Nickel-catalyzed formation of quaternary carbon centers using tertiary alkyl electrophiles
Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidat...
Saved in:
Published in | Chemical Society reviews Vol. 5; no. 6; pp. 4162 - 4184 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp
3
)-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni
0
to Ni
IV
, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms.
This review provides a comprehensive summary of recent advances in nickel-catalyzed reactions employing tertiary alkyl electrophiles for the construction of quaternary carbon centers. |
---|---|
AbstractList | Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni0 to NiIV, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms.Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni0 to NiIV, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms. Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )–C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni 0 to Ni IV , allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl–Ni intermediate is relatively slow, thus benefiting the C–C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C–C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms. Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp )-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni to Ni , allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms. Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp³)–C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni⁰ to Niᴵⱽ, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl–Ni intermediate is relatively slow, thus benefiting the C–C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C–C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms. Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)–C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni0 to NiIV, allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl–Ni intermediate is relatively slow, thus benefiting the C–C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C–C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms. Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )-C bonds and simultaneously create challenging all-carbon quaternary centers has received growing attention in the recent years. The unique nature of nickel featuring flexible oxidation states ranging from Ni 0 to Ni IV , allows the effective activation of tertiary alkyl electrophiles through ionic (2e) or radical pathways. In nickel-catalyzed coupling of tertiary alkyl electrophiles, the competitive β-H elimination upon the resulting alkyl-Ni intermediate is relatively slow, thus benefiting the C-C bond forming process. Meanwhile, nickel-catalyzed radical addition of tertiary alkyl electrophiles to unsaturated C-C bonds has also advanced rapidly due to the successful incorporation of carboxylic acid and alcohol derivatives as radical precursors, and more importantly due to further interception of the intermediate radical adducts with nucleophiles and electrophiles to accomplish three-component cascade reactions. This review highlights these state-of-the-art nickel-catalyzed transformations of tertiary electrophiles, organized by reaction types with emphasis on the reaction mechanisms. This review provides a comprehensive summary of recent advances in nickel-catalyzed reactions employing tertiary alkyl electrophiles for the construction of quaternary carbon centers. |
Author | Gong, Hegui Wang, Xuan Yin, Zhigang Xue, Weichao Jia, Xiao Tao, Xianghua |
AuthorAffiliation | Center for Supramolecular Chemistry and Catalysis and Department of Chemistry Zhengzhou University of Light Industry Shanghai University School of Materials & Chemical Engineering |
AuthorAffiliation_xml | – name: Center for Supramolecular Chemistry and Catalysis and Department of Chemistry – name: School of Materials & Chemical Engineering – name: Shanghai University – name: Zhengzhou University of Light Industry |
Author_xml | – sequence: 1 givenname: Weichao surname: Xue fullname: Xue, Weichao – sequence: 2 givenname: Xiao surname: Jia fullname: Jia, Xiao – sequence: 3 givenname: Xuan surname: Wang fullname: Wang, Xuan – sequence: 4 givenname: Xianghua surname: Tao fullname: Tao, Xianghua – sequence: 5 givenname: Zhigang surname: Yin fullname: Yin, Zhigang – sequence: 6 givenname: Hegui surname: Gong fullname: Gong, Hegui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33533345$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1P3DAQxS1EBQvlwr1VpF5QpdCxx3E2R7QtpRWCQ9tLL5HXmVAv3nixncP2r6-X5UNClTh59PybJ-s9H7DdwQ_E2DGHUw7YfOrAROAc6sUOm3CpoJS1lLtsAgiqBOBinx3EuMgTr5XYY_uIFSLKasJ-X1lzS640Omm3_ktd0fuw1Mn6ofB9cTfqRGHQYV0YHeZZNDRkJRZjtMNNkcdkN7fa3a5dQY5MCn71xzqKb9mbXrtIRw_nIft1_uXn7KK8vP76bXZ2WRqsIZVKzAGF7pE3om-mvTSiUQ0RN1qDULUUnUTVS4WosthVRoOs51qpmhBA4iE72fqugr8bKaZ2aaMh5_RAfoytqIREkBWfvo7KqeLVVFR1Rj-8QBd-zEm4jSGoCvPLeKbeP1DjfElduwp2meNoHwPOwMctYIKPMVD_hHBoN-21n2H247697xmGF7Cx6b6LFLR1_195t10J0TxZP38I_Acq96SG |
CitedBy_id | crossref_primary_10_1002_anie_202306498 crossref_primary_10_1039_D3OB01784B crossref_primary_10_1055_s_0041_1737762 crossref_primary_10_1002_ange_202117843 crossref_primary_10_1002_ange_202114731 crossref_primary_10_1002_ange_202408195 crossref_primary_10_1002_anie_202205673 crossref_primary_10_1021_jacs_4c00537 crossref_primary_10_1038_s44160_022_00102_8 crossref_primary_10_1002_anie_202418806 crossref_primary_10_1021_jacs_4c02316 crossref_primary_10_1055_a_1848_3005 crossref_primary_10_1021_jacs_4c14942 crossref_primary_10_1002_open_202400108 crossref_primary_10_1016_j_poly_2021_115408 crossref_primary_10_1039_D4QO02038C crossref_primary_10_1002_ange_202411110 crossref_primary_10_1002_ange_202418147 crossref_primary_10_1002_ange_202314617 crossref_primary_10_1002_ange_202201370 crossref_primary_10_1021_jacs_4c04587 crossref_primary_10_1016_j_cclet_2022_01_077 crossref_primary_10_1021_jacsau_5c00031 crossref_primary_10_1021_acs_orglett_1c04359 crossref_primary_10_1002_anie_202113209 crossref_primary_10_1021_acs_orglett_3c00051 crossref_primary_10_1002_tcr_202100142 crossref_primary_10_1021_acscatal_1c04705 crossref_primary_10_1002_ange_202300743 crossref_primary_10_1002_anie_202201370 crossref_primary_10_1021_acscatal_2c03768 crossref_primary_10_1021_acs_orglett_4c02185 crossref_primary_10_1002_anie_202418147 crossref_primary_10_1007_s11426_024_2438_x crossref_primary_10_1002_anie_202304177 crossref_primary_10_1021_acs_orglett_1c02887 crossref_primary_10_1039_D3CC05312A crossref_primary_10_1039_D1SC05741C crossref_primary_10_1002_ejoc_202400986 crossref_primary_10_1002_anie_202314617 crossref_primary_10_1021_acs_orglett_2c01367 crossref_primary_10_1002_anie_202407773 crossref_primary_10_1039_D1SC01731D crossref_primary_10_1039_D2GC04427G crossref_primary_10_1126_science_abo0039 crossref_primary_10_1016_j_mencom_2024_10_017 crossref_primary_10_1021_jacs_3c14032 crossref_primary_10_1002_anie_202405866 crossref_primary_10_1016_j_tetlet_2021_153129 crossref_primary_10_1021_acs_orglett_2c02182 crossref_primary_10_1039_D3QO00372H crossref_primary_10_1021_acscentsci_2c00204 crossref_primary_10_1021_acs_orglett_2c02180 crossref_primary_10_1002_advs_202306923 crossref_primary_10_1002_cjoc_202400672 crossref_primary_10_3390_molecules27185899 crossref_primary_10_1039_D4CC01324G crossref_primary_10_1021_acs_joc_3c00681 crossref_primary_10_1021_jacs_4c17313 crossref_primary_10_1039_D4OB00970C crossref_primary_10_1002_anie_202305810 crossref_primary_10_1016_j_jelechem_2023_117538 crossref_primary_10_1039_D4QO00411F crossref_primary_10_1021_jacs_3c06710 crossref_primary_10_1039_D2QO00508E crossref_primary_10_1039_D2QO01623K crossref_primary_10_1002_advs_202402255 crossref_primary_10_1039_D4CS01130A crossref_primary_10_1002_ange_202205673 crossref_primary_10_1002_anie_202423426 crossref_primary_10_1002_ange_202418806 crossref_primary_10_1021_acs_orglett_2c02068 crossref_primary_10_1002_ange_202407773 crossref_primary_10_1038_s41467_022_30583_2 crossref_primary_10_1021_acs_joc_4c01929 crossref_primary_10_1039_D1CS00399B crossref_primary_10_1002_ange_202405866 crossref_primary_10_1039_D3SC06476J crossref_primary_10_1002_ange_202305810 crossref_primary_10_1021_acs_organomet_2c00184 crossref_primary_10_1021_acs_orglett_3c02216 crossref_primary_10_1021_acs_orglett_2c00217 crossref_primary_10_1039_D1SC04071E crossref_primary_10_1002_ange_202423426 crossref_primary_10_3390_molecules30051060 crossref_primary_10_1002_advs_202406228 crossref_primary_10_1039_D4GC02052A crossref_primary_10_1039_D4OB01863J crossref_primary_10_1002_anie_202204144 crossref_primary_10_1021_acs_joc_4c01531 crossref_primary_10_1021_acscatal_3c01090 crossref_primary_10_1021_acs_orglett_2c01390 crossref_primary_10_1038_s44160_023_00349_9 crossref_primary_10_1002_anie_202300743 crossref_primary_10_1021_jacs_4c04495 crossref_primary_10_1038_s41586_022_04540_4 crossref_primary_10_1039_D3NP00008G crossref_primary_10_1002_ange_202304177 crossref_primary_10_1021_jacs_3c07031 crossref_primary_10_1039_D2OB01855A crossref_primary_10_6023_cjoc202106021 crossref_primary_10_1021_acs_orglett_4c03343 crossref_primary_10_1002_cctc_202300601 crossref_primary_10_1021_jacs_4c10809 crossref_primary_10_1002_anie_202117843 crossref_primary_10_1002_ejoc_202201378 crossref_primary_10_1002_anie_202408195 crossref_primary_10_1039_D2CS00371F crossref_primary_10_1002_anie_202114731 crossref_primary_10_1039_D1SC05605K crossref_primary_10_1021_jacs_1c11503 crossref_primary_10_1021_acs_orglett_1c02893 crossref_primary_10_1021_acs_orglett_1c01568 crossref_primary_10_1002_cjoc_202400260 crossref_primary_10_1039_D1QO00264C crossref_primary_10_1021_jacs_4c07096 crossref_primary_10_1002_adsc_202400576 crossref_primary_10_1002_anie_202214519 crossref_primary_10_1016_j_cclet_2024_110243 crossref_primary_10_1021_acs_orglett_3c02955 crossref_primary_10_1016_j_tchem_2025_100124 crossref_primary_10_1021_jacs_1c13482 crossref_primary_10_1021_jacs_4c16912 crossref_primary_10_1021_acs_orglett_2c01208 crossref_primary_10_1002_adsc_202200399 crossref_primary_10_1002_anie_202411110 crossref_primary_10_1038_s41467_024_44744_y crossref_primary_10_1021_jacs_1c12424 crossref_primary_10_1002_anie_202408301 crossref_primary_10_1039_D4SC07728H crossref_primary_10_1039_D3SC06617G crossref_primary_10_1021_jacs_4c12581 crossref_primary_10_1002_ange_202214519 crossref_primary_10_1039_D4QO00966E crossref_primary_10_1002_ange_202306498 crossref_primary_10_1039_D4SC07923J crossref_primary_10_1021_acs_accounts_4c00309 crossref_primary_10_1021_acscatal_3c01244 crossref_primary_10_1021_acs_joc_2c00707 crossref_primary_10_1002_ange_202204144 crossref_primary_10_1021_acscatal_3c03663 crossref_primary_10_1021_acs_orglett_4c04390 crossref_primary_10_1021_jacs_4c01450 crossref_primary_10_1016_j_ccr_2023_215173 crossref_primary_10_1021_acs_orglett_2c03598 crossref_primary_10_1055_a_1732_4597 crossref_primary_10_1002_ange_202408301 crossref_primary_10_1021_acs_orglett_1c03884 crossref_primary_10_1021_acscatal_2c03396 crossref_primary_10_1016_j_jcat_2024_115890 crossref_primary_10_1055_a_2441_2737 crossref_primary_10_1002_ange_202113209 crossref_primary_10_1039_D1SC05174A crossref_primary_10_1016_j_bmc_2022_117035 crossref_primary_10_1021_acs_orglett_3c00751 crossref_primary_10_1021_jacs_2c01237 crossref_primary_10_1021_acs_joc_2c00664 crossref_primary_10_1021_jacs_2c05798 |
Cites_doi | 10.1002/chem.201100909 10.1021/jacs.6b08075 10.1021/jo500507s 10.1002/anie.198909693 10.1021/jacs.9b08282 10.1021/ja021071w 10.1002/anie.199527231 10.1002/cjoc.202000224 10.1002/anie.202001742 10.1021/jacs.0c10055 10.1021/ja510653n 10.1021/ar5004658 10.1038/s41570-018-0040-8 10.1002/anie.201901866 10.1016/j.trechm.2019.08.004 10.1002/anie.201904861 10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-# 10.1126/science.aaf6123 10.1039/D0SC01471K 10.1002/3527604847 10.1038/nature13274 10.1038/s41929-019-0292-9 10.1021/jacs.9b02844 10.1007/s11175-005-0067-2 10.1021/acs.chemrev.7b00385 10.1002/chem.201000178 10.1002/tcr.201700098 10.1021/ja3013825 10.1021/acs.chemrev.6b00018 10.1021/acs.accounts.5b00057 10.1038/s41586-018-0669-y 10.1021/acs.joc.7b03128 10.1021/jacs.5b06255 10.1039/p29810000161 10.1002/anie.201702857 10.1073/pnas.1806900115 10.1039/C9SC06006E 10.1021/jacs.7b02389 10.1021/jacs.9b10026 10.1039/C5QO00224A 10.1021/ja00024a074 10.1021/ja039889k 10.1021/jacs.0c01324 10.1021/acs.accounts.5b00042 10.1021/ja9093956 10.1021/ja407589e 10.1021/ja9928677 10.1021/acs.accounts.0c00032 10.1021/ja303514b 10.1002/anie.201601296 10.1039/D0SC00712A 10.1021/acscentsci.6b00272 10.1002/anie.202007668 10.1039/C5OB01901J 10.1023/A:1011625728803 10.1002/ijch.201900072 10.1002/anie.198400691 10.1002/anie.201814524 10.1021/acs.orglett.8b00221 10.1002/adsc.201401000 10.1021/acs.accounts.0c00291 10.1016/S0022-328X(00)85317-6 10.1021/ja508718m 10.1021/acscentsci.7b00212 10.1038/s41570-017-0052 10.1002/anie.201906692 10.1021/ja301769r 10.1002/anie.201209060 10.1002/anie.198307531 10.1021/ja00791a019 10.1038/s41467-020-15837-1 10.1021/acs.accounts.6b00284 10.1039/D0SC02054K 10.1038/nature22813 10.1021/jacs.9b02238 10.1021/acs.organomet.8b00720 10.1021/jacs.8b11790 10.1002/chem.201805682 10.1021/jacs.7b12160 10.1039/D0CS00316F 10.1021/jacs.7b06288 10.1021/jacs.5b03870 10.1002/anie.200461432 10.1021/jacs.0c04695 10.1021/jacs.0c05254 10.1021/jacs.7b06469 10.1016/j.chempr.2020.05.013 10.1002/anie.201108350 10.1039/c3sc51098k 10.1021/jacs.6b07567 10.1039/C9CY00009G 10.1002/anie.201705521 10.1016/j.chempr.2020.04.005 10.1021/jacs.7b04312 10.1002/anie.200803611 10.1021/jacs.8b12801 10.1021/cr9000786 10.1002/adsc.200404223 10.1002/anie.201611282 10.1002/anie.201907185 10.1021/cr900382t 10.1126/science.aaf7230 10.1021/jacs.0c06904 10.1021/acscatal.0c01842 10.1021/jacs.8b09473 10.1016/S0040-4039(01)80099-X 10.1021/ja311669p 10.1021/jacs.6b04088 10.1002/anie.201809310 10.1021/acs.chemrev.6b00334 10.1021/jo980201+ 10.1021/ja9944812 10.1002/anie.201906000 10.1021/acscatal.5b02441 10.1021/ja4076716 10.1021/jacs.7b13281 10.1002/anie.201916279 10.1038/s41557-020-00609-7 10.1021/jacs.5b02503 10.1246/cl.1993.2021 10.1021/cr100327p 10.1021/jacs.8b05374 10.1002/chem.201402509 10.1021/jacs.0c02355 10.1002/chem.201402302 10.1038/s41467-018-06904-9 10.1039/C9CC08027A 10.1021/jacs.8b09425 10.1038/nchem.2741 10.1002/anie.201712731 10.1038/nature22307 10.1002/anie.201803186 10.1021/ol8028737 10.1021/jacs.8b08190 10.1002/anie.201813222 10.1002/anie.201703743 10.1021/acscatal.6b02124 10.1021/ol200881v 10.1021/jacs.0c02237 10.1021/ol200617f 10.1016/S0040-4039(00)60192-2 10.1021/jacs.9b02973 10.1021/cr030717f 10.1021/jo401936v 10.1016/j.tet.2018.07.057 10.1021/ja202769t 10.1021/jacs.8b05868 10.1021/ja025730g 10.1021/acs.orglett.9b01016 10.1021/ja401344e 10.1021/ja410424g 10.1021/jacs.7b03195 10.1021/acs.orglett.9b01658 10.1021/ja311045f 10.1021/jacs.7b10855 10.1021/ja509077a 10.1039/c1sc00368b 10.1038/nature14007 10.1021/ja00234a047 10.1016/j.tet.2015.02.067 10.1002/anie.202010386 10.1002/anie.201609662 10.1002/anie.201908029 10.1021/jacs.0c03708 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d0cs01107j |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 4184 |
ExternalDocumentID | 33533345 10_1039_D0CS01107J d0cs01107j |
Genre | Journal Article |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-62b032af3192f98f4c2969ee1caa026742d436f46336e1cd5ca047ba667e30043 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 08:15:02 EDT 2025 Fri Jul 11 04:43:42 EDT 2025 Mon Jun 30 02:25:42 EDT 2025 Mon Jul 21 05:47:42 EDT 2025 Thu Apr 24 23:12:36 EDT 2025 Tue Jul 01 04:18:45 EDT 2025 Sat Jan 08 11:08:50 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-62b032af3192f98f4c2969ee1caa026742d436f46336e1cd5ca047ba667e30043 |
Notes | Weichao Xue obtained his BS (w/Dr. Feng Shi) and MS (w/Prof. Hegui Gong) at Henan University and Shanghai University, respectively. Subsequently, he moved to Technische Universität Berlin, where he obtained his PhD (w/Prof. Martin Oestreich) with summa cum laude. Currently, he is a postdoctoral research fellowship (w/Prof. Jonathan Nitschke) at the University of Cambridge, funded by Deutsche Forschungsgemeinschaft (DFG). He is interested in exploring the novel applications of first-row transition metals, e.g., in cross-coupling, organosilicon chemistry and metal-organic nanocapsules. Xianghua Tao obtained his Bachelor of Science at Huainan Normal University, and Master's degree at East China Normal University. He is currently a PhD candidate under the supervision of Prof. Hegui Gong at Shanghai University. His research focuses on nickel-catalyzed reductive formation of amino acids. Zhigang Yin obtained his BS (w/Prof. Yuhua Liu) at Zhengzhou University in 1985. He then obtained his MS and PhD (w/Prof. Defeng Zhao) at the State Key Laboratory of Fine Chemical Engineering, Dalian University of Technology. He is now a full professor at Zhengzhou University of Light Industry and engages in teaching and research in organic chemistry including chiral cyclopalladium compounds and development of new cosmetics raw materials. Xuan Wang obtained his Bachelor of Science at Shanxi University. After receiving his PhD under the supervision of Prof. Hegui Gong at Shanghai University, he moved to the U.S. to continue his research. At present, Xuan is a postdoctoral research associate with Prof. Michel R. Gagné at the University of North Carolina at Chapel Hill. His research focuses on nickel-catalyzed coupling reactions and Lewis acid-catalyzed deoxygenation of cellulosic feedstocks. Xiao Jia completed his BS and MS in chemistry at Shanghai University under the supervision of Prof. Hegui Gong. In 2016, he joined the research group of Prof. Chris Meier at Universität Hamburg and recently obtained his PhD with summa cum laude. Afterwards, Xiao decided to stay in the same laboratory to continue his research on medicinal chemistry as a postdoctoral researcher. He is currently focused on the development of nucleoside triphosphate prodrugs. Hegui Gong obtained his PhD degree from the University of Texas at Austin (with Prof. Michael J. Krische). After postdoctoral research at the University of North Carolina at Chapel Hill (with Prof. Michel R. Gagné), he was appointed as a full professor at Shanghai University (China) in 2008. His research interest has been centered on Ni-catalyzed C-C bond formation and H-bond mediated supramolecular chemistry. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8376-9485 0000-0001-9566-9417 0000-0002-6059-7975 0000-0002-0149-8838 0000-0001-6534-5569 0000-0002-5928-8382 |
PMID | 33533345 |
PQID | 2506536741 |
PQPubID | 2047503 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1039_D0CS01107J proquest_journals_2506536741 proquest_miscellaneous_2486158257 rsc_primary_d0cs01107j crossref_citationtrail_10_1039_D0CS01107J proquest_miscellaneous_2524304518 pubmed_primary_33533345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-21 |
PublicationDateYYYYMMDD | 2021-03-21 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wu (D0CS01107J-(cit48)/*[position()=1]) 2017; 9 Shu (D0CS01107J-(cit76)/*[position()=1]) 2019; 141 Fischer (D0CS01107J-(cit99)/*[position()=1]) 2001; 40 Okada (D0CS01107J-(cit55)/*[position()=1]) 1992; 33 Peng (D0CS01107J-(cit88)/*[position()=1]) 2013; 78 Yotsuji (D0CS01107J-(cit46)/*[position()=1]) 2015; 357 Jin (D0CS01107J-(cit129)/*[position()=1]) 2018; 20 Sun (D0CS01107J-(cit142)/*[position()=1]) 2020; 59 Shrestha (D0CS01107J-(cit110)/*[position()=1]) 2011; 13 Giese (D0CS01107J-(cit122)/*[position()=1]) 1989; 28 Knappke (D0CS01107J-(cit66)/*[position()=1]) 2014; 20 Le (D0CS01107J-(cit154)/*[position()=1]) 2017; 547 Logan (D0CS01107J-(cit166)/*[position()=1]) 2018; 140 Tamaru (D0CS01107J-(cit20)/*[position()=1]) 2005 Walton (D0CS01107J-(cit125)/*[position()=1]) 2000; 122 Giri (D0CS01107J-(cit118)/*[position()=1]) 2018; 83 Fu (D0CS01107J-(cit18)/*[position()=1]) 2017; 3 Li (D0CS01107J-(cit128)/*[position()=1]) 2016; 55 He (D0CS01107J-(cit149)/*[position()=1]) 2020; 59 Hammann (D0CS01107J-(cit16)/*[position()=1]) 2017 Ye (D0CS01107J-(cit82)/*[position()=1]) 2019; 141 Zilbermann (D0CS01107J-(cit27)/*[position()=1]) 2005; 105 Leon (D0CS01107J-(cit94)/*[position()=1]) 2013; 135 Wang (D0CS01107J-(cit112)/*[position()=1]) 2015; 13 Basch (D0CS01107J-(cit159)/*[position()=1]) 2017; 139 Yu (D0CS01107J-(cit85)/*[position()=1]) 2011; 13 Mills (D0CS01107J-(cit61)/*[position()=1]) 2020; 142 Börjesson (D0CS01107J-(cit95)/*[position()=1]) 2016; 138 Guo (D0CS01107J-(cit137)/*[position()=1]) 2018; 9 Everson (D0CS01107J-(cit62)/*[position()=1]) 2010; 132 Somerville (D0CS01107J-(cit98)/*[position()=1]) 2020; 142 Batsanov (D0CS01107J-(cit31)/*[position()=1]) 2001; 37 Weix (D0CS01107J-(cit70)/*[position()=1]) 2015; 48 Lipp (D0CS01107J-(cit36)/*[position()=1]) 2021; 60 Cassani (D0CS01107J-(cit14)/*[position()=1]) 2016; 6 Estrada (D0CS01107J-(cit51)/*[position()=1]) 2020; 142 Campeau (D0CS01107J-(cit71)/*[position()=1]) 2019; 38 Chen (D0CS01107J-(cit89)/*[position()=1]) 2017; 56 Fujihara (D0CS01107J-(cit93)/*[position()=1]) 2012; 134 Huang (D0CS01107J-(cit50)/*[position()=1]) 2015; 137 Wei (D0CS01107J-(cit134)/*[position()=1]) 2020; 142 Yuan (D0CS01107J-(cit43)/*[position()=1]) 2020; 142 Ni (D0CS01107J-(cit78)/*[position()=1]) 2019; 141 Kumar (D0CS01107J-(cit126)/*[position()=1]) 2020; 56 García-Domínguez (D0CS01107J-(cit131)/*[position()=1]) 2017; 139 Everson (D0CS01107J-(cit67)/*[position()=1]) 2014; 79 Fürstner (D0CS01107J-(cit13)/*[position()=1]) 2016; 2 Zhu (D0CS01107J-(cit35)/*[position()=1]) 2020; 11 Everson (D0CS01107J-(cit63)/*[position()=1]) 2012; 134 Broggi (D0CS01107J-(cit132)/*[position()=1]) 2014; 53 Shields (D0CS01107J-(cit105)/*[position()=1]) 2018; 140 Wang (D0CS01107J-(cit163)/*[position()=1]) 2018; 140 Liu (D0CS01107J-(cit2)/*[position()=1]) 2015; 48 Wang (D0CS01107J-(cit75)/*[position()=1]) 2018; 140 He (D0CS01107J-(cit150)/*[position()=1]) 2020; 59 Crossley (D0CS01107J-(cit3)/*[position()=1]) 2016; 116 Luo (D0CS01107J-(cit121)/*[position()=1]) 2020; 38 Zhou (D0CS01107J-(cit146)/*[position()=1]) 2019; 58 Kong (D0CS01107J-(cit160)/*[position()=1]) 2019; 2 Green (D0CS01107J-(cit152)/*[position()=1]) 2018; 140 Tortajada (D0CS01107J-(cit92)/*[position()=1]) 2018; 57 Beckwith (D0CS01107J-(cit100)/*[position()=1]) 2002; 124 Biswas (D0CS01107J-(cit64)/*[position()=1]) 2013; 135 Leatherman (D0CS01107J-(cit29)/*[position()=1]) 2003; 125 Ding (D0CS01107J-(cit165)/*[position()=1]) 2021; 143 Wang (D0CS01107J-(cit162)/*[position()=1]) 2021 Börjesson (D0CS01107J-(cit91)/*[position()=1]) 2016; 6 Okada (D0CS01107J-(cit56)/*[position()=1]) 1993 Qin (D0CS01107J-(cit113)/*[position()=1]) 2017; 56 Green (D0CS01107J-(cit153)/*[position()=1]) 2019; 141 Giese (D0CS01107J-(cit9)/*[position()=1]) 1983; 22 Primer (D0CS01107J-(cit42)/*[position()=1]) 2017; 139 Liu (D0CS01107J-(cit38)/*[position()=1]) 2012; 51 Nielsen (D0CS01107J-(cit53)/*[position()=1]) 2013; 135 Edwards (D0CS01107J-(cit58)/*[position()=1]) 2017; 545 Moragas (D0CS01107J-(cit96)/*[position()=1]) 2014; 136 Chen (D0CS01107J-(cit164)/*[position()=1]) 2020; 11 Wang (D0CS01107J-(cit79)/*[position()=1]) 2019; 58 Zhao (D0CS01107J-(cit77)/*[position()=1]) 2014; 136 Skubi (D0CS01107J-(cit32)/*[position()=1]) 2016; 116 Derosa (D0CS01107J-(cit119)/*[position()=1]) 2018; 51 Diccianni (D0CS01107J-(cit133)/*[position()=1]) 2020; 53 Cheng (D0CS01107J-(cit19)/*[position()=1]) 2020; 49 Zhang (D0CS01107J-(cit145)/*[position()=1]) 2019; 58 Chierchia (D0CS01107J-(cit124)/*[position()=1]) 2019; 58 Pitre (D0CS01107J-(cit8)/*[position()=1]) 2019; 141 Wang (D0CS01107J-(cit80)/*[position()=1]) 2015; 137 Chen (D0CS01107J-(cit167)/*[position()=1]) 2019; 58 Sun (D0CS01107J-(cit144)/*[position()=1]) 2018; 140 Burkholder (D0CS01107J-(cit106)/*[position()=1]) 1998; 63 Chu (D0CS01107J-(cit130)/*[position()=1]) 2018; 57 Vasudevan (D0CS01107J-(cit102)/*[position()=1]) 2005; 41 Guo (D0CS01107J-(cit138)/*[position()=1]) 2019; 21 Chen (D0CS01107J-(cit59)/*[position()=1]) 2019; 58 Joshi-Pangu (D0CS01107J-(cit44)/*[position()=1]) 2011; 133 Wang (D0CS01107J-(cit136)/*[position()=1]) 2020; 11 Yang (D0CS01107J-(cit148)/*[position()=1]) 2020; 142 Ariki (D0CS01107J-(cit49)/*[position()=1]) 2018; 140 Tu (D0CS01107J-(cit135)/*[position()=1]) 2020; 142 Wang (D0CS01107J-(cit114)/*[position()=1]) 2018; 115 Luo (D0CS01107J-(cit81)/*[position()=1]) 2019; 25 Kc (D0CS01107J-(cit123)/*[position()=1]) 2018; 140 Xu (D0CS01107J-(cit30)/*[position()=1]) 2017; 56 Erickson (D0CS01107J-(cit87)/*[position()=1]) 2016; 138 Poremba (D0CS01107J-(cit74)/*[position()=1]) 2020; 10 Choi (D0CS01107J-(cit17)/*[position()=1]) 2017; 356 Devasagayaraj (D0CS01107J-(cit37)/*[position()=1]) 1996; 34 Goldfogel (D0CS01107J-(cit72)/*[position()=1]) 2020 Yu (D0CS01107J-(cit90)/*[position()=1]) 2018; 74 Campbell (D0CS01107J-(cit140)/*[position()=1]) 2019; 141 Zhou (D0CS01107J-(cit47)/*[position()=1]) 2016; 138 Tasker (D0CS01107J-(cit25)/*[position()=1]) 2014; 509 Marek (D0CS01107J-(cit5)/*[position()=1]) 2014; 136 Feng (D0CS01107J-(cit6)/*[position()=1]) 2017; 117 Twilton (D0CS01107J-(cit33)/*[position()=1]) 2017; 1 van Gemmeren (D0CS01107J-(cit97)/*[position()=1]) 2017; 56 Lohre (D0CS01107J-(cit45)/*[position()=1]) 2011; 17 Mann (D0CS01107J-(cit28)/*[position()=1]) 2000; 122 Derosa (D0CS01107J-(cit120)/*[position()=1]) 2020; 11 Janssen-Müller (D0CS01107J-(cit147)/*[position()=1]) 2020; 60 Robak (D0CS01107J-(cit116)/*[position()=1]) 2010; 110 Zhou (D0CS01107J-(cit143)/*[position()=1]) 2018; 57 Barton (D0CS01107J-(cit11)/*[position()=1]) 1984; 25 Diccianni (D0CS01107J-(cit26)/*[position()=1]) 2019; 1 Hu (D0CS01107J-(cit24)/*[position()=1]) 2011; 2 Dhungana (D0CS01107J-(cit117)/*[position()=1]) 2018; 18 Okada (D0CS01107J-(cit103)/*[position()=1]) 1988; 110 Wang (D0CS01107J-(cit151)/*[position()=1]) 2018; 563 Frisch (D0CS01107J-(cit22)/*[position()=1]) 2005; 44 Xu (D0CS01107J-(cit84)/*[position()=1]) 2013; 4 Jana (D0CS01107J-(cit4)/*[position()=1]) 2011; 111 Aihara (D0CS01107J-(cit155)/*[position()=1]) 2013; 135 Gong (D0CS01107J-(cit109)/*[position()=1]) 2009; 11 Schley (D0CS01107J-(cit60)/*[position()=1]) 2014; 136 Bedford (D0CS01107J-(cit12)/*[position()=1]) 2015; 48 Amatore (D0CS01107J-(cit65)/*[position()=1]) 2010; 16 Zhou (D0CS01107J-(cit40)/*[position()=1]) 2004; 126 Qin (D0CS01107J-(cit57)/*[position()=1]) 2016; 352 Lin (D0CS01107J-(cit107)/*[position()=1]) 2019; 141 Grotewold (D0CS01107J-(cit127)/*[position()=1]) 1969; 19 Shukla (D0CS01107J-(cit111)/*[position()=1]) 2015; 71 Netherton (D0CS01107J-(cit21)/*[position()=1]) 2004; 346 Khake (D0CS01107J-(cit157)/*[position()=1]) 2020; 6 Cahiez (D0CS01107J-(cit15)/*[position()=1]) 2010; 110 Reid (D0CS01107J-(cit161)/*[position()=1]) 2018; 2 Gu (D0CS01107J-(cit69)/*[position()=1]) 2015; 2 Lu (D0CS01107J-(cit83)/*[position()=1]) 2017; 139 Giese (D0CS01107J-(cit10)/*[position()=1]) 1984; 23 Rezazadeh (D0CS01107J-(cit158)/*[position()=1]) 2017; 139 Huang (D0CS01107J-(cit52)/*[position()=1]) 2012; 134 Li (D0CS01107J-(cit141)/*[position()=1]) 2020; 11 Baban (D0CS01107J-(cit101)/*[position()=1]) 1981 Ni (D0CS01107J-(cit115)/*[position()=1]) 2018; 57 García-Domínguez (D0CS01107J-(cit139)/*[position()=1]) 2019; 58 Zultanski (D0CS01107J-(cit41)/*[position()=1]) 2013; 135 Rudolph (D0CS01107J-(cit23)/*[position()=1]) 2009; 48 Harry (D0CS01107J-(cit156)/*[position()=1]) 2019; 9 Mohadjer Beromi (D0CS01107J-(cit104)/*[position()=1]) 2019; 58 Okada (D0CS01107J-(cit54)/*[position()=1]) 1991; 113 Quasdorf (D0CS01107J-(cit1)/*[position()=1]) 2014; 516 Jamison (D0CS01107J-(cit7)/*[position()=1]) 2016; 49 Tollefson (D0CS01107J-(cit86)/*[position()=1]) 2015; 137 Badir (D0CS01107J-(cit34)/*[position()=1]) 2020; 6 Liu (D0CS01107J-(cit73)/*[position()=1]) 2020; 53 Moragas (D0CS01107J-(cit68)/*[position()=1]) 2014; 20 Martin-Montero (D0CS01107J-(cit108)/*[position()=1]) 2019; 21 Otsuka (D0CS01107J-(cit39)/*[position()=1]) 1973; 95 |
References_xml | – issn: 2020 end-page: p 183-222 publication-title: Nickel Catalysis in Organic Synthesis doi: Goldfogel Huang Weix – issn: 2005 publication-title: Modern Organonickel Chemistry doi: Tamaru – volume: 17 start-page: 6052 year: 2011 ident: D0CS01107J-(cit45)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201100909 – volume: 138 start-page: 12057 year: 2016 ident: D0CS01107J-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08075 – volume: 79 start-page: 4793 year: 2014 ident: D0CS01107J-(cit67)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo500507s – volume: 28 start-page: 969 year: 1989 ident: D0CS01107J-(cit122)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.198909693 – volume: 141 start-page: 20069 year: 2019 ident: D0CS01107J-(cit140)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08282 – volume: 125 start-page: 3068 year: 2003 ident: D0CS01107J-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja021071w – volume: 34 start-page: 2723 year: 1996 ident: D0CS01107J-(cit37)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199527231 – volume: 38 start-page: 1371 year: 2020 ident: D0CS01107J-(cit121)/*[position()=1] publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000224 – volume: 59 start-page: 9186 year: 2020 ident: D0CS01107J-(cit149)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202001742 – volume: 143 start-page: 53 year: 2021 ident: D0CS01107J-(cit165)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10055 – volume: 136 start-page: 17645 year: 2014 ident: D0CS01107J-(cit77)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510653n – volume: 48 start-page: 740 year: 2015 ident: D0CS01107J-(cit2)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar5004658 – volume: 51 start-page: 21 year: 2018 ident: D0CS01107J-(cit119)/*[position()=1] publication-title: Aldrichimica Acta – volume: 2 start-page: 290 year: 2018 ident: D0CS01107J-(cit161)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0040-8 – volume: 58 start-page: 6094 year: 2019 ident: D0CS01107J-(cit104)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901866 – volume: 1 start-page: 830 year: 2019 ident: D0CS01107J-(cit26)/*[position()=1] publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.08.004 – volume: 58 start-page: 10956 year: 2019 ident: D0CS01107J-(cit167)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904861 – volume: 40 start-page: 1340 year: 2001 ident: D0CS01107J-(cit99)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-# – volume: 352 start-page: 801 year: 2016 ident: D0CS01107J-(cit57)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf6123 – volume: 11 start-page: 4904 year: 2020 ident: D0CS01107J-(cit141)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC01471K – volume-title: Modern Organonickel Chemistry year: 2005 ident: D0CS01107J-(cit20)/*[position()=1] doi: 10.1002/3527604847 – volume: 509 start-page: 299 year: 2014 ident: D0CS01107J-(cit25)/*[position()=1] publication-title: Nature doi: 10.1038/nature13274 – volume: 2 start-page: 473 year: 2019 ident: D0CS01107J-(cit160)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-019-0292-9 – volume: 141 start-page: 7709 year: 2019 ident: D0CS01107J-(cit153)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02844 – volume: 41 start-page: 310 year: 2005 ident: D0CS01107J-(cit102)/*[position()=1] publication-title: Russ. J. Electrochem. doi: 10.1007/s11175-005-0067-2 – volume: 117 start-page: 12564 year: 2017 ident: D0CS01107J-(cit6)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00385 – volume: 16 start-page: 5848 year: 2010 ident: D0CS01107J-(cit65)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201000178 – volume: 18 start-page: 1314 year: 2018 ident: D0CS01107J-(cit117)/*[position()=1] publication-title: Chem. Rec. doi: 10.1002/tcr.201700098 – volume: 134 start-page: 9541 year: 2012 ident: D0CS01107J-(cit52)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3013825 – volume: 116 start-page: 10035 year: 2016 ident: D0CS01107J-(cit32)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00018 – volume: 48 start-page: 1767 year: 2015 ident: D0CS01107J-(cit70)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00057 – volume: 563 start-page: 379 year: 2018 ident: D0CS01107J-(cit151)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0669-y – volume: 83 start-page: 3013 year: 2018 ident: D0CS01107J-(cit118)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b03128 – volume: 137 start-page: 11562 year: 2015 ident: D0CS01107J-(cit80)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06255 – start-page: 161 year: 1981 ident: D0CS01107J-(cit101)/*[position()=1] publication-title: J. Chem. Soc., Perkin Trans. 2 doi: 10.1039/p29810000161 – volume: 56 start-page: 6558 year: 2017 ident: D0CS01107J-(cit97)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702857 – volume: 115 start-page: E6404 year: 2018 ident: D0CS01107J-(cit114)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1806900115 – start-page: 3887 year: 2017 ident: D0CS01107J-(cit16)/*[position()=1] publication-title: Synthesis – volume: 11 start-page: 4287 year: 2020 ident: D0CS01107J-(cit120)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC06006E – volume: 139 start-page: 5313 year: 2017 ident: D0CS01107J-(cit159)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02389 – volume: 141 start-page: 17937 year: 2019 ident: D0CS01107J-(cit107)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10026 – volume: 2 start-page: 1411 year: 2015 ident: D0CS01107J-(cit69)/*[position()=1] publication-title: Org. Chem. Front. doi: 10.1039/C5QO00224A – volume: 113 start-page: 9401 year: 1991 ident: D0CS01107J-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00024a074 – volume: 126 start-page: 1340 year: 2004 ident: D0CS01107J-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039889k – volume: 142 start-page: 5870 year: 2020 ident: D0CS01107J-(cit148)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01324 – volume: 48 start-page: 1485 year: 2015 ident: D0CS01107J-(cit12)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00042 – volume: 132 start-page: 920 year: 2010 ident: D0CS01107J-(cit62)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9093956 – volume: 135 start-page: 16192 year: 2013 ident: D0CS01107J-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407589e – volume: 122 start-page: 5132 year: 2000 ident: D0CS01107J-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9928677 – volume: 53 start-page: 906 year: 2020 ident: D0CS01107J-(cit133)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00032 – volume: 134 start-page: 9106 year: 2012 ident: D0CS01107J-(cit93)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303514b – volume: 55 start-page: 6938 year: 2016 ident: D0CS01107J-(cit128)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201601296 – volume: 11 start-page: 4051 year: 2020 ident: D0CS01107J-(cit35)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC00712A – volume: 2 start-page: 778 year: 2016 ident: D0CS01107J-(cit13)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00272 – volume: 60 start-page: 1714 year: 2021 ident: D0CS01107J-(cit36)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007668 – volume: 13 start-page: 11418 year: 2015 ident: D0CS01107J-(cit112)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB01901J – volume: 37 start-page: 871 year: 2001 ident: D0CS01107J-(cit31)/*[position()=1] publication-title: Inorg. Mater. doi: 10.1023/A:1011625728803 – volume: 60 start-page: 195 year: 2020 ident: D0CS01107J-(cit147)/*[position()=1] publication-title: Isr. J. Chem. doi: 10.1002/ijch.201900072 – volume: 23 start-page: 69 year: 1984 ident: D0CS01107J-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.198400691 – volume: 58 start-page: 2454 year: 2019 ident: D0CS01107J-(cit59)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814524 – volume: 20 start-page: 1435 year: 2018 ident: D0CS01107J-(cit129)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00221 – volume: 357 start-page: 1022 year: 2015 ident: D0CS01107J-(cit46)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201401000 – volume: 53 start-page: 1833 year: 2020 ident: D0CS01107J-(cit73)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00291 – volume: 19 start-page: 431 year: 1969 ident: D0CS01107J-(cit127)/*[position()=1] publication-title: J. Organomet. Chem. doi: 10.1016/S0022-328X(00)85317-6 – volume: 136 start-page: 16588 year: 2014 ident: D0CS01107J-(cit60)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508718m – volume-title: Nickel Catalysis in Organic Synthesis year: 2020 ident: D0CS01107J-(cit72)/*[position()=1] – volume: 3 start-page: 692 year: 2017 ident: D0CS01107J-(cit18)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00212 – volume: 1 start-page: 0052 year: 2017 ident: D0CS01107J-(cit33)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0052 – volume: 58 start-page: 12286 year: 2019 ident: D0CS01107J-(cit139)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906692 – volume: 134 start-page: 6146 year: 2012 ident: D0CS01107J-(cit63)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301769r – volume: 53 start-page: 384 year: 2014 ident: D0CS01107J-(cit132)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209060 – volume: 22 start-page: 753 year: 1983 ident: D0CS01107J-(cit9)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.198307531 – volume: 95 start-page: 3180 year: 1973 ident: D0CS01107J-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00791a019 – volume: 11 start-page: 1882 year: 2020 ident: D0CS01107J-(cit164)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-15837-1 – volume: 49 start-page: 1578 year: 2016 ident: D0CS01107J-(cit7)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00284 – volume: 11 start-page: 7950 year: 2020 ident: D0CS01107J-(cit136)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC02054K – volume: 547 start-page: 79 year: 2017 ident: D0CS01107J-(cit154)/*[position()=1] publication-title: Nature doi: 10.1038/nature22813 – volume: 141 start-page: 6726 year: 2019 ident: D0CS01107J-(cit78)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02238 – volume: 38 start-page: 3 year: 2019 ident: D0CS01107J-(cit71)/*[position()=1] publication-title: Organometallics doi: 10.1021/acs.organomet.8b00720 – volume: 141 start-page: 2800 year: 2019 ident: D0CS01107J-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11790 – volume: 25 start-page: 989 year: 2019 ident: D0CS01107J-(cit81)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201805682 – volume: 140 start-page: 159 year: 2018 ident: D0CS01107J-(cit166)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12160 – volume: 49 start-page: 8036 year: 2020 ident: D0CS01107J-(cit19)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00316F – volume: 139 start-page: 9847 year: 2017 ident: D0CS01107J-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06288 – volume: 137 start-page: 9760 year: 2015 ident: D0CS01107J-(cit86)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03870 – volume: 44 start-page: 674 year: 2005 ident: D0CS01107J-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461432 – volume: 142 start-page: 10936 year: 2020 ident: D0CS01107J-(cit98)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04695 – volume: 142 start-page: 13515 year: 2020 ident: D0CS01107J-(cit134)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05254 – volume: 139 start-page: 12632 year: 2017 ident: D0CS01107J-(cit83)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06469 – volume: 6 start-page: 1327 year: 2020 ident: D0CS01107J-(cit34)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2020.05.013 – volume: 51 start-page: 3638 year: 2012 ident: D0CS01107J-(cit38)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108350 – volume: 4 start-page: 4022 year: 2013 ident: D0CS01107J-(cit84)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c3sc51098k – volume: 138 start-page: 14006 year: 2016 ident: D0CS01107J-(cit87)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07567 – volume: 9 start-page: 1726 year: 2019 ident: D0CS01107J-(cit156)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY00009G – volume: 56 start-page: 13103 year: 2017 ident: D0CS01107J-(cit89)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705521 – volume: 6 start-page: 1056 year: 2020 ident: D0CS01107J-(cit157)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2020.04.005 – volume: 139 start-page: 8110 year: 2017 ident: D0CS01107J-(cit158)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04312 – volume: 48 start-page: 2656 year: 2009 ident: D0CS01107J-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200803611 – volume: 141 start-page: 820 year: 2019 ident: D0CS01107J-(cit82)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12801 – volume: 110 start-page: 1435 year: 2010 ident: D0CS01107J-(cit15)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr9000786 – volume: 346 start-page: 1525 year: 2004 ident: D0CS01107J-(cit21)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200404223 – volume: 56 start-page: 1535 year: 2017 ident: D0CS01107J-(cit30)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201611282 – volume: 58 start-page: 13860 year: 2019 ident: D0CS01107J-(cit145)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907185 – volume: 110 start-page: 3600 year: 2010 ident: D0CS01107J-(cit116)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900382t – volume: 356 start-page: 152 year: 2017 ident: D0CS01107J-(cit17)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf7230 – volume: 142 start-page: 13246 year: 2020 ident: D0CS01107J-(cit61)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06904 – volume: 10 start-page: 8237 year: 2020 ident: D0CS01107J-(cit74)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c01842 – volume: 140 start-page: 14490 year: 2018 ident: D0CS01107J-(cit75)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09473 – volume: 25 start-page: 1055 year: 1984 ident: D0CS01107J-(cit11)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)80099-X – volume: 135 start-page: 624 year: 2013 ident: D0CS01107J-(cit41)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311669p – volume: 138 start-page: 7504 year: 2016 ident: D0CS01107J-(cit95)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04088 – volume: 57 start-page: 14560 year: 2018 ident: D0CS01107J-(cit115)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809310 – volume: 116 start-page: 8912 year: 2016 ident: D0CS01107J-(cit3)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00334 – volume: 63 start-page: 5385 year: 1998 ident: D0CS01107J-(cit106)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo980201+ – volume: 122 start-page: 5455 year: 2000 ident: D0CS01107J-(cit125)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9944812 – volume: 58 start-page: 12081 year: 2019 ident: D0CS01107J-(cit79)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906000 – volume: 6 start-page: 1640 year: 2016 ident: D0CS01107J-(cit14)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b02441 – volume: 135 start-page: 13605 year: 2013 ident: D0CS01107J-(cit53)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4076716 – volume: 140 start-page: 3035 year: 2018 ident: D0CS01107J-(cit105)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13281 – volume: 59 start-page: 4370 year: 2020 ident: D0CS01107J-(cit142)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916279 – year: 2021 ident: D0CS01107J-(cit162)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-020-00609-7 – volume: 137 start-page: 5638 year: 2015 ident: D0CS01107J-(cit50)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02503 – start-page: 2021 year: 1993 ident: D0CS01107J-(cit56)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.1993.2021 – volume: 111 start-page: 1417 year: 2011 ident: D0CS01107J-(cit4)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100327p – volume: 140 start-page: 9801 year: 2018 ident: D0CS01107J-(cit123)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05374 – volume: 20 start-page: 8242 year: 2014 ident: D0CS01107J-(cit68)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201402509 – volume: 142 start-page: 7225 year: 2020 ident: D0CS01107J-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02355 – volume: 20 start-page: 6828 year: 2014 ident: D0CS01107J-(cit66)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201402302 – volume: 9 start-page: 4543 year: 2018 ident: D0CS01107J-(cit137)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-06904-9 – volume: 56 start-page: 13 year: 2020 ident: D0CS01107J-(cit126)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC08027A – volume: 140 start-page: 12765 year: 2018 ident: D0CS01107J-(cit144)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09425 – volume: 9 start-page: 779 year: 2017 ident: D0CS01107J-(cit48)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2741 – volume: 57 start-page: 4058 year: 2018 ident: D0CS01107J-(cit143)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712731 – volume: 545 start-page: 213 year: 2017 ident: D0CS01107J-(cit58)/*[position()=1] publication-title: Nature doi: 10.1038/nature22307 – volume: 57 start-page: 15948 year: 2018 ident: D0CS01107J-(cit92)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803186 – volume: 11 start-page: 879 year: 2009 ident: D0CS01107J-(cit109)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol8028737 – volume: 140 start-page: 12364 year: 2018 ident: D0CS01107J-(cit163)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08190 – volume: 58 start-page: 1754 year: 2019 ident: D0CS01107J-(cit146)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813222 – volume: 57 start-page: 62 year: 2018 ident: D0CS01107J-(cit130)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703743 – volume: 6 start-page: 6739 year: 2016 ident: D0CS01107J-(cit91)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b02124 – volume: 13 start-page: 2766 year: 2011 ident: D0CS01107J-(cit110)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol200881v – volume: 142 start-page: 8928 year: 2020 ident: D0CS01107J-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02237 – volume: 13 start-page: 2138 year: 2011 ident: D0CS01107J-(cit85)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol200617f – volume: 33 start-page: 7377 year: 1992 ident: D0CS01107J-(cit55)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)60192-2 – volume: 141 start-page: 13812 year: 2019 ident: D0CS01107J-(cit76)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02973 – volume: 105 start-page: 2609 year: 2005 ident: D0CS01107J-(cit27)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030717f – volume: 78 start-page: 10960 year: 2013 ident: D0CS01107J-(cit88)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo401936v – volume: 74 start-page: 5651 year: 2018 ident: D0CS01107J-(cit90)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2018.07.057 – volume: 133 start-page: 8478 year: 2011 ident: D0CS01107J-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja202769t – volume: 140 start-page: 11317 year: 2018 ident: D0CS01107J-(cit152)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05868 – volume: 124 start-page: 9489 year: 2002 ident: D0CS01107J-(cit100)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja025730g – volume: 21 start-page: 2947 year: 2019 ident: D0CS01107J-(cit108)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01016 – volume: 135 start-page: 5308 year: 2013 ident: D0CS01107J-(cit155)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401344e – volume: 136 start-page: 2682 year: 2014 ident: D0CS01107J-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410424g – volume: 139 start-page: 6835 year: 2017 ident: D0CS01107J-(cit131)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03195 – volume: 21 start-page: 4771 year: 2019 ident: D0CS01107J-(cit138)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01658 – volume: 135 start-page: 1221 year: 2013 ident: D0CS01107J-(cit94)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311045f – volume: 140 start-page: 78 year: 2018 ident: D0CS01107J-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10855 – volume: 136 start-page: 17702 year: 2014 ident: D0CS01107J-(cit96)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509077a – volume: 2 start-page: 1867 year: 2011 ident: D0CS01107J-(cit24)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c1sc00368b – volume: 516 start-page: 181 year: 2014 ident: D0CS01107J-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature14007 – volume: 110 start-page: 8736 year: 1988 ident: D0CS01107J-(cit103)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00234a047 – volume: 71 start-page: 2260 year: 2015 ident: D0CS01107J-(cit111)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2015.02.067 – volume: 59 start-page: 21530 year: 2020 ident: D0CS01107J-(cit150)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010386 – volume: 56 start-page: 260 year: 2017 ident: D0CS01107J-(cit113)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201609662 – volume: 58 start-page: 14245 year: 2019 ident: D0CS01107J-(cit124)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908029 – volume: 142 start-page: 9604 year: 2020 ident: D0CS01107J-(cit135)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03708 |
SSID | ssj0011762 |
Score | 2.651796 |
SecondaryResourceType | review_article |
Snippet | Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp
3
)-C bonds and simultaneously create... Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp 3 )–C bonds and simultaneously create... Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp )-C bonds and simultaneously create... Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)–C bonds and simultaneously create... Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp3)-C bonds and simultaneously create... Transformation of sterically hindered tertiary alkyl electrophiles under nickel-catalyzed conditions to forge C(sp³)–C bonds and simultaneously create... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4162 |
SubjectTerms | Adducts alcohols Carbon Carboxylic acids Cascade chemical reactions Chemical reactions Covalent bonds Interception Lewis acids Lewis bases Nickel Nucleophiles Oxidation Reaction mechanisms State-of-the-art reviews |
Title | Nickel-catalyzed formation of quaternary carbon centers using tertiary alkyl electrophiles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33533345 https://www.proquest.com/docview/2506536741 https://www.proquest.com/docview/2486158257 https://www.proquest.com/docview/2524304518 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXxNdYxkBB8IKmjMR2nORxKp3GVMYDqYh4iZzE2caqtGsbQffXc3Zsp2MTGrxE1dlyLd8vl7vzfSD0jmFRhULUXllUYKAAprxYlNirsYiqEJdBWMsb3c8n7GhMj7Mw6wsqqOySZbFfXt2aV_I_XAUa8FVmyf4DZ-2iQIDfwF94AofheSceAxsvxMRTLpjVFaiONhVR6oCXLVfevvlK1p8ugCgjMWXCbqscBDIa4FyO8snFarKnG-LMzkBOLNZ1VltTwER46gqmhldZq5yi34SMwJ9aTyr8xYo3pz958-u8d9t3oiVre1CmXHlrM8Dp6VnL190QWMVhdbnNWnJS5gOvu2KORrR2NWU1hNjebB_UP-zRIKZrMlPS1r6_ZvSGbPeJLI1a-eVC6izRj_4LZm7tT77kh-PRKE-HWXofbWKwHED0bR4M008je7UURKrLrN2vqVlLkg_92te1lBumBygic9MgRiki6WP0SFsQ7kEHhyfonmieogcD07jvGfr-JyxcCwt3Wrs9LNwOFq6Ghatg4RpYuAoW7jVYPEfjw2E6OPJ0Cw2vJJG_9BgufIJ5DYIW10lc0xInLBEiKDmXvccorihhNWWEMCBWYcl9GhWcsUjIWmxkC20000Zsyxg4kshO5UEgwAxIoqISmIN-zHwRc1EwB703R5aXur68bHMyyVWcA0nyj_7gqzreYwe9tXNnXVWVW2ftmpPP9Vu3yEFlZyGBnQcOemOH4YTlRRdvxLSFOTQGRT2Gr9Ff5oSYyiiBIHbQi46rdiuEgBFEaOigLWCzJffw2LnDsi_Rw_492UUby3krXoECuyxea0j-Bo4ynrE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nickel-catalyzed+formation+of+quaternary+carbon+centers+using+tertiary+alkyl+electrophiles&rft.jtitle=Chemical+Society+reviews&rft.au=Xue%2C+Weichao&rft.au=Qingyangwanxi&rft.au=Wang%2C+Xuan&rft.au=Tao%2C+Xianghua&rft.date=2021-03-21&rft.issn=1460-4744&rft.volume=50&rft.issue=6+p.4162-4184&rft.spage=4162&rft.epage=4184&rft_id=info:doi/10.1039%2Fd0cs01107j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |