Preparation of graphene oxide (GO)/lanthanum coordination polymers for enhancement of bactericidal activity
In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical Pathogenic bacteria are evaluated. The GLCPs are fabricated through the electrostatic self-assembly of La ions on negatively charged graphene oxide...
Saved in:
Published in | Journal of materials chemistry. B, Materials for biology and medicine Vol. 9; no. 2; pp. 366 - 372 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical
Pathogenic bacteria
are evaluated. The GLCPs are fabricated through the electrostatic self-assembly of La ions on negatively charged graphene oxide (GO), followed by the stabilization of π-π stacking to ensure the formation of lanthanum coordination polymers on the GO surface. The morphologies and structures of the synthesized GLCPs are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Moreover, the bactericidal effects of the well-coordinated GLCPs are investigated using the zone of inhibition and flat colony counting methods, as well as by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The five GLCPs synthesized in this study exhibit broad-spectrum antibacterial activities against seven typical
Pathogenic bacteria
. We believe that our study could serve as a starting point to prepare bactericidal materials for further applications.
The synthesized GO/lanthanum coordination polymers exhibit broad-spectrum antibacterial activities against seven typical
Pathogenic bacteria
, are compatible with large-scale preparation and can be harnessed as antibacterial compounds. |
---|---|
AbstractList | In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical Pathogenic bacteria are evaluated. The GLCPs are fabricated through the electrostatic self-assembly of La ions on negatively charged graphene oxide (GO), followed by the stabilization of π-π stacking to ensure the formation of lanthanum coordination polymers on the GO surface. The morphologies and structures of the synthesized GLCPs are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Moreover, the bactericidal effects of the well-coordinated GLCPs are investigated using the zone of inhibition and flat colony counting methods, as well as by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The five GLCPs synthesized in this study exhibit broad-spectrum antibacterial activities against seven typical Pathogenic bacteria. We believe that our study could serve as a starting point to prepare bactericidal materials for further applications. In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical Pathogenic bacteria are evaluated. The GLCPs are fabricated through the electrostatic self-assembly of La ions on negatively charged graphene oxide (GO), followed by the stabilization of π-π stacking to ensure the formation of lanthanum coordination polymers on the GO surface. The morphologies and structures of the synthesized GLCPs are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Moreover, the bactericidal effects of the well-coordinated GLCPs are investigated using the zone of inhibition and flat colony counting methods, as well as by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The five GLCPs synthesized in this study exhibit broad-spectrum antibacterial activities against seven typical Pathogenic bacteria. We believe that our study could serve as a starting point to prepare bactericidal materials for further applications.In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical Pathogenic bacteria are evaluated. The GLCPs are fabricated through the electrostatic self-assembly of La ions on negatively charged graphene oxide (GO), followed by the stabilization of π-π stacking to ensure the formation of lanthanum coordination polymers on the GO surface. The morphologies and structures of the synthesized GLCPs are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Moreover, the bactericidal effects of the well-coordinated GLCPs are investigated using the zone of inhibition and flat colony counting methods, as well as by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The five GLCPs synthesized in this study exhibit broad-spectrum antibacterial activities against seven typical Pathogenic bacteria. We believe that our study could serve as a starting point to prepare bactericidal materials for further applications. In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical Pathogenic bacteria are evaluated. The GLCPs are fabricated through the electrostatic self-assembly of La ions on negatively charged graphene oxide (GO), followed by the stabilization of π-π stacking to ensure the formation of lanthanum coordination polymers on the GO surface. The morphologies and structures of the synthesized GLCPs are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Moreover, the bactericidal effects of the well-coordinated GLCPs are investigated using the zone of inhibition and flat colony counting methods, as well as by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The five GLCPs synthesized in this study exhibit broad-spectrum antibacterial activities against seven typical Pathogenic bacteria . We believe that our study could serve as a starting point to prepare bactericidal materials for further applications. The synthesized GO/lanthanum coordination polymers exhibit broad-spectrum antibacterial activities against seven typical Pathogenic bacteria , are compatible with large-scale preparation and can be harnessed as antibacterial compounds. In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical Pathogenic bacteria are evaluated. The GLCPs are fabricated through the electrostatic self-assembly of La ions on negatively charged graphene oxide (GO), followed by the stabilization of π–π stacking to ensure the formation of lanthanum coordination polymers on the GO surface. The morphologies and structures of the synthesized GLCPs are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). Moreover, the bactericidal effects of the well-coordinated GLCPs are investigated using the zone of inhibition and flat colony counting methods, as well as by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The five GLCPs synthesized in this study exhibit broad-spectrum antibacterial activities against seven typical Pathogenic bacteria . We believe that our study could serve as a starting point to prepare bactericidal materials for further applications. |
Author | Tan, Xiao Jiang, Zhenqi Li, Xinxiang Wang, Jia Shan, Zezhi Qin, Jieling |
AuthorAffiliation | Department of Oncology Department of Colorectal Surgery Institute of Engineering Medicine, Beijing Institute of Technology Fudan University Tongji University Shanghai Medical College Shanghai Tenth People's Hospital Tongji University Cancer Center School of Medicine Fudan University Shanghai Cancer Center |
AuthorAffiliation_xml | – name: School of Medicine – name: Shanghai Tenth People's Hospital – name: Fudan University – name: Tongji University Cancer Center – name: Institute of Engineering Medicine, Beijing Institute of Technology – name: Fudan University Shanghai Cancer Center – name: Shanghai Medical College – name: Tongji University – name: Department of Colorectal Surgery – name: Department of Oncology |
Author_xml | – sequence: 1 givenname: Jia surname: Wang fullname: Wang, Jia – sequence: 2 givenname: Zezhi surname: Shan fullname: Shan, Zezhi – sequence: 3 givenname: Xiao surname: Tan fullname: Tan, Xiao – sequence: 4 givenname: Xinxiang surname: Li fullname: Li, Xinxiang – sequence: 5 givenname: Zhenqi surname: Jiang fullname: Jiang, Zhenqi – sequence: 6 givenname: Jieling surname: Qin fullname: Qin, Jieling |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33283813$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s9LHTEQB_AgFrXWS--VBS-28Gp-b_ZYbftaEPSg0NuSTWY1uptsk2zp---b51MLUmguyeEzX5iZvEbbPnhA6C3BHwlmzYnFucOUSnmzhfYoFnhRC6K2n9_4xy46SOkOl6OIVIzvoF3GqGKKsD10fxlh0lFnF3wV-uom6ukWPFTht7NQHS8v3p8M2udb7eexMiFE6_xGT2FYjRBT1YdYgS_CwAg-r2M6bTJEZ5zVQ1Xe7pfLqzfoVa-HBAeP9z66_vrl6uzb4vxi-f3s0_nCsBrnhcSqBltrzggnAjeaK8pEp4WiVCjFVW-NZdwI2UmsO91rSowVtK-N7QRwto-ON7lTDD9nSLkdXTIwlD4gzKmljZKqaURD_0-5rBXnXKhCj17QuzBHXxopqm4kU4KvAw8f1dyNYNspulHHVfs08QLwBpgYUorQt8blh4HmqN3QEtyu99p-xlenD3tdlpIPL0qeUv-J321wTObZ_f0k7A-UmKu5 |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_2c03013 crossref_primary_10_1021_acsomega_2c02328 crossref_primary_10_1016_j_ccr_2024_216071 crossref_primary_10_1016_j_jcis_2021_10_018 crossref_primary_10_2174_1573413718666220622160135 crossref_primary_10_1016_j_ijbiomac_2023_125470 crossref_primary_10_1016_j_mtcomm_2021_102974 crossref_primary_10_1016_j_porgcoat_2023_107923 crossref_primary_10_1016_j_snb_2021_130839 crossref_primary_10_1016_j_scitotenv_2024_174747 |
Cites_doi | 10.1016/j.catcom.2017.07.002 10.1021/acs.inorgchem.8b00304 10.1002/anie.201703111 10.1128/AM.22.4.659-665.1971 10.1016/j.biomaterials.2018.04.002 10.1039/C4RA01559B 10.1007/s42114-019-00083-x 10.3390/polym11010155 10.1002/adma.201504765 10.1016/j.polymer.2019.121808 10.1021/nn101097v 10.1016/j.ceramint.2014.11.046 10.1080/15533174.2011.609225 10.1039/C0JM02806A 10.1080/00945719408002149 10.1166/jbn.2005.034 10.1016/j.susmat.2017.09.001 10.1016/j.compscitech.2020.108522 10.1002/aenm.201301523 10.1039/C5RA01458A 10.1016/j.molstruc.2004.01.068 10.1016/j.jhazmat.2013.07.044 10.1016/j.jscs.2017.10.002 10.1016/j.foodchem.2019.01.188 10.1016/j.scitotenv.2019.03.412 10.1007/s42114-020-00142-8 10.1021/acssuschemeng.9b02594 10.1016/j.physb.2010.11.022 10.1016/j.saa.2013.09.110 10.1016/j.snb.2013.08.100 10.1186/1556-276X-9-462 10.1560/JL3X-DXE1-CD6R-FCB0 10.1016/j.matlet.2011.05.019 10.1002/adma.201001068 10.1016/j.nantod.2020.100910 10.1039/c3ee43385d 10.1016/j.polymer.2018.09.051 10.1002/adma.200903932 10.1371/journal.pone.0148469 10.1016/S1386-1425(01)00541-8 10.1016/j.fuel.2013.11.011 10.1021/acsami.8b21425 10.1021/acsami.8b13758 10.1016/j.chemosphere.2017.04.073 10.1021/cg3006162 10.1016/j.carbon.2015.09.088 10.1021/ja00496a010 10.1016/j.ccr.2015.05.005 10.1007/s42114-020-00153-5 10.1021/cr900134a 10.1016/j.carbon.2004.10.035 10.1007/s10973-008-9116-x 10.1016/j.ccr.2015.08.008 10.1039/C5CC09575A 10.1016/S0008-6223(97)00132-2 10.1080/15363831003782981 10.1016/j.apcatb.2014.11.028 10.3866/PKU.WHXB201604225 10.1002/cyto.a.20038 10.1016/j.matlet.2013.09.011 10.1021/cs3008126 10.1016/S1002-0721(08)60028-9 10.1016/j.jpowsour.2019.02.059 10.1007/s40820-019-0292-y 10.1016/0044-8486(79)90134-0 10.1155/2012/857569 10.1093/infdis/143.5.644 10.1016/S1386-1425(01)00395-X 10.1093/oxfordjournals.jbchem.a021765 10.1016/j.jcis.2017.10.099 10.1080/00958972.2011.577425 10.1039/D0TA01677B 10.1016/j.bios.2017.06.058 10.1016/j.electacta.2011.07.024 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1039/d0tb02266g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7518 |
EndPage | 372 |
ExternalDocumentID | 33283813 10_1039_D0TB02266G d0tb02266g |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0-7 0R 4.4 53G 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX D0L EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-6087ed7a43141509a48235ba582258848fdcd34c56b60abafa21cd52f7cdb5e43 |
ISSN | 2050-750X 2050-7518 |
IngestDate | Fri Jul 11 02:02:56 EDT 2025 Fri Jul 11 03:10:22 EDT 2025 Mon Jun 30 08:16:07 EDT 2025 Thu Apr 03 07:09:40 EDT 2025 Tue Jul 01 01:00:30 EDT 2025 Thu Apr 24 22:50:28 EDT 2025 Sat Jan 08 03:52:06 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-6087ed7a43141509a48235ba582258848fdcd34c56b60abafa21cd52f7cdb5e43 |
Notes | 10.1039/d0tb02266g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2685-1327 0000-0002-2596-8400 |
PMID | 33283813 |
PQID | 2479638542 |
PQPubID | 2047522 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2467844458 pubmed_primary_33283813 proquest_miscellaneous_2986899592 proquest_journals_2479638542 crossref_citationtrail_10_1039_D0TB02266G crossref_primary_10_1039_D0TB02266G rsc_primary_d0tb02266g |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210121 |
PublicationDateYYYYMMDD | 2021-01-21 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210121 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Journal of materials chemistry. B, Materials for biology and medicine |
PublicationTitleAlternate | J Mater Chem B |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yang (D0TB02266G-(cit85)/*[position()=1]) 2011; 46 Hu (D0TB02266G-(cit71)/*[position()=1]) 2016; 32 Horrocks (D0TB02266G-(cit21)/*[position()=1]) 1979; 101 Subhan (D0TB02266G-(cit25)/*[position()=1]) 2014; 118 Yang (D0TB02266G-(cit79)/*[position()=1]) 2012; 42 Hanana (D0TB02266G-(cit23)/*[position()=1]) 2017; 181 Yang (D0TB02266G-(cit63)/*[position()=1]) 2013; 261 Zhu (D0TB02266G-(cit69)/*[position()=1]) 2011; 406 Wu (D0TB02266G-(cit4)/*[position()=1]) 2018; 10 Wang (D0TB02266G-(cit10)/*[position()=1]) 2012; 12 Qin (D0TB02266G-(cit11)/*[position()=1]) 2019; 11 Nidamanuri (D0TB02266G-(cit39)/*[position()=1]) 2020; 9 Ogata (D0TB02266G-(cit47)/*[position()=1]) 2016; 52 Nguyen (D0TB02266G-(cit27)/*[position()=1]) 2020; 8 Chen (D0TB02266G-(cit57)/*[position()=1]) 2019; 286 Zhou (D0TB02266G-(cit34)/*[position()=1]) 2014; 4 Gupta (D0TB02266G-(cit45)/*[position()=1]) 2013; 112 Gavrilko (D0TB02266G-(cit76)/*[position()=1]) 2004; 704 Shin (D0TB02266G-(cit68)/*[position()=1]) 1997; 35 Dahle (D0TB02266G-(cit89)/*[position()=1]) 2004; 60 Chabot (D0TB02266G-(cit35)/*[position()=1]) 2014; 7 Jain (D0TB02266G-(cit42)/*[position()=1]) 2020; 3 Qin (D0TB02266G-(cit60)/*[position()=1]) 2015; 41 Ahad (D0TB02266G-(cit75)/*[position()=1]) 2012 Ma (D0TB02266G-(cit58)/*[position()=1]) 2019; 182 Panicker (D0TB02266G-(cit73)/*[position()=1]) 2002; 58 Abd El-Wahed (D0TB02266G-(cit24)/*[position()=1]) 2015; 47 Woodman (D0TB02266G-(cit19)/*[position()=1]) 2002; 42 Cai (D0TB02266G-(cit40)/*[position()=1]) 2019; 6 Rana (D0TB02266G-(cit66)/*[position()=1]) 2017; 100 Ho (D0TB02266G-(cit12)/*[position()=1]) 2014; 190 Jiang (D0TB02266G-(cit6)/*[position()=1]) 2018; 170 Jung (D0TB02266G-(cit8)/*[position()=1]) 2019; 11 Chen (D0TB02266G-(cit26)/*[position()=1]) 2017; 56 Nandi (D0TB02266G-(cit2)/*[position()=1]) 2018; 57 Obot (D0TB02266G-(cit77)/*[position()=1]) 2017; 14 Tu (D0TB02266G-(cit43)/*[position()=1]) 2019; 2 Giménez-Marqués (D0TB02266G-(cit5)/*[position()=1]) 2016; 307 Hu (D0TB02266G-(cit48)/*[position()=1]) 2019; 3 Titelman (D0TB02266G-(cit67)/*[position()=1]) 2005; 43 Matsumura (D0TB02266G-(cit22)/*[position()=1]) 1997; 122 Li (D0TB02266G-(cit84)/*[position()=1]) 2014; 118 Yang (D0TB02266G-(cit70)/*[position()=1]) 2015; 166–167 Kim (D0TB02266G-(cit37)/*[position()=1]) 2010; 22 Luo (D0TB02266G-(cit13)/*[position()=1]) 2011; 56 Xu (D0TB02266G-(cit50)/*[position()=1]) 2016; 96 Min (D0TB02266G-(cit54)/*[position()=1]) 2011 Yang (D0TB02266G-(cit33)/*[position()=1]) 2017; 98 Davis (D0TB02266G-(cit87)/*[position()=1]) 1971; 22 Madhusudhana (D0TB02266G-(cit44)/*[position()=1]) 2020; 3 Ma (D0TB02266G-(cit53)/*[position()=1]) 2011; 21 Liu (D0TB02266G-(cit9)/*[position()=1]) 2018; 512 Zhu (D0TB02266G-(cit36)/*[position()=1]) 2010; 22 Wei (D0TB02266G-(cit49)/*[position()=1]) 2015; 5 Feng (D0TB02266G-(cit14)/*[position()=1]) 2020; 200 Cataldo (D0TB02266G-(cit65)/*[position()=1]) 2010; 18 Jiang (D0TB02266G-(cit3)/*[position()=1]) 2020; 34 Fan (D0TB02266G-(cit28)/*[position()=1]) 2019; 672 Sharon (D0TB02266G-(cit29)/*[position()=1]) 2005; 1 Chinh (D0TB02266G-(cit64)/*[position()=1]) 2014; 9 Li (D0TB02266G-(cit1)/*[position()=1]) 2016; 307 Fujita (D0TB02266G-(cit30)/*[position()=1]) 1934; 269 Philip (D0TB02266G-(cit72)/*[position()=1]) 2001; 57 Ibrahim (D0TB02266G-(cit74)/*[position()=1]) 2005; 43 Yang (D0TB02266G-(cit62)/*[position()=1]) 2011; 65 Guiot (D0TB02266G-(cit32)/*[position()=1]) 1981; 143 Zhu (D0TB02266G-(cit38)/*[position()=1]) 2020; 9 Yang (D0TB02266G-(cit55)/*[position()=1]) 2014; 4 Chen (D0TB02266G-(cit56)/*[position()=1]) 2019; 7 Brown (D0TB02266G-(cit31)/*[position()=1]) 1979; 17 Mohanan (D0TB02266G-(cit83)/*[position()=1]) 2008; 26 Hu (D0TB02266G-(cit51)/*[position()=1]) 2010; 4 Jiang (D0TB02266G-(cit7)/*[position()=1]) 2019; 11 Qian (D0TB02266G-(cit52)/*[position()=1]) 2018; 22 Hu (D0TB02266G-(cit46)/*[position()=1]) 2016; 28 Chen (D0TB02266G-(cit41)/*[position()=1]) 2019; 4 Kilbourn (D0TB02266G-(cit18)/*[position()=1]) 1988; 40 Yang (D0TB02266G-(cit61)/*[position()=1]) 2013; 3 Zhou (D0TB02266G-(cit16)/*[position()=1]) 2020; 9 Haas (D0TB02266G-(cit20)/*[position()=1]) 2009; 109 Shi (D0TB02266G-(cit15)/*[position()=1]) 2021; 201 Li (D0TB02266G-(cit17)/*[position()=1]) 2019; 5 Hofmeister (D0TB02266G-(cit81)/*[position()=1]) 1990; 75 Min (D0TB02266G-(cit86)/*[position()=1]) 2011; 64 Shen (D0TB02266G-(cit78)/*[position()=1]) 1994; 24 Thankamony (D0TB02266G-(cit82)/*[position()=1]) 2009; 95 Choudhry (D0TB02266G-(cit88)/*[position()=1]) 2016; 11 Ma (D0TB02266G-(cit59)/*[position()=1]) 2018; 156 Zhang (D0TB02266G-(cit80)/*[position()=1]) 2019; 419 |
References_xml | – issn: 2011 issue: 64 end-page: 1617-1625 publication-title: J. Coord. Chem. doi: Min Yang Zhang Yao Ouyang – volume: 100 start-page: 183 year: 2017 ident: D0TB02266G-(cit66)/*[position()=1] publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.07.002 – volume: 57 start-page: 5267 year: 2018 ident: D0TB02266G-(cit2)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00304 – volume: 56 start-page: 6916 year: 2017 ident: D0TB02266G-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703111 – volume: 9 start-page: 3 year: 2020 ident: D0TB02266G-(cit39)/*[position()=1] publication-title: Carbon – volume-title: J. Coord. Chem. year: 2011 ident: D0TB02266G-(cit54)/*[position()=1] – volume: 22 start-page: 659 year: 1971 ident: D0TB02266G-(cit87)/*[position()=1] publication-title: Appl. Microbiol. doi: 10.1128/AM.22.4.659-665.1971 – volume: 9 start-page: 48 year: 2020 ident: D0TB02266G-(cit38)/*[position()=1] publication-title: Manufacturing – volume: 170 start-page: 70 year: 2018 ident: D0TB02266G-(cit6)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.04.002 – volume: 4 start-page: 18627 year: 2014 ident: D0TB02266G-(cit55)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA01559B – volume: 2 start-page: 471 year: 2019 ident: D0TB02266G-(cit43)/*[position()=1] publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-019-00083-x – volume: 46 start-page: 1195 year: 2011 ident: D0TB02266G-(cit85)/*[position()=1] publication-title: Technology – volume: 11 start-page: 155 year: 2019 ident: D0TB02266G-(cit8)/*[position()=1] publication-title: Polymers doi: 10.3390/polym11010155 – volume: 28 start-page: 1603 year: 2016 ident: D0TB02266G-(cit46)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504765 – volume: 43 start-page: 911 year: 2005 ident: D0TB02266G-(cit74)/*[position()=1] publication-title: Indian J. Pure Appl. Phys. – volume: 182 start-page: 121808 year: 2019 ident: D0TB02266G-(cit58)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2019.121808 – volume: 4 start-page: 4317 year: 2010 ident: D0TB02266G-(cit51)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn101097v – volume: 41 start-page: 4231 year: 2015 ident: D0TB02266G-(cit60)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.11.046 – volume: 200 start-page: 108336 year: 2020 ident: D0TB02266G-(cit14)/*[position()=1] publication-title: Technology – volume: 42 start-page: 37 year: 2012 ident: D0TB02266G-(cit79)/*[position()=1] publication-title: Synth. React. Inorg., Met.-Org., Nano-Met. Chem. doi: 10.1080/15533174.2011.609225 – volume: 21 start-page: 3350 year: 2011 ident: D0TB02266G-(cit53)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/C0JM02806A – volume: 24 start-page: 1351 year: 1994 ident: D0TB02266G-(cit78)/*[position()=1] publication-title: Synth. React. Inorg. Met. – Org. Chem. doi: 10.1080/00945719408002149 – volume: 1 start-page: 365 year: 2005 ident: D0TB02266G-(cit29)/*[position()=1] publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2005.034 – volume: 14 start-page: 1 year: 2017 ident: D0TB02266G-(cit77)/*[position()=1] publication-title: Sustainable Mater. Technol. doi: 10.1016/j.susmat.2017.09.001 – volume: 201 start-page: 108522 year: 2021 ident: D0TB02266G-(cit15)/*[position()=1] publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108522 – volume: 4 start-page: 1301523 year: 2014 ident: D0TB02266G-(cit34)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301523 – volume: 5 start-page: 40348 year: 2015 ident: D0TB02266G-(cit49)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA01458A – volume: 704 start-page: 163 year: 2004 ident: D0TB02266G-(cit76)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2004.01.068 – volume: 261 start-page: 342 year: 2013 ident: D0TB02266G-(cit63)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.07.044 – volume: 22 start-page: 581 year: 2018 ident: D0TB02266G-(cit52)/*[position()=1] publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2017.10.002 – volume: 286 start-page: 467 year: 2019 ident: D0TB02266G-(cit57)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.01.188 – volume: 47 start-page: 895 year: 2015 ident: D0TB02266G-(cit24)/*[position()=1] publication-title: Bulg. Chem. Commun. – volume: 672 start-page: 834 year: 2019 ident: D0TB02266G-(cit28)/*[position()=1] publication-title: Sci. Total Environ doi: 10.1016/j.scitotenv.2019.03.412 – volume: 3 start-page: 141 year: 2020 ident: D0TB02266G-(cit44)/*[position()=1] publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-020-00142-8 – volume: 7 start-page: 14064 year: 2019 ident: D0TB02266G-(cit56)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b02594 – volume: 406 start-page: 498 year: 2011 ident: D0TB02266G-(cit69)/*[position()=1] publication-title: Phys. B doi: 10.1016/j.physb.2010.11.022 – volume: 118 start-page: 944 year: 2014 ident: D0TB02266G-(cit25)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2013.09.110 – volume: 4 start-page: 31 year: 2019 ident: D0TB02266G-(cit41)/*[position()=1] publication-title: Manufacturing – volume: 190 start-page: 479 year: 2014 ident: D0TB02266G-(cit12)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2013.08.100 – volume: 9 start-page: 462 year: 2014 ident: D0TB02266G-(cit64)/*[position()=1] publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-462 – volume: 42 start-page: 283 year: 2002 ident: D0TB02266G-(cit19)/*[position()=1] publication-title: Isr. J. Chem. doi: 10.1560/JL3X-DXE1-CD6R-FCB0 – volume: 65 start-page: 2341 year: 2011 ident: D0TB02266G-(cit62)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.05.019 – volume: 22 start-page: 3906 year: 2010 ident: D0TB02266G-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201001068 – volume: 34 start-page: 100910 year: 2020 ident: D0TB02266G-(cit3)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2020.100910 – volume: 7 start-page: 1564 year: 2014 ident: D0TB02266G-(cit35)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43385d – volume: 156 start-page: 128 year: 2018 ident: D0TB02266G-(cit59)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2018.09.051 – volume: 22 start-page: 1954 year: 2010 ident: D0TB02266G-(cit37)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200903932 – volume: 11 start-page: e0148469 year: 2016 ident: D0TB02266G-(cit88)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0148469 – volume: 58 start-page: 281 year: 2002 ident: D0TB02266G-(cit73)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/S1386-1425(01)00541-8 – volume: 118 start-page: 385 year: 2014 ident: D0TB02266G-(cit84)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2013.11.011 – volume: 11 start-page: 11743 year: 2019 ident: D0TB02266G-(cit11)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21425 – volume: 10 start-page: 34655 year: 2018 ident: D0TB02266G-(cit4)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13758 – volume: 181 start-page: 197 year: 2017 ident: D0TB02266G-(cit23)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.073 – volume: 12 start-page: 3786 year: 2012 ident: D0TB02266G-(cit10)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg3006162 – volume: 96 start-page: 394 year: 2016 ident: D0TB02266G-(cit50)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.09.088 – volume: 101 start-page: 334 year: 1979 ident: D0TB02266G-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00496a010 – volume: 75 start-page: 1238 year: 1990 ident: D0TB02266G-(cit81)/*[position()=1] publication-title: Am. Mineral. – volume: 3 start-page: 45 year: 2019 ident: D0TB02266G-(cit48)/*[position()=1] publication-title: Environment – volume: 307 start-page: 106 year: 2016 ident: D0TB02266G-(cit1)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.05.005 – volume: 269 start-page: 367 year: 1934 ident: D0TB02266G-(cit30)/*[position()=1] publication-title: Biochem. Z. – volume: 3 start-page: 231 year: 2020 ident: D0TB02266G-(cit42)/*[position()=1] publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-020-00153-5 – volume: 109 start-page: 4921 year: 2009 ident: D0TB02266G-(cit20)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900134a – volume: 43 start-page: 641 year: 2005 ident: D0TB02266G-(cit67)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2004.10.035 – volume: 95 start-page: 259 year: 2009 ident: D0TB02266G-(cit82)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-008-9116-x – volume: 307 start-page: 342 year: 2016 ident: D0TB02266G-(cit5)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.08.008 – volume: 52 start-page: 3919 year: 2016 ident: D0TB02266G-(cit47)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC09575A – volume: 35 start-page: 1739 year: 1997 ident: D0TB02266G-(cit68)/*[position()=1] publication-title: Carbon doi: 10.1016/S0008-6223(97)00132-2 – volume: 18 start-page: 261 year: 2010 ident: D0TB02266G-(cit65)/*[position()=1] publication-title: Fullerenes, Nanotubes, Carbon Nanostruct. doi: 10.1080/15363831003782981 – volume: 166–167 start-page: 231 year: 2015 ident: D0TB02266G-(cit70)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.11.028 – volume: 32 start-page: 2059 year: 2016 ident: D0TB02266G-(cit71)/*[position()=1] publication-title: Acta Phys.-Chim. Sin. doi: 10.3866/PKU.WHXB201604225 – volume: 6 start-page: 68 year: 2019 ident: D0TB02266G-(cit40)/*[position()=1] publication-title: Manufacturing – volume: 60 start-page: 182 year: 2004 ident: D0TB02266G-(cit89)/*[position()=1] publication-title: Cytometry, Part A doi: 10.1002/cyto.a.20038 – volume: 112 start-page: 75 year: 2013 ident: D0TB02266G-(cit45)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.09.011 – volume: 3 start-page: 363 year: 2013 ident: D0TB02266G-(cit61)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs3008126 – volume: 26 start-page: 16 year: 2008 ident: D0TB02266G-(cit83)/*[position()=1] publication-title: J. Rare Earths doi: 10.1016/S1002-0721(08)60028-9 – volume: 419 start-page: 99 year: 2019 ident: D0TB02266G-(cit80)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.02.059 – volume: 11 start-page: 61 year: 2019 ident: D0TB02266G-(cit7)/*[position()=1] publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0292-y – volume: 17 start-page: 17 year: 1979 ident: D0TB02266G-(cit31)/*[position()=1] publication-title: Aquaculture doi: 10.1016/0044-8486(79)90134-0 – volume: 40 start-page: 100 year: 1988 ident: D0TB02266G-(cit18)/*[position()=1] publication-title: J. Met. – start-page: 857569 year: 2012 ident: D0TB02266G-(cit75)/*[position()=1] publication-title: J. Nanomater. doi: 10.1155/2012/857569 – volume: 143 start-page: 644 year: 1981 ident: D0TB02266G-(cit32)/*[position()=1] publication-title: J. Infect. Dis. doi: 10.1093/infdis/143.5.644 – volume: 5 start-page: 102 year: 2019 ident: D0TB02266G-(cit17)/*[position()=1] publication-title: Environment – volume: 57 start-page: 1561 year: 2001 ident: D0TB02266G-(cit72)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/S1386-1425(01)00395-X – volume: 9 start-page: 28 year: 2020 ident: D0TB02266G-(cit16)/*[position()=1] publication-title: Environment – volume: 122 start-page: 387 year: 1997 ident: D0TB02266G-(cit22)/*[position()=1] publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a021765 – volume: 512 start-page: 730 year: 2018 ident: D0TB02266G-(cit9)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.10.099 – volume: 64 start-page: 1617 year: 2011 ident: D0TB02266G-(cit86)/*[position()=1] publication-title: J. Coord. Chem. doi: 10.1080/00958972.2011.577425 – volume: 8 start-page: 10188 year: 2020 ident: D0TB02266G-(cit27)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01677B – volume: 98 start-page: 248 year: 2017 ident: D0TB02266G-(cit33)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.06.058 – volume: 56 start-page: 8371 year: 2011 ident: D0TB02266G-(cit13)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.07.024 |
SSID | ssj0000816834 |
Score | 2.342435 |
Snippet | In this study, graphene oxide/lanthanum coordination polymer (GLCP) nanocomposites are prepared and their bactericidal activities against seven typical... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 366 |
SubjectTerms | Anti-Bacterial Agents - pharmacology Anti-Bacterial Agents - therapeutic use antibacterial properties Bacteria Bacteria - drug effects Bactericidal activity chemistry Coordination polymers Counting methods Electron microscopy Fourier analysis Fourier transform infrared spectroscopy Fourier transforms Graphene graphene oxide Graphite - chemistry Infrared analysis Infrared spectroscopy Lanthanum Lanthanum - chemistry Microscopy Minimum inhibitory concentration Morphology Nanocomposites Photoelectron spectroscopy Photoelectrons Polymers Polymers - chemistry Scanning electron microscopy Self-assembly Spectrum analysis Synthesis Thermogravimetric analysis thermogravimetry Transmission electron microscopy Ultraviolet spectroscopy X ray photoelectron spectroscopy |
Title | Preparation of graphene oxide (GO)/lanthanum coordination polymers for enhancement of bactericidal activity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33283813 https://www.proquest.com/docview/2479638542 https://www.proquest.com/docview/2467844458 https://www.proquest.com/docview/2986899592 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiNtYx0BG8MBUZUt9yeVxg65jKisSqah4iWInWSOmZCqtNPYP-Ncc23EaWEGDl6g6sdzE54v9-fhcEHpNgAbwvgydUKS5w4jwnUQF6kpJQ0Z8woUOCvtw5p1M2OmUTzudHy2vpeVC7MvrtXEl_6NVkIFeVZTsP2i26RQE8Bv0C1fQMFxvpeOP88yk7jakTyefhrmrV10VqeaOwzHs9KH_Cxi_WaKc3mUFu83CmABVhYbvym5t8n6XM4UA6xwgTBpnWaQqm4A0RSb-QGWB9ZrX7UlbP26_d2RCgewd7Rbayvj0-6H-59pwfVo0C8WnmbHOfsmuZ8XKxKBl0yKprGhUGEl5BVg_b9sxiDJiOCY42kx3gBrXUYdAZmVaI6vn67AFS9Kae6kp33JjTXCpGujUXQjgK553vlr57Gn_2Tg-noxGcTSYRnfQJoEdB0yZm4eD6P2oMdjpCiXaS6F5KpvuloYHq-5_JTg3di3AYea2tozmMNEDdL_WGD40SHqIOln5CN1rpaR8jL62MIWrHFtMYY0p_GY43jto0ITbaMIWTRhUjVtoUt200YQtmp6gyfEgenvi1AU5HEl9d-F4buBnqZ8A6QTe54YJCwjlIuHAMlXAc5CnMqVMck94biKSPCF9mXKS-zIVPGN0C22UVZltI5zTTLo50H3lxewJdb4vSQiThiuBMXu8i_bsKMayzlaviqZcxNprgobxOzc60iM-7KJXTdtLk6Nlbatdq4y4_oa_xYT5agXijHTRy-Y2fCjq2Cwps2qp2gChY4zx4C9twsALVOo-6OepUXTzKJQChQ_6tIu2QPONeIWYnVv89TN0d_XR7KKNxXyZPQc6vBAvaqD-BBkbuAQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+graphene+oxide+%28GO%29%2Flanthanum+coordination+polymers+for+enhancement+of+bactericidal+activity&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Wang%2C+Jia&rft.au=Shan%2C+Zezhi&rft.au=Tan%2C+Xiao&rft.au=Li%2C+Xinxiang&rft.date=2021-01-21&rft.issn=2050-7518&rft.eissn=2050-7518&rft.volume=9&rft.issue=2&rft.spage=366&rft_id=info:doi/10.1039%2Fd0tb02266g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon |