The role of artificial neural network and machine learning in utilizing spatial information The role of artificial neural network and machine learning in utilizing spatial information
In this age of the fourth industrial revolution 4.0, the digital world has a plethora of data, including the internet of things, mobile, cybersecurity, social media, forecasts, health data, and so on. The expertise of machine learning and artificial intelligence (AI) is required to soundly evaluate...
Saved in:
Published in | Spatial information research (Online) Vol. 31; no. 3; pp. 275 - 285 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.06.2023
대한공간정보학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this age of the fourth industrial revolution 4.0, the digital world has a plethora of data, including the internet of things, mobile, cybersecurity, social media, forecasts, health data, and so on. The expertise of machine learning and artificial intelligence (AI) is required to soundly evaluate the data and develop related smart and automated applications, These fields use a variety of machine learning techniques including supervised, unsupervised, and reinforcement learning. The objective of the study is to present the role of artificial neural networks and machine learning in utilizing spatial information. Machine learning and AI play an increasingly important role in disaster risk reduction from hazard mapping and forecasting severe occurrences to real-time event detection, situational awareness, and decision assistance. Some of the applications employed in the study to analyze the various ANN domains included weather forecasting, medical diagnosis, aerospace, facial recognition, stock market, social media, signature verification, forensics, robotics, electronics hardware, defense, and seismic data gathering. Machine learning determines the many prediction models for problems involving classification, regression, and clustering using known variables and locations from the training dataset, spatial data that is based on tabular data creates different observations that are geographically related to one another for unknown factors and places. The study presents that the Recurrent neural network and convolutional neural network are the best method in spatial information processing, healthcare, and weather forecasting with greater than 90% accuracy. |
---|---|
AbstractList | In this age of the fourth industrial revolution 4.0, the digital world has a plethora of data, including the internet of things, mobile, cybersecurity, social media, forecasts, health data, and so on. The expertise of machine learning and artificial intelligence (AI) is required to soundly evaluate the data and develop related smart and automated applications, These fields use a variety of machine learning techniques including supervised, unsupervised, and reinforcement learning. The objective of the study is to present the role of artificial neural networks and machine learning in utilizing spatial information. Machine learning and AI play an increasingly important role in disaster risk reduction from hazard mapping and forecasting severe occurrences to real-time event detection, situational awareness, and decision assistance. Some of the applications employed in the study to analyze the various ANN domains included weather forecasting, medical diagnosis, aerospace, facial recognition, stock market, social media, signature verification, forensics, robotics, electronics hardware, defense, and seismic data gathering. Machine learning determines the many prediction models for problems involving classification, regression, and clustering using known variables and locations from the training dataset, spatial data that is based on tabular data creates different observations that are geographically related to one another for unknown factors and places. The study presents that the Recurrent neural network and convolutional neural network are the best method in spatial information processing, healthcare, and weather forecasting with greater than 90% accuracy. In this age of the fourth industrial revolution 4.0, the digital world has a plethora of data, including the internet of things, mobile, cybersecurity, social media, forecasts, health data, and so on. The expertise of machine learning and artificial intelligence (AI) is required to soundly evaluate the data and develop related smart and automated applications, These fields use a variety of machine learning techniques including supervised, unsupervised, and reinforcement learning. The objective of the study is to present the role of artificial neural networks and machine learning in utilizing spatial information. Machine learning and AI play an increasingly important role in disaster risk reduction from hazard mapping and forecasting severe occurrences to real-time event detection, situational awareness, and decision assistance. Some of the applications employed in the study to analyze the various ANN domains included weather forecasting, medical diagnosis, aerospace, facial recognition, stock market, social media, signature verification, forensics, robotics, electronics hardware, defense, and seismic data gathering. Machine learning determines the many prediction models for problems involving classification, regression, and clustering using known variables and locations from the training dataset, spatial data that is based on tabular data creates different observations that are geographically related to one another for unknown factors and places. The study presents that the Recurrent neural network and convolutional neural network are the best method in spatial information processing, healthcare, and weather forecasting with greater than 90% accuracy. KCI Citation Count: 24 |
Author | Kumar, Adesh Goel, Amit Kumar Goel, Akash |
Author_xml | – sequence: 1 givenname: Akash orcidid: 0000-0001-9580-8069 surname: Goel fullname: Goel, Akash email: a.goel54@yahoo.com organization: Department of Computer Science & Engineering, Galgotia’s University – sequence: 2 givenname: Amit Kumar surname: Goel fullname: Goel, Amit Kumar organization: Department of Computer Science & Engineering, Galgotia’s University – sequence: 3 givenname: Adesh surname: Kumar fullname: Kumar, Adesh organization: Department of Electrical & Electronics Engineering, School of Engineering, University of Petroleum and Energy Studies |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002976925$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1PAjEURRuDiYj8AVddm4z2azp0SYgfJCQmBlcumkfpQGFoSWeI6K-3zBgXLljd1-aevvRco54P3iJ0S8k9JaR4qAXlTGSEsYwQoUR2vEB9xqXMOFOi9zeP5BUa1vWGEMIkzRXN--hjvrY4hsriUGKIjSudcVBhbw-xjeYzxC0Gv8Q7MGvnLa4sRO_8CjuPD42r3PfpUO-hOYHOlyHu0hz8Dbosoart8DcH6P3pcT55yWavz9PJeJYZXpAmE0CYlYpKsGYBI1BC5SAlF1SR5WJZgiyo4lxynltFDRC7kGKZk3RjRAGCD9Bd966Ppd4apwO4NldBb6Mev82nmhJWUEpkKrOubGKo62hLvY9uB_ErVfRJp-506qRTtzr1MUGjf5BxTfvHJoKrzqO8Q-u0x69s1JtwiD75OEf9AETyjJE |
CitedBy_id | crossref_primary_10_1007_s42979_024_03243_z crossref_primary_10_1007_s11042_024_18380_z crossref_primary_10_1016_j_fochx_2024_101867 crossref_primary_10_3390_su16114363 crossref_primary_10_1016_j_jobe_2024_111308 crossref_primary_10_1109_ACCESS_2025_3545449 crossref_primary_10_3390_math12081155 crossref_primary_10_3390_ma17010147 crossref_primary_10_1016_j_trgeo_2024_101387 crossref_primary_10_1088_1361_6501_adba7e crossref_primary_10_3390_ijms25084156 crossref_primary_10_1016_j_compeleceng_2024_109792 crossref_primary_10_12688_f1000research_141458_2 crossref_primary_10_1016_j_ast_2025_110102 crossref_primary_10_1007_s11042_023_17049_3 crossref_primary_10_1016_j_heliyon_2024_e37951 crossref_primary_10_12688_f1000research_141458_1 crossref_primary_10_1007_s10311_024_01767_7 crossref_primary_10_3233_JIFS_237041 crossref_primary_10_1002_cjce_25452 crossref_primary_10_1016_j_mtcomm_2024_110691 crossref_primary_10_1093_jom_ufae042 crossref_primary_10_1108_APJBA_05_2024_0301 crossref_primary_10_3390_physchem5010005 crossref_primary_10_3934_geosci_2025009 crossref_primary_10_1109_ACCESS_2025_3542507 crossref_primary_10_3390_app14093845 crossref_primary_10_1007_s42235_024_00562_y crossref_primary_10_1109_ACCESS_2024_3446037 crossref_primary_10_1016_j_applthermaleng_2024_123255 crossref_primary_10_7717_peerj_cs_2756 crossref_primary_10_3233_JIFS_239538 crossref_primary_10_1002_jmri_29364 crossref_primary_10_1109_ACCESS_2024_3463791 crossref_primary_10_3390_app14177838 crossref_primary_10_1016_j_csite_2024_105636 crossref_primary_10_1016_j_jcomc_2024_100513 crossref_primary_10_1002_aic_18621 crossref_primary_10_1007_s11042_024_18900_x crossref_primary_10_1016_j_jphotochem_2023_115404 crossref_primary_10_1016_j_jaridenv_2024_105293 crossref_primary_10_3389_fpubh_2024_1384474 crossref_primary_10_1016_j_entcom_2024_100645 crossref_primary_10_1016_j_esr_2024_101446 crossref_primary_10_1007_s00521_024_09681_3 crossref_primary_10_1007_s11042_023_16689_9 crossref_primary_10_1021_acsmaterialslett_4c01267 crossref_primary_10_3934_electreng_2023020 crossref_primary_10_3390_rs16111942 crossref_primary_10_22389_0016_7126_2022_990_12_57_64 crossref_primary_10_3390_nano13243139 crossref_primary_10_1080_15325008_2024_2328799 crossref_primary_10_1007_s11042_023_17061_7 crossref_primary_10_1007_s12145_024_01464_7 crossref_primary_10_32322_jhsm_1360782 crossref_primary_10_1142_S0218001424560019 crossref_primary_10_1016_j_asoc_2024_112392 crossref_primary_10_3390_computers14030093 crossref_primary_10_1007_s12597_024_00887_6 crossref_primary_10_1109_ACCESS_2024_3525263 crossref_primary_10_1109_ACCESS_2025_3552831 crossref_primary_10_1002_eqe_4230 crossref_primary_10_1007_s40010_025_00917_y crossref_primary_10_1007_s41976_024_00181_5 crossref_primary_10_1007_s10853_024_09994_7 crossref_primary_10_1016_j_ijleo_2025_172314 |
Cites_doi | 10.3390/diagnostics12010074 10.3390/app9204397 10.1109/WAC.2014.6936118 10.1016/j.procs.2019.11.147 10.1007/s00414-021-02746-1 10.1007/s41870-018-0255-4 10.2478/v10136-012-0031-x 10.1109/TIA.2012.2190816 10.1038/nrn1056 10.1109/PES.2003.1270407 10.1109/ICCSCE.2013.6720012 10.1007/s10796-008-9131-2 10.1109/IGARSS.2010.5651433 10.4018/978-1-7998-8161-2.ch005 10.1109/TPWRS.2002.800906 10.1016/j.eswa.2021.115950 10.3346/jkms.2020.35.e379 10.3390/aerospace7090132 10.1016/j.eswa.2019.05.024 10.1109/RAST.2007.4283994 10.1016/j.procs.2015.04.160 10.1016/j.neuri.2022.100039 10.1080/00207720903470155 10.1109/ACCESS.2020.2973509 10.1016/B978-0-08-043981-5.50132-2 10.2307/jeductechsoci.13.2.53 10.1080/08839514.2019.1661579 10.1016/j.jjcc.2011.11.005 10.1016/j.cageo.2013.10.008 10.1016/j.eswa.2013.04.013 10.1007/978-981-16-1866-6_6 10.1007/s00168-021-01101-x 10.11591/ijai.v7.i3.pp138-142 10.1088/1742-6596/1844/1/012005 10.1007/s11192-021-04051-5 10.3390/aerospace7090126 10.1016/j.uclim.2021.100989 10.1109/TNN.2007.891626 10.1016/j.neucom.2009.03.020 10.1016/j.eswa.2010.10.027 10.1109/CISCT.2019.8777442 10.3390/su14020861 10.1016/j.aej.2021.06.010 10.1109/NMIC.2019.00006 10.5120/17399-7959 10.1016/j.ijmedinf.2016.03.001 10.1109/ICECA.2018.8474861 10.1016/j.eswa.2011.02.068 10.1016/j.caeai.2020.100001 10.3390/electronics10040456 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Korea Spatial Information Society 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Korea Spatial Information Society 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s41324-022-00494-x |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2366-3294 |
EndPage | 285 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10271106 10_1007_s41324_022_00494_x |
GroupedDBID | 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYQN AAYTO ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFZKB AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHPBZ AHSBF AHWEU AIAKS AIGIU AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG ATHPR AVWKF AXYYD AYFIA BGNMA DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RIG RLLFE ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX CITATION ACYCR AEIIB |
ID | FETCH-LOGICAL-c370t-4a02e6916aecba8a9495a6634190dbdfa6719336335e91ca0eb64d50363c47a43 |
ISSN | 2366-3286 |
IngestDate | Fri Jun 13 06:50:14 EDT 2025 Tue Jul 01 05:11:36 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Mon Jul 21 06:08:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning Spatial information Multimedia applications Satellite communication Machine learning Artificial neural networks |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-4a02e6916aecba8a9495a6634190dbdfa6719336335e91ca0eb64d50363c47a43 |
Notes | https://doi.org/10.1007/s41324-022-00494-x |
ORCID | 0000-0001-9580-8069 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9673209 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10271106 crossref_primary_10_1007_s41324_022_00494_x crossref_citationtrail_10_1007_s41324_022_00494_x springer_journals_10_1007_s41324_022_00494_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 2023-06 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Spatial information research (Online) |
PublicationTitleAbbrev | Spat. Inf. Res |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore 대한공간정보학회 |
Publisher_xml | – name: Springer Nature Singapore – name: 대한공간정보학회 |
References | LY Leong (494_CR27) 2019; 133 N Salari (494_CR42) 2022; 187 AL Balogun (494_CR11) 2021; 40 JL Ticknor (494_CR16) 2013; 40 S Jabin (494_CR31) 2014; 99 A Baliyan (494_CR2) 2015; 48 494_CR44 Y Ma (494_CR7) 2021 AS Rawat (494_CR36) 2018; 7 R Yuan (494_CR51) 2010; 12 GJ Hwang (494_CR54) 2020; 1 M Bansal (494_CR40) 2022 F Amato (494_CR1) 2013; 11 Y Kara (494_CR45) 2011; 38 CW Park (494_CR5) 2020 A Goel (494_CR37) 2016; 14 A Chaudhary (494_CR50) 2020; 12 A Sarkar (494_CR22) 2022 SM Sam (494_CR33) 2019; 161 E Guresen (494_CR8) 2011; 38 494_CR10 R Nayak (494_CR3) 2001 494_CR9 494_CR48 J Shi (494_CR53) 2012; 48 GJ Hwang (494_CR38) 2010; 13 JW Taylor (494_CR35) 2002; 17 LQ Peng (494_CR23) 2022 K Kopczewska (494_CR13) 2022; 68 R Adolphs (494_CR4) 2003; 4 R Prashanth (494_CR52) 2016; 90 494_CR21 MJ Cracknell (494_CR12) 2014; 63 M Kurowski (494_CR20) 2021; 10 T Phisannupawong (494_CR32) 2020; 7 494_CR18 Y Ma (494_CR28) 2021 P Khumprom (494_CR49) 2020; 7 N Jindal (494_CR6) 2013; 3 494_CR17 494_CR14 494_CR15 OY Atkov (494_CR41) 2012; 59 SS Jadhav (494_CR30) 2019; 33 MK Singh (494_CR34) 2011; 42 S Himavathi (494_CR39) 2007; 18 F Safara (494_CR29) 2020; 8 C Liu (494_CR46) 2022; 61 494_CR25 494_CR26 HC Dan (494_CR47) 2022; 14 S Abdulla (494_CR43) 2022; 12 YC Tang (494_CR19) 2009; 72 S Almabdy (494_CR24) 2019; 9 |
References_xml | – volume: 12 start-page: 74 issue: 1 year: 2022 ident: 494_CR43 publication-title: Diagnostics doi: 10.3390/diagnostics12010074 – volume: 9 start-page: 4397 issue: 20 year: 2019 ident: 494_CR24 publication-title: Applied Sciences doi: 10.3390/app9204397 – ident: 494_CR10 doi: 10.1109/WAC.2014.6936118 – volume: 161 start-page: 475 year: 2019 ident: 494_CR33 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.11.147 – year: 2022 ident: 494_CR23 publication-title: International Journal of Legal Medicine doi: 10.1007/s00414-021-02746-1 – volume: 12 start-page: 141 issue: 1 year: 2020 ident: 494_CR50 publication-title: International Journal of Information Technology doi: 10.1007/s41870-018-0255-4 – volume: 11 start-page: 47 issue: 2 year: 2013 ident: 494_CR1 publication-title: Journal of applied biomedicine doi: 10.2478/v10136-012-0031-x – volume: 48 start-page: 1064 issue: 3 year: 2012 ident: 494_CR53 publication-title: IEEE Transactions on Industry Applications doi: 10.1109/TIA.2012.2190816 – volume: 4 start-page: 165 issue: 3 year: 2003 ident: 494_CR4 publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1056 – ident: 494_CR18 doi: 10.1109/PES.2003.1270407 – ident: 494_CR9 doi: 10.1109/ICCSCE.2013.6720012 – volume: 12 start-page: 149 issue: 2 year: 2010 ident: 494_CR51 publication-title: Information Systems Frontiers doi: 10.1007/s10796-008-9131-2 – ident: 494_CR44 – ident: 494_CR15 doi: 10.1109/IGARSS.2010.5651433 – ident: 494_CR21 doi: 10.4018/978-1-7998-8161-2.ch005 – volume: 17 start-page: 626 issue: 3 year: 2002 ident: 494_CR35 publication-title: IEEE Transactions on Power systems doi: 10.1109/TPWRS.2002.800906 – volume: 187 start-page: 115950 year: 2022 ident: 494_CR42 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115950 – year: 2020 ident: 494_CR5 publication-title: Journal of Korean medical science doi: 10.3346/jkms.2020.35.e379 – volume: 14 start-page: 228 issue: 9 year: 2016 ident: 494_CR37 publication-title: International Journal of Computer Science and Information Security – volume: 7 start-page: 132 issue: 9 year: 2020 ident: 494_CR49 publication-title: Aerospace doi: 10.3390/aerospace7090132 – volume: 133 start-page: 296 year: 2019 ident: 494_CR27 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.05.024 – ident: 494_CR17 doi: 10.1109/RAST.2007.4283994 – volume: 48 start-page: 121 year: 2015 ident: 494_CR2 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.04.160 – year: 2022 ident: 494_CR22 publication-title: Neuroscience Informatics doi: 10.1016/j.neuri.2022.100039 – volume: 42 start-page: 107 issue: 1 year: 2011 ident: 494_CR34 publication-title: International Journal of Systems Science doi: 10.1080/00207720903470155 – volume: 3 start-page: 864 issue: 6 year: 2013 ident: 494_CR6 publication-title: International Journal of Advanced Research in Computer Science and Software Engineering – volume: 8 start-page: 48428 year: 2020 ident: 494_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973509 – year: 2001 ident: 494_CR3 publication-title: Computational Mechanics–New Frontiers for the New Millennium doi: 10.1016/B978-0-08-043981-5.50132-2 – volume: 13 start-page: 53 issue: 2 year: 2010 ident: 494_CR38 publication-title: Journal of Educational Technology & Society doi: 10.2307/jeductechsoci.13.2.53 – volume: 33 start-page: 1058 issue: 12 year: 2019 ident: 494_CR30 publication-title: Applied Artificial Intelligence doi: 10.1080/08839514.2019.1661579 – volume: 59 start-page: 190 issue: 2 year: 2012 ident: 494_CR41 publication-title: Journal of cardiology doi: 10.1016/j.jjcc.2011.11.005 – volume: 63 start-page: 22 year: 2014 ident: 494_CR12 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2013.10.008 – volume: 40 start-page: 5501 issue: 14 year: 2013 ident: 494_CR16 publication-title: Expert systems with applications doi: 10.1016/j.eswa.2013.04.013 – start-page: 95 volume-title: Mobile computing and sustainable informatics year: 2022 ident: 494_CR40 doi: 10.1007/978-981-16-1866-6_6 – volume: 68 start-page: 713 issue: 3 year: 2022 ident: 494_CR13 publication-title: The Annals of Regional Science doi: 10.1007/s00168-021-01101-x – volume: 7 start-page: 138 issue: 3 year: 2018 ident: 494_CR36 publication-title: IAES International Journal of Artificial Intelligence doi: 10.11591/ijai.v7.i3.pp138-142 – ident: 494_CR48 doi: 10.1088/1742-6596/1844/1/012005 – year: 2021 ident: 494_CR7 publication-title: Scientometrics doi: 10.1007/s11192-021-04051-5 – volume: 7 start-page: 126 issue: 9 year: 2020 ident: 494_CR32 publication-title: Aerospace doi: 10.3390/aerospace7090126 – volume: 40 start-page: 100989 year: 2021 ident: 494_CR11 publication-title: Urban Climate doi: 10.1016/j.uclim.2021.100989 – volume: 18 start-page: 880 issue: 3 year: 2007 ident: 494_CR39 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2007.891626 – year: 2021 ident: 494_CR28 publication-title: Scientometrics doi: 10.1007/s11192-021-04051-5 – volume: 72 start-page: 3477 issue: 16–18 year: 2009 ident: 494_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.03.020 – volume: 38 start-page: 5311 issue: 5 year: 2011 ident: 494_CR45 publication-title: Expert systems with Applications doi: 10.1016/j.eswa.2010.10.027 – ident: 494_CR26 doi: 10.1109/CISCT.2019.8777442 – volume: 14 start-page: 861 issue: 2 year: 2022 ident: 494_CR47 publication-title: Sustainability doi: 10.3390/su14020861 – volume: 61 start-page: 775 issue: 1 year: 2022 ident: 494_CR46 publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.06.010 – ident: 494_CR14 doi: 10.1109/NMIC.2019.00006 – volume: 99 start-page: 4 issue: 9 year: 2014 ident: 494_CR31 publication-title: International Journal of Computer Applications doi: 10.5120/17399-7959 – volume: 90 start-page: 13 year: 2016 ident: 494_CR52 publication-title: International journal of medical informatics doi: 10.1016/j.ijmedinf.2016.03.001 – ident: 494_CR25 doi: 10.1109/ICECA.2018.8474861 – volume: 38 start-page: 10389 issue: 8 year: 2011 ident: 494_CR8 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.068 – volume: 1 start-page: 100001 year: 2020 ident: 494_CR54 publication-title: Computers and Education: Artificial Intelligence doi: 10.1016/j.caeai.2020.100001 – volume: 10 start-page: 456 issue: 4 year: 2021 ident: 494_CR20 publication-title: Electronics doi: 10.3390/electronics10040456 |
SSID | ssj0002615915 ssib053376711 |
Score | 2.5768557 |
SecondaryResourceType | review_article |
Snippet | In this age of the fourth industrial revolution 4.0, the digital world has a plethora of data, including the internet of things, mobile, cybersecurity, social... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 275 |
SubjectTerms | Database Management Earth and Environmental Science Geographical Information Systems/Cartography Geography Remote Sensing/Photogrammetry 공학일반 |
Subtitle | The role of artificial neural network and machine learning in utilizing spatial information |
Title | The role of artificial neural network and machine learning in utilizing spatial information |
URI | https://link.springer.com/article/10.1007/s41324-022-00494-x https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002976925 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Spatial Information Research, 2023, 31(3), 132, pp.275-285 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbS9mF7mXbVspssbTxlTIBtwI-Qpe320Je1UqU9WAbMGqUlVUKlqv9r_2_HxlzSTFG3F4JsxyI-X84Fn_MZoU8cxOrnMXcl2CqXKl-6vCShy3gJ3rb04ig32RYn4fEZ_X7Ozkej34OspZs6-5Lf_bWu5H-kCm0gV10l-w-S7SaFBrgH-cIVJAzXB8u4TQ_U3ZYNQnNUmg-T4W22B65MzqRqD4kwZSzwYJfzO_M-QadVG_aNrpZx6LT-2O6eWJKgi_t0pQ16FnJ9MTlaqi59I7ma1xOTzr3ZXCgYaNqHrx8C0qdJGcA4s9SJpzorY_bV4czhU2eWOClxUmZuPCemzmzqJJ7uhcG6i7aDublJYIZe7QUkDF0StATZwzZOh6q2OXHFWu2gOfhnyyA0OSBrMNUBdXXlgiHEcW9789du-d-zihv824t8Ln4txWIlIMr4JsApi8BtCvfQQQDRCajXg-QwTU9aRQYudBRGVnFqlwDCVMbNaRrdr7MFXKaMc-vpNpykvWpVbu3TG_fn9Cl6YuMWnDQgfIZGqnqOHh0py3j-Av0EMGINRrwscQ9G3IARWzBiACO2YMQtGPG8wh0YsQUjHqDtJTo7nJ1Oj117coebk8irXSq9QIUQeUiVZzKWHMJwCb4tBfezyIpSwupwQkJCmAJVIT2VhbRgOqkgp5Gk5BXar5aVeo2wKoLYV1kUqjKj3CdxzGKfyiD3GJNlUY6R3y6VyC2tvT5d5VJ0hNxmeQUsrzDLK27HaNJ957ohddk5-iNIwGBgBxbG6HMrIWFVxHrHpG8eNOlb9Lj_z71D-_XqRr0HJ7jOPljI_QGujqUn |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+artificial+neural+network+and+machine+learning+in+utilizing+spatial+information&rft.jtitle=Spatial+information+research+%28Online%29&rft.au=Akash+Goel&rft.au=Amit+Kumar+Goel&rft.au=Adesh+Kumar&rft.date=2023-06-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B3%B5%EA%B0%84%EC%A0%95%EB%B3%B4%ED%95%99%ED%9A%8C&rft.issn=2366-3286&rft.eissn=2366-3294&rft.spage=275&rft.epage=285&rft_id=info:doi/10.1007%2Fs41324-022-00494-x&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10271106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-3286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-3286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-3286&client=summon |