Stem cell-based approaches: Possible route to hearing restoration?

Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneratio...

Full description

Saved in:
Bibliographic Details
Published inWorld journal of stem cells Vol. 12; no. 6; pp. 422 - 437
Main Author Durán-Alonso, María Beatriz
Format Journal Article
LanguageEnglish
Published Baishideng Publishing Group Inc 26.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneration of hair cells (HCs) in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and non-mammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneration of hair cells (HCs) in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and non-mammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.
AbstractList Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneration of hair cells (HCs) in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and non-mammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.
Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneration of hair cells (HCs) in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and non-mammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneration of hair cells (HCs) in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and non-mammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.
Author Durán-Alonso, María Beatriz
Author_xml – sequence: 1
  givenname: María Beatriz
  surname: Durán-Alonso
  fullname: Durán-Alonso, María Beatriz
BookMark eNp1kUlPwzAQhS1UREvpmWuOXNJ6yWYOIKjYpEogAWfLcSatqyQudlLEv8ehRQIkfBlrxu-zn98xGjSmAYROCZ5GNKaz97VT0y2hU534Bj1AI8KjLMSU4MGP_RBNnFtjv6I4SSJ6hIaMpp6Q4BG6fm6hDhRUVZhLB0UgNxtrpFqBOw-ejHM6ryCwpmshaE2wAml1swwsuNZY2WrTXJ6gw1JWDib7Okavtzcv8_tw8Xj3ML9ahIqluA2ZIgRnMpeSSFUyShjFaR5DmqeAaQ6SxjzHwMsy5QVXUMSMYE4TziRPOXA2Rhc77qbLaygUNK2VldhYXUv7IYzU4vek0SuxNFuRsgTzLPOAsz3AmrfOOxC1dr112YDpnKARw5izJOrvindHlfV_YKEUSrdfdj1ZV4Jg0Ucg-giEj0DoxDeo183-6L6f95_iE7WbjNw
CitedBy_id crossref_primary_10_1016_j_tice_2024_102703
crossref_primary_10_1016_j_celrep_2023_112623
crossref_primary_10_3389_fpubh_2022_1001760
crossref_primary_10_3390_cells11203331
crossref_primary_10_3389_fgene_2022_1057293
crossref_primary_10_17430_jhs_191685
crossref_primary_10_1038_s41418_020_00678_8
crossref_primary_10_7759_cureus_77286
crossref_primary_10_3390_jcm10132940
Cites_doi 10.1016/j.expneurol.2004.12.027
10.1002/term.2072
10.1016/j.ymthe.2019.03.017
10.1242/dev.166579
10.3109/00016489.2013.875220
10.1007/s10162-007-0079-6
10.2217/rme.12.58
10.1038/ncomms11508
10.3389/fnmol.2018.00137
10.3389/fnmol.2018.00452
10.3389/fcell.2019.00014
10.18632/oncotarget.11479
10.1038/s41467-018-06334-7
10.1016/j.mcn.2006.10.003
10.1073/pnas.0808044105
10.1016/j.stemcr.2017.02.003
10.1038/s41419-018-0967-1
10.2217/rme.12.65
10.1002/stem.624
10.1016/j.expneurol.2005.11.006
10.1016/j.brainres.2004.08.013
10.1016/s0925-4773(01)00642-6
10.1073/pnas.1415901112
10.1016/j.ymthe.2019.03.018
10.3727/096368913X669761
10.1097/01.wnr.0000187628.38010.5b
10.1038/nature04849
10.1038/nature25164
10.1016/j.tice.2016.06.011
10.1016/j.yexcr.2004.08.023
10.1002/ar.24065
10.1089/scd.2014.0033
10.1038/nm925
10.1523/JNEUROSCI.0967-15.2015
10.1242/dev.103036
10.1038/nbt.3840
10.1016/j.neulet.2006.12.061
10.1016/j.neulet.2016.01.016
10.1073/pnas.0408239102
10.1523/JNEUROSCI.23-11-04395.2003
10.1634/stemcells.2006-0390
10.1242/dev.119149
10.1097/WNR.0b013e32832ff287
10.1089/scd.2018.0016
10.1371/journal.pone.0162508
10.1038/nm1193
10.1016/j.ydbio.2018.08.013
10.3389/fncel.2017.00409
10.1038/mt.2013.292
10.1016/j.pharmthera.2019.05.003
10.1016/j.heares.2019.107859
10.1073/pnas.1219952110
10.1007/s10162-006-0058-3
10.1002/term.2163
10.3727/096368911X623907
10.3727/000000006783981819
10.1089/scd.2017.0142
10.1007/s00441-019-03018-6
10.2217/rme-2018-0009
10.1111/j.1460-9568.2007.05909.x
10.1089/scd.2013.0274
10.1002/neu.20310
10.3389/fnmol.2017.00426
10.3389/fcell.2019.00025
10.1371/journal.pone.0048544
10.1038/nature11415
10.1155/2018/8137614
10.1002/stem.62
10.1007/s00018-018-2950-5
10.1007/s00441-019-03115-6
10.1242/dev.177188
10.1007/s10162-011-0267-2
10.1038/cddis.2013.230
10.1016/j.gep.2010.08.008
10.1073/pnas.1408064111
10.1073/pnas.1202774109
10.1016/j.heares.2007.06.006
10.1016/j.celrep.2017.01.066
10.1038/nature12298
10.1186/s13287-018-0967-1
10.1016/j.stemcr.2019.05.014
10.1016/j.neulet.2015.05.032
10.1242/dev.087528
10.14670/HH-26.923
10.1016/j.heares.2004.12.005
10.1523/JNEUROSCI.0563-08.2008
10.1038/cddis.2012.56
10.1073/pnas.2334503100
10.1016/j.stemcr.2014.01.008
10.1126/science.284.5421.1837
10.1523/JNEUROSCI.1064-12.2012
10.1371/journal.pone.0200210
10.1016/j.cell.2010.03.035
10.1073/pnas.1605537113
ContentType Journal Article
Copyright The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved. 2020
Copyright_xml – notice: The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
– notice: The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved. 2020
DBID AAYXX
CITATION
7X8
5PM
DOI 10.4252/wjsc.v12.i6.422
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1948-0210
EndPage 437
ExternalDocumentID PMC7360988
10_4252_wjsc_v12_i6_422
GroupedDBID 53G
5VR
8WL
AAKDD
AAYXX
ADBBV
AFUIB
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CCEZO
CHBEP
CIEJG
CITATION
CW9
DIK
F5P
FA0
GX1
HYE
OK1
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c370t-3c1108abaa1acf3213207b5e7b7e02bea259b0e9ff79d9ced531092693a979e93
ISSN 1948-0210
IngestDate Thu Aug 21 14:11:27 EDT 2025
Fri Jul 11 06:57:56 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Tue Jul 01 03:20:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-3c1108abaa1acf3213207b5e7b7e02bea259b0e9ff79d9ced531092693a979e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Corresponding author: María Beatriz Durán-Alonso, PhD, Postdoctoral Fellow, Postdoctoral scientist, Institute of Biology and Molecular Genetics, University of Valladolid, C/ Sanz y Forés 3, Valladolid 47003, Spain. mariabeatriz.duran@uva.es
Author contributions: Durán-Alonso MB revised the published data and wrote the paper.
OpenAccessLink https://www.wjgnet.com/1948-0210/full/v12/i6/422.htm
PMID 32742560
PQID 2430093649
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7360988
proquest_miscellaneous_2430093649
crossref_citationtrail_10_4252_wjsc_v12_i6_422
crossref_primary_10_4252_wjsc_v12_i6_422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-6-26
20200626
PublicationDateYYYYMMDD 2020-06-26
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-6-26
  day: 26
PublicationDecade 2020
PublicationTitle World journal of stem cells
PublicationYear 2020
Publisher Baishideng Publishing Group Inc
Publisher_xml – name: Baishideng Publishing Group Inc
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref93
ref92
ref51
ref95
ref50
ref94
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref8
  doi: 10.1016/j.expneurol.2004.12.027
– ident: ref22
  doi: 10.1002/term.2072
– ident: ref94
  doi: 10.1016/j.ymthe.2019.03.017
– ident: ref93
  doi: 10.1242/dev.166579
– ident: ref9
  doi: 10.3109/00016489.2013.875220
– ident: ref16
  doi: 10.1007/s10162-007-0079-6
– ident: ref19
  doi: 10.2217/rme.12.58
– ident: ref62
  doi: 10.1038/ncomms11508
– ident: ref92
  doi: 10.3389/fnmol.2018.00137
– ident: ref38
  doi: 10.3389/fnmol.2018.00452
– ident: ref77
  doi: 10.3389/fcell.2019.00014
– ident: ref82
  doi: 10.18632/oncotarget.11479
– ident: ref14
  doi: 10.1038/s41467-018-06334-7
– ident: ref18
  doi: 10.1016/j.mcn.2006.10.003
– ident: ref6
  doi: 10.1073/pnas.0808044105
– ident: ref89
  doi: 10.1016/j.stemcr.2017.02.003
– ident: ref55
  doi: 10.1038/s41419-018-0967-1
– ident: ref20
  doi: 10.2217/rme.12.65
– ident: ref24
  doi: 10.1002/stem.624
– ident: ref48
  doi: 10.1016/j.expneurol.2005.11.006
– ident: ref32
  doi: 10.1016/j.brainres.2004.08.013
– ident: ref66
  doi: 10.1016/s0925-4773(01)00642-6
– ident: ref81
  doi: 10.1073/pnas.1415901112
– ident: ref40
  doi: 10.1016/j.ymthe.2019.03.018
– ident: ref90
  doi: 10.3727/096368913X669761
– ident: ref49
  doi: 10.1097/01.wnr.0000187628.38010.5b
– ident: ref63
  doi: 10.1038/nature04849
– ident: ref2
  doi: 10.1038/nature25164
– ident: ref29
  doi: 10.1016/j.tice.2016.06.011
– ident: ref7
  doi: 10.1016/j.yexcr.2004.08.023
– ident: ref23
  doi: 10.1002/ar.24065
– ident: ref35
  doi: 10.1089/scd.2014.0033
– ident: ref67
  doi: 10.1038/nm925
– ident: ref83
  doi: 10.1523/JNEUROSCI.0967-15.2015
– ident: ref78
  doi: 10.1242/dev.103036
– ident: ref53
  doi: 10.1038/nbt.3840
– ident: ref68
  doi: 10.1016/j.neulet.2006.12.061
– ident: ref12
  doi: 10.1016/j.neulet.2016.01.016
– ident: ref17
  doi: 10.1073/pnas.0408239102
– ident: ref70
  doi: 10.1523/JNEUROSCI.23-11-04395.2003
– ident: ref10
  doi: 10.1634/stemcells.2006-0390
– ident: ref44
  doi: 10.1242/dev.119149
– ident: ref50
  doi: 10.1097/WNR.0b013e32832ff287
– ident: ref87
  doi: 10.1089/scd.2018.0016
– ident: ref58
  doi: 10.1371/journal.pone.0162508
– ident: ref71
  doi: 10.1038/nm1193
– ident: ref59
  doi: 10.1016/j.ydbio.2018.08.013
– ident: ref54
  doi: 10.3389/fncel.2017.00409
– ident: ref86
  doi: 10.1038/mt.2013.292
– ident: ref4
  doi: 10.1016/j.pharmthera.2019.05.003
– ident: ref5
  doi: 10.1016/j.heares.2019.107859
– ident: ref80
  doi: 10.1073/pnas.1219952110
– ident: ref33
– ident: ref64
  doi: 10.1007/s10162-006-0058-3
– ident: ref37
  doi: 10.1002/term.2163
– ident: ref88
  doi: 10.3727/096368911X623907
– ident: ref47
  doi: 10.3727/000000006783981819
– ident: ref57
  doi: 10.1089/scd.2017.0142
– ident: ref91
  doi: 10.1007/s00441-019-03018-6
– ident: ref11
  doi: 10.2217/rme-2018-0009
– ident: ref45
  doi: 10.1111/j.1460-9568.2007.05909.x
– ident: ref21
  doi: 10.1089/scd.2013.0274
– ident: ref46
  doi: 10.1002/neu.20310
– ident: ref84
  doi: 10.3389/fnmol.2017.00426
– ident: ref56
  doi: 10.3389/fcell.2019.00025
– ident: ref75
  doi: 10.1371/journal.pone.0048544
– ident: ref13
  doi: 10.1038/nature11415
– ident: ref3
  doi: 10.1155/2018/8137614
– ident: ref28
  doi: 10.1002/stem.62
– ident: ref31
  doi: 10.1007/s00018-018-2950-5
– ident: ref95
  doi: 10.1007/s00441-019-03115-6
– ident: ref60
  doi: 10.1242/dev.177188
– ident: ref76
  doi: 10.1007/s10162-011-0267-2
– ident: ref42
  doi: 10.1038/cddis.2013.230
– ident: ref69
  doi: 10.1016/j.gep.2010.08.008
– ident: ref73
  doi: 10.1073/pnas.1408064111
– ident: ref79
  doi: 10.1073/pnas.1202774109
– ident: ref27
  doi: 10.1016/j.heares.2007.06.006
– ident: ref85
  doi: 10.1016/j.celrep.2017.01.066
– ident: ref52
  doi: 10.1038/nature12298
– ident: ref39
  doi: 10.1186/s13287-018-0967-1
– ident: ref61
  doi: 10.1016/j.stemcr.2019.05.014
– ident: ref43
  doi: 10.1016/j.neulet.2015.05.032
– ident: ref72
  doi: 10.1242/dev.087528
– ident: ref1
  doi: 10.14670/HH-26.923
– ident: ref15
  doi: 10.1016/j.heares.2004.12.005
– ident: ref30
  doi: 10.1523/JNEUROSCI.0563-08.2008
– ident: ref41
  doi: 10.1038/cddis.2012.56
– ident: ref25
  doi: 10.1073/pnas.2334503100
– ident: ref74
  doi: 10.1016/j.stemcr.2014.01.008
– ident: ref26
  doi: 10.1126/science.284.5421.1837
– ident: ref65
  doi: 10.1523/JNEUROSCI.1064-12.2012
– ident: ref51
  doi: 10.1371/journal.pone.0200210
– ident: ref34
  doi: 10.1016/j.cell.2010.03.035
– ident: ref36
  doi: 10.1073/pnas.1605537113
SSID ssj0000456642
Score 2.1678684
SecondaryResourceType review_article
Snippet Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 422
SubjectTerms Review
Title Stem cell-based approaches: Possible route to hearing restoration?
URI https://www.proquest.com/docview/2430093649
https://pubmed.ncbi.nlm.nih.gov/PMC7360988
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0ovRF_MTzixV8EEpisrvJ3voibf0oQqVgC_cWdnObenJNSi-n2L_emezm61TQvoSwd5slM79MdiYzvyHkpRBcc5A-POJcg4MCZ0oJFfB0XiDEhGx6HR5-Tg9OxKdZMhtUXGN1SW3C_PKPdSVX0SqMgV6xSvY_NNtdFAbgHPQLR9AwHP9Jx19qe7aDofcAX0bzjiDc5bkdVYj3JWYQYjIAbDKxezWGBi6adjI-r2OU2OdyawZ0Eqt2ib4B_dp9XY_LYHcJd1b5kp9m8J3e2bPI-n85DCcw7DoTuJp1FzPDps_YzvT0tzhYl5lpnalUYhqgxziypWyAmaFhFK762L9jhSN62TTfYD-QDvbHt1Uefo9ZuEhDP2-gzPOzRpscvzEnrhfBBmP20eG-5GmkptPr5AYD9wE7W3ycxV3sDbex4Hc5pidc9PXGktvkVnv98X6ld0LGKbSDPcnxHXLbOxN01yHjLrlmy3vkpmsv-vM-2UN80B4ftMfHG9qigzbooHVFPTroAB1vH5CTD--P9w8C3zMjyLmM6oDnWNehjdaxzgvOsEJemsRKI23EjNXg7prIYqRezVVu5wlSw7JUca2ksoo_JFtlVdpHhDIuiyK1iTD5VEQ20UbyIomNVaYQwpgJCVvJZLknlMe-JssMHEuUaoZSzUCq2SKFATYhr7oJ545L5e9_fdGKOgN7h5LSpa3Wq4wJjlG4VKgJkSMddNdExvTxL-Xia8Oc7mHx-Mozn5Dt_qF5Srbqi7V9BrvS2jxvIPYLBJGSUA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stem+cell-based+approaches%3A+Possible+route+to+hearing+restoration%3F&rft.jtitle=World+journal+of+stem+cells&rft.au=Dur%C3%A1n-Alonso%2C+Mar%C3%ADa+Beatriz&rft.date=2020-06-26&rft.pub=Baishideng+Publishing+Group+Inc&rft.eissn=1948-0210&rft.volume=12&rft.issue=6&rft.spage=422&rft.epage=437&rft_id=info:doi/10.4252%2Fwjsc.v12.i6.422&rft_id=info%3Apmid%2F32742560&rft.externalDocID=PMC7360988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-0210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-0210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-0210&client=summon