Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms

► AMP-activated protein kinase (AMPK) has a key role in glucose metabolism of muscle. ► The activation of AMPK leads to GLUT4 translocation and glucose uptake in muscle. ► Saffron treatment stimulates glucose uptake via AMPK/ACC and MAPKs pathways. ► Saffron and insulin have a synergistic effect on...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 135; no. 4; pp. 2350 - 2358
Main Authors Kang, Changkeun, Lee, Hyunkyoung, Jung, Eun-Sun, Seyedian, Ramin, Jo, MiNa, Kim, Jehein, Kim, Jong-Shu, Kim, Euikyung
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.12.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0308-8146
1873-7072
1873-7072
DOI10.1016/j.foodchem.2012.06.092

Cover

Loading…
Abstract ► AMP-activated protein kinase (AMPK) has a key role in glucose metabolism of muscle. ► The activation of AMPK leads to GLUT4 translocation and glucose uptake in muscle. ► Saffron treatment stimulates glucose uptake via AMPK/ACC and MAPKs pathways. ► Saffron and insulin have a synergistic effect on glucose metabolism in muscle cells. Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C2C12 skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.
AbstractList Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.
Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C₂C₁₂ skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.
Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.
► AMP-activated protein kinase (AMPK) has a key role in glucose metabolism of muscle. ► The activation of AMPK leads to GLUT4 translocation and glucose uptake in muscle. ► Saffron treatment stimulates glucose uptake via AMPK/ACC and MAPKs pathways. ► Saffron and insulin have a synergistic effect on glucose metabolism in muscle cells. Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C2C12 skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.
Author Kang, Changkeun
Seyedian, Ramin
Kim, Jehein
Jung, Eun-Sun
Lee, Hyunkyoung
Kim, Jong-Shu
Kim, Euikyung
Jo, MiNa
Author_xml – sequence: 1
  givenname: Changkeun
  surname: Kang
  fullname: Kang, Changkeun
  organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
– sequence: 2
  givenname: Hyunkyoung
  surname: Lee
  fullname: Lee, Hyunkyoung
  organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
– sequence: 3
  givenname: Eun-Sun
  surname: Jung
  fullname: Jung, Eun-Sun
  organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
– sequence: 4
  givenname: Ramin
  surname: Seyedian
  fullname: Seyedian, Ramin
  organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
– sequence: 5
  givenname: MiNa
  surname: Jo
  fullname: Jo, MiNa
  organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
– sequence: 6
  givenname: Jehein
  surname: Kim
  fullname: Kim, Jehein
  organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
– sequence: 7
  givenname: Jong-Shu
  surname: Kim
  fullname: Kim, Jong-Shu
  organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
– sequence: 8
  givenname: Euikyung
  surname: Kim
  fullname: Kim, Euikyung
  email: ekim@gnu.ac.kr
  organization: College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26385102$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22980812$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPAXyh7QSqHLOP1dj8kDkURX1IkDqVnyzseNw67drB3A_n3OEoKEpecRho_r_3KzxW7cN4RY9cccg68erfJjfca1zTkBfAihyqHtnjGZrypxaKGurhgMxDQLBpeVpfsKsYNACS2ecEui6JtoOHFjP2-V8YE77KbZfA4xSyq0e7SXOVvM-swkIoUs8d-Qh8pm7aj-kGZcjodxqm3Lovkok0ZO-7TLhumiD1lSH0fs51VadGPdqvG9S-1zwbCtXI2DvEle25UH-nVac7Zw6eP35dfFqtvn78uP6wWKGoYF6KusOFcG67brgDsylqYqq2wFi1BSXXLtehQU6u1KRFbjp0BjQWYlneiEHN2c7x3G_zPieIoBxsP7ZQjP0XJRXULRc0FnEehhLYtq1Rhzq5P6NQNpOU22EGFvXz62AS8OQEqoupNUA5t_MdVornlcOCqI4fBxxjI_EU4yINpuZFPpuXBtIRKJtMp-P6_INoxufNuDMr25-Ovj3GjvFSPIXV7uE9ACcDrsgGeiLsjQcnOzlKQES05JG0D4Si1t-ce-QNTi9NR
CODEN FOCHDJ
CitedBy_id crossref_primary_10_1016_j_jep_2023_117255
crossref_primary_10_2174_1389557519666181128120726
crossref_primary_10_1002_vms3_70155
crossref_primary_10_1002_14651858_CD012950
crossref_primary_10_1186_s13007_019_0487_8
crossref_primary_10_1186_s12967_015_0412_5
crossref_primary_10_1186_s13098_024_01530_6
crossref_primary_10_3389_fnut_2022_1055517
crossref_primary_10_1016_j_foodchem_2016_11_086
crossref_primary_10_1016_j_numecd_2017_08_005
crossref_primary_10_1016_j_ctim_2019_07_017
crossref_primary_10_2174_1573394716999200831113335
crossref_primary_10_1007_s11011_022_01059_5
crossref_primary_10_1007_s12031_017_0899_8
crossref_primary_10_1002_jcp_27843
crossref_primary_10_3390_nu12051424
crossref_primary_10_1007_s00210_024_02970_7
crossref_primary_10_1016_j_jff_2015_10_013
crossref_primary_10_1080_23311932_2019_1577532
crossref_primary_10_3389_fnut_2024_1349006
crossref_primary_10_1111_bcp_15222
crossref_primary_10_1016_j_prmcm_2022_100136
crossref_primary_10_1016_j_clnesp_2019_07_012
crossref_primary_10_1038_srep25139
crossref_primary_10_1155_2017_6091923
crossref_primary_10_3109_13880209_2015_1077871
crossref_primary_10_3390_nu13114050
crossref_primary_10_1016_j_hermed_2024_100877
crossref_primary_10_1002_edm2_70016
crossref_primary_10_1016_j_dsx_2021_102311
crossref_primary_10_1016_j_microc_2025_112714
crossref_primary_10_1002_ptr_7286
crossref_primary_10_1007_s00210_024_03131_6
crossref_primary_10_1002_ptr_7600
crossref_primary_10_1007_s13105_017_0594_9
crossref_primary_10_1080_10942912_2020_1807567
crossref_primary_10_1016_j_taap_2022_115939
crossref_primary_10_3390_molecules24224030
crossref_primary_10_3109_14756366_2015_1016510
crossref_primary_10_1371_journal_pone_0295212
crossref_primary_10_1080_09540105_2016_1259293
crossref_primary_10_1111_jphp_12456
crossref_primary_10_1016_j_jep_2015_08_010
crossref_primary_10_1186_s13098_020_00568_6
crossref_primary_10_1177_11786388221095223
crossref_primary_10_3390_molecules25225223
crossref_primary_10_1016_j_physbeh_2021_113352
crossref_primary_10_1002_ptr_6181
crossref_primary_10_1002_ptr_7474
crossref_primary_10_1016_j_jfda_2018_07_002
crossref_primary_10_1002_ptr_6420
crossref_primary_10_1021_jf403092b
crossref_primary_10_3390_nu14010175
crossref_primary_10_1002_biof_2043
crossref_primary_10_1016_j_jep_2021_114555
crossref_primary_10_2174_1570163820666230411111343
crossref_primary_10_7717_peerj_14639
crossref_primary_10_1093_nutrit_nuae121
crossref_primary_10_1515_hmbci_2021_0005
crossref_primary_10_1002_jsfa_8134
crossref_primary_10_1002_ptr_6748
crossref_primary_10_1016_j_ejmech_2019_111903
crossref_primary_10_1016_j_exger_2022_111756
crossref_primary_10_1080_10496475_2016_1272522
crossref_primary_10_1159_000375305
crossref_primary_10_1002_ptr_7260
crossref_primary_10_1016_j_foodchem_2021_131860
crossref_primary_10_3390_nu15224774
crossref_primary_10_1111_ijcp_14334
crossref_primary_10_1155_2022_9622546
crossref_primary_10_1155_2024_8300428
crossref_primary_10_3390_nu16142319
crossref_primary_10_3390_nu16132089
crossref_primary_10_1002_ptr_7542
crossref_primary_10_1021_acs_jafc_7b03762
crossref_primary_10_1371_journal_pone_0064924
crossref_primary_10_3389_fphar_2023_1182937
crossref_primary_10_1016_j_ctim_2020_102298
crossref_primary_10_3390_ijms24043909
crossref_primary_10_1016_j_jff_2024_106507
crossref_primary_10_1021_acs_jafc_7b00578
crossref_primary_10_1016_j_clnesp_2022_01_022
Cites_doi 10.1016/j.cdp.2004.09.002
10.1016/j.lfs.2005.02.006
10.1016/j.tibs.2003.11.005
10.1113/jphysiol.2005.103481
10.1074/jbc.273.9.5315
10.1002/(SICI)1099-1573(200005)14:3<149::AID-PTR665>3.0.CO;2-5
10.1152/ajpendo.00678.2007
10.2337/diabetes.50.6.1464
10.3923/jbs.2009.302.310
10.1128/MCB.26.1.63-76.2006
10.1152/ajpendo.00566.2005
10.1016/j.ejphar.2010.08.021
10.1172/JCI34260
10.1111/j.1541-4337.2008.00048.x
10.1111/j.1464-5491.2006.01858.x
10.1016/j.fct.2010.05.073
10.1016/j.ejphar.2008.04.036
10.1016/S0092-8674(03)00929-2
10.1080/09637480500512872
10.1016/j.fct.2009.11.004
10.1210/en.2004-1565
10.1016/0022-1759(83)90303-4
10.1186/1471-2210-2-7
10.2337/db06-0006
10.1016/j.biocel.2005.03.002
10.1038/nature02866
10.1152/jappl.2001.91.3.1073
10.2337/diab.30.12.1000
10.1016/S0959-437X(98)80062-2
10.1016/j.jnutbio.2009.02.003
10.1074/jbc.M305371200
10.1002/jcp.22093
10.1007/s10354-007-0428-4
10.1042/BST0330362
10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2012.06.092
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
EndPage 2358
ExternalDocumentID 22980812
26385102
10_1016_j_foodchem_2012_06_092
US201400174801
S0308814612010655
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
ABGRD
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AGHFR
AGRDE
AI.
AKRWK
ANKPU
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
HLV
HVGLF
R2-
SCB
SEW
VH1
WUQ
Y6R
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-376c811df1d9b20cb473f696c739e04e791d3bcde9ddf4cc91cbf0dc20f91b323
IEDL.DBID .~1
ISSN 0308-8146
1873-7072
IngestDate Fri Jul 11 00:23:45 EDT 2025
Thu Jul 10 19:12:15 EDT 2025
Thu Apr 03 06:59:48 EDT 2025
Mon Jul 21 09:14:45 EDT 2025
Thu Apr 24 23:05:38 EDT 2025
Tue Jul 01 01:14:49 EDT 2025
Fri Mar 28 10:35:41 EDT 2025
Fri Feb 23 02:25:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords AMPK
Glucose uptake
Saffron
Skeletal muscle cells
Insulin sensitivity
Iridaceae
Monocotyledones
Crocus sativus
Spice
Glucose
Insulin
Uptake
Mechanism
Sensitivity
Angiospermae
Carbohydrate
Spermatophyta
Muscle
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-376c811df1d9b20cb473f696c739e04e791d3bcde9ddf4cc91cbf0dc20f91b323
Notes http://dx.doi.org/10.1016/j.foodchem.2012.06.092
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22980812
PQID 1040994647
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1365027130
proquest_miscellaneous_1040994647
pubmed_primary_22980812
pascalfrancis_primary_26385102
crossref_primary_10_1016_j_foodchem_2012_06_092
crossref_citationtrail_10_1016_j_foodchem_2012_06_092
fao_agris_US201400174801
elsevier_sciencedirect_doi_10_1016_j_foodchem_2012_06_092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-15
PublicationDateYYYYMMDD 2012-12-15
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Alberti, Zimmet, Shaw (b0015) 2006; 23
Sato, Iemitsu, Aizawa, Ajisaka (b0130) 2008; 294
Pinent, Castell, Baiges, Montagut, Arola, Ardévol (b0115) 2008; 7
Tzatsos, Kandror (b0155) 2006; 26
Kim, Park, Kim, Lee, Lee, Jung, You, Park, Suh, Kim (b0070) 2010; 223
Rios, Recio, Giner, Manez (b0120) 1996; 10
Schmidt, Betti, Hensel (b0140) 2007; 157
Schenk, Saberi, Olefsky (b0135) 2008; 118
Kang, Kim (b0060) 2010; 48
Li, Ge, Zheng, Zhang (b0090) 2008; 588
Montagut, Onnockx, Vaqué, Bladé, Blay, Fernández-Larrea, Pujadas, Salvadó, Arola, Pirson, Ardévol, Pinent (b0100) 2010; 21
Um, Frigerio, Watanabe, Picard, Joaquin, Sticker, Fumagalli, Allegrini, Kozma, Auwerx, Thomas (b0165) 2004; 431
Abe, Saito (b0010) 2000; 14
Williamson, Bolster, Kimball, Jefferson (b0175) 2006; 291
Mosmann (b0105) 1983; 65
Fryer, Carling (b0035) 2005; 33
Konrad, Somwar, Sweeney, Yaworsky, Hayashi, Ramlal, Klip (b0075) 2001; 50
Kovacic, Soltys, Barr, Shiojima, Walsh, Dyck (b0080) 2003; 278
Sampathu, Shivashankar, Lewis, Wood (b0125) 1984; 20
Kang, Jin, Lee, Cha, Sohn, Moon, Park, Chun, Jung, Hong, Kim, Kim, Kim (b0065) 2010; 48
He, Qian, Tang, Wen, Xu, Sheng (b0040) 2005; 77
Lee, Kim, Kim, Yoon, Cho, Shen, Ye, Lee, Oh, Kim, Hohnen-Behrens, Gosby, Kraegen, James, Kim (b0085) 2006; 55
Huang, Chang, Huang, Lin, Lin, Chang (b0050) 2010; 648
Srinivasan (b0150) 2005; 56
Williamson, Kubica, Kimball, Jefferson (b0170) 2006; 573
Inoki, Zhu, Guan (b0055) 2003; 115
Pelletier, Joly, Prentki, Coderre (b0110) 2005; 146
DeFronzo, Jacot, Jequier, Maeder, Wahren, Felber (b0030) 1981; 30
Abdullaev, Espinosa-Aguirre (b0005) 2004; 28
Alessi, Cohen (b0020) 1998; 8
Carling (b0025) 2004; 29
Hosseinzadeh, Younesi (b0045) 2002; 2
Mohajeri, Mousavi, Doustar (b0095) 2009; 9
Zheng, MacLean, Pohnert, Knight, Olson, Winder, Dohm (b0180) 2001; 91
Ueki, Yamamoto-Honda, Kaburagi, Yamauchi, Tobe, Burgering, Coffer, Komuro, Akanuma, Yazaki, Kadowaki (b0160) 1998; 273
Smith, Muscat (b0145) 2005; 37
Um (10.1016/j.foodchem.2012.06.092_b0165) 2004; 431
Kim (10.1016/j.foodchem.2012.06.092_b0070) 2010; 223
Abe (10.1016/j.foodchem.2012.06.092_b0010) 2000; 14
Abdullaev (10.1016/j.foodchem.2012.06.092_b0005) 2004; 28
Williamson (10.1016/j.foodchem.2012.06.092_b0170) 2006; 573
Mohajeri (10.1016/j.foodchem.2012.06.092_b0095) 2009; 9
Schenk (10.1016/j.foodchem.2012.06.092_b0135) 2008; 118
Carling (10.1016/j.foodchem.2012.06.092_b0025) 2004; 29
Rios (10.1016/j.foodchem.2012.06.092_b0120) 1996; 10
Hosseinzadeh (10.1016/j.foodchem.2012.06.092_b0045) 2002; 2
Sato (10.1016/j.foodchem.2012.06.092_b0130) 2008; 294
Smith (10.1016/j.foodchem.2012.06.092_b0145) 2005; 37
Alberti (10.1016/j.foodchem.2012.06.092_b0015) 2006; 23
Lee (10.1016/j.foodchem.2012.06.092_b0085) 2006; 55
Alessi (10.1016/j.foodchem.2012.06.092_b0020) 1998; 8
Kovacic (10.1016/j.foodchem.2012.06.092_b0080) 2003; 278
Pinent (10.1016/j.foodchem.2012.06.092_b0115) 2008; 7
Sampathu (10.1016/j.foodchem.2012.06.092_b0125) 1984; 20
Li (10.1016/j.foodchem.2012.06.092_b0090) 2008; 588
Williamson (10.1016/j.foodchem.2012.06.092_b0175) 2006; 291
Montagut (10.1016/j.foodchem.2012.06.092_b0100) 2010; 21
Inoki (10.1016/j.foodchem.2012.06.092_b0055) 2003; 115
Pelletier (10.1016/j.foodchem.2012.06.092_b0110) 2005; 146
Schmidt (10.1016/j.foodchem.2012.06.092_b0140) 2007; 157
Tzatsos (10.1016/j.foodchem.2012.06.092_b0155) 2006; 26
Ueki (10.1016/j.foodchem.2012.06.092_b0160) 1998; 273
Zheng (10.1016/j.foodchem.2012.06.092_b0180) 2001; 91
Fryer (10.1016/j.foodchem.2012.06.092_b0035) 2005; 33
Kang (10.1016/j.foodchem.2012.06.092_b0060) 2010; 48
He (10.1016/j.foodchem.2012.06.092_b0040) 2005; 77
Huang (10.1016/j.foodchem.2012.06.092_b0050) 2010; 648
Mosmann (10.1016/j.foodchem.2012.06.092_b0105) 1983; 65
DeFronzo (10.1016/j.foodchem.2012.06.092_b0030) 1981; 30
Kang (10.1016/j.foodchem.2012.06.092_b0065) 2010; 48
Konrad (10.1016/j.foodchem.2012.06.092_b0075) 2001; 50
Srinivasan (10.1016/j.foodchem.2012.06.092_b0150) 2005; 56
References_xml – volume: 10
  start-page: 189193
  year: 1996
  ident: b0120
  article-title: An update review of saffron and its active constituents
  publication-title: Phytotherapy Research
– volume: 48
  start-page: 509516
  year: 2010
  ident: b0065
  article-title: Brown alga
  publication-title: Food and Chemical Toxicology
– volume: 431
  start-page: 200205
  year: 2004
  ident: b0165
  article-title: Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
  publication-title: Nature
– volume: 65
  start-page: 5563
  year: 1983
  ident: b0105
  article-title: Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays
  publication-title: Journal of Immunological Methods
– volume: 23
  start-page: 469480
  year: 2006
  ident: b0015
  article-title: Metabolic syndromea new world-wide definition. A consensus statement from the international diabetes federation
  publication-title: Diabetic Medicine
– volume: 14
  start-page: 149152
  year: 2000
  ident: b0010
  article-title: Effects of saffron extract and its constituent crocin on learning behaviour and long term potentiation
  publication-title: Phytotherapy Research
– volume: 118
  start-page: 29923002
  year: 2008
  ident: b0135
  article-title: Insulin sensitivity: Modulation by nutrients and inflammation
  publication-title: Journal of Clinical Investigation
– volume: 9
  start-page: 302310
  year: 2009
  ident: b0095
  article-title: Antihyperglycemic and pancreas-protective effects of
  publication-title: Journal of Biological Sciences
– volume: 30
  start-page: 10001007
  year: 1981
  ident: b0030
  article-title: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization
  publication-title: Diabetes
– volume: 588
  start-page: 165169
  year: 2008
  ident: b0090
  article-title: Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase
  publication-title: European Journal of Pharmacology
– volume: 20
  start-page: 123157
  year: 1984
  ident: b0125
  article-title: Saffron (
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 28
  start-page: 426432
  year: 2004
  ident: b0005
  article-title: Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials
  publication-title: Cancer Detection and Prevention
– volume: 648
  start-page: 3949
  year: 2010
  ident: b0050
  article-title: Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation
  publication-title: European Journal of Pharmacology
– volume: 573
  start-page: 497510
  year: 2006
  ident: b0170
  article-title: Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle
  publication-title: Journal of Physiology
– volume: 29
  start-page: 1824
  year: 2004
  ident: b0025
  article-title: The AMP-activated protein kinase cascade-a unifying system for energy control
  publication-title: Trends in Biochemical Science
– volume: 157
  start-page: 315319
  year: 2007
  ident: b0140
  article-title: Saffron in phytotherapy: Pharmacology and clinical uses
  publication-title: Wiener Medizinische Wochenschrift
– volume: 294
  start-page: E961968
  year: 2008
  ident: b0130
  article-title: Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle
  publication-title: American Journal of Physiology Endocrinology Metabolism
– volume: 21
  start-page: 476481
  year: 2010
  ident: b0100
  article-title: Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin
  publication-title: Journal of Nutritional Biochemistry
– volume: 37
  start-page: 20472063
  year: 2005
  ident: b0145
  article-title: Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
  publication-title: International Journal of Biochemistry and Cell Biology
– volume: 8
  start-page: 5562
  year: 1998
  ident: b0020
  article-title: Mechanism of activation and function of protein kinase B
  publication-title: Current Opinion in Genetics & Development
– volume: 77
  start-page: 907921
  year: 2005
  ident: b0040
  article-title: Effect of crocin on experimental atherosclerosis in quails and its mechanisms
  publication-title: Life Sciences
– volume: 278
  start-page: 3942239427
  year: 2003
  ident: b0080
  article-title: Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart
  publication-title: Journal of Biological Chemistry
– volume: 223
  start-page: 771778
  year: 2010
  ident: b0070
  article-title: Curcumin stimulates glucose uptake through AMPK p38 MAPK pathways in L6 myotube cells
  publication-title: Journal of Cellular Physiology
– volume: 91
  start-page: 10731083
  year: 2001
  ident: b0180
  article-title: Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase
  publication-title: Journal of Applied Physiology
– volume: 273
  start-page: 53155322
  year: 1998
  ident: b0160
  article-title: Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis
  publication-title: Journal of Biological Chemistry
– volume: 291
  start-page: E8089
  year: 2006
  ident: b0175
  article-title: Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR
  publication-title: American Journal of Physiology Endocrinology Metabolism
– volume: 55
  start-page: 22562264
  year: 2006
  ident: b0085
  article-title: Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states
  publication-title: Diabetes
– volume: 56
  start-page: 399414
  year: 2005
  ident: b0150
  article-title: Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts
  publication-title: International Journal of Food Sciences and Nutrition
– volume: 2
  start-page: 7
  year: 2002
  ident: b0045
  article-title: Antinociceptive and anti-inflammatory effects of
  publication-title: BMC Pharmacology
– volume: 115
  start-page: 577590
  year: 2003
  ident: b0055
  article-title: TSC2 mediates cellular energy response to control cell growth and survival
  publication-title: Cell
– volume: 26
  start-page: 6376
  year: 2006
  ident: b0155
  article-title: Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
  publication-title: Molecular and Cellular Biology
– volume: 7
  start-page: 299308
  year: 2008
  ident: b0115
  article-title: Bioactivity of flavonoids on insulin secreting cells
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 33
  start-page: 362366
  year: 2005
  ident: b0035
  article-title: AMP-activated protein kinase and the metabolic syndrome
  publication-title: Biochemical Society Transactions
– volume: 48
  start-page: 23662373
  year: 2010
  ident: b0060
  article-title: Synergistic effect of curcumin and insulin on muscle cell glucose metabolism
  publication-title: Food and Chemical Toxicology
– volume: 146
  start-page: 22852294
  year: 2005
  ident: b0110
  article-title: Adenosine 5’-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes
  publication-title: Endocrinology
– volume: 50
  start-page: 14641471
  year: 2001
  ident: b0075
  article-title: The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: Potential role of p38 mitogen-activated protein kinase in GLUT4 activation
  publication-title: Diabetes
– volume: 28
  start-page: 426432
  year: 2004
  ident: 10.1016/j.foodchem.2012.06.092_b0005
  article-title: Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials
  publication-title: Cancer Detection and Prevention
  doi: 10.1016/j.cdp.2004.09.002
– volume: 77
  start-page: 907921
  year: 2005
  ident: 10.1016/j.foodchem.2012.06.092_b0040
  article-title: Effect of crocin on experimental atherosclerosis in quails and its mechanisms
  publication-title: Life Sciences
  doi: 10.1016/j.lfs.2005.02.006
– volume: 29
  start-page: 1824
  year: 2004
  ident: 10.1016/j.foodchem.2012.06.092_b0025
  article-title: The AMP-activated protein kinase cascade-a unifying system for energy control
  publication-title: Trends in Biochemical Science
  doi: 10.1016/j.tibs.2003.11.005
– volume: 573
  start-page: 497510
  year: 2006
  ident: 10.1016/j.foodchem.2012.06.092_b0170
  article-title: Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle
  publication-title: Journal of Physiology
  doi: 10.1113/jphysiol.2005.103481
– volume: 273
  start-page: 53155322
  year: 1998
  ident: 10.1016/j.foodchem.2012.06.092_b0160
  article-title: Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.273.9.5315
– volume: 14
  start-page: 149152
  year: 2000
  ident: 10.1016/j.foodchem.2012.06.092_b0010
  article-title: Effects of saffron extract and its constituent crocin on learning behaviour and long term potentiation
  publication-title: Phytotherapy Research
  doi: 10.1002/(SICI)1099-1573(200005)14:3<149::AID-PTR665>3.0.CO;2-5
– volume: 294
  start-page: E961968
  year: 2008
  ident: 10.1016/j.foodchem.2012.06.092_b0130
  article-title: Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle
  publication-title: American Journal of Physiology Endocrinology Metabolism
  doi: 10.1152/ajpendo.00678.2007
– volume: 50
  start-page: 14641471
  year: 2001
  ident: 10.1016/j.foodchem.2012.06.092_b0075
  article-title: The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: Potential role of p38 mitogen-activated protein kinase in GLUT4 activation
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.6.1464
– volume: 9
  start-page: 302310
  year: 2009
  ident: 10.1016/j.foodchem.2012.06.092_b0095
  article-title: Antihyperglycemic and pancreas-protective effects of Crocus sativus L. (Saffron) stigma ethanolic extract on rats with alloxan-induced diabetes
  publication-title: Journal of Biological Sciences
  doi: 10.3923/jbs.2009.302.310
– volume: 26
  start-page: 6376
  year: 2006
  ident: 10.1016/j.foodchem.2012.06.092_b0155
  article-title: Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.26.1.63-76.2006
– volume: 291
  start-page: E8089
  year: 2006
  ident: 10.1016/j.foodchem.2012.06.092_b0175
  article-title: Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR
  publication-title: American Journal of Physiology Endocrinology Metabolism
  doi: 10.1152/ajpendo.00566.2005
– volume: 648
  start-page: 3949
  year: 2010
  ident: 10.1016/j.foodchem.2012.06.092_b0050
  article-title: Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation
  publication-title: European Journal of Pharmacology
  doi: 10.1016/j.ejphar.2010.08.021
– volume: 118
  start-page: 29923002
  year: 2008
  ident: 10.1016/j.foodchem.2012.06.092_b0135
  article-title: Insulin sensitivity: Modulation by nutrients and inflammation
  publication-title: Journal of Clinical Investigation
  doi: 10.1172/JCI34260
– volume: 7
  start-page: 299308
  year: 2008
  ident: 10.1016/j.foodchem.2012.06.092_b0115
  article-title: Bioactivity of flavonoids on insulin secreting cells
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/j.1541-4337.2008.00048.x
– volume: 23
  start-page: 469480
  year: 2006
  ident: 10.1016/j.foodchem.2012.06.092_b0015
  article-title: Metabolic syndromea new world-wide definition. A consensus statement from the international diabetes federation
  publication-title: Diabetic Medicine
  doi: 10.1111/j.1464-5491.2006.01858.x
– volume: 48
  start-page: 23662373
  year: 2010
  ident: 10.1016/j.foodchem.2012.06.092_b0060
  article-title: Synergistic effect of curcumin and insulin on muscle cell glucose metabolism
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/j.fct.2010.05.073
– volume: 588
  start-page: 165169
  year: 2008
  ident: 10.1016/j.foodchem.2012.06.092_b0090
  article-title: Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase
  publication-title: European Journal of Pharmacology
  doi: 10.1016/j.ejphar.2008.04.036
– volume: 115
  start-page: 577590
  year: 2003
  ident: 10.1016/j.foodchem.2012.06.092_b0055
  article-title: TSC2 mediates cellular energy response to control cell growth and survival
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00929-2
– volume: 56
  start-page: 399414
  year: 2005
  ident: 10.1016/j.foodchem.2012.06.092_b0150
  article-title: Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts
  publication-title: International Journal of Food Sciences and Nutrition
  doi: 10.1080/09637480500512872
– volume: 48
  start-page: 509516
  year: 2010
  ident: 10.1016/j.foodchem.2012.06.092_b0065
  article-title: Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/j.fct.2009.11.004
– volume: 146
  start-page: 22852294
  year: 2005
  ident: 10.1016/j.foodchem.2012.06.092_b0110
  article-title: Adenosine 5’-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1565
– volume: 65
  start-page: 5563
  year: 1983
  ident: 10.1016/j.foodchem.2012.06.092_b0105
  article-title: Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays
  publication-title: Journal of Immunological Methods
  doi: 10.1016/0022-1759(83)90303-4
– volume: 2
  start-page: 7
  year: 2002
  ident: 10.1016/j.foodchem.2012.06.092_b0045
  article-title: Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice
  publication-title: BMC Pharmacology
  doi: 10.1186/1471-2210-2-7
– volume: 55
  start-page: 22562264
  year: 2006
  ident: 10.1016/j.foodchem.2012.06.092_b0085
  article-title: Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states
  publication-title: Diabetes
  doi: 10.2337/db06-0006
– volume: 37
  start-page: 20472063
  year: 2005
  ident: 10.1016/j.foodchem.2012.06.092_b0145
  article-title: Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
  publication-title: International Journal of Biochemistry and Cell Biology
  doi: 10.1016/j.biocel.2005.03.002
– volume: 431
  start-page: 200205
  year: 2004
  ident: 10.1016/j.foodchem.2012.06.092_b0165
  article-title: Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
  publication-title: Nature
  doi: 10.1038/nature02866
– volume: 91
  start-page: 10731083
  year: 2001
  ident: 10.1016/j.foodchem.2012.06.092_b0180
  article-title: Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.2001.91.3.1073
– volume: 30
  start-page: 10001007
  year: 1981
  ident: 10.1016/j.foodchem.2012.06.092_b0030
  article-title: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization
  publication-title: Diabetes
  doi: 10.2337/diab.30.12.1000
– volume: 8
  start-page: 5562
  year: 1998
  ident: 10.1016/j.foodchem.2012.06.092_b0020
  article-title: Mechanism of activation and function of protein kinase B
  publication-title: Current Opinion in Genetics & Development
  doi: 10.1016/S0959-437X(98)80062-2
– volume: 21
  start-page: 476481
  year: 2010
  ident: 10.1016/j.foodchem.2012.06.092_b0100
  article-title: Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin
  publication-title: Journal of Nutritional Biochemistry
  doi: 10.1016/j.jnutbio.2009.02.003
– volume: 278
  start-page: 3942239427
  year: 2003
  ident: 10.1016/j.foodchem.2012.06.092_b0080
  article-title: Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M305371200
– volume: 223
  start-page: 771778
  year: 2010
  ident: 10.1016/j.foodchem.2012.06.092_b0070
  article-title: Curcumin stimulates glucose uptake through AMPK p38 MAPK pathways in L6 myotube cells
  publication-title: Journal of Cellular Physiology
  doi: 10.1002/jcp.22093
– volume: 20
  start-page: 123157
  year: 1984
  ident: 10.1016/j.foodchem.2012.06.092_b0125
  article-title: Saffron (Crocus sativus Linn.) Cultivation, processing, chemistry and standardization
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 157
  start-page: 315319
  year: 2007
  ident: 10.1016/j.foodchem.2012.06.092_b0140
  article-title: Saffron in phytotherapy: Pharmacology and clinical uses
  publication-title: Wiener Medizinische Wochenschrift
  doi: 10.1007/s10354-007-0428-4
– volume: 33
  start-page: 362366
  year: 2005
  ident: 10.1016/j.foodchem.2012.06.092_b0035
  article-title: AMP-activated protein kinase and the metabolic syndrome
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST0330362
– volume: 10
  start-page: 189193
  year: 1996
  ident: 10.1016/j.foodchem.2012.06.092_b0120
  article-title: An update review of saffron and its active constituents
  publication-title: Phytotherapy Research
  doi: 10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C
SSID ssj0002018
Score 2.4052384
Snippet ► AMP-activated protein kinase (AMPK) has a key role in glucose metabolism of muscle. ► The activation of AMPK leads to GLUT4 translocation and glucose uptake...
Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2350
SubjectTerms acetyl-CoA carboxylase
action potentials
AMP-activated protein kinase
AMP-Activated Protein Kinases
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
AMPK
Animals
Aroma and flavouring agent industries
Biological and medical sciences
Biological Transport
Biological Transport - drug effects
Cell Line
chemistry
Crocus
Crocus - chemistry
Crocus sativus
cytology
Diabetes Mellitus
Diabetes Mellitus - genetics
Diabetes Mellitus - metabolism
drug effects
Food industries
Fundamental and applied biological sciences. Psychology
genetics
glucose
Glucose - metabolism
Glucose Transporter Type 4
Glucose Transporter Type 4 - genetics
Glucose Transporter Type 4 - metabolism
Glucose uptake
Humans
Insulin Resistance
Insulin sensitivity
MAP Kinase Signaling System
MAP Kinase Signaling System - drug effects
mechanism of action
metabolism
Mice
mitogen-activated protein kinase
Muscle Cells
Muscle Cells - drug effects
Muscle Cells - metabolism
Muscle, Skeletal
Muscle, Skeletal - cytology
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
myocytes
pharmacology
phosphatidylinositol 3-kinase
Plant Extracts
Plant Extracts - pharmacology
Saffron
skeletal muscle
Skeletal muscle cells
Up-Regulation
Up-Regulation - drug effects
Title Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms
URI https://dx.doi.org/10.1016/j.foodchem.2012.06.092
https://www.ncbi.nlm.nih.gov/pubmed/22980812
https://www.proquest.com/docview/1040994647
https://www.proquest.com/docview/1365027130
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOcAFQXl0eayMhBAcspvYzsPHaqFaWNgDy4reIsePKqWbrOpNgQu_nZlN0tJD6YGTFccjO57JeGx_M0PIq1RljHOuAzAlikCkXAQqMkngtMms1aIotmEXP8-T6VJ8PIqPdsik94VBWGWn-1udvtXWXc24m83xuizHC4y0ggdYEV7oJjE6mguRopSPfl_CPOBl1t4kZNvjrr-8hE9Grq4NzA16pOOZYDIKJbtugbrlVI3ISeVh8lyb9eJ6s3S7PB3eJ_c6u5IetEN_QHZstUfuTPp0bntk8K60G_qadoFAT-m8j8MP7Xr3ZP-Q_Fwo587qir6ZwNrWeIpwn3MoP43e0rJCI9NbTzuoO23WG_XdUlUZ2sHaqUdMfJuUAuroqvEwIoo3BJ6el4q2GEawPH-oX3Rl0fW49Cv_iCwP33-dTIMuPUOgeRpuUDXpLIqMi4wsWKgL4LRLZKJTLm0obCojwwttrDTGCa1lpAsXGs1CJ6OCM_6Y7FZ1ZfcJdYlzoRDMcqVFXBiZOBMay1yawH7OuQGJe57kuotdjik0TvMepHaS97zMkZc5ovUkG5DxBd26jd5xI4XsWZ5fkcMclpgbafdBRnJ1DOo5Xy4Ybl5B4WGAngEZXhGci9Ew0H-gFoH2ZS9JOQgG8kRVtm48dAhbcCkSkf6jDQdDm6VgjwzIk1YML3tgErOrsKf_8WXPyF18QhhPFD8nu5uzxr4AY2xTDLd_25DcPvgwm86xnH35NvsDf5U2Gw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLe27jAuCMbHusEwEkJwSJvYTlIfp8LUsa6XrtJukeOPKWNNqrkd8N_zXpMUdhg7cIrk2LLj9_Lzs_177xHyIVUDxjnXAZgSeSBSLgIVmSRw2gys1SLP12EXzyfJaCa-XcaXW2TY-sIgrbLB_hrT12jdlPSb2ewviqI_xUgreIAV4YVuEsfbZAejU8UdsnN8ejaabAAZ3g_qy4TB-sTrL0fh656rKgPTg07peCyY9ELJHlqjtp2qkDypPMyfqxNfPGyZrleok2fkaWNa0uN69M_Jli33yO6wzei2R7pfCrukH2kTC_SGTtpQ_FCv9VD2L8jPqXLutirppyEsbytPkfFzB89x7zMtSrQzvfW0YbvT1WKpvluqSkMbZjv1SIuv81JAGZ2vPIyI4iWBp3eFojWNEYzPH-oXnVv0Pi783L8ks5OvF8NR0GRoCDRPwyWikx5EkXGRkTkLdQ7CdolMdMqlDYVNZWR4ro2VxjihtYx07kKjWehklHPGX5FOWZV2n1CXOBcKwSxXWsS5kYkzobHMpQls6ZzrkriVSaab8OWYReMma3lq11krywxlmSFhT7Iu6W_aLeoAHo-2kK3Is3uqmMEq82jbfdCRTF0BQmezKcP9K2AexujpkqN7irMZDQMIBGSEtu9bTcpAMVAmqrTVykOHsAuXIhHpP-pwsLVZCiZJl7yu1fBPD0xighV28B9f9o7sji7Ox9n4dHJ2SJ7gG2T1RPEb0lneruxbsM2W-VHz7_0GSZI3KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saffron+%28Crocus+sativus+L.%29+increases+glucose+uptake+and+insulin+sensitivity+in+muscle+cells+via+multipathway+mechanisms&rft.jtitle=Food+chemistry&rft.au=Kang%2C+Changkeun&rft.au=Lee%2C+Hyunkyoung&rft.au=Jung%2C+Eun-Sun&rft.au=Seyedian%2C+Ramin&rft.date=2012-12-15&rft.issn=1873-7072&rft.eissn=1873-7072&rft.volume=135&rft.issue=4&rft.spage=2350&rft_id=info:doi/10.1016%2Fj.foodchem.2012.06.092&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon