Nickel-catalyzed formation of quaternary carbon centers using tertiary alkyl electrophiles

Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidat...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 5; no. 6; pp. 4162 - 4184
Main Authors Xue, Weichao, Jia, Xiao, Wang, Xuan, Tao, Xianghua, Yin, Zhigang, Gong, Hegui
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni 0 to Ni IV , allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms. This review provides a comprehensive summary of recent advances in nickel-catalyzed reactions employing tertiary alkyl electrophiles for the construction of quaternary carbon centers.
AbstractList Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni0 to NiIV, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms.Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni0 to NiIV, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms.
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )–C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni 0 to Ni IV , allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl–Ni intermediate is relatively slow, thus benefiting the C–C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C–C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms.
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp )-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni to Ni , allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms.
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp³)–C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni⁰ to Niᴵⱽ, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl–Ni intermediate is relatively slow, thus benefiting the C–C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C–C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms.
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)–C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni0 to NiIV, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl–Ni intermediate is relatively slow, thus benefiting the C–C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C–C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms.
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni 0 to Ni IV , allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms. This review provides a comprehensive summary of recent advances in nickel-catalyzed reactions employing tertiary alkyl electrophiles for the construction of quaternary carbon centers.
Author Gong, Hegui
Wang, Xuan
Yin, Zhigang
Xue, Weichao
Jia, Xiao
Tao, Xianghua
AuthorAffiliation Center for Supramolecular Chemistry and Catalysis and Department of Chemistry
Zhengzhou University of Light Industry
Shanghai University
School of Materials & Chemical Engineering
AuthorAffiliation_xml – name: Center for Supramolecular Chemistry and Catalysis and Department of Chemistry
– name: School of Materials & Chemical Engineering
– name: Shanghai University
– name: Zhengzhou University of Light Industry
Author_xml – sequence: 1
  givenname: Weichao
  surname: Xue
  fullname: Xue, Weichao
– sequence: 2
  givenname: Xiao
  surname: Jia
  fullname: Jia, Xiao
– sequence: 3
  givenname: Xuan
  surname: Wang
  fullname: Wang, Xuan
– sequence: 4
  givenname: Xianghua
  surname: Tao
  fullname: Tao, Xianghua
– sequence: 5
  givenname: Zhigang
  surname: Yin
  fullname: Yin, Zhigang
– sequence: 6
  givenname: Hegui
  surname: Gong
  fullname: Gong, Hegui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33533345$$D View this record in MEDLINE/PubMed
BookMark eNqFks1P3DAQxS1EBQvlwr1VpF5QpdCxx3E2R7QtpRWCQ9tLL5HXmVAv3nixncP2r6-X5UNClTh59PybJ-s9H7DdwQ_E2DGHUw7YfOrAROAc6sUOm3CpoJS1lLtsAgiqBOBinx3EuMgTr5XYY_uIFSLKasJ-X1lzS640Omm3_ktd0fuw1Mn6ofB9cTfqRGHQYV0YHeZZNDRkJRZjtMNNkcdkN7fa3a5dQY5MCn71xzqKb9mbXrtIRw_nIft1_uXn7KK8vP76bXZ2WRqsIZVKzAGF7pE3om-mvTSiUQ0RN1qDULUUnUTVS4WosthVRoOs51qpmhBA4iE72fqugr8bKaZ2aaMh5_RAfoytqIREkBWfvo7KqeLVVFR1Rj-8QBd-zEm4jSGoCvPLeKbeP1DjfElduwp2meNoHwPOwMctYIKPMVD_hHBoN-21n2H247697xmGF7Cx6b6LFLR1_195t10J0TxZP38I_Acq96SG
CitedBy_id crossref_primary_10_1002_anie_202306498
crossref_primary_10_1039_D3OB01784B
crossref_primary_10_1055_s_0041_1737762
crossref_primary_10_1002_ange_202117843
crossref_primary_10_1002_ange_202114731
crossref_primary_10_1002_ange_202408195
crossref_primary_10_1002_anie_202205673
crossref_primary_10_1021_jacs_4c00537
crossref_primary_10_1038_s44160_022_00102_8
crossref_primary_10_1002_anie_202418806
crossref_primary_10_1021_jacs_4c02316
crossref_primary_10_1055_a_1848_3005
crossref_primary_10_1021_jacs_4c14942
crossref_primary_10_1002_open_202400108
crossref_primary_10_1016_j_poly_2021_115408
crossref_primary_10_1039_D4QO02038C
crossref_primary_10_1002_ange_202411110
crossref_primary_10_1002_ange_202418147
crossref_primary_10_1002_ange_202314617
crossref_primary_10_1002_ange_202201370
crossref_primary_10_1021_jacs_4c04587
crossref_primary_10_1016_j_cclet_2022_01_077
crossref_primary_10_1021_jacsau_5c00031
crossref_primary_10_1021_acs_orglett_1c04359
crossref_primary_10_1002_anie_202113209
crossref_primary_10_1021_acs_orglett_3c00051
crossref_primary_10_1002_tcr_202100142
crossref_primary_10_1021_acscatal_1c04705
crossref_primary_10_1002_ange_202300743
crossref_primary_10_1002_anie_202201370
crossref_primary_10_1021_acscatal_2c03768
crossref_primary_10_1021_acs_orglett_4c02185
crossref_primary_10_1002_anie_202418147
crossref_primary_10_1007_s11426_024_2438_x
crossref_primary_10_1002_anie_202304177
crossref_primary_10_1021_acs_orglett_1c02887
crossref_primary_10_1039_D3CC05312A
crossref_primary_10_1039_D1SC05741C
crossref_primary_10_1002_ejoc_202400986
crossref_primary_10_1002_anie_202314617
crossref_primary_10_1021_acs_orglett_2c01367
crossref_primary_10_1002_anie_202407773
crossref_primary_10_1039_D1SC01731D
crossref_primary_10_1039_D2GC04427G
crossref_primary_10_1126_science_abo0039
crossref_primary_10_1016_j_mencom_2024_10_017
crossref_primary_10_1021_jacs_3c14032
crossref_primary_10_1002_anie_202405866
crossref_primary_10_1016_j_tetlet_2021_153129
crossref_primary_10_1021_acs_orglett_2c02182
crossref_primary_10_1039_D3QO00372H
crossref_primary_10_1021_acscentsci_2c00204
crossref_primary_10_1021_acs_orglett_2c02180
crossref_primary_10_1002_advs_202306923
crossref_primary_10_1002_cjoc_202400672
crossref_primary_10_3390_molecules27185899
crossref_primary_10_1039_D4CC01324G
crossref_primary_10_1021_acs_joc_3c00681
crossref_primary_10_1021_jacs_4c17313
crossref_primary_10_1039_D4OB00970C
crossref_primary_10_1002_anie_202305810
crossref_primary_10_1016_j_jelechem_2023_117538
crossref_primary_10_1039_D4QO00411F
crossref_primary_10_1021_jacs_3c06710
crossref_primary_10_1039_D2QO00508E
crossref_primary_10_1039_D2QO01623K
crossref_primary_10_1002_advs_202402255
crossref_primary_10_1039_D4CS01130A
crossref_primary_10_1002_ange_202205673
crossref_primary_10_1002_anie_202423426
crossref_primary_10_1002_ange_202418806
crossref_primary_10_1021_acs_orglett_2c02068
crossref_primary_10_1002_ange_202407773
crossref_primary_10_1038_s41467_022_30583_2
crossref_primary_10_1021_acs_joc_4c01929
crossref_primary_10_1039_D1CS00399B
crossref_primary_10_1002_ange_202405866
crossref_primary_10_1039_D3SC06476J
crossref_primary_10_1002_ange_202305810
crossref_primary_10_1021_acs_organomet_2c00184
crossref_primary_10_1021_acs_orglett_3c02216
crossref_primary_10_1021_acs_orglett_2c00217
crossref_primary_10_1039_D1SC04071E
crossref_primary_10_1002_ange_202423426
crossref_primary_10_3390_molecules30051060
crossref_primary_10_1002_advs_202406228
crossref_primary_10_1039_D4GC02052A
crossref_primary_10_1039_D4OB01863J
crossref_primary_10_1002_anie_202204144
crossref_primary_10_1021_acs_joc_4c01531
crossref_primary_10_1021_acscatal_3c01090
crossref_primary_10_1021_acs_orglett_2c01390
crossref_primary_10_1038_s44160_023_00349_9
crossref_primary_10_1002_anie_202300743
crossref_primary_10_1021_jacs_4c04495
crossref_primary_10_1038_s41586_022_04540_4
crossref_primary_10_1039_D3NP00008G
crossref_primary_10_1002_ange_202304177
crossref_primary_10_1021_jacs_3c07031
crossref_primary_10_1039_D2OB01855A
crossref_primary_10_6023_cjoc202106021
crossref_primary_10_1021_acs_orglett_4c03343
crossref_primary_10_1002_cctc_202300601
crossref_primary_10_1021_jacs_4c10809
crossref_primary_10_1002_anie_202117843
crossref_primary_10_1002_ejoc_202201378
crossref_primary_10_1002_anie_202408195
crossref_primary_10_1039_D2CS00371F
crossref_primary_10_1002_anie_202114731
crossref_primary_10_1039_D1SC05605K
crossref_primary_10_1021_jacs_1c11503
crossref_primary_10_1021_acs_orglett_1c02893
crossref_primary_10_1021_acs_orglett_1c01568
crossref_primary_10_1002_cjoc_202400260
crossref_primary_10_1039_D1QO00264C
crossref_primary_10_1021_jacs_4c07096
crossref_primary_10_1002_adsc_202400576
crossref_primary_10_1002_anie_202214519
crossref_primary_10_1016_j_cclet_2024_110243
crossref_primary_10_1021_acs_orglett_3c02955
crossref_primary_10_1016_j_tchem_2025_100124
crossref_primary_10_1021_jacs_1c13482
crossref_primary_10_1021_jacs_4c16912
crossref_primary_10_1021_acs_orglett_2c01208
crossref_primary_10_1002_adsc_202200399
crossref_primary_10_1002_anie_202411110
crossref_primary_10_1038_s41467_024_44744_y
crossref_primary_10_1021_jacs_1c12424
crossref_primary_10_1002_anie_202408301
crossref_primary_10_1039_D4SC07728H
crossref_primary_10_1039_D3SC06617G
crossref_primary_10_1021_jacs_4c12581
crossref_primary_10_1002_ange_202214519
crossref_primary_10_1039_D4QO00966E
crossref_primary_10_1002_ange_202306498
crossref_primary_10_1039_D4SC07923J
crossref_primary_10_1021_acs_accounts_4c00309
crossref_primary_10_1021_acscatal_3c01244
crossref_primary_10_1021_acs_joc_2c00707
crossref_primary_10_1002_ange_202204144
crossref_primary_10_1021_acscatal_3c03663
crossref_primary_10_1021_acs_orglett_4c04390
crossref_primary_10_1021_jacs_4c01450
crossref_primary_10_1016_j_ccr_2023_215173
crossref_primary_10_1021_acs_orglett_2c03598
crossref_primary_10_1055_a_1732_4597
crossref_primary_10_1002_ange_202408301
crossref_primary_10_1021_acs_orglett_1c03884
crossref_primary_10_1021_acscatal_2c03396
crossref_primary_10_1016_j_jcat_2024_115890
crossref_primary_10_1055_a_2441_2737
crossref_primary_10_1002_ange_202113209
crossref_primary_10_1039_D1SC05174A
crossref_primary_10_1016_j_bmc_2022_117035
crossref_primary_10_1021_acs_orglett_3c00751
crossref_primary_10_1021_jacs_2c01237
crossref_primary_10_1021_acs_joc_2c00664
crossref_primary_10_1021_jacs_2c05798
Cites_doi 10.1002/chem.201100909
10.1021/jacs.6b08075
10.1021/jo500507s
10.1002/anie.198909693
10.1021/jacs.9b08282
10.1021/ja021071w
10.1002/anie.199527231
10.1002/cjoc.202000224
10.1002/anie.202001742
10.1021/jacs.0c10055
10.1021/ja510653n
10.1021/ar5004658
10.1038/s41570-018-0040-8
10.1002/anie.201901866
10.1016/j.trechm.2019.08.004
10.1002/anie.201904861
10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-#
10.1126/science.aaf6123
10.1039/D0SC01471K
10.1002/3527604847
10.1038/nature13274
10.1038/s41929-019-0292-9
10.1021/jacs.9b02844
10.1007/s11175-005-0067-2
10.1021/acs.chemrev.7b00385
10.1002/chem.201000178
10.1002/tcr.201700098
10.1021/ja3013825
10.1021/acs.chemrev.6b00018
10.1021/acs.accounts.5b00057
10.1038/s41586-018-0669-y
10.1021/acs.joc.7b03128
10.1021/jacs.5b06255
10.1039/p29810000161
10.1002/anie.201702857
10.1073/pnas.1806900115
10.1039/C9SC06006E
10.1021/jacs.7b02389
10.1021/jacs.9b10026
10.1039/C5QO00224A
10.1021/ja00024a074
10.1021/ja039889k
10.1021/jacs.0c01324
10.1021/acs.accounts.5b00042
10.1021/ja9093956
10.1021/ja407589e
10.1021/ja9928677
10.1021/acs.accounts.0c00032
10.1021/ja303514b
10.1002/anie.201601296
10.1039/D0SC00712A
10.1021/acscentsci.6b00272
10.1002/anie.202007668
10.1039/C5OB01901J
10.1023/A:1011625728803
10.1002/ijch.201900072
10.1002/anie.198400691
10.1002/anie.201814524
10.1021/acs.orglett.8b00221
10.1002/adsc.201401000
10.1021/acs.accounts.0c00291
10.1016/S0022-328X(00)85317-6
10.1021/ja508718m
10.1021/acscentsci.7b00212
10.1038/s41570-017-0052
10.1002/anie.201906692
10.1021/ja301769r
10.1002/anie.201209060
10.1002/anie.198307531
10.1021/ja00791a019
10.1038/s41467-020-15837-1
10.1021/acs.accounts.6b00284
10.1039/D0SC02054K
10.1038/nature22813
10.1021/jacs.9b02238
10.1021/acs.organomet.8b00720
10.1021/jacs.8b11790
10.1002/chem.201805682
10.1021/jacs.7b12160
10.1039/D0CS00316F
10.1021/jacs.7b06288
10.1021/jacs.5b03870
10.1002/anie.200461432
10.1021/jacs.0c04695
10.1021/jacs.0c05254
10.1021/jacs.7b06469
10.1016/j.chempr.2020.05.013
10.1002/anie.201108350
10.1039/c3sc51098k
10.1021/jacs.6b07567
10.1039/C9CY00009G
10.1002/anie.201705521
10.1016/j.chempr.2020.04.005
10.1021/jacs.7b04312
10.1002/anie.200803611
10.1021/jacs.8b12801
10.1021/cr9000786
10.1002/adsc.200404223
10.1002/anie.201611282
10.1002/anie.201907185
10.1021/cr900382t
10.1126/science.aaf7230
10.1021/jacs.0c06904
10.1021/acscatal.0c01842
10.1021/jacs.8b09473
10.1016/S0040-4039(01)80099-X
10.1021/ja311669p
10.1021/jacs.6b04088
10.1002/anie.201809310
10.1021/acs.chemrev.6b00334
10.1021/jo980201+
10.1021/ja9944812
10.1002/anie.201906000
10.1021/acscatal.5b02441
10.1021/ja4076716
10.1021/jacs.7b13281
10.1002/anie.201916279
10.1038/s41557-020-00609-7
10.1021/jacs.5b02503
10.1246/cl.1993.2021
10.1021/cr100327p
10.1021/jacs.8b05374
10.1002/chem.201402509
10.1021/jacs.0c02355
10.1002/chem.201402302
10.1038/s41467-018-06904-9
10.1039/C9CC08027A
10.1021/jacs.8b09425
10.1038/nchem.2741
10.1002/anie.201712731
10.1038/nature22307
10.1002/anie.201803186
10.1021/ol8028737
10.1021/jacs.8b08190
10.1002/anie.201813222
10.1002/anie.201703743
10.1021/acscatal.6b02124
10.1021/ol200881v
10.1021/jacs.0c02237
10.1021/ol200617f
10.1016/S0040-4039(00)60192-2
10.1021/jacs.9b02973
10.1021/cr030717f
10.1021/jo401936v
10.1016/j.tet.2018.07.057
10.1021/ja202769t
10.1021/jacs.8b05868
10.1021/ja025730g
10.1021/acs.orglett.9b01016
10.1021/ja401344e
10.1021/ja410424g
10.1021/jacs.7b03195
10.1021/acs.orglett.9b01658
10.1021/ja311045f
10.1021/jacs.7b10855
10.1021/ja509077a
10.1039/c1sc00368b
10.1038/nature14007
10.1021/ja00234a047
10.1016/j.tet.2015.02.067
10.1002/anie.202010386
10.1002/anie.201609662
10.1002/anie.201908029
10.1021/jacs.0c03708
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d0cs01107j
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
AGRICOLA
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 4184
ExternalDocumentID 33533345
10_1039_D0CS01107J
d0cs01107j
Genre Journal Article
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-62b032af3192f98f4c2969ee1caa026742d436f46336e1cd5ca047ba667e30043
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 08:15:02 EDT 2025
Fri Jul 11 04:43:42 EDT 2025
Mon Jun 30 02:25:42 EDT 2025
Mon Jul 21 05:47:42 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
Tue Jul 01 04:18:45 EDT 2025
Sat Jan 08 11:08:50 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-62b032af3192f98f4c2969ee1caa026742d436f46336e1cd5ca047ba667e30043
Notes Weichao Xue obtained his BS (w/Dr. Feng Shi) and MS (w/Prof. Hegui Gong) at Henan University and Shanghai University, respectively. Subsequently, he moved to Technische Universität Berlin, where he obtained his PhD (w/Prof. Martin Oestreich) with summa cum laude. Currently, he is a postdoctoral research fellowship (w/Prof. Jonathan Nitschke) at the University of Cambridge, funded by Deutsche Forschungsgemeinschaft (DFG). He is interested in exploring the novel applications of first-row transition metals, e.g., in cross-coupling, organosilicon chemistry and metal-organic nanocapsules.
Xianghua Tao obtained his Bachelor of Science at Huainan Normal University, and Master's degree at East China Normal University. He is currently a PhD candidate under the supervision of Prof. Hegui Gong at Shanghai University. His research focuses on nickel-catalyzed reductive formation of amino acids.
Zhigang Yin obtained his BS (w/Prof. Yuhua Liu) at Zhengzhou University in 1985. He then obtained his MS and PhD (w/Prof. Defeng Zhao) at the State Key Laboratory of Fine Chemical Engineering, Dalian University of Technology. He is now a full professor at Zhengzhou University of Light Industry and engages in teaching and research in organic chemistry including chiral cyclopalladium compounds and development of new cosmetics raw materials.
Xuan Wang obtained his Bachelor of Science at Shanxi University. After receiving his PhD under the supervision of Prof. Hegui Gong at Shanghai University, he moved to the U.S. to continue his research. At present, Xuan is a postdoctoral research associate with Prof. Michel R. Gagné at the University of North Carolina at Chapel Hill. His research focuses on nickel-catalyzed coupling reactions and Lewis acid-catalyzed deoxygenation of cellulosic feedstocks.
Xiao Jia completed his BS and MS in chemistry at Shanghai University under the supervision of Prof. Hegui Gong. In 2016, he joined the research group of Prof. Chris Meier at Universität Hamburg and recently obtained his PhD with summa cum laude. Afterwards, Xiao decided to stay in the same laboratory to continue his research on medicinal chemistry as a postdoctoral researcher. He is currently focused on the development of nucleoside triphosphate prodrugs.
Hegui Gong obtained his PhD degree from the University of Texas at Austin (with Prof. Michael J. Krische). After postdoctoral research at the University of North Carolina at Chapel Hill (with Prof. Michel R. Gagné), he was appointed as a full professor at Shanghai University (China) in 2008. His research interest has been centered on Ni-catalyzed C-C bond formation and H-bond mediated supramolecular chemistry.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8376-9485
0000-0001-9566-9417
0000-0002-6059-7975
0000-0002-0149-8838
0000-0001-6534-5569
0000-0002-5928-8382
PMID 33533345
PQID 2506536741
PQPubID 2047503
PageCount 23
ParticipantIDs crossref_primary_10_1039_D0CS01107J
proquest_journals_2506536741
proquest_miscellaneous_2486158257
rsc_primary_d0cs01107j
crossref_citationtrail_10_1039_D0CS01107J
proquest_miscellaneous_2524304518
pubmed_primary_33533345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-21
PublicationDateYYYYMMDD 2021-03-21
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wu (D0CS01107J-(cit48)/*[position()=1]) 2017; 9
Shu (D0CS01107J-(cit76)/*[position()=1]) 2019; 141
Fischer (D0CS01107J-(cit99)/*[position()=1]) 2001; 40
Okada (D0CS01107J-(cit55)/*[position()=1]) 1992; 33
Peng (D0CS01107J-(cit88)/*[position()=1]) 2013; 78
Yotsuji (D0CS01107J-(cit46)/*[position()=1]) 2015; 357
Jin (D0CS01107J-(cit129)/*[position()=1]) 2018; 20
Sun (D0CS01107J-(cit142)/*[position()=1]) 2020; 59
Shrestha (D0CS01107J-(cit110)/*[position()=1]) 2011; 13
Giese (D0CS01107J-(cit122)/*[position()=1]) 1989; 28
Knappke (D0CS01107J-(cit66)/*[position()=1]) 2014; 20
Le (D0CS01107J-(cit154)/*[position()=1]) 2017; 547
Logan (D0CS01107J-(cit166)/*[position()=1]) 2018; 140
Tamaru (D0CS01107J-(cit20)/*[position()=1]) 2005
Walton (D0CS01107J-(cit125)/*[position()=1]) 2000; 122
Giri (D0CS01107J-(cit118)/*[position()=1]) 2018; 83
Fu (D0CS01107J-(cit18)/*[position()=1]) 2017; 3
Li (D0CS01107J-(cit128)/*[position()=1]) 2016; 55
He (D0CS01107J-(cit149)/*[position()=1]) 2020; 59
Hammann (D0CS01107J-(cit16)/*[position()=1]) 2017
Ye (D0CS01107J-(cit82)/*[position()=1]) 2019; 141
Zilbermann (D0CS01107J-(cit27)/*[position()=1]) 2005; 105
Leon (D0CS01107J-(cit94)/*[position()=1]) 2013; 135
Wang (D0CS01107J-(cit112)/*[position()=1]) 2015; 13
Basch (D0CS01107J-(cit159)/*[position()=1]) 2017; 139
Yu (D0CS01107J-(cit85)/*[position()=1]) 2011; 13
Mills (D0CS01107J-(cit61)/*[position()=1]) 2020; 142
Börjesson (D0CS01107J-(cit95)/*[position()=1]) 2016; 138
Guo (D0CS01107J-(cit137)/*[position()=1]) 2018; 9
Everson (D0CS01107J-(cit62)/*[position()=1]) 2010; 132
Somerville (D0CS01107J-(cit98)/*[position()=1]) 2020; 142
Batsanov (D0CS01107J-(cit31)/*[position()=1]) 2001; 37
Weix (D0CS01107J-(cit70)/*[position()=1]) 2015; 48
Lipp (D0CS01107J-(cit36)/*[position()=1]) 2021; 60
Cassani (D0CS01107J-(cit14)/*[position()=1]) 2016; 6
Estrada (D0CS01107J-(cit51)/*[position()=1]) 2020; 142
Campeau (D0CS01107J-(cit71)/*[position()=1]) 2019; 38
Chen (D0CS01107J-(cit89)/*[position()=1]) 2017; 56
Fujihara (D0CS01107J-(cit93)/*[position()=1]) 2012; 134
Huang (D0CS01107J-(cit50)/*[position()=1]) 2015; 137
Wei (D0CS01107J-(cit134)/*[position()=1]) 2020; 142
Yuan (D0CS01107J-(cit43)/*[position()=1]) 2020; 142
Ni (D0CS01107J-(cit78)/*[position()=1]) 2019; 141
Kumar (D0CS01107J-(cit126)/*[position()=1]) 2020; 56
García-Domínguez (D0CS01107J-(cit131)/*[position()=1]) 2017; 139
Everson (D0CS01107J-(cit67)/*[position()=1]) 2014; 79
Fürstner (D0CS01107J-(cit13)/*[position()=1]) 2016; 2
Zhu (D0CS01107J-(cit35)/*[position()=1]) 2020; 11
Everson (D0CS01107J-(cit63)/*[position()=1]) 2012; 134
Broggi (D0CS01107J-(cit132)/*[position()=1]) 2014; 53
Shields (D0CS01107J-(cit105)/*[position()=1]) 2018; 140
Wang (D0CS01107J-(cit163)/*[position()=1]) 2018; 140
Liu (D0CS01107J-(cit2)/*[position()=1]) 2015; 48
Wang (D0CS01107J-(cit75)/*[position()=1]) 2018; 140
He (D0CS01107J-(cit150)/*[position()=1]) 2020; 59
Crossley (D0CS01107J-(cit3)/*[position()=1]) 2016; 116
Luo (D0CS01107J-(cit121)/*[position()=1]) 2020; 38
Zhou (D0CS01107J-(cit146)/*[position()=1]) 2019; 58
Kong (D0CS01107J-(cit160)/*[position()=1]) 2019; 2
Green (D0CS01107J-(cit152)/*[position()=1]) 2018; 140
Tortajada (D0CS01107J-(cit92)/*[position()=1]) 2018; 57
Beckwith (D0CS01107J-(cit100)/*[position()=1]) 2002; 124
Biswas (D0CS01107J-(cit64)/*[position()=1]) 2013; 135
Leatherman (D0CS01107J-(cit29)/*[position()=1]) 2003; 125
Ding (D0CS01107J-(cit165)/*[position()=1]) 2021; 143
Wang (D0CS01107J-(cit162)/*[position()=1]) 2021
Börjesson (D0CS01107J-(cit91)/*[position()=1]) 2016; 6
Okada (D0CS01107J-(cit56)/*[position()=1]) 1993
Qin (D0CS01107J-(cit113)/*[position()=1]) 2017; 56
Green (D0CS01107J-(cit153)/*[position()=1]) 2019; 141
Giese (D0CS01107J-(cit9)/*[position()=1]) 1983; 22
Primer (D0CS01107J-(cit42)/*[position()=1]) 2017; 139
Liu (D0CS01107J-(cit38)/*[position()=1]) 2012; 51
Nielsen (D0CS01107J-(cit53)/*[position()=1]) 2013; 135
Edwards (D0CS01107J-(cit58)/*[position()=1]) 2017; 545
Moragas (D0CS01107J-(cit96)/*[position()=1]) 2014; 136
Chen (D0CS01107J-(cit164)/*[position()=1]) 2020; 11
Wang (D0CS01107J-(cit79)/*[position()=1]) 2019; 58
Zhao (D0CS01107J-(cit77)/*[position()=1]) 2014; 136
Skubi (D0CS01107J-(cit32)/*[position()=1]) 2016; 116
Derosa (D0CS01107J-(cit119)/*[position()=1]) 2018; 51
Diccianni (D0CS01107J-(cit133)/*[position()=1]) 2020; 53
Cheng (D0CS01107J-(cit19)/*[position()=1]) 2020; 49
Zhang (D0CS01107J-(cit145)/*[position()=1]) 2019; 58
Chierchia (D0CS01107J-(cit124)/*[position()=1]) 2019; 58
Pitre (D0CS01107J-(cit8)/*[position()=1]) 2019; 141
Wang (D0CS01107J-(cit80)/*[position()=1]) 2015; 137
Chen (D0CS01107J-(cit167)/*[position()=1]) 2019; 58
Sun (D0CS01107J-(cit144)/*[position()=1]) 2018; 140
Burkholder (D0CS01107J-(cit106)/*[position()=1]) 1998; 63
Chu (D0CS01107J-(cit130)/*[position()=1]) 2018; 57
Vasudevan (D0CS01107J-(cit102)/*[position()=1]) 2005; 41
Guo (D0CS01107J-(cit138)/*[position()=1]) 2019; 21
Chen (D0CS01107J-(cit59)/*[position()=1]) 2019; 58
Joshi-Pangu (D0CS01107J-(cit44)/*[position()=1]) 2011; 133
Wang (D0CS01107J-(cit136)/*[position()=1]) 2020; 11
Yang (D0CS01107J-(cit148)/*[position()=1]) 2020; 142
Ariki (D0CS01107J-(cit49)/*[position()=1]) 2018; 140
Tu (D0CS01107J-(cit135)/*[position()=1]) 2020; 142
Wang (D0CS01107J-(cit114)/*[position()=1]) 2018; 115
Luo (D0CS01107J-(cit81)/*[position()=1]) 2019; 25
Kc (D0CS01107J-(cit123)/*[position()=1]) 2018; 140
Xu (D0CS01107J-(cit30)/*[position()=1]) 2017; 56
Erickson (D0CS01107J-(cit87)/*[position()=1]) 2016; 138
Poremba (D0CS01107J-(cit74)/*[position()=1]) 2020; 10
Choi (D0CS01107J-(cit17)/*[position()=1]) 2017; 356
Devasagayaraj (D0CS01107J-(cit37)/*[position()=1]) 1996; 34
Goldfogel (D0CS01107J-(cit72)/*[position()=1]) 2020
Yu (D0CS01107J-(cit90)/*[position()=1]) 2018; 74
Campbell (D0CS01107J-(cit140)/*[position()=1]) 2019; 141
Zhou (D0CS01107J-(cit47)/*[position()=1]) 2016; 138
Tasker (D0CS01107J-(cit25)/*[position()=1]) 2014; 509
Marek (D0CS01107J-(cit5)/*[position()=1]) 2014; 136
Feng (D0CS01107J-(cit6)/*[position()=1]) 2017; 117
Twilton (D0CS01107J-(cit33)/*[position()=1]) 2017; 1
van Gemmeren (D0CS01107J-(cit97)/*[position()=1]) 2017; 56
Lohre (D0CS01107J-(cit45)/*[position()=1]) 2011; 17
Mann (D0CS01107J-(cit28)/*[position()=1]) 2000; 122
Derosa (D0CS01107J-(cit120)/*[position()=1]) 2020; 11
Janssen-Müller (D0CS01107J-(cit147)/*[position()=1]) 2020; 60
Robak (D0CS01107J-(cit116)/*[position()=1]) 2010; 110
Zhou (D0CS01107J-(cit143)/*[position()=1]) 2018; 57
Barton (D0CS01107J-(cit11)/*[position()=1]) 1984; 25
Diccianni (D0CS01107J-(cit26)/*[position()=1]) 2019; 1
Hu (D0CS01107J-(cit24)/*[position()=1]) 2011; 2
Dhungana (D0CS01107J-(cit117)/*[position()=1]) 2018; 18
Okada (D0CS01107J-(cit103)/*[position()=1]) 1988; 110
Wang (D0CS01107J-(cit151)/*[position()=1]) 2018; 563
Frisch (D0CS01107J-(cit22)/*[position()=1]) 2005; 44
Xu (D0CS01107J-(cit84)/*[position()=1]) 2013; 4
Jana (D0CS01107J-(cit4)/*[position()=1]) 2011; 111
Aihara (D0CS01107J-(cit155)/*[position()=1]) 2013; 135
Gong (D0CS01107J-(cit109)/*[position()=1]) 2009; 11
Schley (D0CS01107J-(cit60)/*[position()=1]) 2014; 136
Bedford (D0CS01107J-(cit12)/*[position()=1]) 2015; 48
Amatore (D0CS01107J-(cit65)/*[position()=1]) 2010; 16
Zhou (D0CS01107J-(cit40)/*[position()=1]) 2004; 126
Qin (D0CS01107J-(cit57)/*[position()=1]) 2016; 352
Lin (D0CS01107J-(cit107)/*[position()=1]) 2019; 141
Grotewold (D0CS01107J-(cit127)/*[position()=1]) 1969; 19
Shukla (D0CS01107J-(cit111)/*[position()=1]) 2015; 71
Netherton (D0CS01107J-(cit21)/*[position()=1]) 2004; 346
Khake (D0CS01107J-(cit157)/*[position()=1]) 2020; 6
Cahiez (D0CS01107J-(cit15)/*[position()=1]) 2010; 110
Reid (D0CS01107J-(cit161)/*[position()=1]) 2018; 2
Gu (D0CS01107J-(cit69)/*[position()=1]) 2015; 2
Lu (D0CS01107J-(cit83)/*[position()=1]) 2017; 139
Giese (D0CS01107J-(cit10)/*[position()=1]) 1984; 23
Rezazadeh (D0CS01107J-(cit158)/*[position()=1]) 2017; 139
Huang (D0CS01107J-(cit52)/*[position()=1]) 2012; 134
Li (D0CS01107J-(cit141)/*[position()=1]) 2020; 11
Baban (D0CS01107J-(cit101)/*[position()=1]) 1981
Ni (D0CS01107J-(cit115)/*[position()=1]) 2018; 57
García-Domínguez (D0CS01107J-(cit139)/*[position()=1]) 2019; 58
Zultanski (D0CS01107J-(cit41)/*[position()=1]) 2013; 135
Rudolph (D0CS01107J-(cit23)/*[position()=1]) 2009; 48
Harry (D0CS01107J-(cit156)/*[position()=1]) 2019; 9
Mohadjer Beromi (D0CS01107J-(cit104)/*[position()=1]) 2019; 58
Okada (D0CS01107J-(cit54)/*[position()=1]) 1991; 113
Quasdorf (D0CS01107J-(cit1)/*[position()=1]) 2014; 516
Jamison (D0CS01107J-(cit7)/*[position()=1]) 2016; 49
Tollefson (D0CS01107J-(cit86)/*[position()=1]) 2015; 137
Badir (D0CS01107J-(cit34)/*[position()=1]) 2020; 6
Liu (D0CS01107J-(cit73)/*[position()=1]) 2020; 53
Moragas (D0CS01107J-(cit68)/*[position()=1]) 2014; 20
Martin-Montero (D0CS01107J-(cit108)/*[position()=1]) 2019; 21
Otsuka (D0CS01107J-(cit39)/*[position()=1]) 1973; 95
References_xml – issn: 2020
  end-page: p 183-222
  publication-title: Nickel Catalysis in Organic Synthesis
  doi: Goldfogel Huang Weix
– issn: 2005
  publication-title: Modern Organonickel Chemistry
  doi: Tamaru
– volume: 17
  start-page: 6052
  year: 2011
  ident: D0CS01107J-(cit45)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201100909
– volume: 138
  start-page: 12057
  year: 2016
  ident: D0CS01107J-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08075
– volume: 79
  start-page: 4793
  year: 2014
  ident: D0CS01107J-(cit67)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo500507s
– volume: 28
  start-page: 969
  year: 1989
  ident: D0CS01107J-(cit122)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.198909693
– volume: 141
  start-page: 20069
  year: 2019
  ident: D0CS01107J-(cit140)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08282
– volume: 125
  start-page: 3068
  year: 2003
  ident: D0CS01107J-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja021071w
– volume: 34
  start-page: 2723
  year: 1996
  ident: D0CS01107J-(cit37)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199527231
– volume: 38
  start-page: 1371
  year: 2020
  ident: D0CS01107J-(cit121)/*[position()=1]
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202000224
– volume: 59
  start-page: 9186
  year: 2020
  ident: D0CS01107J-(cit149)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202001742
– volume: 143
  start-page: 53
  year: 2021
  ident: D0CS01107J-(cit165)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10055
– volume: 136
  start-page: 17645
  year: 2014
  ident: D0CS01107J-(cit77)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510653n
– volume: 48
  start-page: 740
  year: 2015
  ident: D0CS01107J-(cit2)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5004658
– volume: 51
  start-page: 21
  year: 2018
  ident: D0CS01107J-(cit119)/*[position()=1]
  publication-title: Aldrichimica Acta
– volume: 2
  start-page: 290
  year: 2018
  ident: D0CS01107J-(cit161)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0040-8
– volume: 58
  start-page: 6094
  year: 2019
  ident: D0CS01107J-(cit104)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901866
– volume: 1
  start-page: 830
  year: 2019
  ident: D0CS01107J-(cit26)/*[position()=1]
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.08.004
– volume: 58
  start-page: 10956
  year: 2019
  ident: D0CS01107J-(cit167)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904861
– volume: 40
  start-page: 1340
  year: 2001
  ident: D0CS01107J-(cit99)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-#
– volume: 352
  start-page: 801
  year: 2016
  ident: D0CS01107J-(cit57)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf6123
– volume: 11
  start-page: 4904
  year: 2020
  ident: D0CS01107J-(cit141)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01471K
– volume-title: Modern Organonickel Chemistry
  year: 2005
  ident: D0CS01107J-(cit20)/*[position()=1]
  doi: 10.1002/3527604847
– volume: 509
  start-page: 299
  year: 2014
  ident: D0CS01107J-(cit25)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13274
– volume: 2
  start-page: 473
  year: 2019
  ident: D0CS01107J-(cit160)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0292-9
– volume: 141
  start-page: 7709
  year: 2019
  ident: D0CS01107J-(cit153)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02844
– volume: 41
  start-page: 310
  year: 2005
  ident: D0CS01107J-(cit102)/*[position()=1]
  publication-title: Russ. J. Electrochem.
  doi: 10.1007/s11175-005-0067-2
– volume: 117
  start-page: 12564
  year: 2017
  ident: D0CS01107J-(cit6)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00385
– volume: 16
  start-page: 5848
  year: 2010
  ident: D0CS01107J-(cit65)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201000178
– volume: 18
  start-page: 1314
  year: 2018
  ident: D0CS01107J-(cit117)/*[position()=1]
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201700098
– volume: 134
  start-page: 9541
  year: 2012
  ident: D0CS01107J-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3013825
– volume: 116
  start-page: 10035
  year: 2016
  ident: D0CS01107J-(cit32)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00018
– volume: 48
  start-page: 1767
  year: 2015
  ident: D0CS01107J-(cit70)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00057
– volume: 563
  start-page: 379
  year: 2018
  ident: D0CS01107J-(cit151)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0669-y
– volume: 83
  start-page: 3013
  year: 2018
  ident: D0CS01107J-(cit118)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b03128
– volume: 137
  start-page: 11562
  year: 2015
  ident: D0CS01107J-(cit80)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06255
– start-page: 161
  year: 1981
  ident: D0CS01107J-(cit101)/*[position()=1]
  publication-title: J. Chem. Soc., Perkin Trans. 2
  doi: 10.1039/p29810000161
– volume: 56
  start-page: 6558
  year: 2017
  ident: D0CS01107J-(cit97)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702857
– volume: 115
  start-page: E6404
  year: 2018
  ident: D0CS01107J-(cit114)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1806900115
– start-page: 3887
  year: 2017
  ident: D0CS01107J-(cit16)/*[position()=1]
  publication-title: Synthesis
– volume: 11
  start-page: 4287
  year: 2020
  ident: D0CS01107J-(cit120)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC06006E
– volume: 139
  start-page: 5313
  year: 2017
  ident: D0CS01107J-(cit159)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02389
– volume: 141
  start-page: 17937
  year: 2019
  ident: D0CS01107J-(cit107)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10026
– volume: 2
  start-page: 1411
  year: 2015
  ident: D0CS01107J-(cit69)/*[position()=1]
  publication-title: Org. Chem. Front.
  doi: 10.1039/C5QO00224A
– volume: 113
  start-page: 9401
  year: 1991
  ident: D0CS01107J-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00024a074
– volume: 126
  start-page: 1340
  year: 2004
  ident: D0CS01107J-(cit40)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja039889k
– volume: 142
  start-page: 5870
  year: 2020
  ident: D0CS01107J-(cit148)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01324
– volume: 48
  start-page: 1485
  year: 2015
  ident: D0CS01107J-(cit12)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00042
– volume: 132
  start-page: 920
  year: 2010
  ident: D0CS01107J-(cit62)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9093956
– volume: 135
  start-page: 16192
  year: 2013
  ident: D0CS01107J-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407589e
– volume: 122
  start-page: 5132
  year: 2000
  ident: D0CS01107J-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9928677
– volume: 53
  start-page: 906
  year: 2020
  ident: D0CS01107J-(cit133)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00032
– volume: 134
  start-page: 9106
  year: 2012
  ident: D0CS01107J-(cit93)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303514b
– volume: 55
  start-page: 6938
  year: 2016
  ident: D0CS01107J-(cit128)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201601296
– volume: 11
  start-page: 4051
  year: 2020
  ident: D0CS01107J-(cit35)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00712A
– volume: 2
  start-page: 778
  year: 2016
  ident: D0CS01107J-(cit13)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00272
– volume: 60
  start-page: 1714
  year: 2021
  ident: D0CS01107J-(cit36)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007668
– volume: 13
  start-page: 11418
  year: 2015
  ident: D0CS01107J-(cit112)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB01901J
– volume: 37
  start-page: 871
  year: 2001
  ident: D0CS01107J-(cit31)/*[position()=1]
  publication-title: Inorg. Mater.
  doi: 10.1023/A:1011625728803
– volume: 60
  start-page: 195
  year: 2020
  ident: D0CS01107J-(cit147)/*[position()=1]
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201900072
– volume: 23
  start-page: 69
  year: 1984
  ident: D0CS01107J-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.198400691
– volume: 58
  start-page: 2454
  year: 2019
  ident: D0CS01107J-(cit59)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814524
– volume: 20
  start-page: 1435
  year: 2018
  ident: D0CS01107J-(cit129)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00221
– volume: 357
  start-page: 1022
  year: 2015
  ident: D0CS01107J-(cit46)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201401000
– volume: 53
  start-page: 1833
  year: 2020
  ident: D0CS01107J-(cit73)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00291
– volume: 19
  start-page: 431
  year: 1969
  ident: D0CS01107J-(cit127)/*[position()=1]
  publication-title: J. Organomet. Chem.
  doi: 10.1016/S0022-328X(00)85317-6
– volume: 136
  start-page: 16588
  year: 2014
  ident: D0CS01107J-(cit60)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508718m
– volume-title: Nickel Catalysis in Organic Synthesis
  year: 2020
  ident: D0CS01107J-(cit72)/*[position()=1]
– volume: 3
  start-page: 692
  year: 2017
  ident: D0CS01107J-(cit18)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00212
– volume: 1
  start-page: 0052
  year: 2017
  ident: D0CS01107J-(cit33)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0052
– volume: 58
  start-page: 12286
  year: 2019
  ident: D0CS01107J-(cit139)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906692
– volume: 134
  start-page: 6146
  year: 2012
  ident: D0CS01107J-(cit63)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301769r
– volume: 53
  start-page: 384
  year: 2014
  ident: D0CS01107J-(cit132)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209060
– volume: 22
  start-page: 753
  year: 1983
  ident: D0CS01107J-(cit9)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.198307531
– volume: 95
  start-page: 3180
  year: 1973
  ident: D0CS01107J-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00791a019
– volume: 11
  start-page: 1882
  year: 2020
  ident: D0CS01107J-(cit164)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15837-1
– volume: 49
  start-page: 1578
  year: 2016
  ident: D0CS01107J-(cit7)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00284
– volume: 11
  start-page: 7950
  year: 2020
  ident: D0CS01107J-(cit136)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02054K
– volume: 547
  start-page: 79
  year: 2017
  ident: D0CS01107J-(cit154)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature22813
– volume: 141
  start-page: 6726
  year: 2019
  ident: D0CS01107J-(cit78)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02238
– volume: 38
  start-page: 3
  year: 2019
  ident: D0CS01107J-(cit71)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.8b00720
– volume: 141
  start-page: 2800
  year: 2019
  ident: D0CS01107J-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11790
– volume: 25
  start-page: 989
  year: 2019
  ident: D0CS01107J-(cit81)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201805682
– volume: 140
  start-page: 159
  year: 2018
  ident: D0CS01107J-(cit166)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12160
– volume: 49
  start-page: 8036
  year: 2020
  ident: D0CS01107J-(cit19)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00316F
– volume: 139
  start-page: 9847
  year: 2017
  ident: D0CS01107J-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06288
– volume: 137
  start-page: 9760
  year: 2015
  ident: D0CS01107J-(cit86)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03870
– volume: 44
  start-page: 674
  year: 2005
  ident: D0CS01107J-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461432
– volume: 142
  start-page: 10936
  year: 2020
  ident: D0CS01107J-(cit98)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04695
– volume: 142
  start-page: 13515
  year: 2020
  ident: D0CS01107J-(cit134)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05254
– volume: 139
  start-page: 12632
  year: 2017
  ident: D0CS01107J-(cit83)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06469
– volume: 6
  start-page: 1327
  year: 2020
  ident: D0CS01107J-(cit34)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.05.013
– volume: 51
  start-page: 3638
  year: 2012
  ident: D0CS01107J-(cit38)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108350
– volume: 4
  start-page: 4022
  year: 2013
  ident: D0CS01107J-(cit84)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc51098k
– volume: 138
  start-page: 14006
  year: 2016
  ident: D0CS01107J-(cit87)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07567
– volume: 9
  start-page: 1726
  year: 2019
  ident: D0CS01107J-(cit156)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY00009G
– volume: 56
  start-page: 13103
  year: 2017
  ident: D0CS01107J-(cit89)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705521
– volume: 6
  start-page: 1056
  year: 2020
  ident: D0CS01107J-(cit157)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.04.005
– volume: 139
  start-page: 8110
  year: 2017
  ident: D0CS01107J-(cit158)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04312
– volume: 48
  start-page: 2656
  year: 2009
  ident: D0CS01107J-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200803611
– volume: 141
  start-page: 820
  year: 2019
  ident: D0CS01107J-(cit82)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12801
– volume: 110
  start-page: 1435
  year: 2010
  ident: D0CS01107J-(cit15)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr9000786
– volume: 346
  start-page: 1525
  year: 2004
  ident: D0CS01107J-(cit21)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200404223
– volume: 56
  start-page: 1535
  year: 2017
  ident: D0CS01107J-(cit30)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201611282
– volume: 58
  start-page: 13860
  year: 2019
  ident: D0CS01107J-(cit145)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907185
– volume: 110
  start-page: 3600
  year: 2010
  ident: D0CS01107J-(cit116)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900382t
– volume: 356
  start-page: 152
  year: 2017
  ident: D0CS01107J-(cit17)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf7230
– volume: 142
  start-page: 13246
  year: 2020
  ident: D0CS01107J-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06904
– volume: 10
  start-page: 8237
  year: 2020
  ident: D0CS01107J-(cit74)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01842
– volume: 140
  start-page: 14490
  year: 2018
  ident: D0CS01107J-(cit75)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09473
– volume: 25
  start-page: 1055
  year: 1984
  ident: D0CS01107J-(cit11)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(01)80099-X
– volume: 135
  start-page: 624
  year: 2013
  ident: D0CS01107J-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311669p
– volume: 138
  start-page: 7504
  year: 2016
  ident: D0CS01107J-(cit95)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04088
– volume: 57
  start-page: 14560
  year: 2018
  ident: D0CS01107J-(cit115)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201809310
– volume: 116
  start-page: 8912
  year: 2016
  ident: D0CS01107J-(cit3)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00334
– volume: 63
  start-page: 5385
  year: 1998
  ident: D0CS01107J-(cit106)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo980201+
– volume: 122
  start-page: 5455
  year: 2000
  ident: D0CS01107J-(cit125)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9944812
– volume: 58
  start-page: 12081
  year: 2019
  ident: D0CS01107J-(cit79)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906000
– volume: 6
  start-page: 1640
  year: 2016
  ident: D0CS01107J-(cit14)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02441
– volume: 135
  start-page: 13605
  year: 2013
  ident: D0CS01107J-(cit53)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4076716
– volume: 140
  start-page: 3035
  year: 2018
  ident: D0CS01107J-(cit105)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13281
– volume: 59
  start-page: 4370
  year: 2020
  ident: D0CS01107J-(cit142)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916279
– year: 2021
  ident: D0CS01107J-(cit162)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-00609-7
– volume: 137
  start-page: 5638
  year: 2015
  ident: D0CS01107J-(cit50)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02503
– start-page: 2021
  year: 1993
  ident: D0CS01107J-(cit56)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1993.2021
– volume: 111
  start-page: 1417
  year: 2011
  ident: D0CS01107J-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100327p
– volume: 140
  start-page: 9801
  year: 2018
  ident: D0CS01107J-(cit123)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05374
– volume: 20
  start-page: 8242
  year: 2014
  ident: D0CS01107J-(cit68)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201402509
– volume: 142
  start-page: 7225
  year: 2020
  ident: D0CS01107J-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02355
– volume: 20
  start-page: 6828
  year: 2014
  ident: D0CS01107J-(cit66)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201402302
– volume: 9
  start-page: 4543
  year: 2018
  ident: D0CS01107J-(cit137)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06904-9
– volume: 56
  start-page: 13
  year: 2020
  ident: D0CS01107J-(cit126)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08027A
– volume: 140
  start-page: 12765
  year: 2018
  ident: D0CS01107J-(cit144)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09425
– volume: 9
  start-page: 779
  year: 2017
  ident: D0CS01107J-(cit48)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2741
– volume: 57
  start-page: 4058
  year: 2018
  ident: D0CS01107J-(cit143)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712731
– volume: 545
  start-page: 213
  year: 2017
  ident: D0CS01107J-(cit58)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature22307
– volume: 57
  start-page: 15948
  year: 2018
  ident: D0CS01107J-(cit92)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803186
– volume: 11
  start-page: 879
  year: 2009
  ident: D0CS01107J-(cit109)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol8028737
– volume: 140
  start-page: 12364
  year: 2018
  ident: D0CS01107J-(cit163)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08190
– volume: 58
  start-page: 1754
  year: 2019
  ident: D0CS01107J-(cit146)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813222
– volume: 57
  start-page: 62
  year: 2018
  ident: D0CS01107J-(cit130)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703743
– volume: 6
  start-page: 6739
  year: 2016
  ident: D0CS01107J-(cit91)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02124
– volume: 13
  start-page: 2766
  year: 2011
  ident: D0CS01107J-(cit110)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol200881v
– volume: 142
  start-page: 8928
  year: 2020
  ident: D0CS01107J-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02237
– volume: 13
  start-page: 2138
  year: 2011
  ident: D0CS01107J-(cit85)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol200617f
– volume: 33
  start-page: 7377
  year: 1992
  ident: D0CS01107J-(cit55)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)60192-2
– volume: 141
  start-page: 13812
  year: 2019
  ident: D0CS01107J-(cit76)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02973
– volume: 105
  start-page: 2609
  year: 2005
  ident: D0CS01107J-(cit27)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr030717f
– volume: 78
  start-page: 10960
  year: 2013
  ident: D0CS01107J-(cit88)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo401936v
– volume: 74
  start-page: 5651
  year: 2018
  ident: D0CS01107J-(cit90)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2018.07.057
– volume: 133
  start-page: 8478
  year: 2011
  ident: D0CS01107J-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja202769t
– volume: 140
  start-page: 11317
  year: 2018
  ident: D0CS01107J-(cit152)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05868
– volume: 124
  start-page: 9489
  year: 2002
  ident: D0CS01107J-(cit100)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025730g
– volume: 21
  start-page: 2947
  year: 2019
  ident: D0CS01107J-(cit108)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01016
– volume: 135
  start-page: 5308
  year: 2013
  ident: D0CS01107J-(cit155)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401344e
– volume: 136
  start-page: 2682
  year: 2014
  ident: D0CS01107J-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410424g
– volume: 139
  start-page: 6835
  year: 2017
  ident: D0CS01107J-(cit131)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03195
– volume: 21
  start-page: 4771
  year: 2019
  ident: D0CS01107J-(cit138)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01658
– volume: 135
  start-page: 1221
  year: 2013
  ident: D0CS01107J-(cit94)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311045f
– volume: 140
  start-page: 78
  year: 2018
  ident: D0CS01107J-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10855
– volume: 136
  start-page: 17702
  year: 2014
  ident: D0CS01107J-(cit96)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509077a
– volume: 2
  start-page: 1867
  year: 2011
  ident: D0CS01107J-(cit24)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00368b
– volume: 516
  start-page: 181
  year: 2014
  ident: D0CS01107J-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature14007
– volume: 110
  start-page: 8736
  year: 1988
  ident: D0CS01107J-(cit103)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00234a047
– volume: 71
  start-page: 2260
  year: 2015
  ident: D0CS01107J-(cit111)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2015.02.067
– volume: 59
  start-page: 21530
  year: 2020
  ident: D0CS01107J-(cit150)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202010386
– volume: 56
  start-page: 260
  year: 2017
  ident: D0CS01107J-(cit113)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201609662
– volume: 58
  start-page: 14245
  year: 2019
  ident: D0CS01107J-(cit124)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908029
– volume: 142
  start-page: 9604
  year: 2020
  ident: D0CS01107J-(cit135)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03708
SSID ssj0011762
Score 2.651796
SecondaryResourceType review_article
Snippet Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )-C bonds and simultaneously create...
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )–C bonds and simultaneously create...
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp )-C bonds and simultaneously create...
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)–C bonds and simultaneously create...
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)-C bonds and simultaneously create...
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp³)–C bonds and simultaneously create...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4162
SubjectTerms Adducts
alcohols
Carbon
Carboxylic acids
Cascade chemical reactions
Chemical reactions
Covalent bonds
Interception
Lewis acids
Lewis bases
Nickel
Nucleophiles
Oxidation
Reaction mechanisms
State-of-the-art reviews
Title Nickel-catalyzed formation of quaternary carbon centers using tertiary alkyl electrophiles
URI https://www.ncbi.nlm.nih.gov/pubmed/33533345
https://www.proquest.com/docview/2506536741
https://www.proquest.com/docview/2486158257
https://www.proquest.com/docview/2524304518
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXxNdYxkBB8IKmjMR2nORxKp3GVMYDqYh4iZzE2caqtGsbQffXc3Zsp2MTGrxE1dlyLd8vl7vzfSD0jmFRhULUXllUYKAAprxYlNirsYiqEJdBWMsb3c8n7GhMj7Mw6wsqqOySZbFfXt2aV_I_XAUa8FVmyf4DZ-2iQIDfwF94AofheSceAxsvxMRTLpjVFaiONhVR6oCXLVfevvlK1p8ugCgjMWXCbqscBDIa4FyO8snFarKnG-LMzkBOLNZ1VltTwER46gqmhldZq5yi34SMwJ9aTyr8xYo3pz958-u8d9t3oiVre1CmXHlrM8Dp6VnL190QWMVhdbnNWnJS5gOvu2KORrR2NWU1hNjebB_UP-zRIKZrMlPS1r6_ZvSGbPeJLI1a-eVC6izRj_4LZm7tT77kh-PRKE-HWXofbWKwHED0bR4M008je7UURKrLrN2vqVlLkg_92te1lBumBygic9MgRiki6WP0SFsQ7kEHhyfonmieogcD07jvGfr-JyxcCwt3Wrs9LNwOFq6Ghatg4RpYuAoW7jVYPEfjw2E6OPJ0Cw2vJJG_9BgufIJ5DYIW10lc0xInLBEiKDmXvccorihhNWWEMCBWYcl9GhWcsUjIWmxkC20000Zsyxg4kshO5UEgwAxIoqISmIN-zHwRc1EwB703R5aXur68bHMyyVWcA0nyj_7gqzreYwe9tXNnXVWVW2ftmpPP9Vu3yEFlZyGBnQcOemOH4YTlRRdvxLSFOTQGRT2Gr9Ff5oSYyiiBIHbQi46rdiuEgBFEaOigLWCzJffw2LnDsi_Rw_492UUby3krXoECuyxea0j-Bo4ynrE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nickel-catalyzed+formation+of+quaternary+carbon+centers+using+tertiary+alkyl+electrophiles&rft.jtitle=Chemical+Society+reviews&rft.au=Xue%2C+Weichao&rft.au=Qingyangwanxi&rft.au=Wang%2C+Xuan&rft.au=Tao%2C+Xianghua&rft.date=2021-03-21&rft.issn=1460-4744&rft.volume=50&rft.issue=6+p.4162-4184&rft.spage=4162&rft.epage=4184&rft_id=info:doi/10.1039%2Fd0cs01107j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon