Single-Valued Neutrosophic Clustering Algorithm Based on Tsallis Entropy Maximization
Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is an extension of the fuzzy set, has received extensive attention in solving many real-life problems of inaccuracy, incompl...
Saved in:
Published in | Axioms Vol. 7; no. 3; p. 57 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is an extension of the fuzzy set, has received extensive attention in solving many real-life problems of inaccuracy, incompleteness, inconsistency and uncertainty. In this paper, we propose a new clustering algorithm, the single-valued neutrosophic clustering algorithm, which is inspired by fuzzy c-means, picture fuzzy clustering and the single-valued neutrosophic set. A novel suitable objective function, which is depicted as a constrained minimization problem based on a single-valued neutrosophic set, is built, and the Lagrange multiplier method is used to solve the objective function. We do several experiments with some benchmark datasets, and we also apply the method to image segmentation using the Lena image. The experimental results show that the given algorithm can be considered as a promising tool for data clustering and image processing. |
---|---|
AbstractList | Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is an extension of the fuzzy set, has received extensive attention in solving many real-life problems of inaccuracy, incompleteness, inconsistency and uncertainty. In this paper, we propose a new clustering algorithm, the single-valued neutrosophic clustering algorithm, which is inspired by fuzzy c-means, picture fuzzy clustering and the single-valued neutrosophic set. A novel suitable objective function, which is depicted as a constrained minimization problem based on a single-valued neutrosophic set, is built, and the Lagrange multiplier method is used to solve the objective function. We do several experiments with some benchmark datasets, and we also apply the method to image segmentation using the Lena image. The experimental results show that the given algorithm can be considered as a promising tool for data clustering and image processing. |
Author | Ma, Yingcang Li, Qiaoyan Zhu, Shuangwu Smarandache, Florentin |
Author_xml | – sequence: 1 givenname: Qiaoyan surname: Li fullname: Li, Qiaoyan – sequence: 2 givenname: Yingcang surname: Ma fullname: Ma, Yingcang – sequence: 3 givenname: Florentin orcidid: 0000-0002-5560-5926 surname: Smarandache fullname: Smarandache, Florentin – sequence: 4 givenname: Shuangwu surname: Zhu fullname: Zhu, Shuangwu |
BookMark | eNp1kctLxDAQxoMo-Dx6L3iuJpk2aY-6-AIfB1evIU2TNUu2WZMU1L_euCuignOZYfjNN8M3u2hz8ING6JDgY4AWn8hX6xeRY8C45htoh2Jel4Q1ePNHvY0OYpzjHC2BhsAOenyww8zp8km6UffFnR5T8NEvn60qJm6MSYcMFKdu5oNNz4viTMbM-aGYRumcjcX5kCeWb8VtvmBh32WyfthHW0a6qA--8h56vDifTq7Km_vL68npTamA41TWPQDlvALMaU86YjqmKmY47zuoad3RTvZMM4lx1QOvq07RBitjOHDKKbSwh67Xur2Xc7EMdiHDm_DSilXDh5mQIVnltKBGN1rJihDJKiBZiBFgLeMNVZQZk7WO1lrL4F9GHZOY-zEM-XxBCa1JXbUty1S5plS2KQZtvrcSLD4fIX49IvPwh1c2rTxKQVr3z9QHyYaOjA |
CitedBy_id | crossref_primary_10_3233_JIFS_212812 crossref_primary_10_1016_j_dsp_2020_102905 crossref_primary_10_3390_math9182287 crossref_primary_10_3390_e21070669 crossref_primary_10_3390_axioms7030064 crossref_primary_10_1007_s13042_021_01429_y crossref_primary_10_3390_math7010036 |
Cites_doi | 10.1016/0098-3004(84)90020-7 10.1090/chel/367 10.1016/j.patcog.2015.02.018 10.1007/s00500-015-1712-7 10.1109/TFUZZ.2006.889763 10.1007/s10586-012-0202-2 10.3233/IFS-141215 10.1016/j.knosys.2016.06.023 10.1016/j.fss.2009.10.021 10.1016/j.eswa.2014.07.026 10.1007/BF01016429 10.3233/IFS-130810 10.3390/sym9110275 10.1016/j.engappai.2016.08.009 10.1016/j.asoc.2010.05.005 10.1016/S0031-3203(99)00110-7 10.1007/BF02289588 10.1201/b15410 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/axioms7030057 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2075-1680 |
ExternalDocumentID | oai_doaj_org_article_2fe8eca411a6431280613696782c26ff 10_3390_axioms7030057 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EAD EAP ESX GNUQQ GROUPED_DOAJ HCIFZ IAO IPNFZ K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS QF4 QN7 RIG 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c370t-5d3327743072d1b1fb6c46f77db3525b2bad6e6a004d3754bc280cff737272393 |
IEDL.DBID | BENPR |
ISSN | 2075-1680 |
IngestDate | Wed Aug 27 01:11:57 EDT 2025 Fri Jul 25 12:11:22 EDT 2025 Tue Jul 01 04:19:06 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-5d3327743072d1b1fb6c46f77db3525b2bad6e6a004d3754bc280cff737272393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5560-5926 |
OpenAccessLink | https://www.proquest.com/docview/2125154996?pq-origsite=%requestingapplication% |
PQID | 2125154996 |
PQPubID | 2032429 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2fe8eca411a6431280613696782c26ff proquest_journals_2125154996 crossref_primary_10_3390_axioms7030057 crossref_citationtrail_10_3390_axioms7030057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Axioms |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bezdek (ref_7) 1984; 10 Ng (ref_3) 2002; 14 Tsallis (ref_28) 1988; 52 Graves (ref_11) 2010; 161 ref_14 Son (ref_25) 2015; 42 Johnson (ref_2) 1967; 2 Wang (ref_15) 2010; 4 Guo (ref_22) 2015; 48 Chaira (ref_8) 2011; 11 Majumdar (ref_16) 2014; 26 ref_19 Zhang (ref_18) 2018; 2018 Ye (ref_21) 2014; 23 Thong (ref_23) 2016; 109 Cuong (ref_26) 2014; 30 Hwang (ref_9) 2007; 15 Cuong (ref_27) 2016; 12 ref_1 ref_29 Yasuda (ref_13) 2011; 2011 Thong (ref_24) 2016; 56 Ye (ref_20) 2014; 23 ref_4 Thong (ref_10) 2016; 20 Ye (ref_17) 2014; 27 Demko (ref_5) 2000; 33 ref_6 Ramathilagam (ref_12) 2013; 16 |
References_xml | – volume: 14 start-page: 849 year: 2002 ident: ref_3 article-title: On spectral clustering: Analysis and an algorithm publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 191 year: 1984 ident: ref_7 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – ident: ref_29 doi: 10.1090/chel/367 – volume: 48 start-page: 2710 year: 2015 ident: ref_22 article-title: NCM: Neutrosophic c-means clustering algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.02.018 – volume: 12 start-page: 80 year: 2016 ident: ref_27 article-title: Standard Neutrosophic Soft Theory: Some First Results publication-title: Neutrosophic Sets Syst. – volume: 20 start-page: 3549 year: 2016 ident: ref_10 article-title: Picture fuzzy clustering: A new computational intelligence method publication-title: Soft Comput. doi: 10.1007/s00500-015-1712-7 – ident: ref_14 – volume: 15 start-page: 107 year: 2007 ident: ref_9 article-title: Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.889763 – ident: ref_1 – volume: 2018 start-page: 1 year: 2018 ident: ref_18 article-title: New Inclusion Relation of Neutrosophic Sets with Applications and Related Lattice Structure publication-title: J. Mach. Learn. Cybern. – volume: 16 start-page: 389 year: 2013 ident: ref_12 article-title: Extended fuzzy c-means: An analyzing data clustering problems publication-title: Clust. Comput. doi: 10.1007/s10586-012-0202-2 – volume: 27 start-page: 2453 year: 2014 ident: ref_17 article-title: Improved correlation coefficients of single valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-141215 – ident: ref_4 – volume: 109 start-page: 48 year: 2016 ident: ref_23 article-title: A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.06.023 – volume: 161 start-page: 522 year: 2010 ident: ref_11 article-title: Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2009.10.021 – volume: 42 start-page: 51 year: 2015 ident: ref_25 article-title: DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.07.026 – volume: 23 start-page: 311 year: 2014 ident: ref_20 article-title: Single-Valued Neutrosophic Minimum Spanning Tree and Its Clustering Method publication-title: J. Intell. Syst. – volume: 4 start-page: 410 year: 2010 ident: ref_15 article-title: Sunderraman, R. Single Valued Neutrosophic Sets publication-title: Multispace Multistruct – volume: 30 start-page: 409 year: 2014 ident: ref_26 article-title: Picture Fuzzy Sets publication-title: J. Comput. Sci. Cybern. – volume: 52 start-page: 479 year: 1988 ident: ref_28 article-title: Possible generalization of Boltzmann-Gibbs statistics publication-title: J. Stat. Phys. doi: 10.1007/BF01016429 – volume: 2011 start-page: 960635 year: 2011 ident: ref_13 article-title: Deterministic Annealing Approach to Fuzzy C-Means Clustering Based on EntropyMaximization publication-title: Adv. Fuzzy Syst. – volume: 26 start-page: 1245 year: 2014 ident: ref_16 article-title: On similarity and entropy of neutrosophic sets publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-130810 – ident: ref_19 doi: 10.3390/sym9110275 – volume: 56 start-page: 121 year: 2016 ident: ref_24 article-title: Picturefuzzyclusteringforcomplexdata publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.08.009 – volume: 23 start-page: 379 year: 2014 ident: ref_21 article-title: Clustering Methods Using Distance-Based Similarity Measures of Single-Valued Neutrosophic Sets publication-title: J. Intell. Syst. – volume: 11 start-page: 1711 year: 2011 ident: ref_8 article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.05.005 – volume: 33 start-page: 1219 year: 2000 ident: ref_5 article-title: The fuzzy c + 2 means: Solving the ambiguity rejection in clustering publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00110-7 – volume: 2 start-page: 241 year: 1967 ident: ref_2 article-title: Hierarchical clustering schemes publication-title: Psychometrika doi: 10.1007/BF02289588 – ident: ref_6 doi: 10.1201/b15410 |
SSID | ssj0000913813 |
Score | 2.123916 |
Snippet | Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 57 |
SubjectTerms | Algorithms Clustering Data compression Decision support systems Entropy fuzzy c-means Fuzzy sets Image processing Image segmentation Lagrange multiplier Machine learning Methods Optimization Pattern recognition picture fuzzy clustering Similarity measures single-valued neutrosophic set Tsallis entropy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsgfxZGg2m2TbY1taRGgvttJb2N3saiFNS5OA_ntnkrRURLx4DUOyzMzOe0N23xByzyz0EUGsnEAH0gEGLh3la-54XAYakkC7XbzgPJ6ETzP_eR7M90Z94ZmwSh64clzbs6ZjtPQZkwCeDH8EMpxBB8imvdBarL6AeXvNVFmDuwygiFeimhz6-rb8WKyWGea3i1C0B0KlVv-PUlziy-iEHNfEkPaqBZ2SA5OekaPxTlU1OyezF8CZxDivMilMTCemyDflGIKFpoOkQMkDMKC95G0FLf_7kvYBomK6Suk0k0myyOgQz6WvP-kY1rmsb2BekNloOB08OfVYBEdz4eZOEHPuAWuD3enFTDGrQu2HVohYobap8pSMQxNKSP8YB9wqDU7T1uJAGoGKZ5ekka5Sc0Uo8CuhFXeNJ42vukxKIeAVEFjfiECZJnnc-inStWY4jq5IIugd0K3RN7c2ycPOfF2JZfxm2Een74xQ47p8AJGP6shHf0W-SVrbkEX1xssiDwkb9rzh9X9844YcAkPqVIfKWqSRbwpzCywkV3dlwn0BpD7aWA priority: 102 providerName: Directory of Open Access Journals |
Title | Single-Valued Neutrosophic Clustering Algorithm Based on Tsallis Entropy Maximization |
URI | https://www.proquest.com/docview/2125154996 https://doaj.org/article/2fe8eca411a6431280613696782c26ff |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BuLSHqgWqhtJoD1VPrPCun5wQQUlRpURVSypu1r4MkZw4xI4E_54ZZxOoUHv1jix7d2bnm318H8BXUWAdEVvNYxMrjghccR2ZkMtQxQadwARndMF5NE6uJtGPm_jGL7jV_ljlZk5sJ2pbGVojP5WUiamYSc4X95xUo2h31Uto7MIetmdZB_b6g_HPX9tVFmK9zES4JtcMsb4_VQ_TalaTnweUkl4ko5az_9WU3OaZ4Xt45wEiu1iP6AfYcfN9eDvasqvWBzD5jfmmdPyPKlfOsrFbNctWjmBq2GW5IuoDNGAX5S3-QHM3Y31MVZZVc3Zdq7Kc1mxA59MXj2yE3znzNzEPYTIcXF9ecS-PwE2YBg2PbRhKRG8YpdIKLQqdmCgp0tRq4jjVUiubuERhGFgSutVGZoEpChKmSYn57CN05tXcfQKGOCs1OgycVC7SZ0KpNMVX4ABHLo2168LJpp9y47nDScKizLGGoG7N_-rWLnzbmi_WpBn_MuxTp2-NiOu6fVAtb3MfOrksXOaMioRQCJ8EbQULUiFEbGNkUhRdON4MWe4DsM6f3eXo_82f4Q1ioGx9bOwYOs1y5b4gzmh0D3az4feed6leW60_AbBh1iE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQoYX6AJywuva-0gOq-grpI7mQoN4Wv7ZE2mTT7EbQP9XfyMw-UhCCW69ry1qNP3tmbM_3AbwTKeYRodU8NKHiGIErrgPjc-mr0CAIjLdHBc6DYdQfB2eX4eUa3La1MPSsst0Tq43a5obOyHcleWJKZqL9-TUn1Si6XW0lNGpYnLubH5iyFZ9Oj3F-30vZOxkd9XmjKsCNH3slD63vSwx6ENzSCi1SHZkgSuPYaqIG1VIrG7lIIXos6cNqI7ueSVPSc4mJMAzHfQAPAx89OVWm9z6vznSIY7Mr_JrKE9u9XfVzkk8LWlUeOcDfXF-lEPCXA6i8Wu8ZPG3CUXZQ42cD1txsE54MVlyuxXMYf0Hvljn-VWVLZ9nQLctFJX4wMewoWxLRAnZgB9kVmqv8PmWH6Bgty2dsVKgsmxTshF7Dz2_YAP9z2tR9voDxvZjtJazP8pl7BQyjutho33NSuUDvCaXiGIdAOAUuDrXrwMfWTolpmMpJMCNLMGMhsyZ_mLUDH1bd5zVFx786HpLRV52IWbv6kC-ukmahJjJ1XWdUIITCYE3QxbMgzUOMpIyM0rQD2-2UJc1yL5I7cL7-f_MOPOqPBhfJxenwfAseY_TVrR-sbcN6uVi6NxjhlPptBSsG3-4bx78AozYOXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFoMAegBNWvOvHJgeEmjZRS0lUQYN6c_flEsmJQ-wI-tf4dcz4EUAIbr3ao5U1_nZnZnf2-wBe8hTriMhqLzKR8jADV54OTeCJQEUGQWD8AV1wnkzjo1n4_jw634Ef7V0Yaqts18Rqoba5oT3ynqBITMVM3EubtojTw_G71VePFKTopLWV06ghcuKuvmH5Vrw9PsR__UqI8ejs4MhrFAY8E0i_9CIbBAITIAS6sFzzVMcmjFMprSaaUC20srGLFSLJklasNqLvmzQlbRdJ5GE47g3YlVQVdWB3OJqeftzu8BDjZp8HNbFnEAz8nvo-zxcFzTGfwuFvgbDSC_grHFQxbnwX7jTJKduv0XQPdtzyPtyebJldiwcw-4SxLnPeZ5VtnGVTtynXlRTC3LCDbEO0C2jA9rNLdFj5ZcGGGCYty5fsrFBZNi_YiHrjV1dsgt-5aG6BPoTZtTjuEXSW-dI9BoY5njQ68J1QLtQDrpSUOASCK3Qy0q4Lb1o_JabhLSf5jCzB-oXcmvzh1i683pqvasKOfxkOyelbI-LZrh7k68ukmbaJSF3fGRVyrjB143QMzUkBEfMqI-I07cJe-8uSZvIXyS-oPvn_6xdwEzGcfDienjyFW5iK9evutT3olOuNe4bpTqmfN7hicHHdUP4JjtkT8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Valued+Neutrosophic+Clustering+Algorithm+Based+on+Tsallis+Entropy+Maximization&rft.jtitle=Axioms&rft.au=Li%2C+Qiaoyan&rft.au=Ma%2C+Yingcang&rft.au=Smarandache%2C+Florentin&rft.au=Zhu%2C+Shuangwu&rft.date=2018-09-01&rft.pub=MDPI+AG&rft.eissn=2075-1680&rft.volume=7&rft.issue=3&rft_id=info:doi/10.3390%2Faxioms7030057&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon |