Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror
Most of the previous treatments of semiconductor lasers subject to optical feedback from a phase-conjugate mirror (PCM) have assumed that the PCM responds instantaneously. Furthermore, the mechanism responsible for phase conjugation does not usually enter into the analysis. In this paper, we derive...
Saved in:
Published in | IEEE journal of quantum electronics Vol. 33; no. 5; pp. 838 - 844 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.1997
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most of the previous treatments of semiconductor lasers subject to optical feedback from a phase-conjugate mirror (PCM) have assumed that the PCM responds instantaneously. Furthermore, the mechanism responsible for phase conjugation does not usually enter into the analysis. In this paper, we derive the time-dependent reflectivity of a PCM created through nondegenerate four-wave mixing in a Kerr-type nonlinear medium. The resulting laser dynamics are compared with the case of the ideal PCM, as a function of the external-cavity length, the PCM reflectivity, and the PCM interaction depth. The PCM with a significant interaction depth tends to suppress otherwise chaotic output and produces pulses whose repetition rate is tunable by varying PCM reflectivity. At high feedback levels, it stabilizes the laser output. We use the circle-map formalism to explain our numerical results. |
---|---|
AbstractList | Most of the previous treatments of semiconductor lasers subject to optical feedback from a phase-conjugate mirror (PCM) have assumed that the PCM responds instantaneously. Furthermore, the mechanism responsible for phase conjugation does not usually enter into the analysis. In this paper, we derive the time-dependent reflectivity of a PCM created through nondegenerate four-wave mixing in a Kerr-type nonlinear medium. The resulting laser dynamics are compared with the case of the ideal PCM, as a function of the external-cavity length, the PCM reflectivity, and the PCM interaction depth. The PCM with a significant interaction depth tends to suppress otherwise chaotic output and produces pulses whose repetition rate is tunable by varying PCM reflectivity. At high feedback levels, it stabilizes the laser output. We use the circle-map formalism to explain our numerical results Most of the previous treatments of semiconductor lasers subject to optical feedback from a phase-conjugate mirror (PCM) have assumed that the PCM responds instantaneously. Furthermore, the mechanism responsible for phase conjugation does not usually enter into the analysis. In this paper, we derive the time-dependent reflectivity of a PCM created through nondegenerate four-wave mixing in a Kerr-type nonlinear medium. The resulting laser dynamics are compared with the case of the ideal PCM, as a function of the external-cavity length, the PCM reflectivity, and the PCM interaction depth. The PCM with a significant interaction depth tends to suppress otherwise chaotic output and produces pulses whose repetition rate is tunable by varying PCM reflectivity. At high feedback levels, it stabilizes the laser output. We use the circle-map formalism to explain our numerical results. |
Author | DeTienne, D.H. Agrawal, G.P. Gray, G.R. Lenstra, D. |
Author_xml | – sequence: 1 givenname: D.H. surname: DeTienne fullname: DeTienne, D.H. organization: Dept. of Electr. Eng., Utah Univ., Salt Lake City, UT, USA – sequence: 2 givenname: G.R. surname: Gray fullname: Gray, G.R. – sequence: 3 givenname: G.P. surname: Agrawal fullname: Agrawal, G.P. – sequence: 4 givenname: D. surname: Lenstra fullname: Lenstra, D. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2641150$$DView record in Pascal Francis |
BookMark | eNptkDtPxDAQhF2AxFOipkqBEE0Ob-xc7BIhXhISBVAb46zBkNjB9hX37zHcQYGoVrv7zUgzO2TDB4-EHACdAVB5ymZt10ArN8g2pSBqCbLbIjspvZWVc0G3ydM9js4E3y9MDrEadMJY9UuvyzVVtpwsYv-szXtlYxgrXVnnXcZ6Qo856uyCr3uc8ms1vRZxXbzeFi86YzW6GEPcI5tWDwn313OXPF5ePJxf17d3VzfnZ7e1YR3Nddt3EvUcDEojwM4lB9sDcMYARdsBE5ybOZqOWm4MRdDSsq5pGe9Q2kawXXK88p1i-Fhgymp0yeAwaI9hkVQjWkGFYAU8WoM6GT3YqL1xSU3RjTouVTPnAC0t2GyFmRhSimiVcfk7bkntBgVUfXWsmFp1XAQnfwQ_lv-ghyvUIeIvtn5-AmPDiGI |
CODEN | IEJQA7 |
CitedBy_id | crossref_primary_10_1016_j_optcom_2005_08_005 crossref_primary_10_1016_j_cnsns_2012_04_005 crossref_primary_10_1109_3_753662 crossref_primary_10_1016_j_cnsns_2022_106587 crossref_primary_10_1063_1_5008392 crossref_primary_10_3103_S1068335621020081 crossref_primary_10_1038_s42005_022_01052_5 crossref_primary_10_1515_JOC_2010_31_3_168 crossref_primary_10_1016_j_optcom_2006_04_008 crossref_primary_10_1109_JQE_2010_2090511 crossref_primary_10_1109_50_669025 crossref_primary_10_1364_OE_5_000032 crossref_primary_10_1117_1_3569622 crossref_primary_10_1063_1_4953651 crossref_primary_10_1103_PhysRevA_94_061803 crossref_primary_10_1134_1_1476986 crossref_primary_10_1109_3_914406 crossref_primary_10_1364_OL_42_000306 crossref_primary_10_1103_PhysRevA_84_043836 crossref_primary_10_1364_OL_23_000256 crossref_primary_10_1063_5_0095939 crossref_primary_10_1103_PhysRevE_92_022906 crossref_primary_10_1007_s10043_999_0359_y crossref_primary_10_1016_j_chaos_2018_11_006 crossref_primary_10_1088_1555_6611_acd372 crossref_primary_10_1103_PhysRevE_103_042207 crossref_primary_10_1103_PhysRevE_91_042914 crossref_primary_10_1364_OL_43_002511 crossref_primary_10_1063_1_4821916 crossref_primary_10_1103_PhysRevA_63_033805 crossref_primary_10_1109_JLT_2021_3135411 crossref_primary_10_1364_OL_44_000975 crossref_primary_10_3934_dcdsb_2015_20_519 crossref_primary_10_1109_JSTQE_2011_2145359 crossref_primary_10_1016_S0079_6727_98_00008_1 crossref_primary_10_1109_JSTQE_2004_835325 crossref_primary_10_1109_3_720236 crossref_primary_10_1109_JQE_2002_808147 crossref_primary_10_1137_060656656 crossref_primary_10_1364_OE_7_000222 crossref_primary_10_1109_3_766841 crossref_primary_10_1364_OE_425860 crossref_primary_10_1103_PhysRevE_68_066205 crossref_primary_10_1103_PhysRevE_58_7190 crossref_primary_10_1016_j_optcom_2003_12_026 crossref_primary_10_1016_S0030_4018_97_00682_2 |
Cites_doi | 10.1364/OL.16.001325 10.1109/3.55523 10.1139/p93-067 10.1364/OL.18.001645 10.1109/68.58045 10.1364/JOSAB.10.000130 10.1088/1355-5111/7/2/003 10.1117/12.239004 10.1364/OL.16.001298 10.1103/PhysRevA.46.5890 10.1109/68.166947 10.1364/OL.17.001590 10.1364/JOSAB.10.000145 10.1103/PhysRevA.49.2096 10.1109/31.1826 10.1109/JLT.1986.1074666 10.1109/3.286153 10.1109/3.119502 10.1364/OL.20.001295 |
ContentType | Journal Article |
Copyright | 1997 INIST-CNRS |
Copyright_xml | – notice: 1997 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SP 7U5 8FD L7M |
DOI | 10.1109/3.572159 |
DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EndPage | 844 |
ExternalDocumentID | 2641150 10_1109_3_572159 572159 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFFNX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ MVM O9- OCL P2P RIA RIE RNS TAE TN5 UPT VH1 XOL ZKB AAYXX CITATION RIG IQODW 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c370t-5d79ea61ce9c81f6941fd114331e85713844c6ec70f4cc0e1a9f3725347e9f283 |
IEDL.DBID | RIE |
ISSN | 0018-9197 |
IngestDate | Fri Jul 11 13:55:14 EDT 2025 Mon Jul 21 09:16:52 EDT 2025 Tue Jul 01 02:10:02 EDT 2025 Thu Apr 24 22:51:57 EDT 2025 Tue Aug 26 21:00:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Semiconductor lasers Four-wave mixing Feedback Dynamics Theoretical study External cavity Mirrors Nonlinear optics Phase conjugation |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-5d79ea61ce9c81f6941fd114331e85713844c6ec70f4cc0e1a9f3725347e9f283 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 28580883 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | pascalfrancis_primary_2641150 ieee_primary_572159 proquest_miscellaneous_28580883 crossref_citationtrail_10_1109_3_572159 crossref_primary_10_1109_3_572159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-05-01 |
PublicationDateYYYYMMDD | 1997-05-01 |
PublicationDate_xml | – month: 05 year: 1997 text: 1997-05-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | IEEE journal of quantum electronics |
PublicationTitleAbbrev | JQE |
PublicationYear | 1997 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref12 boyd (ref16) 1992 ref23 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref19 ref18 pepper (ref14) 1983 ref8 ref7 ref9 ref4 ref3 ref6 ref5 acton (ref15) 1970 |
References_xml | – ident: ref2 doi: 10.1364/OL.16.001325 – ident: ref20 doi: 10.1109/3.55523 – ident: ref4 doi: 10.1139/p93-067 – ident: ref5 doi: 10.1364/OL.18.001645 – year: 1992 ident: ref16 publication-title: Nonlinear Optics – ident: ref21 doi: 10.1109/68.58045 – ident: ref22 doi: 10.1364/JOSAB.10.000130 – year: 1983 ident: ref14 publication-title: Optical Phase Conjugation – ident: ref9 doi: 10.1088/1355-5111/7/2/003 – ident: ref11 doi: 10.1117/12.239004 – ident: ref7 doi: 10.1364/OL.16.001298 – ident: ref6 doi: 10.1103/PhysRevA.46.5890 – ident: ref12 doi: 10.1109/68.166947 – ident: ref3 doi: 10.1364/OL.17.001590 – ident: ref23 doi: 10.1364/JOSAB.10.000145 – ident: ref10 doi: 10.1103/PhysRevA.49.2096 – ident: ref19 doi: 10.1109/31.1826 – ident: ref8 doi: 10.1109/JLT.1986.1074666 – ident: ref18 doi: 10.1109/3.286153 – year: 1970 ident: ref15 publication-title: Numerical Methods That Work – ident: ref17 doi: 10.1109/3.119502 – ident: ref13 doi: 10.1088/1355-5111/7/2/003 – ident: ref1 doi: 10.1364/OL.20.001295 |
SSID | ssj0014480 |
Score | 1.7739468 |
Snippet | Most of the previous treatments of semiconductor lasers subject to optical feedback from a phase-conjugate mirror (PCM) have assumed that the PCM responds... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 838 |
SubjectTerms | Chaos Exact sciences and technology Four-wave mixing Fundamental areas of phenomenology (including applications) Laser feedback Lasers Mirrors Nonlinear optics Optical feedback Optics Output feedback Phase change materials Phase conjugation, optical mixing, and photorefractive effect Phase conjugation, optical mixing; photorefractive and kerr effects Physics Reflectivity Semiconductor lasers Semiconductor lasers; laser diodes Tunable circuits and devices |
Title | Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror |
URI | https://ieeexplore.ieee.org/document/572159 https://www.proquest.com/docview/28580883 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQ48FhALFAwEhInL_ba2cRHhKgqJLhApd6CY4_V0pKs8rjw65mxsysKPXCLEtuKPPbMN_bMN4y9AVXKtZVBNKj7hPFxI5zRUcjgNgq0Ci7xdH_-sjk5NZ_OirOZZzvlwgBACj6DFT2mu_zQ-YmOytB5RwNlD9gB-m05VWt_YYBeRs42UbR_bTnzzCpp3-lV7nfN8qRSKhQI6Qaci5iLWPyjj5OROb6fs7eHxE1IsSWXq2lsVv7XX8yN__n_D9i9GWzy93l1PGS3oF2wu39QEC7Y7RQC6odH7PtXipPvWiKA7XqOqBp6HnLB-oEjtuURLV3j_CWnnBTueLwgwCq2qC5n8l0RYDue8-05dhY41o-JTun4z4u-7_rH7PT447cPJ2KuvyC8LuUoilBaQJF5sL5SkVJeY0D_SWsFVYHebWWM34AvZTTeS1DORl2uC21KsBFxyxN22HYtPGW8cDFa0xC7YMSlUDgVpNZrCY0pG6thyd7uZFP7mZycamRc1clJkbbWdZ69JXu9b7nNhBw3tFnQ5O-_794eXZP2_jNiQsLFS_ZqJ_0a9xhdnLgWummo11VRoTbWz24c9zm7kzltKQryBTsc-wmOEKmMzcu0Rn8DvCPoGQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCAEHHgsVWyg1EhInL_ba2cRHhKgWaHuhlXoLjj1Wn8kqjwu_vmM7u6LQA7cosS3FY898Y898Q8gHEDmfa-5YhbqPKesXzCjpGXdmIUAKZyJP9-HRYnmivp9mpyPPdsyFAYAYfAaz8Bjv8l1jh3BUhs47Gih9nzxAs5-JlKy1uTJAPyPlm4iwg3U-Ms0Krj_JWep5y_bEYiohFNJ0OBs-lbH4RyNHM7P_LOVvd5GdMESXXM6GvprZ339xN_7nHzwnT0e4ST-n9fGC3IN6Qp78QUI4IQ9jEKjtXpJfP0OkfFMHCtimpYiroaUulazvKKJb6tHWVcZe0pCVQg315wGyshUqzJF-lzlY9Wd0dYadGY51MYRzOnp93rZN-4qc7H89_rJkYwUGZmXOe5a5XAMKzYK2hfAh6dU79KCkFFBk6N8WStkF2Jx7ZS0HYbSX-TyTKgftEblsk626qeE1oZnxXqsq8At6XAyZEY5LOedQqbzSEqbk41o2pR3pyUOVjKsyuilcl7JMszcl7zctV4mS4442kzD5m-_rt7u3pL35jKgwIOMp2VtLv8RdFq5OTA3N0JXzIitQH8udO8fdI4-Wx4cH5cG3ox9vyOPEcBtiIt-Srb4dYBdxS1-9i-v1BvjX62I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconductor+laser+dynamics+for+feedback+from+a+finite-penetration-depth+phase-conjugate+mirror&rft.jtitle=IEEE+journal+of+quantum+electronics&rft.au=DeTienne%2C+D+H&rft.au=Gray%2C+G+R&rft.au=Agrawal%2C+G+P&rft.au=Lenstra%2C+D&rft.date=1997-05-01&rft.issn=0018-9197&rft.volume=33&rft.issue=5&rft.spage=838&rft.epage=844&rft_id=info:doi/10.1109%2F3.572159&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9197&client=summon |