Single-Valued Neutrosophic Clustering Algorithm Based on Tsallis Entropy Maximization

Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is an extension of the fuzzy set, has received extensive attention in solving many real-life problems of inaccuracy, incompl...

Full description

Saved in:
Bibliographic Details
Published inAxioms Vol. 7; no. 3; p. 57
Main Authors Li, Qiaoyan, Ma, Yingcang, Smarandache, Florentin, Zhu, Shuangwu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is an extension of the fuzzy set, has received extensive attention in solving many real-life problems of inaccuracy, incompleteness, inconsistency and uncertainty. In this paper, we propose a new clustering algorithm, the single-valued neutrosophic clustering algorithm, which is inspired by fuzzy c-means, picture fuzzy clustering and the single-valued neutrosophic set. A novel suitable objective function, which is depicted as a constrained minimization problem based on a single-valued neutrosophic set, is built, and the Lagrange multiplier method is used to solve the objective function. We do several experiments with some benchmark datasets, and we also apply the method to image segmentation using the Lena image. The experimental results show that the given algorithm can be considered as a promising tool for data clustering and image processing.
AbstractList Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is an extension of the fuzzy set, has received extensive attention in solving many real-life problems of inaccuracy, incompleteness, inconsistency and uncertainty. In this paper, we propose a new clustering algorithm, the single-valued neutrosophic clustering algorithm, which is inspired by fuzzy c-means, picture fuzzy clustering and the single-valued neutrosophic set. A novel suitable objective function, which is depicted as a constrained minimization problem based on a single-valued neutrosophic set, is built, and the Lagrange multiplier method is used to solve the objective function. We do several experiments with some benchmark datasets, and we also apply the method to image segmentation using the Lena image. The experimental results show that the given algorithm can be considered as a promising tool for data clustering and image processing.
Author Ma, Yingcang
Li, Qiaoyan
Zhu, Shuangwu
Smarandache, Florentin
Author_xml – sequence: 1
  givenname: Qiaoyan
  surname: Li
  fullname: Li, Qiaoyan
– sequence: 2
  givenname: Yingcang
  surname: Ma
  fullname: Ma, Yingcang
– sequence: 3
  givenname: Florentin
  orcidid: 0000-0002-5560-5926
  surname: Smarandache
  fullname: Smarandache, Florentin
– sequence: 4
  givenname: Shuangwu
  surname: Zhu
  fullname: Zhu, Shuangwu
BookMark eNp1kctLxDAQxoMo-Dx6L3iuJpk2aY-6-AIfB1evIU2TNUu2WZMU1L_euCuignOZYfjNN8M3u2hz8ING6JDgY4AWn8hX6xeRY8C45htoh2Jel4Q1ePNHvY0OYpzjHC2BhsAOenyww8zp8km6UffFnR5T8NEvn60qJm6MSYcMFKdu5oNNz4viTMbM-aGYRumcjcX5kCeWb8VtvmBh32WyfthHW0a6qA--8h56vDifTq7Km_vL68npTamA41TWPQDlvALMaU86YjqmKmY47zuoad3RTvZMM4lx1QOvq07RBitjOHDKKbSwh67Xur2Xc7EMdiHDm_DSilXDh5mQIVnltKBGN1rJihDJKiBZiBFgLeMNVZQZk7WO1lrL4F9GHZOY-zEM-XxBCa1JXbUty1S5plS2KQZtvrcSLD4fIX49IvPwh1c2rTxKQVr3z9QHyYaOjA
CitedBy_id crossref_primary_10_3233_JIFS_212812
crossref_primary_10_1016_j_dsp_2020_102905
crossref_primary_10_3390_math9182287
crossref_primary_10_3390_e21070669
crossref_primary_10_3390_axioms7030064
crossref_primary_10_1007_s13042_021_01429_y
crossref_primary_10_3390_math7010036
Cites_doi 10.1016/0098-3004(84)90020-7
10.1090/chel/367
10.1016/j.patcog.2015.02.018
10.1007/s00500-015-1712-7
10.1109/TFUZZ.2006.889763
10.1007/s10586-012-0202-2
10.3233/IFS-141215
10.1016/j.knosys.2016.06.023
10.1016/j.fss.2009.10.021
10.1016/j.eswa.2014.07.026
10.1007/BF01016429
10.3233/IFS-130810
10.3390/sym9110275
10.1016/j.engappai.2016.08.009
10.1016/j.asoc.2010.05.005
10.1016/S0031-3203(99)00110-7
10.1007/BF02289588
10.1201/b15410
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/axioms7030057
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2075-1680
ExternalDocumentID oai_doaj_org_article_2fe8eca411a6431280613696782c26ff
10_3390_axioms7030057
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EAD
EAP
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
QF4
QN7
RIG
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c370t-5d3327743072d1b1fb6c46f77db3525b2bad6e6a004d3754bc280cff737272393
IEDL.DBID BENPR
ISSN 2075-1680
IngestDate Wed Aug 27 01:11:57 EDT 2025
Fri Jul 25 12:11:22 EDT 2025
Tue Jul 01 04:19:06 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-5d3327743072d1b1fb6c46f77db3525b2bad6e6a004d3754bc280cff737272393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5560-5926
OpenAccessLink https://www.proquest.com/docview/2125154996?pq-origsite=%requestingapplication%
PQID 2125154996
PQPubID 2032429
ParticipantIDs doaj_primary_oai_doaj_org_article_2fe8eca411a6431280613696782c26ff
proquest_journals_2125154996
crossref_primary_10_3390_axioms7030057
crossref_citationtrail_10_3390_axioms7030057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Axioms
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bezdek (ref_7) 1984; 10
Ng (ref_3) 2002; 14
Tsallis (ref_28) 1988; 52
Graves (ref_11) 2010; 161
ref_14
Son (ref_25) 2015; 42
Johnson (ref_2) 1967; 2
Wang (ref_15) 2010; 4
Guo (ref_22) 2015; 48
Chaira (ref_8) 2011; 11
Majumdar (ref_16) 2014; 26
ref_19
Zhang (ref_18) 2018; 2018
Ye (ref_21) 2014; 23
Thong (ref_23) 2016; 109
Cuong (ref_26) 2014; 30
Hwang (ref_9) 2007; 15
Cuong (ref_27) 2016; 12
ref_1
ref_29
Yasuda (ref_13) 2011; 2011
Thong (ref_24) 2016; 56
Ye (ref_20) 2014; 23
ref_4
Thong (ref_10) 2016; 20
Ye (ref_17) 2014; 27
Demko (ref_5) 2000; 33
ref_6
Ramathilagam (ref_12) 2013; 16
References_xml – volume: 14
  start-page: 849
  year: 2002
  ident: ref_3
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 191
  year: 1984
  ident: ref_7
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref_29
  doi: 10.1090/chel/367
– volume: 48
  start-page: 2710
  year: 2015
  ident: ref_22
  article-title: NCM: Neutrosophic c-means clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.02.018
– volume: 12
  start-page: 80
  year: 2016
  ident: ref_27
  article-title: Standard Neutrosophic Soft Theory: Some First Results
  publication-title: Neutrosophic Sets Syst.
– volume: 20
  start-page: 3549
  year: 2016
  ident: ref_10
  article-title: Picture fuzzy clustering: A new computational intelligence method
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1712-7
– ident: ref_14
– volume: 15
  start-page: 107
  year: 2007
  ident: ref_9
  article-title: Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2006.889763
– ident: ref_1
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_18
  article-title: New Inclusion Relation of Neutrosophic Sets with Applications and Related Lattice Structure
  publication-title: J. Mach. Learn. Cybern.
– volume: 16
  start-page: 389
  year: 2013
  ident: ref_12
  article-title: Extended fuzzy c-means: An analyzing data clustering problems
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-012-0202-2
– volume: 27
  start-page: 2453
  year: 2014
  ident: ref_17
  article-title: Improved correlation coefficients of single valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-141215
– ident: ref_4
– volume: 109
  start-page: 48
  year: 2016
  ident: ref_23
  article-title: A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.06.023
– volume: 161
  start-page: 522
  year: 2010
  ident: ref_11
  article-title: Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2009.10.021
– volume: 42
  start-page: 51
  year: 2015
  ident: ref_25
  article-title: DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.07.026
– volume: 23
  start-page: 311
  year: 2014
  ident: ref_20
  article-title: Single-Valued Neutrosophic Minimum Spanning Tree and Its Clustering Method
  publication-title: J. Intell. Syst.
– volume: 4
  start-page: 410
  year: 2010
  ident: ref_15
  article-title: Sunderraman, R. Single Valued Neutrosophic Sets
  publication-title: Multispace Multistruct
– volume: 30
  start-page: 409
  year: 2014
  ident: ref_26
  article-title: Picture Fuzzy Sets
  publication-title: J. Comput. Sci. Cybern.
– volume: 52
  start-page: 479
  year: 1988
  ident: ref_28
  article-title: Possible generalization of Boltzmann-Gibbs statistics
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01016429
– volume: 2011
  start-page: 960635
  year: 2011
  ident: ref_13
  article-title: Deterministic Annealing Approach to Fuzzy C-Means Clustering Based on EntropyMaximization
  publication-title: Adv. Fuzzy Syst.
– volume: 26
  start-page: 1245
  year: 2014
  ident: ref_16
  article-title: On similarity and entropy of neutrosophic sets
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-130810
– ident: ref_19
  doi: 10.3390/sym9110275
– volume: 56
  start-page: 121
  year: 2016
  ident: ref_24
  article-title: Picturefuzzyclusteringforcomplexdata
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.08.009
– volume: 23
  start-page: 379
  year: 2014
  ident: ref_21
  article-title: Clustering Methods Using Distance-Based Similarity Measures of Single-Valued Neutrosophic Sets
  publication-title: J. Intell. Syst.
– volume: 11
  start-page: 1711
  year: 2011
  ident: ref_8
  article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.05.005
– volume: 33
  start-page: 1219
  year: 2000
  ident: ref_5
  article-title: The fuzzy c + 2 means: Solving the ambiguity rejection in clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00110-7
– volume: 2
  start-page: 241
  year: 1967
  ident: ref_2
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– ident: ref_6
  doi: 10.1201/b15410
SSID ssj0000913813
Score 2.123916
Snippet Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 57
SubjectTerms Algorithms
Clustering
Data compression
Decision support systems
Entropy
fuzzy c-means
Fuzzy sets
Image processing
Image segmentation
Lagrange multiplier
Machine learning
Methods
Optimization
Pattern recognition
picture fuzzy clustering
Similarity measures
single-valued neutrosophic set
Tsallis entropy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsgfxZGg2m2TbY1taRGgvttJb2N3saiFNS5OA_ntnkrRURLx4DUOyzMzOe0N23xByzyz0EUGsnEAH0gEGLh3la-54XAYakkC7XbzgPJ6ETzP_eR7M90Z94ZmwSh64clzbs6ZjtPQZkwCeDH8EMpxBB8imvdBarL6AeXvNVFmDuwygiFeimhz6-rb8WKyWGea3i1C0B0KlVv-PUlziy-iEHNfEkPaqBZ2SA5OekaPxTlU1OyezF8CZxDivMilMTCemyDflGIKFpoOkQMkDMKC95G0FLf_7kvYBomK6Suk0k0myyOgQz6WvP-kY1rmsb2BekNloOB08OfVYBEdz4eZOEHPuAWuD3enFTDGrQu2HVohYobap8pSMQxNKSP8YB9wqDU7T1uJAGoGKZ5ekka5Sc0Uo8CuhFXeNJ42vukxKIeAVEFjfiECZJnnc-inStWY4jq5IIugd0K3RN7c2ycPOfF2JZfxm2Een74xQ47p8AJGP6shHf0W-SVrbkEX1xssiDwkb9rzh9X9844YcAkPqVIfKWqSRbwpzCywkV3dlwn0BpD7aWA
  priority: 102
  providerName: Directory of Open Access Journals
Title Single-Valued Neutrosophic Clustering Algorithm Based on Tsallis Entropy Maximization
URI https://www.proquest.com/docview/2125154996
https://doaj.org/article/2fe8eca411a6431280613696782c26ff
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BuLSHqgWqhtJoD1VPrPCun5wQQUlRpURVSypu1r4MkZw4xI4E_54ZZxOoUHv1jix7d2bnm318H8BXUWAdEVvNYxMrjghccR2ZkMtQxQadwARndMF5NE6uJtGPm_jGL7jV_ljlZk5sJ2pbGVojP5WUiamYSc4X95xUo2h31Uto7MIetmdZB_b6g_HPX9tVFmK9zES4JtcMsb4_VQ_TalaTnweUkl4ko5az_9WU3OaZ4Xt45wEiu1iP6AfYcfN9eDvasqvWBzD5jfmmdPyPKlfOsrFbNctWjmBq2GW5IuoDNGAX5S3-QHM3Y31MVZZVc3Zdq7Kc1mxA59MXj2yE3znzNzEPYTIcXF9ecS-PwE2YBg2PbRhKRG8YpdIKLQqdmCgp0tRq4jjVUiubuERhGFgSutVGZoEpChKmSYn57CN05tXcfQKGOCs1OgycVC7SZ0KpNMVX4ABHLo2168LJpp9y47nDScKizLGGoG7N_-rWLnzbmi_WpBn_MuxTp2-NiOu6fVAtb3MfOrksXOaMioRQCJ8EbQULUiFEbGNkUhRdON4MWe4DsM6f3eXo_82f4Q1ioGx9bOwYOs1y5b4gzmh0D3az4feed6leW60_AbBh1iE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQoYX6AJywuva-0gOq-grpI7mQoN4Wv7ZE2mTT7EbQP9XfyMw-UhCCW69ry1qNP3tmbM_3AbwTKeYRodU8NKHiGIErrgPjc-mr0CAIjLdHBc6DYdQfB2eX4eUa3La1MPSsst0Tq43a5obOyHcleWJKZqL9-TUn1Si6XW0lNGpYnLubH5iyFZ9Oj3F-30vZOxkd9XmjKsCNH3slD63vSwx6ENzSCi1SHZkgSuPYaqIG1VIrG7lIIXos6cNqI7ueSVPSc4mJMAzHfQAPAx89OVWm9z6vznSIY7Mr_JrKE9u9XfVzkk8LWlUeOcDfXF-lEPCXA6i8Wu8ZPG3CUXZQ42cD1txsE54MVlyuxXMYf0Hvljn-VWVLZ9nQLctFJX4wMewoWxLRAnZgB9kVmqv8PmWH6Bgty2dsVKgsmxTshF7Dz2_YAP9z2tR9voDxvZjtJazP8pl7BQyjutho33NSuUDvCaXiGIdAOAUuDrXrwMfWTolpmMpJMCNLMGMhsyZ_mLUDH1bd5zVFx786HpLRV52IWbv6kC-ukmahJjJ1XWdUIITCYE3QxbMgzUOMpIyM0rQD2-2UJc1yL5I7cL7-f_MOPOqPBhfJxenwfAseY_TVrR-sbcN6uVi6NxjhlPptBSsG3-4bx78AozYOXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFoMAegBNWvOvHJgeEmjZRS0lUQYN6c_flEsmJQ-wI-tf4dcz4EUAIbr3ao5U1_nZnZnf2-wBe8hTriMhqLzKR8jADV54OTeCJQEUGQWD8AV1wnkzjo1n4_jw634Ef7V0Yaqts18Rqoba5oT3ynqBITMVM3EubtojTw_G71VePFKTopLWV06ghcuKuvmH5Vrw9PsR__UqI8ejs4MhrFAY8E0i_9CIbBAITIAS6sFzzVMcmjFMprSaaUC20srGLFSLJklasNqLvmzQlbRdJ5GE47g3YlVQVdWB3OJqeftzu8BDjZp8HNbFnEAz8nvo-zxcFzTGfwuFvgbDSC_grHFQxbnwX7jTJKduv0XQPdtzyPtyebJldiwcw-4SxLnPeZ5VtnGVTtynXlRTC3LCDbEO0C2jA9rNLdFj5ZcGGGCYty5fsrFBZNi_YiHrjV1dsgt-5aG6BPoTZtTjuEXSW-dI9BoY5njQ68J1QLtQDrpSUOASCK3Qy0q4Lb1o_JabhLSf5jCzB-oXcmvzh1i683pqvasKOfxkOyelbI-LZrh7k68ukmbaJSF3fGRVyrjB143QMzUkBEfMqI-I07cJe-8uSZvIXyS-oPvn_6xdwEzGcfDienjyFW5iK9evutT3olOuNe4bpTqmfN7hicHHdUP4JjtkT8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Valued+Neutrosophic+Clustering+Algorithm+Based+on+Tsallis+Entropy+Maximization&rft.jtitle=Axioms&rft.au=Li%2C+Qiaoyan&rft.au=Ma%2C+Yingcang&rft.au=Smarandache%2C+Florentin&rft.au=Zhu%2C+Shuangwu&rft.date=2018-09-01&rft.pub=MDPI+AG&rft.eissn=2075-1680&rft.volume=7&rft.issue=3&rft_id=info:doi/10.3390%2Faxioms7030057&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon