Fractional Calculus involving (p, q)-Mathieu Type Series

Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kineti...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 5; no. 2; pp. 15 - 34
Main Authors Kaur, Daljeet, Agarwal, Praveen, Rakshit, Madhuchanda, Chand, Mehar
Format Journal Article
LanguageEnglish
Published Beirut Sciendo 01.07.2020
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
AbstractList Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( p , q )-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.
Author Chand, Mehar
Kaur, Daljeet
Agarwal, Praveen
Rakshit, Madhuchanda
Author_xml – sequence: 1
  givenname: Daljeet
  surname: Kaur
  fullname: Kaur, Daljeet
  email: daljitk053@gmail.com
  organization: Department of Applied Sciences, Guru Kashi University, Bathinda-151302, India
– sequence: 2
  givenname: Praveen
  surname: Agarwal
  fullname: Agarwal, Praveen
  email: goyal.praveen2011@gmail.com
  organization: Department of Mathematics, Anand International College of Engineering, Jaipur-303012, India
– sequence: 3
  givenname: Madhuchanda
  surname: Rakshit
  fullname: Rakshit, Madhuchanda
  email: drmrakshit@gmail.com
  organization: Department of Applied Sciences, Guru Kashi University, Bathinda-151302, India
– sequence: 4
  givenname: Mehar
  surname: Chand
  fullname: Chand, Mehar
  email: mehar.jallandhra@gmail.com
  organization: Department of Mathematics, Baba Farid College, Bathinda-151001, India
BookMark eNp9kE1Lw0AQhhdRsNb-AG8BLwqm7lc2ycGDFKtCxYP1vEw207olTdLdpNJ_b2IFRdDTvAPvMwzPCTksqxIJOWN0zGWcXMO69GNOebeOKaWMHZABl1KGiYrU4Y98TEber7oKF0woxQckmTowja1KKIIJFKYtWh_YclsVW1sug4v6Kthchk_QvFlsg_muxuAFnUV_So4WUHgcfc0heZ3ezScP4ez5_nFyOwuNiGkTKhUBpovcKE4lIM8A4zzhuYkQWSqTzBjJYuAAuchFEonUSBmnGaIwNIsjMSTn-7u1qzYt-kavqtZ173otWMq4SLlIuhbbt4yrvHe40LWza3A7zajuHeneke4daa4_HXVM_IsxtoHeRePAFv-SN3vyHYoGXY5L1-668P3an2zEWSQ-AFY4gbs
CitedBy_id crossref_primary_10_1155_2021_1537958
crossref_primary_10_2478_amns_2021_1_00069
crossref_primary_10_1186_s13660_021_02735_3
crossref_primary_10_3389_fenrg_2023_1142243
crossref_primary_10_1016_j_chaos_2021_111674
crossref_primary_10_3934_math_2021648
crossref_primary_10_1186_s13662_022_03705_9
crossref_primary_10_2478_amns_2022_2_0186
crossref_primary_10_3390_math8101849
crossref_primary_10_3390_math9162012
crossref_primary_10_1016_j_rinp_2021_104330
crossref_primary_10_1016_j_rinp_2021_104331
crossref_primary_10_1186_s13662_021_03235_w
crossref_primary_10_2478_amns_2023_1_00025
crossref_primary_10_1142_S0217984921505461
crossref_primary_10_2478_amns_2023_1_00021
crossref_primary_10_1016_j_rinp_2021_104413
crossref_primary_10_3390_math10234564
crossref_primary_10_3390_sym14122539
crossref_primary_10_2478_amns_2022_2_0113
crossref_primary_10_1007_s44196_021_00009_w
crossref_primary_10_2478_amns_2021_1_00079
crossref_primary_10_3934_mbe_2022030
crossref_primary_10_3934_math_2021537
crossref_primary_10_2478_amns_2022_2_0111
crossref_primary_10_2478_amns_2022_2_0033
crossref_primary_10_3934_math_2022500
crossref_primary_10_2478_amns_2021_2_00145
crossref_primary_10_1016_j_rinp_2021_104366
crossref_primary_10_3390_sym13040532
crossref_primary_10_2478_amns_2023_1_00152
crossref_primary_10_1186_s13662_020_03077_y
crossref_primary_10_2478_amns_2022_2_0086
crossref_primary_10_2478_amns_2022_2_0163
crossref_primary_10_3390_sym13071159
crossref_primary_10_2478_amns_2022_2_0164
crossref_primary_10_3390_math11153343
crossref_primary_10_2478_amns_2021_2_00093
crossref_primary_10_3934_mbe_2022037
crossref_primary_10_1155_2021_8886056
crossref_primary_10_3390_axioms12040387
crossref_primary_10_3390_sym14112322
crossref_primary_10_3390_fractalfract5040160
crossref_primary_10_1155_2020_7359242
crossref_primary_10_2478_amns_2021_2_00137
crossref_primary_10_1155_2021_9512371
crossref_primary_10_1186_s13660_022_02896_9
crossref_primary_10_1007_s11071_022_07688_w
crossref_primary_10_1142_S0218348X22400515
crossref_primary_10_1186_s13662_020_03087_w
crossref_primary_10_2478_amns_2021_1_00097
crossref_primary_10_2478_amns_2022_2_0130
crossref_primary_10_3934_math_2021637
crossref_primary_10_3390_fractalfract6020085
crossref_primary_10_2478_amns_2021_1_00090
crossref_primary_10_3390_math11153308
crossref_primary_10_3390_fractalfract6050231
crossref_primary_10_1016_j_rinp_2021_104387
crossref_primary_10_1142_S0218348X2250164X
crossref_primary_10_1186_s13662_021_03289_w
crossref_primary_10_1016_j_aej_2022_02_054
Cites_doi 10.1112/plms/s3-45.3.519
10.2298/FIL1701125S
10.1016/j.apm.2017.02.021
10.2298/AADM121227028M
10.1063/1.166272
10.1080/00207160.2015.1045886
10.1016/j.amc.2007.10.005
10.1016/S0096-3003(99)00208-8
10.1007/978-90-481-3293-5
10.1016/j.camwa.2016.07.010
10.1515/math-2016-0007
10.1016/j.aej.2016.07.025
10.1134/S106192081704001X
10.1016/j.amc.2003.09.017
10.1016/j.advwatres.2012.04.005
10.1016/j.physa.2004.06.048
10.1007/s10957-012-0211-6
10.1186/s13662-018-1500-7
10.1016/0167-2789(94)90254-2
10.1007/s10957-017-1186-0
10.1016/j.physa.2017.10.002
10.1142/9789814355216
10.1140/epjp/i2018-12096-8
10.2298/TSCI151224222Y
10.7153/mia-2017-20-61
10.1142/9789812817747
10.7153/jmi-2018-12-13
10.1007/BF01329629
10.2298/TSCI160826008K
10.1007/s40819-018-0532-8
10.5269/bspm.v32i1.18146
10.1615/CritRevBiomedEng.v32.i1.10
10.1007/s11071-017-3870-x
10.2478/s13540-013-0056-1
10.2298/AADM190427005M
10.1016/j.apm.2017.03.029
10.1016/j.chaos.2017.04.025
10.2298/TSCI160111018A
10.1155/2015/289387
10.1007/s10509-006-9191-z
10.3390/axioms1030238
10.1007/s10509-008-9880-x
10.1007/978-3-319-90972-1_14
10.1002/mma.3986
10.1023/A:1002695807970
10.1115/1.4038444
10.1080/10652460802295978
10.12693/APhysPolA.131.1561
10.2298/TSCI170129096K
10.1016/j.cam.2017.03.011
10.1023/A:1021175108964
10.1007/BF01112023
10.1016/j.aej.2017.03.046
10.4134/BKMS.2014.51.4.995
10.1016/j.apm.2016.12.008
10.1007/BF02599788
10.1016/j.amc.2015.10.021
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/amns.2020.2.00011
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
EndPage 34
ExternalDocumentID 10_2478_amns_2020_2_00011
10_2478_amns_2020_2_000115215
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-665ae9fdc6204ae2bae7d82dc5ee1948bcc417a2aad3d38539c4479bee3c0b753
IEDL.DBID BENPR
ISSN 2444-8656
IngestDate Mon Jun 30 11:42:20 EDT 2025
Tue Jul 01 03:14:26 EDT 2025
Thu Apr 24 23:06:20 EDT 2025
Thu Jul 10 10:36:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-665ae9fdc6204ae2bae7d82dc5ee1948bcc417a2aad3d38539c4479bee3c0b753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3191239238?pq-origsite=%requestingapplication%
PQID 3191239238
PQPubID 6761185
PageCount 20
ParticipantIDs proquest_journals_3191239238
crossref_primary_10_2478_amns_2020_2_00011
crossref_citationtrail_10_2478_amns_2020_2_00011
walterdegruyter_journals_10_2478_amns_2020_2_000115215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2020
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2024050209220073569_j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa
2024050209220073569_j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa
2024050209220073569_j_amns.2020.2.00011_ref_087_w2aab3b7c80b1b6b1ab2ac87Aa
2024050209220073569_j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa
2024050209220073569_j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa
2024050209220073569_j_amns.2020.2.00011_ref_030_w2aab3b7c80b1b6b1ab2ac30Aa
2024050209220073569_j_amns.2020.2.00011_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa
2024050209220073569_j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa
2024050209220073569_j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa
2024050209220073569_j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa
2024050209220073569_j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa
2024050209220073569_j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa
2024050209220073569_j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa
2024050209220073569_j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa
2024050209220073569_j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa
2024050209220073569_j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa
2024050209220073569_j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa
2024050209220073569_j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa
2024050209220073569_j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa
2024050209220073569_j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa
2024050209220073569_j_amns.2020.2.00011_ref_051_w2aab3b7c80b1b6b1ab2ac51Aa
2024050209220073569_j_amns.2020.2.00011_ref_033_w2aab3b7c80b1b6b1ab2ac33Aa
2024050209220073569_j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa
2024050209220073569_j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa
2024050209220073569_j_amns.2020.2.00011_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa
2024050209220073569_j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa
2024050209220073569_j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa
2024050209220073569_j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa
2024050209220073569_j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa
2024050209220073569_j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa
2024050209220073569_j_amns.2020.2.00011_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa
2024050209220073569_j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa
2024050209220073569_j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa
2024050209220073569_j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa
2024050209220073569_j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa
2024050209220073569_j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa
2024050209220073569_j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa
2024050209220073569_j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa
2024050209220073569_j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa
2024050209220073569_j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa
2024050209220073569_j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa
2024050209220073569_j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa
2024050209220073569_j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa
2024050209220073569_j_amns.2020.2.00011_ref_071_w2aab3b7c80b1b6b1ab2ac71Aa
2024050209220073569_j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa
2024050209220073569_j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa
2024050209220073569_j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa
2024050209220073569_j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa
2024050209220073569_j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa
2024050209220073569_j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa
2024050209220073569_j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa
2024050209220073569_j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa
2024050209220073569_j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa
2024050209220073569_j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa
2024050209220073569_j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa
2024050209220073569_j_amns.2020.2.00011_ref_086_w2aab3b7c80b1b6b1ab2ac86Aa
2024050209220073569_j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa
2024050209220073569_j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa
2024050209220073569_j_amns.2020.2.00011_ref_068_w2aab3b7c80b1b6b1ab2ac68Aa
2024050209220073569_j_amns.2020.2.00011_ref_055_w2aab3b7c80b1b6b1ab2ac55Aa
2024050209220073569_j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa
2024050209220073569_j_amns.2020.2.00011_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa
2024050209220073569_j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa
2024050209220073569_j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa
2024050209220073569_j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa
2024050209220073569_j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa
2024050209220073569_j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa
2024050209220073569_j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa
2024050209220073569_j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa
2024050209220073569_j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa
2024050209220073569_j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa
2024050209220073569_j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa
2024050209220073569_j_amns.2020.2.00011_ref_032_w2aab3b7c80b1b6b1ab2ac32Aa
2024050209220073569_j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa
2024050209220073569_j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa
2024050209220073569_j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa
2024050209220073569_j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa
2024050209220073569_j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa
2024050209220073569_j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa
2024050209220073569_j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa
2024050209220073569_j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa
2024050209220073569_j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa
2024050209220073569_j_amns.2020.2.00011_ref_031_w2aab3b7c80b1b6b1ab2ac31Aa
2024050209220073569_j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa
2024050209220073569_j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa
2024050209220073569_j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa
2024050209220073569_j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa
2024050209220073569_j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa
References_xml – ident: 2024050209220073569_j_amns.2020.2.00011_ref_043_w2aab3b7c80b1b6b1ab2ac43Aa
  doi: 10.1112/plms/s3-45.3.519
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_070_w2aab3b7c80b1b6b1ab2ac70Aa
  doi: 10.2298/FIL1701125S
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_037_w2aab3b7c80b1b6b1ab2ac37Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa
  doi: 10.1016/j.apm.2017.02.021
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_035_w2aab3b7c80b1b6b1ab2ac35Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_058_w2aab3b7c80b1b6b1ab2ac58Aa
  doi: 10.2298/AADM121227028M
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_084_w2aab3b7c80b1b6b1ab2ac84Aa
  doi: 10.1063/1.166272
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_053_w2aab3b7c80b1b6b1ab2ac53Aa
  doi: 10.1080/00207160.2015.1045886
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_083_w2aab3b7c80b1b6b1ab2ac83Aa
  doi: 10.1016/j.amc.2007.10.005
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_088_w2aab3b7c80b1b6b1ab2ac88Aa
  doi: 10.1016/S0096-3003(99)00208-8
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_033_w2aab3b7c80b1b6b1ab2ac33Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_031_w2aab3b7c80b1b6b1ab2ac31Aa
  doi: 10.1007/978-90-481-3293-5
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa
  doi: 10.1016/j.camwa.2016.07.010
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa
  doi: 10.1515/math-2016-0007
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa
  doi: 10.1016/j.aej.2016.07.025
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_039_w2aab3b7c80b1b6b1ab2ac39Aa
  doi: 10.1134/S106192081704001X
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_064_w2aab3b7c80b1b6b1ab2ac64Aa
  doi: 10.1016/j.amc.2003.09.017
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_086_w2aab3b7c80b1b6b1ab2ac86Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa
  doi: 10.1016/j.advwatres.2012.04.005
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_076_w2aab3b7c80b1b6b1ab2ac76Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_081_w2aab3b7c80b1b6b1ab2ac81Aa
  doi: 10.1016/j.physa.2004.06.048
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa
  doi: 10.1007/s10957-012-0211-6
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_068_w2aab3b7c80b1b6b1ab2ac68Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_036_w2aab3b7c80b1b6b1ab2ac36Aa
  doi: 10.1186/s13662-018-1500-7
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_085_w2aab3b7c80b1b6b1ab2ac85Aa
  doi: 10.1016/0167-2789(94)90254-2
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_067_w2aab3b7c80b1b6b1ab2ac67Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_027_w2aab3b7c80b1b6b1ab2ac27Aa
  doi: 10.1007/s10957-017-1186-0
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_023_w2aab3b7c80b1b6b1ab2ac23Aa
  doi: 10.1016/j.physa.2017.10.002
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa
  doi: 10.1142/9789814355216
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa
  doi: 10.1140/epjp/i2018-12096-8
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_049_w2aab3b7c80b1b6b1ab2ac49Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_061_w2aab3b7c80b1b6b1ab2ac61Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_034_w2aab3b7c80b1b6b1ab2ac34Aa
  doi: 10.2298/TSCI151224222Y
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_062_w2aab3b7c80b1b6b1ab2ac62Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_066_w2aab3b7c80b1b6b1ab2ac66Aa
  doi: 10.7153/mia-2017-20-61
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa
  doi: 10.1142/9789812817747
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_059_w2aab3b7c80b1b6b1ab2ac59Aa
  doi: 10.7153/jmi-2018-12-13
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_048_w2aab3b7c80b1b6b1ab2ac48Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_060_w2aab3b7c80b1b6b1ab2ac60Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_056_w2aab3b7c80b1b6b1ab2ac56Aa
  doi: 10.1007/BF01329629
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_021_w2aab3b7c80b1b6b1ab2ac21Aa
  doi: 10.2298/TSCI160826008K
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_020_w2aab3b7c80b1b6b1ab2ac20Aa
  doi: 10.1007/s40819-018-0532-8
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_047_w2aab3b7c80b1b6b1ab2ac47Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_077_w2aab3b7c80b1b6b1ab2ac77Aa
  doi: 10.5269/bspm.v32i1.18146
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_045_w2aab3b7c80b1b6b1ab2ac45Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa
  doi: 10.1615/CritRevBiomedEng.v32.i1.10
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_024_w2aab3b7c80b1b6b1ab2ac24Aa
  doi: 10.1007/s11071-017-3870-x
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa
  doi: 10.2478/s13540-013-0056-1
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_040_w2aab3b7c80b1b6b1ab2ac40Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_065_w2aab3b7c80b1b6b1ab2ac65Aa
  doi: 10.2298/AADM190427005M
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa
  doi: 10.1016/j.apm.2017.03.029
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_032_w2aab3b7c80b1b6b1ab2ac32Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_029_w2aab3b7c80b1b6b1ab2ac29Aa
  doi: 10.1016/j.chaos.2017.04.025
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_042_w2aab3b7c80b1b6b1ab2ac42Aa
  doi: 10.2298/TSCI160111018A
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_030_w2aab3b7c80b1b6b1ab2ac30Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_087_w2aab3b7c80b1b6b1ab2ac87Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_079_w2aab3b7c80b1b6b1ab2ac79Aa
  doi: 10.1155/2015/289387
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_082_w2aab3b7c80b1b6b1ab2ac82Aa
  doi: 10.1007/s10509-006-9191-z
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_063_w2aab3b7c80b1b6b1ab2ac63Aa
  doi: 10.3390/axioms1030238
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_074_w2aab3b7c80b1b6b1ab2ac74Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_073_w2aab3b7c80b1b6b1ab2ac73Aa
  doi: 10.1007/s10509-008-9880-x
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_075_w2aab3b7c80b1b6b1ab2ac75Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa
  doi: 10.1007/978-3-319-90972-1_14
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_072_w2aab3b7c80b1b6b1ab2ac72Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_069_w2aab3b7c80b1b6b1ab2ac69Aa
  doi: 10.1002/mma.3986
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_078_w2aab3b7c80b1b6b1ab2ac78Aa
  doi: 10.1023/A:1002695807970
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_071_w2aab3b7c80b1b6b1ab2ac71Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_026_w2aab3b7c80b1b6b1ab2ac26Aa
  doi: 10.1115/1.4038444
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_054_w2aab3b7c80b1b6b1ab2ac54Aa
  doi: 10.1080/10652460802295978
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_028_w2aab3b7c80b1b6b1ab2ac28Aa
  doi: 10.12693/APhysPolA.131.1561
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_055_w2aab3b7c80b1b6b1ab2ac55Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_022_w2aab3b7c80b1b6b1ab2ac22Aa
  doi: 10.2298/TSCI170129096K
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_025_w2aab3b7c80b1b6b1ab2ac25Aa
  doi: 10.1016/j.cam.2017.03.011
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_080_w2aab3b7c80b1b6b1ab2ac80Aa
  doi: 10.1023/A:1021175108964
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_044_w2aab3b7c80b1b6b1ab2ac44Aa
  doi: 10.1007/BF01112023
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa
  doi: 10.1016/j.aej.2017.03.046
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_038_w2aab3b7c80b1b6b1ab2ac38Aa
  doi: 10.4134/BKMS.2014.51.4.995
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_052_w2aab3b7c80b1b6b1ab2ac52Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa
  doi: 10.1016/j.apm.2016.12.008
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_046_w2aab3b7c80b1b6b1ab2ac46Aa
  doi: 10.1007/BF01112023
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_050_w2aab3b7c80b1b6b1ab2ac50Aa
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_057_w2aab3b7c80b1b6b1ab2ac57Aa
  doi: 10.1007/BF02599788
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_041_w2aab3b7c80b1b6b1ab2ac41Aa
  doi: 10.1016/j.amc.2015.10.021
– ident: 2024050209220073569_j_amns.2020.2.00011_ref_051_w2aab3b7c80b1b6b1ab2ac51Aa
SSID ssj0002313662
Score 2.3886538
Snippet Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( , )-Mathieu type...
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized ( p , q )-Mathieu type...
Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Extended generalized Mathieu series
Fractional derivative operators
Fractional integral operators
Integral transforms
Title Fractional Calculus involving (p, q)-Mathieu Type Series
URI https://www.degruyter.com/doi/10.2478/amns.2020.2.00011
https://www.proquest.com/docview/3191239238
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vXjxLVZrycGDirFpskk2J9HSUoQWEYu9hX1FhJo-kiL-e2eSbYuCPS7s7mFmd-abb3ZnCLnkWG7Sk4DcfKpsyhxh44dOG2ujCaZoxDhSA_1B0BvSp5E_MoRbZp5VLm1iYajVRCJH3oSjAkYW4Ai7n85s7BqF2VXTQmObVMEEMwi-qo-dwfPLimUB9OIFgVumM10asib_TLFKtwvDuwIQ_XZIa5S5-1Xkq5V-ny--82V-tHA73X2ya_Ci9VAq-IBs6fSQ7BnsaJmbmR0R1p2XXxRgcpuPkdTLrI8UjA8yBtbV9NaaXdt9fGuoFxZGnxYSYzo7JsNu57Xds01XBFt6oZPbQeBzHSVKYiV5rl3BdaiYq6SvdSuiTEhJWyF3OVee8sAbR5LSMBJae9IREJ2ckEo6SfUpsaLEcRJKPS4gqvClK2BFIpKIKwduOtM14ixFE0tTMhw7V4xjCB1QmjFKM0Zpxm6Rxm7VyM1qybSsl7Fpcn0p79hcnSxeK7pGgj86WM_6d0-AI_7Z5n3PyQ6uKB_d1kklny_0BUCLXDTAQr71G-YU_QAgNc3l
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLbQcoALBQpiWx5zoFJBBMJkkkwOCPFaLYVdVRVI3MK8UlWiYdnsCvGn-I3YebCiUrlxjDSeg8f5_NmesQE2FbWbDAwyt1BYT0hfe_Sg06PeaFpakUhFqYFeP-peix834c0UPDdvYehaZYOJJVDbe0M58j00FQRZpCPycPDg0dQoqq42IzQqs7hwT48YshUH56d4vt8475xdnXS9eqqAZ4LYH3lRFCqXZNZQJ3bluFYutpJbEzqHEb3Uxoj9WHGlbGAD9GaJESJOtHOB8XVMUyIQ8qdFgKFMC6aPz_o_f71mdZAtBVHEq_IpF7HcU39z6grO8XO3JGBvHeCE1c49lvVx634Px0-jph5burnOPMzV_JQdVQa1AFMuX4RPNVdlNRIUn0F2htWTCFx8ou4oiViwPzmCHWUo2PfBDnvY8np0t9GNGUW7jBJxrliC6w_R1zK08vvcrQBLMt_PhAiUxigmNFyjRKazRFkfkUW6NviNalJTtyinSRl3KYYqpM2UtJmSNlNels3327D9KjKo-nO8t3i10Xda_6pFOjGsNkT_nMFk1X_3RPoTfnl_3w2Y6V71LtPL8_7FV5gl6erC7yq0RsOxW0NaM9LrtS0xuP1o830BXYQLdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qC-KlvrFaNQcPKsbmsZtsjqVa66NV0IK3sK-IUGNtUsR_724eLYp68Bgyk8NsZuab5wIcUL1u0uUKuWEkTEQsZuqBTlPvRmNEoIBQnRroD7zeEF094scK2OUsTGb3RVatbI1FlLUqI5-06Eusl2s76vE0wzELUPNx4OAq1Nq9i_vbWWJFARbX85y8gvkz71cfNAeW9fesRC3k02T6kZYl0czTdFegXkBEo52f6SpUZLwGywVcNAplTNaBdCf5VIIi7tCRzuMlxnOs7I1OEhiH4xPj7cjs6_ZCOTV0wGnoXJhMNmDYPX_o9MziIgSTu76Vmp6HqQwiwfXyeCodRqUviCM4ltIOEGGcI9unDqXCFa5ywAFHyA-YlC63mApINqEav8ZyC4wgsqwIIZcyFUhg7jDFEbEooMJSyk1kA6xSNCEvtoTryypGoYoWtDRDLc1QSzN0ssq13YDjGcs4X5HxF3GzlHdYaEsSKjOgHKiCmqQB3rczmFP9-k2FQPD2fxn3YfHurBveXA6ud2BJv82bcZtQTSdTuasgR8r2ip_sE2Lw0Ac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Calculus+involving+%28p%2C+q%29-Mathieu+Type+Series&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Kaur%2C+Daljeet&rft.au=Agarwal%2C+Praveen&rft.au=Rakshit%2C+Madhuchanda&rft.au=Chand%2C+Mehar&rft.date=2020-07-01&rft.pub=De+Gruyter+Poland&rft.eissn=2444-8656&rft.volume=5&rft.issue=2&rft.spage=15&rft.epage=34&rft_id=info:doi/10.2478%2Famns.2020.2.00011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon