017 ident: D0CS00671H-(cit82)/*[position()=1] publication-title: Small doi: 10.1002/smll.201700710 – volume: 29 start-page: 1701244 year: 2017 ident: D0CS00671H-(cit163)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701244 – volume: 1 start-page: 1746 year: 2017 ident: D0CS00671H-(cit198)/*[position()=1] publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00092H – volume: 59 start-page: 8833 year: 2020 ident: D0CS00671H-(cit217)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914384 – volume: 91 start-page: 15757 year: 2019 ident: D0CS00671H-(cit226)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04002 – volume: 31 start-page: 1900321 year: 2019 ident: D0CS00671H-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201900321 – volume: 335 start-page: 1458 year: 2012 ident: D0CS00671H-(cit79)/*[position()=1] publication-title: Science doi: 10.1126/science.1216210 – volume: 11 start-page: 1054 year: 2017 ident: D0CS00671H-(cit102)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b07927 – volume: 5 start-page: 2854 year: 2014 ident: D0CS00671H-(cit104)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c3py01587d – volume: 32 start-page: 1903530 year: 2020 ident: D0CS00671H-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201903530 – volume: 141 start-page: 10331 year: 2019 ident: D0CS00671H-(cit240)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03649 – volume: 10 start-page: 768 year: 2019 ident: D0CS00671H-(cit132)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-08722-z – volume: 46 start-page: 6433 year: 2017 ident: D0CS00671H-(cit142)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00525C – volume: 10 start-page: 2064 year: 2019 ident: D0CS00671H-(cit258)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10119-x – volume: 58 start-page: 2558 year: 2019 ident: D0CS00671H-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805246 – volume: 58 start-page: 14974 year: 2019 ident: D0CS00671H-(cit97)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908664 – volume: 31 start-page: 1904914 year: 2019 ident: D0CS00671H-(cit175)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904914 – volume: 140 start-page: 3505 year: 2018 ident: D0CS00671H-(cit239)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13307 – volume: 51 start-page: 1404 year: 2018 ident: D0CS00671H-(cit16)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00060 – volume: 91 start-page: 13639 year: 2019 ident: D0CS00671H-(cit260)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02839 – volume: 58 start-page: 1638 year: 2019 ident: D0CS00671H-(cit89)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810541 – volume: 58 start-page: 5628 year: 2019 ident: D0CS00671H-(cit118)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900366 – volume: 59 start-page: 9470 year: 2020 ident: D0CS00671H-(cit184)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909706 – volume: 53 start-page: 8727 year: 2017 ident: D0CS00671H-(cit188)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC04864E – volume: 3 start-page: 349 year: 2017 ident: D0CS00671H-(cit256)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00058 – volume: 13 start-page: 1702299 year: 2017 ident: D0CS00671H-(cit10)/*[position()=1] publication-title: Small doi: 10.1002/smll.201702299 – volume: 20 start-page: 6208 year: 2008 ident: D0CS00671H-(cit65)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm801911n – volume: 9 start-page: 3463 year: 2017 ident: D0CS00671H-(cit210)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14885 – volume: 30 start-page: 1801350 year: 2018 ident: D0CS00671H-(cit157)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801350 – volume: 29 start-page: 1604764 year: 2017 ident: D0CS00671H-(cit230)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604764 – volume: 27 start-page: 843 year: 2015 ident: D0CS00671H-(cit87)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201402972 – volume: 44 start-page: 4743 year: 2015 ident: D0CS00671H-(cit25)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00392F – volume: 30 start-page: 1800365 year: 2018 ident: D0CS00671H-(cit164)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800365 – volume: 57 start-page: 10182 year: 2018 ident: D0CS00671H-(cit186)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805446 – volume: 88 start-page: 4995 year: 2016 ident: D0CS00671H-(cit261)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01096 – volume: 9 start-page: 2188 year: 2018 ident: D0CS00671H-(cit191)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC04694D – volume: 30 start-page: 1706320 year: 2018 ident: D0CS00671H-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706320 – volume: 55 start-page: 790 year: 2019 ident: D0CS00671H-(cit109)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC07768A – volume: 10 start-page: 2111 year: 2019 ident: D0CS00671H-(cit156)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10033-2 – volume: 42 start-page: 6620 year: 2013 ident: D0CS00671H-(cit193)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60036j – volume: 115 start-page: 11012 year: 2015 ident: D0CS00671H-(cit2)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00140 – volume: 46 start-page: 2237 year: 2017 ident: D0CS00671H-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00908E – volume: 86 start-page: 7987 year: 2014 ident: D0CS00671H-(cit182)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac502103t – volume: 19 start-page: 12928 year: 2017 ident: D0CS00671H-(cit74)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP02118F – volume: 139 start-page: 6282 year: 2017 ident: D0CS00671H-(cit179)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00551 – volume: 50 start-page: 3376 year: 2011 ident: D0CS00671H-(cit68)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002307 – volume: 32 start-page: 1806331 year: 2020 ident: D0CS00671H-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201806331 – volume: 58 start-page: 10660 year: 2019 ident: D0CS00671H-(cit255)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905884 – volume: 48 start-page: 22 year: 2019 ident: D0CS00671H-(cit13)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00494C – volume: 58 start-page: 12680 year: 2019 ident: D0CS00671H-(cit207)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906288 – volume: 141 start-page: 10581 year: 2019 ident: D0CS00671H-(cit265)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02580 – volume: 30 start-page: 1801140 year: 2018 ident: D0CS00671H-(cit243)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801140 – volume: 18 start-page: 3375 year: 2017 ident: D0CS00671H-(cit86)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01029 – volume: 57 start-page: 7804 year: 2018 ident: D0CS00671H-(cit238)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803321 – volume: 29 start-page: 1700548 year: 2017 ident: D0CS00671H-(cit190)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700548 – volume: 29 start-page: 1703693 year: 2017 ident: D0CS00671H-(cit229)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703693 – volume: 11 start-page: 10124 year: 2017 ident: D0CS00671H-(cit111)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b04685 – volume: 10 start-page: 2115 year: 2018 ident: D0CS00671H-(cit91)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR07495F – volume: 31 start-page: 1902672 year: 2019 ident: D0CS00671H-(cit262)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201902672 – volume: 10 start-page: 324 year: 2011 ident: D0CS00671H-(cit96)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2986 – volume: 7 start-page: 9095 year: 2019 ident: D0CS00671H-(cit167)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02879J – volume: 10 start-page: 7919 year: 2018 ident: D0CS00671H-(cit128)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01458 – volume: 10 start-page: 7012 year: 2018 ident: D0CS00671H-(cit103)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00759 – volume: 62 start-page: 1740 year: 2019 ident: D0CS00671H-(cit84)/*[position()=1] publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9470-3 – volume: 11 start-page: 18103 year: 2019 ident: D0CS00671H-(cit170)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01615 – volume: 8 start-page: 15269 year: 2017 ident: D0CS00671H-(cit64)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15269 – volume: 52 start-page: 1265 year: 2019 ident: D0CS00671H-(cit4)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00104 – volume: 3 start-page: 1150 year: 2013 ident: D0CS00671H-(cit52)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01150 – volume: 12 start-page: 681 year: 2018 ident: D0CS00671H-(cit244)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b07809 – volume: 141 start-page: 19221 year: 2019 ident: D0CS00671H-(cit71)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10043 – volume: 19 start-page: 318 year: 2019 ident: D0CS00671H-(cit252)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03936 – volume: 3 start-page: 991 year: 2017 ident: D0CS00671H-(cit254)/*[position()=1] publication-title: Chemistry doi: 10.1016/j.chempr.2017.10.002 – volume: 114 start-page: 6090 year: 2010 ident: D0CS00671H-(cit159)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp909388y – volume: 2 start-page: 1800074 year: 2018 ident: D0CS00671H-(cit27)/*[position()=1] publication-title: Adv. Biosyst. doi: 10.1002/adbi.201800074 – volume: 9 start-page: 3685 year: 2018 ident: D0CS00671H-(cit185)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC04963C – volume: 51 start-page: 1840 year: 2018 ident: D0CS00671H-(cit15)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00242 – volume: 139 start-page: 1921 year: 2017 ident: D0CS00671H-(cit143)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11382 |
SSID | ssj0011762 |
Score | 2.7179697 |
SecondaryResourceType | review_article |
Snippet | Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8179 |
SubjectTerms | Animals Biocompatibility biosafety Chemical compounds crossing Deactivation design deterioration Drug Design energy Energy dissipation Excitation Fluorescence fluorescent dyes Humans Molecular Structure Multidisciplinary research Nanoengineering nanotechnology Neoplasms - drug therapy Neoplasms - metabolism Phosphorescence Photoacoustic Techniques photons Photosensitizing Agents - chemical synthesis Photosensitizing Agents - chemistry Photosensitizing Agents - therapeutic use polymers precision medicine semiconductors society Theranostic Nanomedicine |
Title | Design of superior phototheranostic agents guided by Jablonski diagrams |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33196726 https://www.proquest.com/docview/2460777160 https://www.proquest.com/docview/2461399119 https://www.proquest.com/docview/2511181914 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglaAXxKuQUpARXBBKa8fO61jtli4VICG2Um-R4zhbpJKsdhOp8OsZx4-UtiDgEkWOk135G0--cTzfIPSa1DImUuShkDwPeZxSmHN1FWYiIXkdScqHzeMfPyWzE358Gp-OlemG7JKu3JM_bswr-R9UoQ1w1Vmy_4Csfyg0wDngC0dAGI5_hfF02H6h-d6614rF7ert8qztTFJV064HMdbFkMO26L9Whmwei_K81eWq9bqr3pu1vkxQvYCA285p5UpHymicA5hWs7jovVn4heejvg0_g80tPEW2VVOm1g7tEgPEk5SGJm95Txm3yBMS8tQoNTq_aaRGrX2Y5GLrBTNqCsRcc8-EaXXTikhdhj2lZ5c7wdAuvw1AMe0W0uiKQrZ559pLt9FmBHEBOLbNg8P5-w_-wxEF5-5UaFm-P_7UFrrjbv6VglyLK4BlrFz1l4FlzO-jezY8wAcG6wfolmoeorsTV5XvEToymOO2xg5zfBVzbDDHBnNcfscec-wwf4xO3h3OJ7PQFsMIJUtJFyaC8Eor_8Q1UERWJjIvmVRpVRMlWZZxCkweyClEfJEUjJFK8Uxmmn_msa7buI02mrZRTxGmSrE6L0VSRoxzIYQCv0xUFgP5lCnJAvTGjU8hrVK8LlhyXgw7FlheTMnkyzCsswC98n2XRh_lxl67bpgLO3_WRQRGlaYQr5MAvfSXYTj1JyvRqLYf-kCIAi_k_A99IGaget2BB-iJgdD_FQd5gLYBU988msXOb295hrbGubCLNrpVr54DAe3KF9bofgK-coQZ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+superior+phototheranostic+agents+guided+by+Jablonski+diagrams&rft.jtitle=Chemical+Society+reviews&rft.au=Feng%2C+Guangxue&rft.au=Zhang%2C+Guo-Qiang&rft.au=Ding%2C+Dan&rft.date=2020-11-21&rft.eissn=1460-4744&rft.volume=49&rft.issue=22&rft.spage=8179&rft_id=info:doi/10.1039%2Fd0cs00671h&rft_id=info%3Apmid%2F33196726&rft.externalDocID=33196726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |