Biological nitrogen fixation in paddy soils is driven by multiple edaphic factors and available phosphorus is the greatest contributor

Biological nitrogen (N) fixation (BNF) is important for sustainable rice cultivation. Various edaphic factors have been individually evaluated for their effects on BNF in paddy soils. However, no single factor could fully explain the different soil outcomes. Paddy BNF is more likely to be simultaneo...

Full description

Saved in:
Bibliographic Details
Published inPedosphere Vol. 34; no. 6; pp. 993 - 1001
Main Authors HU, Tianlong, ZHANG, Yanhui, WANG, Hui, JIN, Haiyang, LIU, Benjuan, LIN, Zhibin, MA, Jing, WANG, Xiaojie, LIU, Qi, LIU, Hongtao, CHEN, Zhe, ZHOU, Rong, JIN, Penghui, ZHU, Jianguo, LIU, Gang, BEI, Qicheng, LIN, Xingwu, XIE, Zubin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2024
Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing 210037(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
Department of Soil Ecology,Helmholtz Centre for Environmental Research-UFZ,Halle(Saale)06120(Germany)
State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
School of Environment and Safety Engineering,Nanjing Polytechnic Institute,Nanjing 210048(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
University of Chinese Academy of Sciences,Beijing 100049(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biological nitrogen (N) fixation (BNF) is important for sustainable rice cultivation. Various edaphic factors have been individually evaluated for their effects on BNF in paddy soils. However, no single factor could fully explain the different soil outcomes. Paddy BNF is more likely to be simultaneously influenced to various degrees by combinations of several edaphic factors; however, the relative importance of the interaction of multiple edaphic factors on the regulation of BNF in paddy soils is still unclear. Twenty-seven paddy soil samples with different soil properties were collected from the major rice cropping areas in Southwest and Northeast China to determine the edaphic factors affecting paddy BNF amount. Rice was transplanted into pots filled with paddy soils and grown in a 15N2-enriched airtight chamber. Estimation of BNF was based on the measurements of 15N enrichment in the paddy soils and rice plants at the end of a 77-d incubation period. The BNF amounts ranged from 0.66 to 12.3 kg ha-1, with a significant positive relationship with available phosphorus (AP) and significant quadratic relationships with available molybdenum (AMo) and total N (TN). Available P explained 42% of the observed variation in BNF, TN explained 17%, and AMo explained 13%. The specific interaction between soil cation exchange capacity and available soil N (as determined by rice N uptake) accounted for 28% of the variation in BNF. The BNF amount was decreased when AP was < 14 mg kg-1, AMo < 0.09 mg kg-1, or TN was > 3.2 g kg-1. These results provide valuable benchmarks that could be used to guide farmers in managing paddy soils to improve the potential contribution of paddy BNF to soil fertility.
AbstractList Biological nitrogen (N) fixation (BNF) is important for sustainable rice cultivation. Various edaphic factors have been individually evaluated for their effects on BNF in paddy soils. However, no single factor could fully explain the different soil outcomes. Paddy BNF is more likely to be simultaneously influenced to various degrees by combinations of several edaphic factors; however, the relative importance of the interaction of multiple edaphic factors on the regulation of BNF in paddy soils is still unclear. Twenty-seven paddy soil samples with different soil properties were collected from the major rice cropping areas in Southwest and Northeast China to determine the edaphic factors affecting paddy BNF amount. Rice was transplanted into pots filled with paddy soils and grown in a 15N2-enriched airtight chamber. Estimation of BNF was based on the measurements of 15N enrichment in the paddy soils and rice plants at the end of a 77-d incubation period. The BNF amounts ranged from 0.66 to 12.3 kg ha-1, with a significant positive relationship with available phosphorus (AP) and significant quadratic relationships with available molybdenum (AMo) and total N (TN). Available P explained 42% of the observed variation in BNF, TN explained 17%, and AMo explained 13%. The specific interaction between soil cation exchange capacity and available soil N (as determined by rice N uptake) accounted for 28% of the variation in BNF. The BNF amount was decreased when AP was < 14 mg kg-1, AMo < 0.09 mg kg-1, or TN was > 3.2 g kg-1. These results provide valuable benchmarks that could be used to guide farmers in managing paddy soils to improve the potential contribution of paddy BNF to soil fertility.
Biological nitrogen(N)fixation(BNF)is important for sustainable rice cultivation.Various edaphic factors have been individually evaluated for their effects on BNF in paddy soils.However,no single factor could fully explain the different soil outcomes.Paddy BNF is more likely to be simultaneously influenced to various degrees by combinations of several edaphic factors;however,the relative importance of the interaction of multiple edaphic factors on the regulation of BNF in paddy soils is still unclear.Twenty-seven paddy soil samples with different soil properties were collected from the major rice cropping areas in Southwest and Northeast China to determine the edaphic factors affecting paddy BNF amount.Rice was transplanted into pots filled with paddy soils and grown in a 15N2-enriched airtight chamber.Estimation of BNF was based on the measurements of 15N enrichment in the paddy soils and rice plants at the end of a 77-d incubation period.The BNF amounts ranged from 0.66 to 12.3 kg ha-1,with a significant positive relationship with available phosphorus(AP)and significant quadratic relationships with available molybdenum(AMo)and total N(TN).Available P explained 42%of the observed variation in BNF,TN explained 17%,and AMo explained 13%.The specific interaction between soil cation exchange capacity and available soil N(as determined by rice N uptake)accounted for 28%of the variation in BNF.The BNF amount was decreased when AP was<14 mg kg-1,AMo<0.09 mg kg-1,or TN was>3.2 g kg-1.These results provide valuable benchmarks that could be used to guide farmers in managing paddy soils to improve the potential contribution of paddy BNF to soil fertility.
Biological nitrogen (N) fixation (BNF) is important for sustainable rice cultivation. Various edaphic factors have been individually evaluated for their effects on BNF in paddy soils. However, no single factor could fully explain the different soil outcomes. Paddy BNF is more likely to be simultaneously influenced to various degrees by combinations of several edaphic factors; however, the relative importance of the interaction of multiple edaphic factors on the regulation of BNF in paddy soils is still unclear. Twenty-seven paddy soil samples with different soil properties were collected from the major rice cropping areas in Southwest and Northeast China to determine the edaphic factors affecting paddy BNF amount. Rice was transplanted into pots filled with paddy soils and grown in a ¹⁵N₂-enriched airtight chamber. Estimation of BNF was based on the measurements of ¹⁵N enrichment in the paddy soils and rice plants at the end of a 77-d incubation period. The BNF amounts ranged from 0.66 to 12.3 kg ha⁻¹, with a significant positive relationship with available phosphorus (AP) and significant quadratic relationships with available molybdenum (AMo) and total N (TN). Available P explained 42% of the observed variation in BNF, TN explained 17%, and AMo explained 13%. The specific interaction between soil cation exchange capacity and available soil N (as determined by rice N uptake) accounted for 28% of the variation in BNF. The BNF amount was decreased when AP was < 14 mg kg⁻¹, AMo < 0.09 mg kg⁻¹, or TN was > 3.2 g kg⁻¹. These results provide valuable benchmarks that could be used to guide farmers in managing paddy soils to improve the potential contribution of paddy BNF to soil fertility.
Author ZHOU, Rong
LIU, Benjuan
WANG, Xiaojie
LIU, Qi
MA, Jing
ZHU, Jianguo
LIU, Gang
ZHANG, Yanhui
JIN, Haiyang
JIN, Penghui
XIE, Zubin
WANG, Hui
BEI, Qicheng
HU, Tianlong
CHEN, Zhe
LIN, Zhibin
LIN, Xingwu
LIU, Hongtao
AuthorAffiliation State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China);University of Chinese Academy of Sciences,Beijing 100049(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China);School of Environment and Safety Engineering,Nanjing Polytechnic Institute,Nanjing 210048(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China);Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing 210037(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China);Department of Soil Ecology,Helmholtz Centre for Environmenta
AuthorAffiliation_xml – name: State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China);University of Chinese Academy of Sciences,Beijing 100049(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China);School of Environment and Safety Engineering,Nanjing Polytechnic Institute,Nanjing 210048(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China);Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing 210037(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China);Department of Soil Ecology,Helmholtz Centre for Environmental Research-UFZ,Halle(Saale)06120(Germany)
Author_xml – sequence: 1
  givenname: Tianlong
  surname: HU
  fullname: HU, Tianlong
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 2
  givenname: Yanhui
  surname: ZHANG
  fullname: ZHANG, Yanhui
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 3
  givenname: Hui
  surname: WANG
  fullname: WANG, Hui
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 4
  givenname: Haiyang
  surname: JIN
  fullname: JIN, Haiyang
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 5
  givenname: Benjuan
  surname: LIU
  fullname: LIU, Benjuan
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 6
  givenname: Zhibin
  surname: LIN
  fullname: LIN, Zhibin
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 7
  givenname: Jing
  surname: MA
  fullname: MA, Jing
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 8
  givenname: Xiaojie
  surname: WANG
  fullname: WANG, Xiaojie
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 9
  givenname: Qi
  surname: LIU
  fullname: LIU, Qi
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 10
  givenname: Hongtao
  surname: LIU
  fullname: LIU, Hongtao
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 11
  givenname: Zhe
  surname: CHEN
  fullname: CHEN, Zhe
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 12
  givenname: Rong
  surname: ZHOU
  fullname: ZHOU, Rong
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 13
  givenname: Penghui
  surname: JIN
  fullname: JIN, Penghui
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 14
  givenname: Jianguo
  surname: ZHU
  fullname: ZHU, Jianguo
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 15
  givenname: Gang
  surname: LIU
  fullname: LIU, Gang
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 16
  givenname: Qicheng
  surname: BEI
  fullname: BEI, Qicheng
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 17
  givenname: Xingwu
  surname: LIN
  fullname: LIN, Xingwu
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
– sequence: 18
  givenname: Zubin
  surname: XIE
  fullname: XIE, Zubin
  email: zbxie@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
BookMark eNqFkbuOFDEQRTtYJPbBHxA4QiTT2P1wTxMgwYrHSiuRQGxV2-WZGnnsXts9MD_Ad-PdJiKAqII691bp3qvqwgePVfVS8FpwId8c6hlNmvd1w5u25mPNeXNRXYoyNmXPn1dXKR0478QoxGX16wMFF3akwTFPOYYdembpJ2QKnpFnMxhzZimQS4wSM5FOhZjO7Li4TLNDhgbmPWlmQecQEwNvGJyAHExlO-9D-SbE5Ume98h2ESFjykwHnyNNS1HdVM8suIQv_szr6vunj99uv2zuv36-u31_v9HtwPOmn1B0ndxK29oRbCNbCy32RnYDStNj31k5aDn2oM124oByMry3pheDFnqS7XX1avX9Ad6C36lDWKIvF1WODwpLZh2XJaoCvl7BOYaHpXyrjpQ0Ogcew5JUK_qukUPXbAv6dkV1DClFtEpTfsovx5KCElw9NqMOam1GPTaj-KjWO91f4jnSEeL5f7J3qwxLWCfCqJIm9BoNRdRZmUD_NvgN_vSyFQ
CitedBy_id crossref_primary_10_3390_horticulturae10050506
Cites_doi 10.1111/nph.14331
10.1038/s41396-020-0703-6
10.1093/femsec/fiz113
10.1016/j.agee.2017.06.009
10.1016/j.scitotenv.2018.08.318
10.1145/6187.6192
10.1038/ismej.2016.127
10.1038/nrmicro954
10.1016/S0065-2113(08)60166-2
10.1007/BF02374291
10.1016/j.fcr.2022.108541
10.1023/A:1015798428743
10.1016/S1002-0160(19)60809-X
10.1016/j.soilbio.2013.01.008
10.1016/j.soilbio.2022.108654
10.1093/jn/130.5.1081
10.2307/2347973
10.1016/j.chemosphere.2011.08.036
10.1111/j.1574-6968.1987.tb02453.x
10.1016/j.soilbio.2018.12.028
10.1016/j.geoderma.2020.114923
10.1146/annurev-ecolsys-102710-145034
10.3390/agronomy10060824
10.1007/s11104-021-05093-7
10.1111/j.1574-6968.1988.tb02738.x
10.1111/j.1365-2389.1973.tb02318.x
10.1007/s00374-010-0506-4
10.1038/s41467-019-08640-0
10.1007/s00374-020-01497-2
10.1038/ngeo366
10.1023/A:1024175307238
ContentType Journal Article
Copyright 2024 Soil Science Society of China
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Soil Science Society of China
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7S9
L.6
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.pedsph.2023.09.002
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EndPage 1001
ExternalDocumentID trq_e202406002
10_1016_j_pedsph_2023_09_002
S1002016023001005
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-SD
-S~
.~1
0R~
123
188
1B1
1~.
1~5
4.4
457
4G.
5VR
5VS
5XA
5XE
7-5
71M
8P~
8RM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXDM
AAXKI
AAXUO
ABGRD
ABMAC
ABWVN
ABXDB
ACDAQ
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFUIB
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJED
CCEZO
CHBEP
CHDYS
CS3
CW9
DU5
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q--
Q38
RIG
ROL
SDC
SDF
SDG
SES
SPCBC
SSA
SSZ
T5K
TCJ
TGD
U1G
U5N
UZ3
Y6R
~02
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
TGMPQ
7S9
L.6
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c370t-5be144686f3f9af263fa3e5d647e6d5e54f67c695acd8b0ae6bd05fd517c1cb63
IEDL.DBID .~1
ISSN 1002-0160
IngestDate Thu May 29 03:54:56 EDT 2025
Fri Jul 11 13:10:24 EDT 2025
Tue Jul 01 03:41:42 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Sat Dec 14 16:14:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords influencing factors
available soil nitrogen
available molybdenum
rice field
soil fertility
multiplicative effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-5be144686f3f9af263fa3e5d647e6d5e54f67c695acd8b0ae6bd05fd517c1cb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3154267428
PQPubID 24069
PageCount 9
ParticipantIDs wanfang_journals_trq_e202406002
proquest_miscellaneous_3154267428
crossref_citationtrail_10_1016_j_pedsph_2023_09_002
crossref_primary_10_1016_j_pedsph_2023_09_002
elsevier_sciencedirect_doi_10_1016_j_pedsph_2023_09_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Pedosphere
PublicationTitle_FL Pedosphere
PublicationYear 2024
Publisher Elsevier Ltd
Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing 210037(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
Department of Soil Ecology,Helmholtz Centre for Environmental Research-UFZ,Halle(Saale)06120(Germany)
State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
School of Environment and Safety Engineering,Nanjing Polytechnic Institute,Nanjing 210048(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
University of Chinese Academy of Sciences,Beijing 100049(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
Publisher_xml – sequence: 0
  name: Elsevier Ltd
– name: Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing 210037(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
– name: School of Environment and Safety Engineering,Nanjing Polytechnic Institute,Nanjing 210048(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
– name: University of Chinese Academy of Sciences,Beijing 100049(China)%State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
– name: Department of Soil Ecology,Helmholtz Centre for Environmental Research-UFZ,Halle(Saale)06120(Germany)
– name: State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008(China)
References Bei, Liu, Tang, Cadisch, Rasche, Xie (bib3) 2013; 59
Ladha, Reddy (bib17) 2003; 252
Han, Wang, Shen, Di, Wang, Wei, Fang, Zhang, He (bib11) 2019; 95
Schnabel, Koonatz, Weiss (bib30) 1985; 11
Smercina, Evans, Friesen, Tiemann (bib31) 2019; 85
Halbleib, Ludden (bib10) 2000; 130
Wang, Bei, Yang, Zhang, Hao, Qian, Feng, Xie (bib37) 2020; 56
Royston (bib28) 1982; 31
Tang, Wang, Fonseca-Batista, Dehairs, Gifford, Gonzalez, Gallinari, Planquette, Sarthou, Cassar (bib34) 2019; 10
Buresh, Casselman, Patrick (bib5) 1980; 33
Stam, Stouthamer, van Verseveld (bib32) 1987; 3
Wei, Simko (bib39) 2017
Ma, Bei, Wang, Liu, Cadisch, Lin, Zhu, Sun, Xie (bib20) 2019; 29
Barron, Wurzburger, Bellenger, Wright, Kraepiel, Hedin (bib2) 2009; 2
Grömping (bib9) 2007; 17
Zou, Gao, Shi, Fan, Zhang (bib43) 2008
Norman, Friesen (bib23) 2017; 11
Reed, Cleveland, Townsend (bib25) 2011; 42
Tang, Zhang, Chen, Zhang, Wei, Sheng (bib35) 2017; 247
Jančula, Maršálek (bib14) 2011; 85
Rousk, Degboe, Michelsen, Bradley, Bellenger (bib27) 2017; 214
Zhou, Delhaize, Zhou, Ryan (bib42) 2011
Domingues, Sánchez-Monedero, Spokas, Melo, Trugilho, Valenciano, Silva (bib8) 2020; 10
Chiewattanakul, McAleer, Reay, Griffiths, Buss, Evershed (bib6) 2022; 169
Meng, Liao, Fan, Zhang, Li, Yao, Razavi (bib21) 2021; 386
Dixon, Kahn (bib7) 2004; 2
Jabbar, Saud, Othman, Habib, Kausar, Bhuiyan (bib13) 2014; 12
Wang, Liu, Ma, Zhang, Hu, Zhang, Feng, Pan, Xu, Liu, Lin, Zhu, Bei, Xie (bib38) 2019; 131
Brady, Weil (bib4) 2008
Santiago-Ventura, Bravo, Daez, Ventura, Watanabe, App (bib29) 1986; 93
Ladha, Peoples, Reddy, Biswas, Bennett, Jat, Krupnik (bib16) 2022; 283
R Core Team (bib24) 2022
Lu (bib18) 2000
Ma, Bei, Wang, Lan, Liu, Lin, Liu, Lin, Liu, Zhang, Jin, Hu, Zhu, Xie (bib19) 2019; 649
Nieder, Benbi, Scherer (bib22) 2011; 47
Jurgensen (bib15) 1973; 24
Wickham (bib40) 2016
Zhang, Hu, Wang, Jin, Liu, Lin, Liu, Liu, Chen, Lin, Wang, Ma, Sun, Sun, Tang, Bei, Cherubini, Arp, Xie (bib41) 2021; 467
Albino, Campo, Hungria (bib1) 2000
Vitousek, Cassman, Cleveland, Crews, Field, Grimm, Howarth, Marino, Martinelli, Rastetter, Sprent (bib36) 2002; 57
Hill (bib12) 1988; 4
Revelle (bib26) 2018
Tang, Cerdán-García, Berthelot, Polyviou, Wang, Baylay, Whitby, Planquette, Mowlem, Robidart, Cassar (bib33) 2020; 14
Albino (10.1016/j.pedsph.2023.09.002_bib1) 2000
Lu (10.1016/j.pedsph.2023.09.002_bib18) 2000
Norman (10.1016/j.pedsph.2023.09.002_bib23) 2017; 11
Zhang (10.1016/j.pedsph.2023.09.002_bib41) 2021; 467
Wei (10.1016/j.pedsph.2023.09.002_bib39)
Chiewattanakul (10.1016/j.pedsph.2023.09.002_bib6) 2022; 169
Jurgensen (10.1016/j.pedsph.2023.09.002_bib15) 1973; 24
Halbleib (10.1016/j.pedsph.2023.09.002_bib10) 2000; 130
Reed (10.1016/j.pedsph.2023.09.002_bib25) 2011; 42
R Core Team (10.1016/j.pedsph.2023.09.002_bib24) 2022
Jančula (10.1016/j.pedsph.2023.09.002_bib14) 2011; 85
Han (10.1016/j.pedsph.2023.09.002_bib11) 2019; 95
Schnabel (10.1016/j.pedsph.2023.09.002_bib30) 1985; 11
Hill (10.1016/j.pedsph.2023.09.002_bib12) 1988; 4
Santiago-Ventura (10.1016/j.pedsph.2023.09.002_bib29) 1986; 93
Domingues (10.1016/j.pedsph.2023.09.002_bib8) 2020; 10
Ladha (10.1016/j.pedsph.2023.09.002_bib16) 2022; 283
Wickham (10.1016/j.pedsph.2023.09.002_bib40) 2016
Zhou (10.1016/j.pedsph.2023.09.002_bib42) 2011
Smercina (10.1016/j.pedsph.2023.09.002_bib31) 2019; 85
Brady (10.1016/j.pedsph.2023.09.002_bib4) 2008
Grömping (10.1016/j.pedsph.2023.09.002_bib9) 2007; 17
Tang (10.1016/j.pedsph.2023.09.002_bib35) 2017; 247
Zou (10.1016/j.pedsph.2023.09.002_bib43) 2008
Barron (10.1016/j.pedsph.2023.09.002_bib2) 2009; 2
Ladha (10.1016/j.pedsph.2023.09.002_bib17) 2003; 252
Royston (10.1016/j.pedsph.2023.09.002_bib28) 1982; 31
Wang (10.1016/j.pedsph.2023.09.002_bib37) 2020; 56
Meng (10.1016/j.pedsph.2023.09.002_bib21) 2021; 386
Nieder (10.1016/j.pedsph.2023.09.002_bib22) 2011; 47
Revelle (10.1016/j.pedsph.2023.09.002_bib26) 2018
Tang (10.1016/j.pedsph.2023.09.002_bib34) 2019; 10
Stam (10.1016/j.pedsph.2023.09.002_bib32) 1987; 3
Ma (10.1016/j.pedsph.2023.09.002_bib20) 2019; 29
Jabbar (10.1016/j.pedsph.2023.09.002_bib13) 2014; 12
Ma (10.1016/j.pedsph.2023.09.002_bib19) 2019; 649
Bei (10.1016/j.pedsph.2023.09.002_bib3) 2013; 59
Tang (10.1016/j.pedsph.2023.09.002_bib33) 2020; 14
Wang (10.1016/j.pedsph.2023.09.002_bib38) 2019; 131
Dixon (10.1016/j.pedsph.2023.09.002_bib7) 2004; 2
Buresh (10.1016/j.pedsph.2023.09.002_bib5) 1980; 33
Vitousek (10.1016/j.pedsph.2023.09.002_bib36) 2002; 57
Rousk (10.1016/j.pedsph.2023.09.002_bib27) 2017; 214
References_xml – volume: 283
  year: 2022
  ident: bib16
  article-title: Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems
  publication-title: Field Crops Res
– volume: 247
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib35
  article-title: Impact of fertilization regimes on diazotroph community compositions and N
  publication-title: Agr Ecosyst Environ
– volume: 2
  start-page: 621
  year: 2004
  end-page: 631
  ident: bib7
  article-title: Genetic regulation of biological nitrogen fixation
  publication-title: Nat Rev Microbiol
– volume: 95
  year: 2019
  ident: bib11
  article-title: Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China
  publication-title: FEMS Microbiol Ecol
– volume: 93
  start-page: 405
  year: 1986
  end-page: 411
  ident: bib29
  article-title: Effects of N-fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice
  publication-title: Plant Soil
– volume: 169
  year: 2022
  ident: bib6
  article-title: Compound-specific amino acid
  publication-title: Soil Biol Biochem
– volume: 467
  start-page: 329
  year: 2021
  end-page: 344
  ident: bib41
  article-title: How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system?
  publication-title: Plant Soil
– volume: 14
  start-page: 2514
  year: 2020
  end-page: 2526
  ident: bib33
  article-title: New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods
  publication-title: ISME J
– volume: 214
  start-page: 97
  year: 2017
  end-page: 107
  ident: bib27
  article-title: Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems
  publication-title: New Phytol
– start-page: 119
  year: 2011
  end-page: 142
  ident: bib42
  article-title: Biotechnological solutions for enhancing the aluminium resistance of crop plants
  publication-title: Abiotic Stress in Plants—Mechanisms and Adaptations
– volume: 59
  start-page: 25
  year: 2013
  end-page: 31
  ident: bib3
  article-title: Heterotrophic and phototrophic
  publication-title: Soil Biol Biochem
– volume: 386
  year: 2021
  ident: bib21
  article-title: The geographical scale dependence of diazotroph assembly and activity: Effect of a decade fertilization
  publication-title: Geoderma
– volume: 252
  start-page: 151
  year: 2003
  end-page: 167
  ident: bib17
  article-title: Nitrogen fixation in rice systems: State of knowledge and future prospects
  publication-title: Plant Soil
– year: 2018
  ident: bib26
  article-title: psych: Procedures for Psychological, Psychometric, and Personality Research
– year: 2000
  ident: bib18
  article-title: Analytical Methods for Soil Agrochemistry (in Chinese)
– year: 2022
  ident: bib24
  article-title: R: A Language and Environment for Statistical Computing
– start-page: 127
  year: 2008
  end-page: 148
  ident: bib43
  article-title: Micronutrient deficiencies in crop production in China
  publication-title: Micronutrient Deficiencies in Global Crop Production
– volume: 85
  year: 2019
  ident: bib31
  article-title: To fix or not to fix: Controls on free-living nitrogen fixation in the rhizosphere
  publication-title: Appl Environ Microb
– volume: 4
  start-page: 111
  year: 1988
  end-page: 129
  ident: bib12
  article-title: How is nitrogenase regulated by oxygen?
  publication-title: FEMS Microbiol Rev
– start-page: 619
  year: 2000
  ident: bib1
  article-title: Effects of concentrations and sources of molybdenum on the survival of
  publication-title: Nitrogen Fixation: From Molecules to Crop Productivity
– volume: 29
  start-page: 374
  year: 2019
  end-page: 387
  ident: bib20
  article-title: Paddy system with a hybrid rice enhances Cyanobacteria
  publication-title: Pedosphere
– volume: 56
  start-page: 1189
  year: 2020
  end-page: 1199
  ident: bib37
  article-title: Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and
  publication-title: Biol Fert Soils
– volume: 17
  start-page: 1
  year: 2007
  end-page: 27
  ident: bib9
  article-title: Relative importance for linear regression in R: The package relaimpo
  publication-title: J Stat Softw
– volume: 12
  start-page: 302
  year: 2014
  end-page: 306
  ident: bib13
  article-title: Effect of
  publication-title: J Food Agr Environ
– volume: 649
  start-page: 686
  year: 2019
  end-page: 694
  ident: bib19
  article-title: Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system
  publication-title: Sci Total Environ
– volume: 3
  start-page: 73
  year: 1987
  end-page: 92
  ident: bib32
  article-title: Hydrogen metabolism and energy costs of nitrogen fixation
  publication-title: FEMS Microbiol Rev
– volume: 10
  start-page: 824
  year: 2020
  ident: bib8
  article-title: Enhancing cation exchange capacity of weathered soils using biochar: Feedstock, pyrolysis conditions and addition rate
  publication-title: Agronomy
– volume: 11
  start-page: 419
  year: 1985
  end-page: 440
  ident: bib30
  article-title: A modular system of algorithms for unconstrained minimization
  publication-title: ACM Trans Math Softw
– volume: 47
  start-page: 1
  year: 2011
  end-page: 14
  ident: bib22
  article-title: Fixation and defixation of ammonium in soils: A review
  publication-title: Biol Fert Soils
– volume: 31
  start-page: 115
  year: 1982
  end-page: 124
  ident: bib28
  article-title: An extension of Shapiro and Wilk's
  publication-title: Appl Stat
– volume: 57
  start-page: 1
  year: 2002
  end-page: 45
  ident: bib36
  article-title: Towards an ecological understanding of biological nitrogen fixation
  publication-title: Biogeochemistry
– volume: 42
  start-page: 489
  year: 2011
  end-page: 512
  ident: bib25
  article-title: Functional ecology of free-living nitrogen fixation: A contemporary perspective
  publication-title: Annu Rev Ecol Evol Syst
– volume: 11
  start-page: 315
  year: 2017
  end-page: 326
  ident: bib23
  article-title: Complex N acquisition by soil diazotrophs: How the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs
  publication-title: ISME J
– volume: 24
  start-page: 512
  year: 1973
  end-page: 522
  ident: bib15
  article-title: Relationship between nonsymbiotic nitrogen fixation and soil nutrient status—A review
  publication-title: J Soil Sci
– year: 2008
  ident: bib4
  article-title: The Nature and Properties of Soils
– volume: 131
  start-page: 81
  year: 2019
  end-page: 89
  ident: bib38
  article-title: Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China
  publication-title: Soil Biol Biochem
– volume: 33
  start-page: 149
  year: 1980
  end-page: 192
  ident: bib5
  article-title: Nitrogen fixation in flooded soil systems: A review
  publication-title: Adv Agron
– year: 2016
  ident: bib40
  article-title: ggplot2: Elegant Graphics for Data Analysis
– volume: 130
  start-page: 1081
  year: 2000
  end-page: 1084
  ident: bib10
  article-title: Regulation of biological nitrogen fixation
  publication-title: J Nutr
– volume: 85
  start-page: 1415
  year: 2011
  end-page: 1422
  ident: bib14
  article-title: Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms
  publication-title: Chemosphere
– year: 2017
  ident: bib39
  article-title: R package “corrplot”: Visualization of a correlation matrix
– volume: 2
  start-page: 42
  year: 2009
  end-page: 45
  ident: bib2
  article-title: Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils
  publication-title: Nature Geosci
– volume: 10
  start-page: 831
  year: 2019
  ident: bib34
  article-title: Revisiting the distribution of oceanic N
  publication-title: Nat Commun
– volume: 214
  start-page: 97
  year: 2017
  ident: 10.1016/j.pedsph.2023.09.002_bib27
  article-title: Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems
  publication-title: New Phytol
  doi: 10.1111/nph.14331
– volume: 14
  start-page: 2514
  year: 2020
  ident: 10.1016/j.pedsph.2023.09.002_bib33
  article-title: New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods
  publication-title: ISME J
  doi: 10.1038/s41396-020-0703-6
– volume: 95
  year: 2019
  ident: 10.1016/j.pedsph.2023.09.002_bib11
  article-title: Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fiz113
– volume: 247
  start-page: 1
  year: 2017
  ident: 10.1016/j.pedsph.2023.09.002_bib35
  article-title: Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2017.06.009
– volume: 649
  start-page: 686
  year: 2019
  ident: 10.1016/j.pedsph.2023.09.002_bib19
  article-title: Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.318
– volume: 11
  start-page: 419
  year: 1985
  ident: 10.1016/j.pedsph.2023.09.002_bib30
  article-title: A modular system of algorithms for unconstrained minimization
  publication-title: ACM Trans Math Softw
  doi: 10.1145/6187.6192
– volume: 11
  start-page: 315
  year: 2017
  ident: 10.1016/j.pedsph.2023.09.002_bib23
  article-title: Complex N acquisition by soil diazotrophs: How the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs
  publication-title: ISME J
  doi: 10.1038/ismej.2016.127
– volume: 2
  start-page: 621
  year: 2004
  ident: 10.1016/j.pedsph.2023.09.002_bib7
  article-title: Genetic regulation of biological nitrogen fixation
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro954
– volume: 33
  start-page: 149
  year: 1980
  ident: 10.1016/j.pedsph.2023.09.002_bib5
  article-title: Nitrogen fixation in flooded soil systems: A review
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(08)60166-2
– volume: 93
  start-page: 405
  year: 1986
  ident: 10.1016/j.pedsph.2023.09.002_bib29
  article-title: Effects of N-fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice
  publication-title: Plant Soil
  doi: 10.1007/BF02374291
– volume: 283
  year: 2022
  ident: 10.1016/j.pedsph.2023.09.002_bib16
  article-title: Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2022.108541
– year: 2022
  ident: 10.1016/j.pedsph.2023.09.002_bib24
– year: 2018
  ident: 10.1016/j.pedsph.2023.09.002_bib26
– volume: 57
  start-page: 1
  year: 2002
  ident: 10.1016/j.pedsph.2023.09.002_bib36
  article-title: Towards an ecological understanding of biological nitrogen fixation
  publication-title: Biogeochemistry
  doi: 10.1023/A:1015798428743
– volume: 29
  start-page: 374
  year: 2019
  ident: 10.1016/j.pedsph.2023.09.002_bib20
  article-title: Paddy system with a hybrid rice enhances Cyanobacteria Nostoc and increases N2 fixation
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(19)60809-X
– volume: 59
  start-page: 25
  year: 2013
  ident: 10.1016/j.pedsph.2023.09.002_bib3
  article-title: Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15N in a flooded rice-soil system
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2013.01.008
– volume: 85
  year: 2019
  ident: 10.1016/j.pedsph.2023.09.002_bib31
  article-title: To fix or not to fix: Controls on free-living nitrogen fixation in the rhizosphere
  publication-title: Appl Environ Microb
– ident: 10.1016/j.pedsph.2023.09.002_bib39
– start-page: 619
  year: 2000
  ident: 10.1016/j.pedsph.2023.09.002_bib1
  article-title: Effects of concentrations and sources of molybdenum on the survival of Bradyrhizobium strains
– volume: 169
  year: 2022
  ident: 10.1016/j.pedsph.2023.09.002_bib6
  article-title: Compound-specific amino acid 15N-stable isotope probing for the quantification of biological nitrogen fixation in soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2022.108654
– volume: 12
  start-page: 302
  year: 2014
  ident: 10.1016/j.pedsph.2023.09.002_bib13
  article-title: Effect of azospirillum in association with molybdenum on enhanced biological nitrogen fixation, growth, yield and yield contributing characters of soybean
  publication-title: J Food Agr Environ
– start-page: 127
  year: 2008
  ident: 10.1016/j.pedsph.2023.09.002_bib43
  article-title: Micronutrient deficiencies in crop production in China
– volume: 130
  start-page: 1081
  year: 2000
  ident: 10.1016/j.pedsph.2023.09.002_bib10
  article-title: Regulation of biological nitrogen fixation
  publication-title: J Nutr
  doi: 10.1093/jn/130.5.1081
– volume: 31
  start-page: 115
  year: 1982
  ident: 10.1016/j.pedsph.2023.09.002_bib28
  article-title: An extension of Shapiro and Wilk's W test for normality to large samples
  publication-title: Appl Stat
  doi: 10.2307/2347973
– volume: 85
  start-page: 1415
  year: 2011
  ident: 10.1016/j.pedsph.2023.09.002_bib14
  article-title: Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.08.036
– volume: 3
  start-page: 73
  year: 1987
  ident: 10.1016/j.pedsph.2023.09.002_bib32
  article-title: Hydrogen metabolism and energy costs of nitrogen fixation
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6968.1987.tb02453.x
– volume: 131
  start-page: 81
  year: 2019
  ident: 10.1016/j.pedsph.2023.09.002_bib38
  article-title: Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.12.028
– volume: 386
  year: 2021
  ident: 10.1016/j.pedsph.2023.09.002_bib21
  article-title: The geographical scale dependence of diazotroph assembly and activity: Effect of a decade fertilization
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114923
– volume: 42
  start-page: 489
  year: 2011
  ident: 10.1016/j.pedsph.2023.09.002_bib25
  article-title: Functional ecology of free-living nitrogen fixation: A contemporary perspective
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-102710-145034
– year: 2008
  ident: 10.1016/j.pedsph.2023.09.002_bib4
– volume: 10
  start-page: 824
  year: 2020
  ident: 10.1016/j.pedsph.2023.09.002_bib8
  article-title: Enhancing cation exchange capacity of weathered soils using biochar: Feedstock, pyrolysis conditions and addition rate
  publication-title: Agronomy
  doi: 10.3390/agronomy10060824
– volume: 467
  start-page: 329
  year: 2021
  ident: 10.1016/j.pedsph.2023.09.002_bib41
  article-title: How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system?
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05093-7
– start-page: 119
  year: 2011
  ident: 10.1016/j.pedsph.2023.09.002_bib42
  article-title: Biotechnological solutions for enhancing the aluminium resistance of crop plants
– volume: 17
  start-page: 1
  year: 2007
  ident: 10.1016/j.pedsph.2023.09.002_bib9
  article-title: Relative importance for linear regression in R: The package relaimpo
  publication-title: J Stat Softw
– volume: 4
  start-page: 111
  year: 1988
  ident: 10.1016/j.pedsph.2023.09.002_bib12
  article-title: How is nitrogenase regulated by oxygen?
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6968.1988.tb02738.x
– volume: 24
  start-page: 512
  year: 1973
  ident: 10.1016/j.pedsph.2023.09.002_bib15
  article-title: Relationship between nonsymbiotic nitrogen fixation and soil nutrient status—A review
  publication-title: J Soil Sci
  doi: 10.1111/j.1365-2389.1973.tb02318.x
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.pedsph.2023.09.002_bib22
  article-title: Fixation and defixation of ammonium in soils: A review
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-010-0506-4
– volume: 10
  start-page: 831
  year: 2019
  ident: 10.1016/j.pedsph.2023.09.002_bib34
  article-title: Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08640-0
– year: 2016
  ident: 10.1016/j.pedsph.2023.09.002_bib40
– year: 2000
  ident: 10.1016/j.pedsph.2023.09.002_bib18
– volume: 56
  start-page: 1189
  year: 2020
  ident: 10.1016/j.pedsph.2023.09.002_bib37
  article-title: Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and 15N2-DNA-stable isotope probing
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-020-01497-2
– volume: 2
  start-page: 42
  year: 2009
  ident: 10.1016/j.pedsph.2023.09.002_bib2
  article-title: Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils
  publication-title: Nature Geosci
  doi: 10.1038/ngeo366
– volume: 252
  start-page: 151
  year: 2003
  ident: 10.1016/j.pedsph.2023.09.002_bib17
  article-title: Nitrogen fixation in rice systems: State of knowledge and future prospects
  publication-title: Plant Soil
  doi: 10.1023/A:1024175307238
SSID ssj0041911
Score 2.3627636
Snippet Biological nitrogen (N) fixation (BNF) is important for sustainable rice cultivation. Various edaphic factors have been individually evaluated for their...
Biological nitrogen(N)fixation(BNF)is important for sustainable rice cultivation.Various edaphic factors have been individually evaluated for their effects on...
SourceID wanfang
proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 993
SubjectTerms available molybdenum
available soil nitrogen
cation exchange capacity
China
influencing factors
molybdenum
multiplicative effect
nitrogen
nitrogen fixation
paddies
paddy soils
phosphorus
rice
rice field
soil fertility
total nitrogen
Title Biological nitrogen fixation in paddy soils is driven by multiple edaphic factors and available phosphorus is the greatest contributor
URI https://dx.doi.org/10.1016/j.pedsph.2023.09.002
https://www.proquest.com/docview/3154267428
https://d.wanfangdata.com.cn/periodical/trq-e202406002
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQ4VDzF8miNxDVsEif25riqqBYqeoFKvVl-boNWSUh2C71w5Hcz4zhVkZAqcY1iJ_GMx_PFn78h5J0w1gqlVaK4tgBQvE5QdQyLCIhULbzJHJ4d_nzGV-fFp4vyYo8cT2dhkFYZY_8Y00O0jlfmcTTnXV3Pv6B4KOqjQRINoCLomBaFQC9__-uG5lEAHgmgKw1MW55Ox-cCx6tzduhwSyJnQe00_lz5x_J0K_28_0M1XjXrW-vQySNyEBNIuhzf8THZc80T8nC57qOIhntKfo8FJnH4KczYvgUnob7-GYxA64Z2EG6u6dDWm4HWA7U9hjyqr-lEL6TOqu6yNjSW46GqsVRdqXqDJ61od9nCB7X9LjSHFJKuMfeE96aB-o41tNr-GTk_-fD1eJXEeguJYSLdJqV2iA4X3DNfKZ9z5hVzpeWFcNyWriw8F4ZXpTJ2oVPlwLxp6W2ZCZMZzdlzst-0jXtBKMA26MCITBcGEjamjHG6AjCWZqaodD4jbBpmaaIYOdbE2MiJdfZNjsaRaByZVhKMMyPJTatuFOO4434xWVD-5VQS1os7Wr6dDC5hvuEmimpcuxskg5wz5wJQ24wcRU-Qcd4Pctt_ly5H3Tjc73z5389_RR5gLyNv5jXZ3_Y79wayn60-DO59SO4tP56uzv4A3bcIpA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQIOFa-KhUKNBMewedqbA4cKqLb0caGVejN-boNWSUh2KXvhyB_qH-xM4lRFQqqE1GsUO4k_ezxf_M0MIW-5NoZLJQPJlAGC4lSAWcewiAAP5cTpyGLs8OERm56kX06z0zVyMcTCoKzS2_7epnfW2l8Z-9Ec10Ux_orJQzE_GjjRQCrCQVm5b1fnwNvaD3ufAOR3cbz7-fjjNPClBQKd8HARZMoiEZowl7hcupglTiY2MyzllpnMZqljXLM8k9pMVCgtfEmYOZNFXEdasQT6vUPupmAusGzC-99XupIUCFDH8sJO2svCIV6vE5XV1rQ1noHESZde1f_N-cd-eM3fvXcuSyfL2bWNb_cR2fAeK93pB-UxWbPlE_JwZ9b4rB32KfnTV7REvCmYiKaCWUld8atDnRYlrcG-rWhbFfOWFi01DdpYqlZ00DNSa2R9Vmjq6_9QWRoqf8pijqFdtD6r4IOqZtk1B5-VztDZhfemndYei3ZVzTNycisobJL1sirtc0KBJ0IHmkcq1eAhJlJrq3Jgf2Gk01zFI5IMwyy0z36ORTjmYpC5fRc9OALBEWEuAJwRCa5a1X32jxvu5wOC4q9ZLGCDuqHlmwFwAQscT21kaatlKxJwcmPGgSaOyLafCcIbmlYsmh_CxpioDg9YX_z387fJ_enx4YE42Dvaf0keYI-9aGeLrC-apX0FrtdCve6mOiXfbnttXQJ9jkWq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+nitrogen+fixation+in+paddy+soils+is+driven+by+multiple+edaphic+factors+and+available+phosphorus+is+the+greatest+contributor&rft.jtitle=Pedosphere&rft.au=HU%2C+Tianlong&rft.au=ZHANG%2C+Yanhui&rft.au=WANG%2C+Hui&rft.au=JIN%2C+Haiyang&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=1002-0160&rft.volume=34&rft.issue=6&rft.spage=993&rft.epage=1001&rft_id=info:doi/10.1016%2Fj.pedsph.2023.09.002&rft.externalDocID=S1002016023001005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftrq-e%2Ftrq-e.jpg