Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms
► AMP-activated protein kinase (AMPK) has a key role in glucose metabolism of muscle. ► The activation of AMPK leads to GLUT4 translocation and glucose uptake in muscle. ► Saffron treatment stimulates glucose uptake via AMPK/ACC and MAPKs pathways. ► Saffron and insulin have a synergistic effect on...
Saved in:
Published in | Food chemistry Vol. 135; no. 4; pp. 2350 - 2358 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.12.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0308-8146 1873-7072 1873-7072 |
DOI | 10.1016/j.foodchem.2012.06.092 |
Cover
Loading…
Abstract | ► AMP-activated protein kinase (AMPK) has a key role in glucose metabolism of muscle. ► The activation of AMPK leads to GLUT4 translocation and glucose uptake in muscle. ► Saffron treatment stimulates glucose uptake via AMPK/ACC and MAPKs pathways. ► Saffron and insulin have a synergistic effect on glucose metabolism in muscle cells.
Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C2C12 skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients. |
---|---|
AbstractList | Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients. Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C₂C₁₂ skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients. Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients. ► AMP-activated protein kinase (AMPK) has a key role in glucose metabolism of muscle. ► The activation of AMPK leads to GLUT4 translocation and glucose uptake in muscle. ► Saffron treatment stimulates glucose uptake via AMPK/ACC and MAPKs pathways. ► Saffron and insulin have a synergistic effect on glucose metabolism in muscle cells. Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C2C12 skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients. |
Author | Kang, Changkeun Seyedian, Ramin Kim, Jehein Jung, Eun-Sun Lee, Hyunkyoung Kim, Jong-Shu Kim, Euikyung Jo, MiNa |
Author_xml | – sequence: 1 givenname: Changkeun surname: Kang fullname: Kang, Changkeun organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 2 givenname: Hyunkyoung surname: Lee fullname: Lee, Hyunkyoung organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 3 givenname: Eun-Sun surname: Jung fullname: Jung, Eun-Sun organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 4 givenname: Ramin surname: Seyedian fullname: Seyedian, Ramin organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 5 givenname: MiNa surname: Jo fullname: Jo, MiNa organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 6 givenname: Jehein surname: Kim fullname: Kim, Jehein organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 7 givenname: Jong-Shu surname: Kim fullname: Kim, Jong-Shu organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea – sequence: 8 givenname: Euikyung surname: Kim fullname: Kim, Euikyung email: ekim@gnu.ac.kr organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26385102$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22980812$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPAXyh7QSqHLOP1dj8kDkURX1IkDqVnyzseNw67drB3A_n3OEoKEpecRho_r_3KzxW7cN4RY9cccg68erfJjfca1zTkBfAihyqHtnjGZrypxaKGurhgMxDQLBpeVpfsKsYNACS2ecEui6JtoOHFjP2-V8YE77KbZfA4xSyq0e7SXOVvM-swkIoUs8d-Qh8pm7aj-kGZcjodxqm3Lovkok0ZO-7TLhumiD1lSH0fs51VadGPdqvG9S-1zwbCtXI2DvEle25UH-nVac7Zw6eP35dfFqtvn78uP6wWKGoYF6KusOFcG67brgDsylqYqq2wFi1BSXXLtehQU6u1KRFbjp0BjQWYlneiEHN2c7x3G_zPieIoBxsP7ZQjP0XJRXULRc0FnEehhLYtq1Rhzq5P6NQNpOU22EGFvXz62AS8OQEqoupNUA5t_MdVornlcOCqI4fBxxjI_EU4yINpuZFPpuXBtIRKJtMp-P6_INoxufNuDMr25-Ovj3GjvFSPIXV7uE9ACcDrsgGeiLsjQcnOzlKQES05JG0D4Si1t-ce-QNTi9NR |
CODEN | FOCHDJ |
CitedBy_id | crossref_primary_10_1016_j_jep_2023_117255 crossref_primary_10_2174_1389557519666181128120726 crossref_primary_10_1002_vms3_70155 crossref_primary_10_1002_14651858_CD012950 crossref_primary_10_1186_s13007_019_0487_8 crossref_primary_10_1186_s12967_015_0412_5 crossref_primary_10_1186_s13098_024_01530_6 crossref_primary_10_3389_fnut_2022_1055517 crossref_primary_10_1016_j_foodchem_2016_11_086 crossref_primary_10_1016_j_numecd_2017_08_005 crossref_primary_10_1016_j_ctim_2019_07_017 crossref_primary_10_2174_1573394716999200831113335 crossref_primary_10_1007_s11011_022_01059_5 crossref_primary_10_1007_s12031_017_0899_8 crossref_primary_10_1002_jcp_27843 crossref_primary_10_3390_nu12051424 crossref_primary_10_1007_s00210_024_02970_7 crossref_primary_10_1016_j_jff_2015_10_013 crossref_primary_10_1080_23311932_2019_1577532 crossref_primary_10_3389_fnut_2024_1349006 crossref_primary_10_1111_bcp_15222 crossref_primary_10_1016_j_prmcm_2022_100136 crossref_primary_10_1016_j_clnesp_2019_07_012 crossref_primary_10_1038_srep25139 crossref_primary_10_1155_2017_6091923 crossref_primary_10_3109_13880209_2015_1077871 crossref_primary_10_3390_nu13114050 crossref_primary_10_1016_j_hermed_2024_100877 crossref_primary_10_1002_edm2_70016 crossref_primary_10_1016_j_dsx_2021_102311 crossref_primary_10_1016_j_microc_2025_112714 crossref_primary_10_1002_ptr_7286 crossref_primary_10_1007_s00210_024_03131_6 crossref_primary_10_1002_ptr_7600 crossref_primary_10_1007_s13105_017_0594_9 crossref_primary_10_1080_10942912_2020_1807567 crossref_primary_10_1016_j_taap_2022_115939 crossref_primary_10_3390_molecules24224030 crossref_primary_10_3109_14756366_2015_1016510 crossref_primary_10_1371_journal_pone_0295212 crossref_primary_10_1080_09540105_2016_1259293 crossref_primary_10_1111_jphp_12456 crossref_primary_10_1016_j_jep_2015_08_010 crossref_primary_10_1186_s13098_020_00568_6 crossref_primary_10_1177_11786388221095223 crossref_primary_10_3390_molecules25225223 crossref_primary_10_1016_j_physbeh_2021_113352 crossref_primary_10_1002_ptr_6181 crossref_primary_10_1002_ptr_7474 crossref_primary_10_1016_j_jfda_2018_07_002 crossref_primary_10_1002_ptr_6420 crossref_primary_10_1021_jf403092b crossref_primary_10_3390_nu14010175 crossref_primary_10_1002_biof_2043 crossref_primary_10_1016_j_jep_2021_114555 crossref_primary_10_2174_1570163820666230411111343 crossref_primary_10_7717_peerj_14639 crossref_primary_10_1093_nutrit_nuae121 crossref_primary_10_1515_hmbci_2021_0005 crossref_primary_10_1002_jsfa_8134 crossref_primary_10_1002_ptr_6748 crossref_primary_10_1016_j_ejmech_2019_111903 crossref_primary_10_1016_j_exger_2022_111756 crossref_primary_10_1080_10496475_2016_1272522 crossref_primary_10_1159_000375305 crossref_primary_10_1002_ptr_7260 crossref_primary_10_1016_j_foodchem_2021_131860 crossref_primary_10_3390_nu15224774 crossref_primary_10_1111_ijcp_14334 crossref_primary_10_1155_2022_9622546 crossref_primary_10_1155_2024_8300428 crossref_primary_10_3390_nu16142319 crossref_primary_10_3390_nu16132089 crossref_primary_10_1002_ptr_7542 crossref_primary_10_1021_acs_jafc_7b03762 crossref_primary_10_1371_journal_pone_0064924 crossref_primary_10_3389_fphar_2023_1182937 crossref_primary_10_1016_j_ctim_2020_102298 crossref_primary_10_3390_ijms24043909 crossref_primary_10_1016_j_jff_2024_106507 crossref_primary_10_1021_acs_jafc_7b00578 crossref_primary_10_1016_j_clnesp_2022_01_022 |
Cites_doi | 10.1016/j.cdp.2004.09.002 10.1016/j.lfs.2005.02.006 10.1016/j.tibs.2003.11.005 10.1113/jphysiol.2005.103481 10.1074/jbc.273.9.5315 10.1002/(SICI)1099-1573(200005)14:3<149::AID-PTR665>3.0.CO;2-5 10.1152/ajpendo.00678.2007 10.2337/diabetes.50.6.1464 10.3923/jbs.2009.302.310 10.1128/MCB.26.1.63-76.2006 10.1152/ajpendo.00566.2005 10.1016/j.ejphar.2010.08.021 10.1172/JCI34260 10.1111/j.1541-4337.2008.00048.x 10.1111/j.1464-5491.2006.01858.x 10.1016/j.fct.2010.05.073 10.1016/j.ejphar.2008.04.036 10.1016/S0092-8674(03)00929-2 10.1080/09637480500512872 10.1016/j.fct.2009.11.004 10.1210/en.2004-1565 10.1016/0022-1759(83)90303-4 10.1186/1471-2210-2-7 10.2337/db06-0006 10.1016/j.biocel.2005.03.002 10.1038/nature02866 10.1152/jappl.2001.91.3.1073 10.2337/diab.30.12.1000 10.1016/S0959-437X(98)80062-2 10.1016/j.jnutbio.2009.02.003 10.1074/jbc.M305371200 10.1002/jcp.22093 10.1007/s10354-007-0428-4 10.1042/BST0330362 10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2015 INIST-CNRS Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.foodchem.2012.06.092 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1873-7072 |
EndPage | 2358 |
ExternalDocumentID | 22980812 26385102 10_1016_j_foodchem_2012_06_092 US201400174801 S0308814612010655 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ ABGRD ABWVN ACRPL ADNMO AEIPS AFJKZ AGHFR AGRDE AI. AKRWK ANKPU ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 HLV HVGLF R2- SCB SEW VH1 WUQ Y6R AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-376c811df1d9b20cb473f696c739e04e791d3bcde9ddf4cc91cbf0dc20f91b323 |
IEDL.DBID | .~1 |
ISSN | 0308-8146 1873-7072 |
IngestDate | Fri Jul 11 00:23:45 EDT 2025 Thu Jul 10 19:12:15 EDT 2025 Thu Apr 03 06:59:48 EDT 2025 Mon Jul 21 09:14:45 EDT 2025 Thu Apr 24 23:05:38 EDT 2025 Tue Jul 01 01:14:49 EDT 2025 Fri Mar 28 10:35:41 EDT 2025 Fri Feb 23 02:25:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | AMPK Glucose uptake Saffron Skeletal muscle cells Insulin sensitivity Iridaceae Monocotyledones Crocus sativus Spice Glucose Insulin Uptake Mechanism Sensitivity Angiospermae Carbohydrate Spermatophyta Muscle |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-376c811df1d9b20cb473f696c739e04e791d3bcde9ddf4cc91cbf0dc20f91b323 |
Notes | http://dx.doi.org/10.1016/j.foodchem.2012.06.092 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22980812 |
PQID | 1040994647 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1365027130 proquest_miscellaneous_1040994647 pubmed_primary_22980812 pascalfrancis_primary_26385102 crossref_primary_10_1016_j_foodchem_2012_06_092 crossref_citationtrail_10_1016_j_foodchem_2012_06_092 fao_agris_US201400174801 elsevier_sciencedirect_doi_10_1016_j_foodchem_2012_06_092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-15 |
PublicationDateYYYYMMDD | 2012-12-15 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Food chemistry |
PublicationTitleAlternate | Food Chem |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Alberti, Zimmet, Shaw (b0015) 2006; 23 Sato, Iemitsu, Aizawa, Ajisaka (b0130) 2008; 294 Pinent, Castell, Baiges, Montagut, Arola, Ardévol (b0115) 2008; 7 Tzatsos, Kandror (b0155) 2006; 26 Kim, Park, Kim, Lee, Lee, Jung, You, Park, Suh, Kim (b0070) 2010; 223 Rios, Recio, Giner, Manez (b0120) 1996; 10 Schmidt, Betti, Hensel (b0140) 2007; 157 Schenk, Saberi, Olefsky (b0135) 2008; 118 Kang, Kim (b0060) 2010; 48 Li, Ge, Zheng, Zhang (b0090) 2008; 588 Montagut, Onnockx, Vaqué, Bladé, Blay, Fernández-Larrea, Pujadas, Salvadó, Arola, Pirson, Ardévol, Pinent (b0100) 2010; 21 Um, Frigerio, Watanabe, Picard, Joaquin, Sticker, Fumagalli, Allegrini, Kozma, Auwerx, Thomas (b0165) 2004; 431 Abe, Saito (b0010) 2000; 14 Williamson, Bolster, Kimball, Jefferson (b0175) 2006; 291 Mosmann (b0105) 1983; 65 Fryer, Carling (b0035) 2005; 33 Konrad, Somwar, Sweeney, Yaworsky, Hayashi, Ramlal, Klip (b0075) 2001; 50 Kovacic, Soltys, Barr, Shiojima, Walsh, Dyck (b0080) 2003; 278 Sampathu, Shivashankar, Lewis, Wood (b0125) 1984; 20 Kang, Jin, Lee, Cha, Sohn, Moon, Park, Chun, Jung, Hong, Kim, Kim, Kim (b0065) 2010; 48 He, Qian, Tang, Wen, Xu, Sheng (b0040) 2005; 77 Lee, Kim, Kim, Yoon, Cho, Shen, Ye, Lee, Oh, Kim, Hohnen-Behrens, Gosby, Kraegen, James, Kim (b0085) 2006; 55 Huang, Chang, Huang, Lin, Lin, Chang (b0050) 2010; 648 Srinivasan (b0150) 2005; 56 Williamson, Kubica, Kimball, Jefferson (b0170) 2006; 573 Inoki, Zhu, Guan (b0055) 2003; 115 Pelletier, Joly, Prentki, Coderre (b0110) 2005; 146 DeFronzo, Jacot, Jequier, Maeder, Wahren, Felber (b0030) 1981; 30 Abdullaev, Espinosa-Aguirre (b0005) 2004; 28 Alessi, Cohen (b0020) 1998; 8 Carling (b0025) 2004; 29 Hosseinzadeh, Younesi (b0045) 2002; 2 Mohajeri, Mousavi, Doustar (b0095) 2009; 9 Zheng, MacLean, Pohnert, Knight, Olson, Winder, Dohm (b0180) 2001; 91 Ueki, Yamamoto-Honda, Kaburagi, Yamauchi, Tobe, Burgering, Coffer, Komuro, Akanuma, Yazaki, Kadowaki (b0160) 1998; 273 Smith, Muscat (b0145) 2005; 37 Um (10.1016/j.foodchem.2012.06.092_b0165) 2004; 431 Kim (10.1016/j.foodchem.2012.06.092_b0070) 2010; 223 Abe (10.1016/j.foodchem.2012.06.092_b0010) 2000; 14 Abdullaev (10.1016/j.foodchem.2012.06.092_b0005) 2004; 28 Williamson (10.1016/j.foodchem.2012.06.092_b0170) 2006; 573 Mohajeri (10.1016/j.foodchem.2012.06.092_b0095) 2009; 9 Schenk (10.1016/j.foodchem.2012.06.092_b0135) 2008; 118 Carling (10.1016/j.foodchem.2012.06.092_b0025) 2004; 29 Rios (10.1016/j.foodchem.2012.06.092_b0120) 1996; 10 Hosseinzadeh (10.1016/j.foodchem.2012.06.092_b0045) 2002; 2 Sato (10.1016/j.foodchem.2012.06.092_b0130) 2008; 294 Smith (10.1016/j.foodchem.2012.06.092_b0145) 2005; 37 Alberti (10.1016/j.foodchem.2012.06.092_b0015) 2006; 23 Lee (10.1016/j.foodchem.2012.06.092_b0085) 2006; 55 Alessi (10.1016/j.foodchem.2012.06.092_b0020) 1998; 8 Kovacic (10.1016/j.foodchem.2012.06.092_b0080) 2003; 278 Pinent (10.1016/j.foodchem.2012.06.092_b0115) 2008; 7 Sampathu (10.1016/j.foodchem.2012.06.092_b0125) 1984; 20 Li (10.1016/j.foodchem.2012.06.092_b0090) 2008; 588 Williamson (10.1016/j.foodchem.2012.06.092_b0175) 2006; 291 Montagut (10.1016/j.foodchem.2012.06.092_b0100) 2010; 21 Inoki (10.1016/j.foodchem.2012.06.092_b0055) 2003; 115 Pelletier (10.1016/j.foodchem.2012.06.092_b0110) 2005; 146 Schmidt (10.1016/j.foodchem.2012.06.092_b0140) 2007; 157 Tzatsos (10.1016/j.foodchem.2012.06.092_b0155) 2006; 26 Ueki (10.1016/j.foodchem.2012.06.092_b0160) 1998; 273 Zheng (10.1016/j.foodchem.2012.06.092_b0180) 2001; 91 Fryer (10.1016/j.foodchem.2012.06.092_b0035) 2005; 33 Kang (10.1016/j.foodchem.2012.06.092_b0060) 2010; 48 He (10.1016/j.foodchem.2012.06.092_b0040) 2005; 77 Huang (10.1016/j.foodchem.2012.06.092_b0050) 2010; 648 Mosmann (10.1016/j.foodchem.2012.06.092_b0105) 1983; 65 DeFronzo (10.1016/j.foodchem.2012.06.092_b0030) 1981; 30 Kang (10.1016/j.foodchem.2012.06.092_b0065) 2010; 48 Konrad (10.1016/j.foodchem.2012.06.092_b0075) 2001; 50 Srinivasan (10.1016/j.foodchem.2012.06.092_b0150) 2005; 56 |
References_xml | – volume: 10 start-page: 189193 year: 1996 ident: b0120 article-title: An update review of saffron and its active constituents publication-title: Phytotherapy Research – volume: 48 start-page: 509516 year: 2010 ident: b0065 article-title: Brown alga publication-title: Food and Chemical Toxicology – volume: 431 start-page: 200205 year: 2004 ident: b0165 article-title: Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity publication-title: Nature – volume: 65 start-page: 5563 year: 1983 ident: b0105 article-title: Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays publication-title: Journal of Immunological Methods – volume: 23 start-page: 469480 year: 2006 ident: b0015 article-title: Metabolic syndromea new world-wide definition. A consensus statement from the international diabetes federation publication-title: Diabetic Medicine – volume: 14 start-page: 149152 year: 2000 ident: b0010 article-title: Effects of saffron extract and its constituent crocin on learning behaviour and long term potentiation publication-title: Phytotherapy Research – volume: 118 start-page: 29923002 year: 2008 ident: b0135 article-title: Insulin sensitivity: Modulation by nutrients and inflammation publication-title: Journal of Clinical Investigation – volume: 9 start-page: 302310 year: 2009 ident: b0095 article-title: Antihyperglycemic and pancreas-protective effects of publication-title: Journal of Biological Sciences – volume: 30 start-page: 10001007 year: 1981 ident: b0030 article-title: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization publication-title: Diabetes – volume: 588 start-page: 165169 year: 2008 ident: b0090 article-title: Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase publication-title: European Journal of Pharmacology – volume: 20 start-page: 123157 year: 1984 ident: b0125 article-title: Saffron ( publication-title: Critical Reviews in Food Science and Nutrition – volume: 28 start-page: 426432 year: 2004 ident: b0005 article-title: Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials publication-title: Cancer Detection and Prevention – volume: 648 start-page: 3949 year: 2010 ident: b0050 article-title: Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation publication-title: European Journal of Pharmacology – volume: 573 start-page: 497510 year: 2006 ident: b0170 article-title: Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle publication-title: Journal of Physiology – volume: 29 start-page: 1824 year: 2004 ident: b0025 article-title: The AMP-activated protein kinase cascade-a unifying system for energy control publication-title: Trends in Biochemical Science – volume: 157 start-page: 315319 year: 2007 ident: b0140 article-title: Saffron in phytotherapy: Pharmacology and clinical uses publication-title: Wiener Medizinische Wochenschrift – volume: 294 start-page: E961968 year: 2008 ident: b0130 article-title: Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle publication-title: American Journal of Physiology Endocrinology Metabolism – volume: 21 start-page: 476481 year: 2010 ident: b0100 article-title: Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin publication-title: Journal of Nutritional Biochemistry – volume: 37 start-page: 20472063 year: 2005 ident: b0145 article-title: Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease publication-title: International Journal of Biochemistry and Cell Biology – volume: 8 start-page: 5562 year: 1998 ident: b0020 article-title: Mechanism of activation and function of protein kinase B publication-title: Current Opinion in Genetics & Development – volume: 77 start-page: 907921 year: 2005 ident: b0040 article-title: Effect of crocin on experimental atherosclerosis in quails and its mechanisms publication-title: Life Sciences – volume: 278 start-page: 3942239427 year: 2003 ident: b0080 article-title: Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart publication-title: Journal of Biological Chemistry – volume: 223 start-page: 771778 year: 2010 ident: b0070 article-title: Curcumin stimulates glucose uptake through AMPK p38 MAPK pathways in L6 myotube cells publication-title: Journal of Cellular Physiology – volume: 91 start-page: 10731083 year: 2001 ident: b0180 article-title: Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase publication-title: Journal of Applied Physiology – volume: 273 start-page: 53155322 year: 1998 ident: b0160 article-title: Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis publication-title: Journal of Biological Chemistry – volume: 291 start-page: E8089 year: 2006 ident: b0175 article-title: Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR publication-title: American Journal of Physiology Endocrinology Metabolism – volume: 55 start-page: 22562264 year: 2006 ident: b0085 article-title: Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states publication-title: Diabetes – volume: 56 start-page: 399414 year: 2005 ident: b0150 article-title: Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts publication-title: International Journal of Food Sciences and Nutrition – volume: 2 start-page: 7 year: 2002 ident: b0045 article-title: Antinociceptive and anti-inflammatory effects of publication-title: BMC Pharmacology – volume: 115 start-page: 577590 year: 2003 ident: b0055 article-title: TSC2 mediates cellular energy response to control cell growth and survival publication-title: Cell – volume: 26 start-page: 6376 year: 2006 ident: b0155 article-title: Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation publication-title: Molecular and Cellular Biology – volume: 7 start-page: 299308 year: 2008 ident: b0115 article-title: Bioactivity of flavonoids on insulin secreting cells publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 33 start-page: 362366 year: 2005 ident: b0035 article-title: AMP-activated protein kinase and the metabolic syndrome publication-title: Biochemical Society Transactions – volume: 48 start-page: 23662373 year: 2010 ident: b0060 article-title: Synergistic effect of curcumin and insulin on muscle cell glucose metabolism publication-title: Food and Chemical Toxicology – volume: 146 start-page: 22852294 year: 2005 ident: b0110 article-title: Adenosine 5’-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes publication-title: Endocrinology – volume: 50 start-page: 14641471 year: 2001 ident: b0075 article-title: The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: Potential role of p38 mitogen-activated protein kinase in GLUT4 activation publication-title: Diabetes – volume: 28 start-page: 426432 year: 2004 ident: 10.1016/j.foodchem.2012.06.092_b0005 article-title: Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials publication-title: Cancer Detection and Prevention doi: 10.1016/j.cdp.2004.09.002 – volume: 77 start-page: 907921 year: 2005 ident: 10.1016/j.foodchem.2012.06.092_b0040 article-title: Effect of crocin on experimental atherosclerosis in quails and its mechanisms publication-title: Life Sciences doi: 10.1016/j.lfs.2005.02.006 – volume: 29 start-page: 1824 year: 2004 ident: 10.1016/j.foodchem.2012.06.092_b0025 article-title: The AMP-activated protein kinase cascade-a unifying system for energy control publication-title: Trends in Biochemical Science doi: 10.1016/j.tibs.2003.11.005 – volume: 573 start-page: 497510 year: 2006 ident: 10.1016/j.foodchem.2012.06.092_b0170 article-title: Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle publication-title: Journal of Physiology doi: 10.1113/jphysiol.2005.103481 – volume: 273 start-page: 53155322 year: 1998 ident: 10.1016/j.foodchem.2012.06.092_b0160 article-title: Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.273.9.5315 – volume: 14 start-page: 149152 year: 2000 ident: 10.1016/j.foodchem.2012.06.092_b0010 article-title: Effects of saffron extract and its constituent crocin on learning behaviour and long term potentiation publication-title: Phytotherapy Research doi: 10.1002/(SICI)1099-1573(200005)14:3<149::AID-PTR665>3.0.CO;2-5 – volume: 294 start-page: E961968 year: 2008 ident: 10.1016/j.foodchem.2012.06.092_b0130 article-title: Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle publication-title: American Journal of Physiology Endocrinology Metabolism doi: 10.1152/ajpendo.00678.2007 – volume: 50 start-page: 14641471 year: 2001 ident: 10.1016/j.foodchem.2012.06.092_b0075 article-title: The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: Potential role of p38 mitogen-activated protein kinase in GLUT4 activation publication-title: Diabetes doi: 10.2337/diabetes.50.6.1464 – volume: 9 start-page: 302310 year: 2009 ident: 10.1016/j.foodchem.2012.06.092_b0095 article-title: Antihyperglycemic and pancreas-protective effects of Crocus sativus L. (Saffron) stigma ethanolic extract on rats with alloxan-induced diabetes publication-title: Journal of Biological Sciences doi: 10.3923/jbs.2009.302.310 – volume: 26 start-page: 6376 year: 2006 ident: 10.1016/j.foodchem.2012.06.092_b0155 article-title: Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.26.1.63-76.2006 – volume: 291 start-page: E8089 year: 2006 ident: 10.1016/j.foodchem.2012.06.092_b0175 article-title: Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR publication-title: American Journal of Physiology Endocrinology Metabolism doi: 10.1152/ajpendo.00566.2005 – volume: 648 start-page: 3949 year: 2010 ident: 10.1016/j.foodchem.2012.06.092_b0050 article-title: Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation publication-title: European Journal of Pharmacology doi: 10.1016/j.ejphar.2010.08.021 – volume: 118 start-page: 29923002 year: 2008 ident: 10.1016/j.foodchem.2012.06.092_b0135 article-title: Insulin sensitivity: Modulation by nutrients and inflammation publication-title: Journal of Clinical Investigation doi: 10.1172/JCI34260 – volume: 7 start-page: 299308 year: 2008 ident: 10.1016/j.foodchem.2012.06.092_b0115 article-title: Bioactivity of flavonoids on insulin secreting cells publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/j.1541-4337.2008.00048.x – volume: 23 start-page: 469480 year: 2006 ident: 10.1016/j.foodchem.2012.06.092_b0015 article-title: Metabolic syndromea new world-wide definition. A consensus statement from the international diabetes federation publication-title: Diabetic Medicine doi: 10.1111/j.1464-5491.2006.01858.x – volume: 48 start-page: 23662373 year: 2010 ident: 10.1016/j.foodchem.2012.06.092_b0060 article-title: Synergistic effect of curcumin and insulin on muscle cell glucose metabolism publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2010.05.073 – volume: 588 start-page: 165169 year: 2008 ident: 10.1016/j.foodchem.2012.06.092_b0090 article-title: Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase publication-title: European Journal of Pharmacology doi: 10.1016/j.ejphar.2008.04.036 – volume: 115 start-page: 577590 year: 2003 ident: 10.1016/j.foodchem.2012.06.092_b0055 article-title: TSC2 mediates cellular energy response to control cell growth and survival publication-title: Cell doi: 10.1016/S0092-8674(03)00929-2 – volume: 56 start-page: 399414 year: 2005 ident: 10.1016/j.foodchem.2012.06.092_b0150 article-title: Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts publication-title: International Journal of Food Sciences and Nutrition doi: 10.1080/09637480500512872 – volume: 48 start-page: 509516 year: 2010 ident: 10.1016/j.foodchem.2012.06.092_b0065 article-title: Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2009.11.004 – volume: 146 start-page: 22852294 year: 2005 ident: 10.1016/j.foodchem.2012.06.092_b0110 article-title: Adenosine 5’-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes publication-title: Endocrinology doi: 10.1210/en.2004-1565 – volume: 65 start-page: 5563 year: 1983 ident: 10.1016/j.foodchem.2012.06.092_b0105 article-title: Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays publication-title: Journal of Immunological Methods doi: 10.1016/0022-1759(83)90303-4 – volume: 2 start-page: 7 year: 2002 ident: 10.1016/j.foodchem.2012.06.092_b0045 article-title: Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice publication-title: BMC Pharmacology doi: 10.1186/1471-2210-2-7 – volume: 55 start-page: 22562264 year: 2006 ident: 10.1016/j.foodchem.2012.06.092_b0085 article-title: Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states publication-title: Diabetes doi: 10.2337/db06-0006 – volume: 37 start-page: 20472063 year: 2005 ident: 10.1016/j.foodchem.2012.06.092_b0145 article-title: Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease publication-title: International Journal of Biochemistry and Cell Biology doi: 10.1016/j.biocel.2005.03.002 – volume: 431 start-page: 200205 year: 2004 ident: 10.1016/j.foodchem.2012.06.092_b0165 article-title: Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity publication-title: Nature doi: 10.1038/nature02866 – volume: 91 start-page: 10731083 year: 2001 ident: 10.1016/j.foodchem.2012.06.092_b0180 article-title: Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase publication-title: Journal of Applied Physiology doi: 10.1152/jappl.2001.91.3.1073 – volume: 30 start-page: 10001007 year: 1981 ident: 10.1016/j.foodchem.2012.06.092_b0030 article-title: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization publication-title: Diabetes doi: 10.2337/diab.30.12.1000 – volume: 8 start-page: 5562 year: 1998 ident: 10.1016/j.foodchem.2012.06.092_b0020 article-title: Mechanism of activation and function of protein kinase B publication-title: Current Opinion in Genetics & Development doi: 10.1016/S0959-437X(98)80062-2 – volume: 21 start-page: 476481 year: 2010 ident: 10.1016/j.foodchem.2012.06.092_b0100 article-title: Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin publication-title: Journal of Nutritional Biochemistry doi: 10.1016/j.jnutbio.2009.02.003 – volume: 278 start-page: 3942239427 year: 2003 ident: 10.1016/j.foodchem.2012.06.092_b0080 article-title: Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M305371200 – volume: 223 start-page: 771778 year: 2010 ident: 10.1016/j.foodchem.2012.06.092_b0070 article-title: Curcumin stimulates glucose uptake through AMPK p38 MAPK pathways in L6 myotube cells publication-title: Journal of Cellular Physiology doi: 10.1002/jcp.22093 – volume: 20 start-page: 123157 year: 1984 ident: 10.1016/j.foodchem.2012.06.092_b0125 article-title: Saffron (Crocus sativus Linn.) Cultivation, processing, chemistry and standardization publication-title: Critical Reviews in Food Science and Nutrition – volume: 157 start-page: 315319 year: 2007 ident: 10.1016/j.foodchem.2012.06.092_b0140 article-title: Saffron in phytotherapy: Pharmacology and clinical uses publication-title: Wiener Medizinische Wochenschrift doi: 10.1007/s10354-007-0428-4 – volume: 33 start-page: 362366 year: 2005 ident: 10.1016/j.foodchem.2012.06.092_b0035 article-title: AMP-activated protein kinase and the metabolic syndrome publication-title: Biochemical Society Transactions doi: 10.1042/BST0330362 – volume: 10 start-page: 189193 year: 1996 ident: 10.1016/j.foodchem.2012.06.092_b0120 article-title: An update review of saffron and its active constituents publication-title: Phytotherapy Research doi: 10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C |
SSID | ssj0002018 |
Score | 2.4052384 |
Snippet | ► AMP-activated protein kinase (AMPK) has a key role in glucose metabolism of muscle. ► The activation of AMPK leads to GLUT4 translocation and glucose uptake... Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2350 |
SubjectTerms | acetyl-CoA carboxylase action potentials AMP-activated protein kinase AMP-Activated Protein Kinases AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism AMPK Animals Aroma and flavouring agent industries Biological and medical sciences Biological Transport Biological Transport - drug effects Cell Line chemistry Crocus Crocus - chemistry Crocus sativus cytology Diabetes Mellitus Diabetes Mellitus - genetics Diabetes Mellitus - metabolism drug effects Food industries Fundamental and applied biological sciences. Psychology genetics glucose Glucose - metabolism Glucose Transporter Type 4 Glucose Transporter Type 4 - genetics Glucose Transporter Type 4 - metabolism Glucose uptake Humans Insulin Resistance Insulin sensitivity MAP Kinase Signaling System MAP Kinase Signaling System - drug effects mechanism of action metabolism Mice mitogen-activated protein kinase Muscle Cells Muscle Cells - drug effects Muscle Cells - metabolism Muscle, Skeletal Muscle, Skeletal - cytology Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism myocytes pharmacology phosphatidylinositol 3-kinase Plant Extracts Plant Extracts - pharmacology Saffron skeletal muscle Skeletal muscle cells Up-Regulation Up-Regulation - drug effects |
Title | Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms |
URI | https://dx.doi.org/10.1016/j.foodchem.2012.06.092 https://www.ncbi.nlm.nih.gov/pubmed/22980812 https://www.proquest.com/docview/1040994647 https://www.proquest.com/docview/1365027130 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOcAFQXl0eayMhBAcspvYzsPHaqFaWNgDy4reIsePKqWbrOpNgQu_nZlN0tJD6YGTFccjO57JeGx_M0PIq1RljHOuAzAlikCkXAQqMkngtMms1aIotmEXP8-T6VJ8PIqPdsik94VBWGWn-1udvtXWXc24m83xuizHC4y0ggdYEV7oJjE6mguRopSPfl_CPOBl1t4kZNvjrr-8hE9Grq4NzA16pOOZYDIKJbtugbrlVI3ISeVh8lyb9eJ6s3S7PB3eJ_c6u5IetEN_QHZstUfuTPp0bntk8K60G_qadoFAT-m8j8MP7Xr3ZP-Q_Fwo587qir6ZwNrWeIpwn3MoP43e0rJCI9NbTzuoO23WG_XdUlUZ2sHaqUdMfJuUAuroqvEwIoo3BJ6el4q2GEawPH-oX3Rl0fW49Cv_iCwP33-dTIMuPUOgeRpuUDXpLIqMi4wsWKgL4LRLZKJTLm0obCojwwttrDTGCa1lpAsXGs1CJ6OCM_6Y7FZ1ZfcJdYlzoRDMcqVFXBiZOBMay1yawH7OuQGJe57kuotdjik0TvMepHaS97zMkZc5ovUkG5DxBd26jd5xI4XsWZ5fkcMclpgbafdBRnJ1DOo5Xy4Ybl5B4WGAngEZXhGci9Ew0H-gFoH2ZS9JOQgG8kRVtm48dAhbcCkSkf6jDQdDm6VgjwzIk1YML3tgErOrsKf_8WXPyF18QhhPFD8nu5uzxr4AY2xTDLd_25DcPvgwm86xnH35NvsDf5U2Gw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLe27jAuCMbHusEwEkJwSJvYTlIfp8LUsa6XrtJukeOPKWNNqrkd8N_zXpMUdhg7cIrk2LLj9_Lzs_177xHyIVUDxjnXAZgSeSBSLgIVmSRw2gys1SLP12EXzyfJaCa-XcaXW2TY-sIgrbLB_hrT12jdlPSb2ewviqI_xUgreIAV4YVuEsfbZAejU8UdsnN8ejaabAAZ3g_qy4TB-sTrL0fh656rKgPTg07peCyY9ELJHlqjtp2qkDypPMyfqxNfPGyZrleok2fkaWNa0uN69M_Jli33yO6wzei2R7pfCrukH2kTC_SGTtpQ_FCv9VD2L8jPqXLutirppyEsbytPkfFzB89x7zMtSrQzvfW0YbvT1WKpvluqSkMbZjv1SIuv81JAGZ2vPIyI4iWBp3eFojWNEYzPH-oXnVv0Pi783L8ks5OvF8NR0GRoCDRPwyWikx5EkXGRkTkLdQ7CdolMdMqlDYVNZWR4ro2VxjihtYx07kKjWehklHPGX5FOWZV2n1CXOBcKwSxXWsS5kYkzobHMpQls6ZzrkriVSaab8OWYReMma3lq11krywxlmSFhT7Iu6W_aLeoAHo-2kK3Is3uqmMEq82jbfdCRTF0BQmezKcP9K2AexujpkqN7irMZDQMIBGSEtu9bTcpAMVAmqrTVykOHsAuXIhHpP-pwsLVZCiZJl7yu1fBPD0xighV28B9f9o7sji7Ox9n4dHJ2SJ7gG2T1RPEb0lneruxbsM2W-VHz7_0GSZI3KQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saffron+%28Crocus+sativus+L.%29+increases+glucose+uptake+and+insulin+sensitivity+in+muscle+cells+via+multipathway+mechanisms&rft.jtitle=Food+chemistry&rft.au=Kang%2C+Changkeun&rft.au=Lee%2C+Hyunkyoung&rft.au=Jung%2C+Eun-Sun&rft.au=Seyedian%2C+Ramin&rft.date=2012-12-15&rft.issn=1873-7072&rft.eissn=1873-7072&rft.volume=135&rft.issue=4&rft.spage=2350&rft_id=info:doi/10.1016%2Fj.foodchem.2012.06.092&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |