Spectra of uniform hypergraphs

We present a spectral theory of uniform hypergraphs that closely parallels Spectral Graph Theory. A number of recent developments building upon classical work has led to a rich understanding of “symmetric hyperdeterminants” of hypermatrices, a.k.a. multidimensional arrays. Symmetric hyperdeterminant...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 436; no. 9; pp. 3268 - 3292
Main Authors Cooper, Joshua, Dutle, Aaron
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.05.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a spectral theory of uniform hypergraphs that closely parallels Spectral Graph Theory. A number of recent developments building upon classical work has led to a rich understanding of “symmetric hyperdeterminants” of hypermatrices, a.k.a. multidimensional arrays. Symmetric hyperdeterminants share many properties with determinants, but the context of multilinear algebra is substantially more complicated than the linear algebra required to address Spectral Graph Theory (i.e., ordinary matrices). Nonetheless, it is possible to define eigenvalues of a hypermatrix via its characteristic polynomial as well as variationally. We apply this notion to the “adjacency hypermatrix” of a uniform hypergraph, and prove a number of natural analogs of basic results in Spectral Graph Theory. Open problems abound, and we present a number of directions for further study.
AbstractList We present a spectral theory of uniform hypergraphs that closely parallels Spectral Graph Theory. A number of recent developments building upon classical work has led to a rich understanding of “symmetric hyperdeterminants” of hypermatrices, a.k.a. multidimensional arrays. Symmetric hyperdeterminants share many properties with determinants, but the context of multilinear algebra is substantially more complicated than the linear algebra required to address Spectral Graph Theory (i.e., ordinary matrices). Nonetheless, it is possible to define eigenvalues of a hypermatrix via its characteristic polynomial as well as variationally. We apply this notion to the “adjacency hypermatrix” of a uniform hypergraph, and prove a number of natural analogs of basic results in Spectral Graph Theory. Open problems abound, and we present a number of directions for further study.
Author Dutle, Aaron
Cooper, Joshua
Author_xml – sequence: 1
  givenname: Joshua
  surname: Cooper
  fullname: Cooper, Joshua
  email: cooper@math.sc.edu
– sequence: 2
  givenname: Aaron
  surname: Dutle
  fullname: Dutle, Aaron
  email: dutle@mailbox.sc.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25760769$$DView record in Pascal Francis
BookMark eNp9kD1rwzAQhjWk0CTtD-hSvHS0e5IiyaZTCf2CQIe2s1DkUyPj2EZyC_n3VXDp0CHwwt3wPgfPLcis6zsk5IpCQYHK26ZojSkYUFqkAC1nZA7AVjlXlTgnixgbAFgpYHNy_TagHYPJepd9dd71YZ_tDgOGz2CGXbwgZ860ES9_55J8PD68r5_zzevTy_p-k1uuYMylZKVFBwJLQ21V1iWTjPFtyYWrgW5BVZXiUlgnuKwZCOdUhYZSi2k1jC_JzXR3MNGa1gXTWR_1EPzehINmQklQsko9OvVs6GMM6P4qFPRRXjc6yeujvE5J8olR_xjrRzP6vkvevj1J3k0kJvVvj0FH67GzWPuQvqbr3p-gfwBjdnZQ
CODEN LAAPAW
CitedBy_id crossref_primary_10_1016_j_laa_2020_04_004
crossref_primary_10_1016_j_laa_2022_12_006
crossref_primary_10_1080_03081087_2019_1691491
crossref_primary_10_1142_S1793830923500672
crossref_primary_10_1007_s10589_017_9938_1
crossref_primary_10_1016_j_laa_2018_11_027
crossref_primary_10_1007_s13226_025_00766_w
crossref_primary_10_1007_s10915_024_02460_1
crossref_primary_10_1002_nla_2468
crossref_primary_10_1007_s11075_018_0601_4
crossref_primary_10_1093_bib_bbab127
crossref_primary_10_1016_j_laa_2018_03_030
crossref_primary_10_1007_s40305_016_0141_3
crossref_primary_10_1007_s10801_019_00886_7
crossref_primary_10_1007_s11464_018_0695_y
crossref_primary_10_1016_j_dam_2018_12_007
crossref_primary_10_1016_j_laa_2021_06_016
crossref_primary_10_1080_03081087_2016_1234575
crossref_primary_10_1016_j_disc_2023_113830
crossref_primary_10_1007_s10915_015_0155_8
crossref_primary_10_1016_j_dam_2020_06_026
crossref_primary_10_1016_j_laa_2022_04_018
crossref_primary_10_1016_j_laa_2021_03_030
crossref_primary_10_1016_j_endm_2018_11_012
crossref_primary_10_1016_j_dam_2024_06_027
crossref_primary_10_1080_03081087_2018_1453471
crossref_primary_10_1080_09728600_2023_2236165
crossref_primary_10_1016_j_laa_2014_07_020
crossref_primary_10_11650_tjm_190606
crossref_primary_10_1080_03081087_2020_1819188
crossref_primary_10_1016_j_laa_2014_11_020
crossref_primary_10_1016_j_laa_2022_04_014
crossref_primary_10_1007_s11464_018_0681_4
crossref_primary_10_1016_j_laa_2013_09_027
crossref_primary_10_1007_s11464_020_0842_0
crossref_primary_10_11948_2018_1863
crossref_primary_10_1016_j_laa_2020_05_029
crossref_primary_10_1007_s00211_017_0869_7
crossref_primary_10_1007_s11075_021_01074_0
crossref_primary_10_1016_j_cam_2019_02_014
crossref_primary_10_1016_j_laa_2019_12_010
crossref_primary_10_1080_03081087_2014_910207
crossref_primary_10_1140_epjds_s13688_024_00453_6
crossref_primary_10_1080_03081087_2014_910208
crossref_primary_10_1007_s11464_020_0006_2
crossref_primary_10_1016_j_laa_2016_07_013
crossref_primary_10_1016_j_laa_2017_04_008
crossref_primary_10_1137_130915339
crossref_primary_10_1007_s00373_021_02332_7
crossref_primary_10_1002_nla_1902
crossref_primary_10_1080_03081087_2015_1009061
crossref_primary_10_1017_S0004972716000381
crossref_primary_10_1007_s40314_021_01440_7
crossref_primary_10_1016_j_laa_2018_07_035
crossref_primary_10_1007_s10957_023_02215_2
crossref_primary_10_1016_j_laa_2016_12_038
crossref_primary_10_1002_jgt_23071
crossref_primary_10_1007_s11464_017_0626_3
crossref_primary_10_1016_j_laa_2023_05_006
crossref_primary_10_1016_j_disc_2015_01_021
crossref_primary_10_1080_03081087_2018_1560389
crossref_primary_10_1016_j_camwa_2018_02_006
crossref_primary_10_1016_j_laa_2023_11_003
crossref_primary_10_1080_03081087_2021_1899110
crossref_primary_10_1007_s42967_020_00073_7
crossref_primary_10_1016_j_amc_2024_128821
crossref_primary_10_1016_j_laa_2020_10_037
crossref_primary_10_1214_16_AOS1453
crossref_primary_10_1016_j_laa_2020_03_003
crossref_primary_10_1016_j_sigpro_2021_108149
crossref_primary_10_1016_j_laa_2016_12_022
crossref_primary_10_1016_j_laa_2017_04_023
crossref_primary_10_1155_2021_5805239
crossref_primary_10_2298_FIL2318949S
crossref_primary_10_1142_S0217595920400072
crossref_primary_10_3934_math_2020121
crossref_primary_10_1007_s11464_019_0797_1
crossref_primary_10_1016_j_laa_2018_06_032
crossref_primary_10_1137_16M1060224
crossref_primary_10_1016_j_amc_2016_03_016
crossref_primary_10_1016_j_laa_2023_03_009
crossref_primary_10_1007_s13398_021_01057_9
crossref_primary_10_1007_s10092_022_00499_w
crossref_primary_10_1080_03081087_2018_1442811
crossref_primary_10_1007_s10957_014_0652_1
crossref_primary_10_1007_s11425_017_9424_4
crossref_primary_10_1016_j_physrep_2020_05_004
crossref_primary_10_1016_j_laa_2020_03_013
crossref_primary_10_1016_j_laa_2020_03_018
crossref_primary_10_1007_s10994_022_06264_y
crossref_primary_10_1080_03081087_2018_1502253
crossref_primary_10_1016_j_ejc_2018_02_034
crossref_primary_10_1016_j_ins_2024_120850
crossref_primary_10_1016_j_disc_2020_112038
crossref_primary_10_1016_j_disc_2020_111987
crossref_primary_10_1016_j_jcta_2021_105537
crossref_primary_10_1016_j_ejc_2020_103116
crossref_primary_10_1016_j_laa_2020_10_012
crossref_primary_10_1016_j_laa_2020_10_011
crossref_primary_10_1016_j_laa_2020_10_010
crossref_primary_10_1080_15427951_2012_678151
crossref_primary_10_1007_s40314_023_02404_9
crossref_primary_10_1007_s11075_023_01593_y
crossref_primary_10_1137_15M1051828
crossref_primary_10_1090_proc_15781
crossref_primary_10_1007_s11464_017_0678_4
crossref_primary_10_1007_s11464_021_0025_7
crossref_primary_10_1016_j_cam_2023_115195
crossref_primary_10_1145_3178123
crossref_primary_10_1080_03081087_2020_1770161
crossref_primary_10_1016_j_laa_2020_10_025
crossref_primary_10_1140_epjds_s13688_020_00231_0
crossref_primary_10_1007_s11464_017_0628_1
crossref_primary_10_1142_S0217595920400084
crossref_primary_10_1007_s10915_017_0520_x
crossref_primary_10_3390_sym14030543
crossref_primary_10_1007_s41109_024_00617_3
crossref_primary_10_1016_j_dam_2025_01_007
crossref_primary_10_1016_j_laa_2022_02_005
crossref_primary_10_1016_j_dam_2023_07_015
crossref_primary_10_1007_s11464_012_0266_6
crossref_primary_10_1080_03081087_2019_1693954
crossref_primary_10_1016_j_ejc_2022_103535
crossref_primary_10_1016_j_laa_2021_08_021
crossref_primary_10_1007_s10878_019_00424_y
crossref_primary_10_1007_s11464_015_0452_4
crossref_primary_10_1155_2022_3930470
crossref_primary_10_1016_j_laa_2018_01_017
crossref_primary_10_1137_16M1094828
crossref_primary_10_1142_S1793830917500483
crossref_primary_10_1007_s40314_021_01554_y
crossref_primary_10_1016_j_jcta_2024_105909
crossref_primary_10_1186_s13660_020_2305_2
crossref_primary_10_1016_j_laa_2016_09_041
crossref_primary_10_1016_j_laa_2016_08_009
crossref_primary_10_1080_03081087_2017_1346060
crossref_primary_10_1007_s10878_020_00617_w
crossref_primary_10_2139_ssrn_4614997
crossref_primary_10_1007_s10878_015_9896_4
crossref_primary_10_1016_j_laa_2023_08_011
crossref_primary_10_1038_s41598_021_00017_y
crossref_primary_10_1016_j_laa_2019_07_031
crossref_primary_10_1016_j_physa_2025_130512
crossref_primary_10_1016_j_amc_2018_06_015
crossref_primary_10_1007_s11464_016_0520_4
crossref_primary_10_1007_s11464_020_0873_6
crossref_primary_10_1016_j_dam_2020_01_041
crossref_primary_10_1016_j_disc_2023_113780
crossref_primary_10_1016_j_laa_2013_03_015
crossref_primary_10_1080_03081087_2022_2103490
crossref_primary_10_1016_j_cam_2018_02_027
crossref_primary_10_1007_s10915_022_01973_x
crossref_primary_10_1002_nla_2064
crossref_primary_10_1016_j_laa_2019_06_001
crossref_primary_10_1137_15M1040128
crossref_primary_10_1016_j_laa_2023_08_018
crossref_primary_10_1007_s40314_020_01245_0
crossref_primary_10_1137_140975656
crossref_primary_10_1002_nla_1877
crossref_primary_10_1007_s00373_013_1340_x
crossref_primary_10_1016_j_laa_2020_02_017
crossref_primary_10_1016_j_laa_2016_01_031
crossref_primary_10_1016_j_laa_2024_03_029
crossref_primary_10_1007_s11464_017_0645_0
crossref_primary_10_1016_j_laa_2013_07_016
crossref_primary_10_1016_j_disc_2021_112329
crossref_primary_10_1016_j_laa_2013_07_010
crossref_primary_10_1016_j_laa_2017_07_018
crossref_primary_10_1016_j_laa_2021_08_009
crossref_primary_10_1016_j_amc_2020_125449
crossref_primary_10_1016_j_laa_2018_09_029
crossref_primary_10_1080_03081087_2023_2172541
crossref_primary_10_1016_j_laa_2019_06_011
crossref_primary_10_1137_21M1404740
crossref_primary_10_1016_j_laa_2014_09_025
crossref_primary_10_1016_j_dam_2024_01_037
crossref_primary_10_2298_AADM180213022S
crossref_primary_10_1016_j_dam_2013_12_024
crossref_primary_10_1007_s10878_019_00440_y
crossref_primary_10_1090_tran_7741
crossref_primary_10_1016_j_jsc_2012_10_001
crossref_primary_10_1137_15M1010725
crossref_primary_10_1007_s10915_022_01852_5
crossref_primary_10_1080_03081087_2018_1521783
crossref_primary_10_1007_s10114_022_0611_y
crossref_primary_10_1016_j_laa_2015_06_023
crossref_primary_10_1002_nla_2275
crossref_primary_10_1016_j_cam_2023_115284
crossref_primary_10_1080_03081087_2024_2435407
crossref_primary_10_1007_s41980_018_0150_6
crossref_primary_10_1016_j_dam_2024_12_031
crossref_primary_10_1007_s40314_020_01149_z
crossref_primary_10_1007_s11464_021_0931_8
crossref_primary_10_1007_s40314_022_01797_3
crossref_primary_10_1016_j_laa_2017_07_026
crossref_primary_10_1080_03081087_2025_2469163
crossref_primary_10_3390_axioms13110804
crossref_primary_10_1080_03081087_2020_1748848
crossref_primary_10_3934_jimo_2014_10_1031
crossref_primary_10_1051_ro_2023109
crossref_primary_10_1016_j_laa_2017_09_009
crossref_primary_10_1017_fms_2014_22
crossref_primary_10_1109_TNSE_2021_3068203
crossref_primary_10_1016_j_laa_2022_05_012
crossref_primary_10_1007_s10114_020_9487_x
crossref_primary_10_1016_j_laa_2017_02_018
crossref_primary_10_1016_j_laa_2023_07_012
crossref_primary_10_1016_j_neucom_2021_11_108
crossref_primary_10_1016_j_disc_2024_113915
crossref_primary_10_1016_j_dam_2022_03_029
crossref_primary_10_3934_jimo_2016_12_1227
crossref_primary_10_1002_jgt_22801
crossref_primary_10_1007_s11464_015_0467_x
crossref_primary_10_1016_j_disc_2025_114435
crossref_primary_10_1007_s11464_020_0879_0
crossref_primary_10_1016_j_disc_2016_01_016
crossref_primary_10_1016_j_cam_2023_115383
crossref_primary_10_1142_S1793830922500677
crossref_primary_10_1016_j_dam_2022_08_018
crossref_primary_10_1016_j_laa_2019_12_042
crossref_primary_10_1016_j_laa_2019_05_008
crossref_primary_10_1016_j_laa_2016_09_015
crossref_primary_10_1080_03081087_2024_2382992
crossref_primary_10_1007_s10878_023_01081_y
crossref_primary_10_1016_j_disc_2025_114421
crossref_primary_10_1016_j_dam_2024_12_008
crossref_primary_10_1016_j_laa_2018_08_021
crossref_primary_10_1093_comnet_cnu016
crossref_primary_10_1002_nla_2125
crossref_primary_10_1016_j_laa_2020_01_012
crossref_primary_10_1016_j_laa_2014_05_005
crossref_primary_10_1016_j_laa_2019_12_047
crossref_primary_10_1007_s10878_013_9596_x
crossref_primary_10_1007_s11464_017_0636_1
crossref_primary_10_1142_S1793830923500659
crossref_primary_10_1016_j_laa_2013_08_028
crossref_primary_10_1080_03081087_2015_1125838
crossref_primary_10_1080_03081087_2015_1120702
crossref_primary_10_1007_s11464_018_0737_5
crossref_primary_10_1038_s41598_022_12877_z
crossref_primary_10_1002_qua_26579
crossref_primary_10_1016_j_laa_2013_08_014
crossref_primary_10_1080_03081087_2021_1953431
crossref_primary_10_1007_s10878_019_00393_2
crossref_primary_10_1002_nla_2599
crossref_primary_10_2298_FIL2316361D
crossref_primary_10_1016_j_jmaa_2017_01_078
crossref_primary_10_1016_j_laa_2014_12_033
crossref_primary_10_1007_s10878_024_01182_2
crossref_primary_10_1016_j_cam_2024_116193
crossref_primary_10_1016_j_amc_2015_11_051
crossref_primary_10_1016_j_laa_2016_10_005
crossref_primary_10_1007_s11464_019_0743_2
crossref_primary_10_1007_s10114_020_0089_4
crossref_primary_10_1016_j_jctb_2021_01_002
crossref_primary_10_1515_spma_2022_0166
Cites_doi 10.1006/jcta.2001.3217
10.1007/BF01294459
10.1017/S030500410002168X
10.1016/j.jsc.2005.05.007
10.1007/978-3-642-21286-4_2
10.1006/jnth.1996.0109
10.2307/2302716
10.1002/9780470277331
10.1007/s10878-011-9407-1
10.1016/j.aml.2008.07.020
10.1016/j.laa.2011.02.042
10.1090/dimacs/010/03
10.1002/rsa.20389
10.4310/CMS.2008.v6.n2.a12
10.1090/cbms/092
10.1112/jlms/s1-42.1.330
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.laa.2011.11.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 3292
ExternalDocumentID 25760769
10_1016_j_laa_2011_11_018
S0024379511007610
GrantInformation_xml – fundername: NSF
  grantid: DMS-1001370
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACRPL
ACVFH
ADCNI
ADIYS
ADNMO
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FA8
FGOYB
G-2
MVM
OHT
R2-
SEW
SSH
T9H
WUQ
EFKBS
IQODW
ID FETCH-LOGICAL-c370t-6628cef05e8a1c98d826223b835fd01b07997365cf536d205ff79ea11ce5ffa23
IEDL.DBID IXB
ISSN 0024-3795
IngestDate Mon Jul 21 09:15:01 EDT 2025
Tue Jul 01 03:17:55 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Dec 03 03:44:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Hypergraph
Primary 05C65
Secondary 15A69
Resultant
Characteristic polynomial
15A18
Spectrum
Adjacency matrix
Graph theory
Integer
Algebra
Spectral theory
Eigenvalue problem
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-6628cef05e8a1c98d826223b835fd01b07997365cf536d205ff79ea11ce5ffa23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0024379511007610
PageCount 25
ParticipantIDs pascalfrancis_primary_25760769
crossref_primary_10_1016_j_laa_2011_11_018
crossref_citationtrail_10_1016_j_laa_2011_11_018
elsevier_sciencedirect_doi_10_1016_j_laa_2011_11_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Wilf (b0145) 1967; 42
Qi (b0130) 2005; 40
Biggs (b0020) 1993
Brooks (b0025) 1941; 37
F.R.K. Chung, Spectral Graph Theory, Regional Conference Series in Mathematics 92, Am. Math. Soc., 1997.
Friedman, Wigderson (b0090) 1995; 15
Prüfer (b0125) 1918; 27
S. Friedland, S. Gaubert, L. Han, Perron–Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., in press
van Aardenne-Ehrenfest, de Bruijn (b0005) 1951; 28
Buló, Pelillo (b0035) 2009
Cox, Little, O’Shea (b0065) 1998
Gelfand, Kapranov, Zelevinsky (b0095) 1994
L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), vol. 1, 2005, pp. 129–132.
Kohayakawa, Rödl, Skokan (b0105) 2002; 97
Alon, Spencer (b0010) 2008
L. Lu, X. Peng, High-ordered random walks and generalized Laplacians on hypergraphs, in: Proceedings of Algorithms and Models for the Web-Graph: Eighth International Workshop, WAW 2011, Atlanta, GA, USA, May 27–29, 2011.
D. Conlon, H. Han, Y. Person, M. Schacht, Weak Quasi-Randomness for Uniform Hypergraphs, preprint, 2011.
Rodríguez (b0135) 2009; 22
Cayley (b0040) 1889; 23
Berge (b0015) 1989
[math.PH], 2008.
Chang, Pearson, Zhang (b0045) 2008; 6
.
F.R.K. Chung, The Laplacian of a Hypergraph, Expanding Graphs, DIMACS Ser. Disc. Math. Theoret. Comput. Sci. 10, Am. Math. Soc., Providence, RI, 1993, pp. 21–36.
Cvetković, Doob, Sachs (b0075) 1980
Trace Log for Resultants
Feng, Li (b0080) 1996; 60
A. Morozov, Sh. Shakirov, Analogue of the Identity Log Det
Cvetković, Doob, Gutman, Torgas¨ev (b0070) 1988
Smith, Tutte (b0140) 1941; 48
=
Buló, Pelillo (b0030) 2009; 3
S. Hu, L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., in press
Cayley (10.1016/j.laa.2011.11.018_b0040) 1889; 23
Smith (10.1016/j.laa.2011.11.018_b0140) 1941; 48
Kohayakawa (10.1016/j.laa.2011.11.018_b0105) 2002; 97
Feng (10.1016/j.laa.2011.11.018_b0080) 1996; 60
Qi (10.1016/j.laa.2011.11.018_b0130) 2005; 40
van Aardenne-Ehrenfest (10.1016/j.laa.2011.11.018_b0005) 1951; 28
Friedman (10.1016/j.laa.2011.11.018_b0090) 1995; 15
Wilf (10.1016/j.laa.2011.11.018_b0145) 1967; 42
10.1016/j.laa.2011.11.018_b0085
10.1016/j.laa.2011.11.018_b0060
Cvetković (10.1016/j.laa.2011.11.018_b0070) 1988
10.1016/j.laa.2011.11.018_b0100
Cvetković (10.1016/j.laa.2011.11.018_b0075) 1980
10.1016/j.laa.2011.11.018_b0120
Alon (10.1016/j.laa.2011.11.018_b0010) 2008
Buló (10.1016/j.laa.2011.11.018_b0035) 2009
Chang (10.1016/j.laa.2011.11.018_b0045) 2008; 6
Rodríguez (10.1016/j.laa.2011.11.018_b0135) 2009; 22
Brooks (10.1016/j.laa.2011.11.018_b0025) 1941; 37
Gelfand (10.1016/j.laa.2011.11.018_b0095) 1994
Cox (10.1016/j.laa.2011.11.018_b0065) 1998
10.1016/j.laa.2011.11.018_b0050
Prüfer (10.1016/j.laa.2011.11.018_b0125) 1918; 27
Berge (10.1016/j.laa.2011.11.018_b0015) 1989
10.1016/j.laa.2011.11.018_b0055
10.1016/j.laa.2011.11.018_b0110
10.1016/j.laa.2011.11.018_b0115
Buló (10.1016/j.laa.2011.11.018_b0030) 2009; 3
Biggs (10.1016/j.laa.2011.11.018_b0020) 1993
References_xml – start-page: 45
  year: 2009
  end-page: 48
  ident: b0035
  article-title: New bounds on the clique number of graphs based on spectral hypergraph theory
  publication-title: Learning and Intelligent Optimization
– reference: F.R.K. Chung, The Laplacian of a Hypergraph, Expanding Graphs, DIMACS Ser. Disc. Math. Theoret. Comput. Sci. 10, Am. Math. Soc., Providence, RI, 1993, pp. 21–36.
– reference: F.R.K. Chung, Spectral Graph Theory, Regional Conference Series in Mathematics 92, Am. Math. Soc., 1997.
– year: 1994
  ident: b0095
  article-title: Discriminants, Resultants and Multidimensional Determinants
– reference: Trace Log for Resultants,
– volume: 15
  start-page: 43
  year: 1995
  end-page: 65
  ident: b0090
  article-title: On the second eigenvalue of hypergraphs
  publication-title: Combinatorica
– reference: =
– volume: 6
  start-page: 507
  year: 2008
  end-page: 520
  ident: b0045
  article-title: Perron–Frobenius theorem for nonnegative tensors
  publication-title: Commun. Math. Sci.
– reference: L. Lu, X. Peng, High-ordered random walks and generalized Laplacians on hypergraphs, in: Proceedings of Algorithms and Models for the Web-Graph: Eighth International Workshop, WAW 2011, Atlanta, GA, USA, May 27–29, 2011.
– volume: 27
  start-page: 742
  year: 1918
  end-page: 744
  ident: b0125
  article-title: Neuer Beweis eines Satzes über Permutationen
  publication-title: Arch. Math. Phys.
– reference: D. Conlon, H. Han, Y. Person, M. Schacht, Weak Quasi-Randomness for Uniform Hypergraphs, preprint, 2011.
– volume: 97
  start-page: 307
  year: 2002
  end-page: 352
  ident: b0105
  article-title: Hypergraphs, quasi-randomness, and conditions for regularity
  publication-title: J. Comb. Theory A
– year: 1989
  ident: b0015
  article-title: Hypergraphs
  publication-title: North-Holland Mathematical Library 45
– reference: [math.PH], 2008.
– volume: 22
  start-page: 916
  year: 2009
  end-page: 921
  ident: b0135
  article-title: Laplacian eigenvalues and partition problems in hypergraphs
  publication-title: Appl. Math. Lett.
– reference: S. Hu, L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., in press,
– reference: L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), vol. 1, 2005, pp. 129–132.
– volume: 28
  start-page: 203
  year: 1951
  end-page: 217
  ident: b0005
  article-title: Circuits and trees in oriented linear graphs
  publication-title: Simon Stevin
– volume: 23
  start-page: 376
  year: 1889
  end-page: 378
  ident: b0040
  article-title: A theorem on trees
  publication-title: Q. J. Math.
– year: 1993
  ident: b0020
  article-title: Algebraic Graph Theory
– volume: 37
  start-page: 194
  year: 1941
  end-page: 197
  ident: b0025
  article-title: On colouring the nodes of a network
  publication-title: Proc. Camb. Philos. Soc.
– volume: 3
  start-page: 187
  year: 2009
  end-page: 295
  ident: b0030
  article-title: A generalization of the Motzkin–Straus theorem to hypergraphs
  publication-title: Optim. Lett.
– volume: 42
  start-page: 330
  year: 1967
  end-page: 332
  ident: b0145
  article-title: The eigenvalues of a graph and its chromatic number
  publication-title: J. Lond. Math. Soc.
– year: 1980
  ident: b0075
  article-title: Spectra of Graphs, Theory and Application
– reference: .
– reference: A. Morozov, Sh. Shakirov, Analogue of the Identity Log Det
– volume: 40
  start-page: 1302
  year: 2005
  end-page: 1324
  ident: b0130
  article-title: Eigenvalues of a real supersymmetric tensor
  publication-title: J. Symb. Comput.
– volume: 48
  start-page: 233
  year: 1941
  end-page: 237
  ident: b0140
  article-title: On unicursal paths in a network of degree 4
  publication-title: Am. Math. Mon.
– volume: 60
  start-page: 1
  year: 1996
  end-page: 22
  ident: b0080
  article-title: Spectra of hypergraphs and applications
  publication-title: J. Number Theory
– year: 1988
  ident: b0070
  article-title: Recent Results in the Theory of Graph Spectra
– year: 1998
  ident: b0065
  article-title: Using Algebraic Geometry
– year: 2008
  ident: b0010
  article-title: The Probabilistic Method
  publication-title: Wiley–Interscience Series in Discrete Mathematics and Optimization
– reference: S. Friedland, S. Gaubert, L. Han, Perron–Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., in press,
– year: 1998
  ident: 10.1016/j.laa.2011.11.018_b0065
– year: 1988
  ident: 10.1016/j.laa.2011.11.018_b0070
– volume: 23
  start-page: 376
  year: 1889
  ident: 10.1016/j.laa.2011.11.018_b0040
  article-title: A theorem on trees
  publication-title: Q. J. Math.
– ident: 10.1016/j.laa.2011.11.018_b0120
– volume: 97
  start-page: 307
  issue: 2
  year: 2002
  ident: 10.1016/j.laa.2011.11.018_b0105
  article-title: Hypergraphs, quasi-randomness, and conditions for regularity
  publication-title: J. Comb. Theory A
  doi: 10.1006/jcta.2001.3217
– volume: 15
  start-page: 43
  issue: 1
  year: 1995
  ident: 10.1016/j.laa.2011.11.018_b0090
  article-title: On the second eigenvalue of hypergraphs
  publication-title: Combinatorica
  doi: 10.1007/BF01294459
– volume: 37
  start-page: 194
  year: 1941
  ident: 10.1016/j.laa.2011.11.018_b0025
  article-title: On colouring the nodes of a network
  publication-title: Proc. Camb. Philos. Soc.
  doi: 10.1017/S030500410002168X
– ident: 10.1016/j.laa.2011.11.018_b0110
– year: 1993
  ident: 10.1016/j.laa.2011.11.018_b0020
– year: 1989
  ident: 10.1016/j.laa.2011.11.018_b0015
  article-title: Hypergraphs
– volume: 40
  start-page: 1302
  year: 2005
  ident: 10.1016/j.laa.2011.11.018_b0130
  article-title: Eigenvalues of a real supersymmetric tensor
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2005.05.007
– volume: 3
  start-page: 187
  year: 2009
  ident: 10.1016/j.laa.2011.11.018_b0030
  article-title: A generalization of the Motzkin–Straus theorem to hypergraphs
  publication-title: Optim. Lett.
– ident: 10.1016/j.laa.2011.11.018_b0115
  doi: 10.1007/978-3-642-21286-4_2
– volume: 60
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.laa.2011.11.018_b0080
  article-title: Spectra of hypergraphs and applications
  publication-title: J. Number Theory
  doi: 10.1006/jnth.1996.0109
– volume: 28
  start-page: 203
  year: 1951
  ident: 10.1016/j.laa.2011.11.018_b0005
  article-title: Circuits and trees in oriented linear graphs
  publication-title: Simon Stevin
– volume: 48
  start-page: 233
  year: 1941
  ident: 10.1016/j.laa.2011.11.018_b0140
  article-title: On unicursal paths in a network of degree 4
  publication-title: Am. Math. Mon.
  doi: 10.2307/2302716
– start-page: 45
  year: 2009
  ident: 10.1016/j.laa.2011.11.018_b0035
  article-title: New bounds on the clique number of graphs based on spectral hypergraph theory
– year: 1980
  ident: 10.1016/j.laa.2011.11.018_b0075
– year: 2008
  ident: 10.1016/j.laa.2011.11.018_b0010
  article-title: The Probabilistic Method
  doi: 10.1002/9780470277331
– volume: 27
  start-page: 742
  year: 1918
  ident: 10.1016/j.laa.2011.11.018_b0125
  article-title: Neuer Beweis eines Satzes über Permutationen
  publication-title: Arch. Math. Phys.
– ident: 10.1016/j.laa.2011.11.018_b0100
  doi: 10.1007/s10878-011-9407-1
– volume: 22
  start-page: 916
  issue: 6
  year: 2009
  ident: 10.1016/j.laa.2011.11.018_b0135
  article-title: Laplacian eigenvalues and partition problems in hypergraphs
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.07.020
– ident: 10.1016/j.laa.2011.11.018_b0085
  doi: 10.1016/j.laa.2011.02.042
– ident: 10.1016/j.laa.2011.11.018_b0050
  doi: 10.1090/dimacs/010/03
– ident: 10.1016/j.laa.2011.11.018_b0060
  doi: 10.1002/rsa.20389
– volume: 6
  start-page: 507
  year: 2008
  ident: 10.1016/j.laa.2011.11.018_b0045
  article-title: Perron–Frobenius theorem for nonnegative tensors
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2008.v6.n2.a12
– ident: 10.1016/j.laa.2011.11.018_b0055
  doi: 10.1090/cbms/092
– volume: 42
  start-page: 330
  year: 1967
  ident: 10.1016/j.laa.2011.11.018_b0145
  article-title: The eigenvalues of a graph and its chromatic number
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-42.1.330
– year: 1994
  ident: 10.1016/j.laa.2011.11.018_b0095
SSID ssj0004702
Score 2.519931
Snippet We present a spectral theory of uniform hypergraphs that closely parallels Spectral Graph Theory. A number of recent developments building upon classical work...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 3268
SubjectTerms Algebra
Characteristic polynomial
Exact sciences and technology
Hypergraph
Linear and multilinear algebra, matrix theory
Mathematics
Resultant
Sciences and techniques of general use
Spectrum
Title Spectra of uniform hypergraphs
URI https://dx.doi.org/10.1016/j.laa.2011.11.018
Volume 436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWUAI8RTlEWVgQgq1YydxxlJRFVA7Ualb5Dg-UQRt1aYrv51zHoVKqANbEtl5fLbu7lPuviPkFnSGjoYJzxgKntC4jVMjAk-jb6cGQIG2Bc6DYdgfiedxMG6Qbl0LY9MqK9tf2vTCWldX2hWa7flkYmt8CzG9wIqeIRm3vJ0LWRTxjR9-aiMjWimGC8-Orv9sFjleH0qVKp5WyNP2_fjbNx3M1RIRg7LVxS__0zsih1Xg6HbKdzsmDTM9IfuDterq8pQ4tpl8vlDuDNzV1JZcfbpvyDMXhSr18oyMeo-v3b5X9T_wNI9o7oWhL7UBGhipmI5lhlQAvXmKQRNklKU0iuOIh4GGgIeZTwOAKDaKMW3wUPn8nDSns6m5IC5wDpJrkABcxCZNhc9UGGdKSal9JlqE1l-e6Eoc3Pao-EjqLLD3BMFKLFhIGhIEq0Xu1lPmpTLGtsGihjPZWN4ELfe2ac4G9OsHWZqEix5f_u--V2QPz_wycfGaNPPFytxgcJGnDtm5_2IO2e08vfSHTrGXvgFPFc3W
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPKgxxmfEB_bgyaRh292-jkokoMAJEm6b7XYnYqAQKP_f2T5QEsPBW9Pu9vHtZma-dOYbQp5AJehoHG5rTcHmCrdxrLlnK_TtVANIUKbAeTD0u2P-PvEmNdKuamFMWmVp-wubnlvr8kyrRLO1nE5NjW8upucZ0TMk48jbDzAaCEz_ht7k9ac4MqClZDi3zfDq12ae5DWTspDxNEqepvHH387pZCnXCBkUvS5-OaDOGTktI0frpXi5c1LT6QU5HmxlV9eXpGm6yWcraS3A2qSm5mpufSLRXOWy1OsrMu68jdpdu2yAYCsW0Mz2fTdUGqinQ-moKEyQC6A7jzFqgoQ6MQ2iKGC-p8BjfuJSDyCItHQcpfFQuuya1NNFqm-IBYxByBSEAIxHOo6560g_SqQMQ-U6vEFo9eVClergpknFTFRpYF8CwRIGLGQNAsFqkOftlGUhjbFvMK_gFDvrK9B075vW3IF--yDDk3DVo9v_3feRHHZHg77o94Yfd-QIr7hFFuM9qWerjX7ASCOLm_lO-gZoKc5p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectra+of+uniform+hypergraphs&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Cooper%2C+Joshua&rft.au=Dutle%2C+Aaron&rft.date=2012-05-01&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.volume=436&rft.issue=9&rft.spage=3268&rft.epage=3292&rft_id=info:doi/10.1016%2Fj.laa.2011.11.018&rft.externalDocID=S0024379511007610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon