Embedding-based subsequence matching in time-series databases

We propose an embedding-based framework for subsequence matching in time-series databases that improves the efficiency of processing subsequence matching queries under the Dynamic Time Warping (DTW) distance measure. This framework partially reduces subsequence matching to vector matching, using an...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on database systems Vol. 36; no. 3; pp. 1 - 39
Main Authors Papapetrou, Panagiotis, Athitsos, Vassilis, Potamias, Michalis, Kollios, George, Gunopulos, Dimitrios
Format Journal Article
LanguageEnglish
Published New York, NY Association for Computing Machinery 01.08.2011
Subjects
Online AccessGet full text
ISSN0362-5915
1557-4644
DOI10.1145/2000824.2000827

Cover

Abstract We propose an embedding-based framework for subsequence matching in time-series databases that improves the efficiency of processing subsequence matching queries under the Dynamic Time Warping (DTW) distance measure. This framework partially reduces subsequence matching to vector matching, using an embedding that maps each query sequence to a vector and each database time series into a sequence of vectors. The database embedding is computed offline, as a preprocessing step. At runtime, given a query object, an embedding of that object is computed online. Relatively few areas of interest are efficiently identified in the database sequences by comparing the embedding of the query with the database vectors. Those areas of interest are then fully explored using the exact DTW-based subsequence matching algorithm. We apply the proposed framework to define two specific methods. The first method focuses on time-series subsequence matching under unconstrained Dynamic Time Warping. The second method targets subsequence matching under constrained Dynamic Time Warping (cDTW), where warping paths are not allowed to stray too much off the diagonal. In our experiments, good trade-offs between retrieval accuracy and retrieval efficiency are obtained for both methods, and the results are competitive with respect to current state-of-the-art methods.
AbstractList We propose an embedding-based framework for subsequence matching in time-series databases that improves the efficiency of processing subsequence matching queries under the Dynamic Time Warping (DTW) distance measure. This framework partially reduces subsequence matching to vector matching, using an embedding that maps each query sequence to a vector and each database time series into a sequence of vectors. The database embedding is computed offline, as a preprocessing step. At runtime, given a query object, an embedding of that object is computed online. Relatively few areas of interest are efficiently identified in the database sequences by comparing the embedding of the query with the database vectors. Those areas of interest are then fully explored using the exact DTW-based subsequence matching algorithm. We apply the proposed framework to define two specific methods. The first method focuses on time-series subsequence matching under unconstrained Dynamic Time Warping. The second method targets subsequence matching under constrained Dynamic Time Warping (cDTW), where warping paths are not allowed to stray too much off the diagonal. In our experiments, good trade-offs between retrieval accuracy and retrieval efficiency are obtained for both methods, and the results are competitive with respect to current state-of-the-art methods.
Author Kollios, George
Potamias, Michalis
Papapetrou, Panagiotis
Gunopulos, Dimitrios
Athitsos, Vassilis
Author_xml – sequence: 1
  givenname: Panagiotis
  surname: Papapetrou
  fullname: Papapetrou, Panagiotis
  organization: Aalto University, Finland
– sequence: 2
  givenname: Vassilis
  surname: Athitsos
  fullname: Athitsos, Vassilis
  organization: University of Texas at Arlington, TX
– sequence: 3
  givenname: Michalis
  surname: Potamias
  fullname: Potamias, Michalis
  organization: Boston University, Boston, MA
– sequence: 4
  givenname: George
  surname: Kollios
  fullname: Kollios, George
  organization: Boston University, Boston, MA
– sequence: 5
  givenname: Dimitrios
  surname: Gunopulos
  fullname: Gunopulos, Dimitrios
  organization: University of Athens, Greece
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24516653$$DView record in Pascal Francis
BookMark eNp1kDtPwzAUhS1UJNrCzJoFiSWt344HBlSVh1SJpXvkXNtglDgldgf-PakaMSAxneF839XVWaBZ7KND6JbgFSFcrCnGuKJ8dU51geZECFVyyfkMzTGTtBSaiCu0SOlzZHil1Rw9bLvGWRvie9mY5GyRjk1yX0cXwRWdyfAxVkWIRQ6dK5MbgkuFNdmc6HSNLr1pk7uZcon2T9v95qXcvT2_bh53JTCFc8kUE1j5RmsGXGlmgQvqoOKecoKBM6uBVlZWmjqvLTADjQdosJTMj_US3Z_PHoZ-fC3lugsJXNua6PpjqolUhFZSczqidxNqEpjWDyZCSPVhCJ0ZvmvKBZFSsJFbnzkY-pQG538RguvTnvW055RqNMQfA0I2OfQxDya0_3o_6md5Uw
CODEN ATDSD3
CitedBy_id crossref_primary_10_1142_S0218001418560074
crossref_primary_10_1007_s10618_016_0489_3
crossref_primary_10_1109_TCBB_2018_2843364
crossref_primary_10_1145_3057741
crossref_primary_10_1371_journal_pone_0085458
crossref_primary_10_1155_2023_3172181
crossref_primary_10_1016_j_ins_2018_03_023
crossref_primary_10_1145_2949741_2949758
crossref_primary_10_1007_s00778_016_0432_7
crossref_primary_10_1109_JAS_2021_1004108
crossref_primary_10_1016_j_scitotenv_2023_167767
crossref_primary_10_1145_2500489
crossref_primary_10_14778_2556549_2556552
crossref_primary_10_1007_s10618_016_0455_0
crossref_primary_10_1007_s11227_015_1525_6
crossref_primary_10_1145_3044711
crossref_primary_10_1016_j_is_2018_08_002
crossref_primary_10_1016_j_eswa_2016_02_017
crossref_primary_10_1109_ACCESS_2020_2987761
crossref_primary_10_1145_2648583
crossref_primary_10_1007_s11390_014_1491_0
crossref_primary_10_1007_s00778_015_0387_0
crossref_primary_10_1155_2021_6690930
crossref_primary_10_1016_j_physa_2012_03_036
crossref_primary_10_1109_TKDE_2020_2998002
crossref_primary_10_3390_ijgi12040179
Cites_doi 10.1145/1065167.1065210
10.1145/372202.372334
10.1145/223784.223812
10.1007/s10618-007-0064-z
10.1145/872757.872780
10.1145/299432.299460
10.1007/s101150050009
10.1016/S0306-4379(02)00102-3
10.1109/ICDM.2005.79
10.1142/9789812565402_0001
10.1145/956750.956777
10.1109/ICDE.2009.20
10.1145/354756.354822
10.1145/641007.641117
10.5555/1287369.1287405
10.1007/s10994-005-5828-3
10.1109/ICDE.2008.4497440
10.1145/502807.502809
10.1145/1014052.1014144
10.1007/s00778-006-0040-z
10.1145/1066157.1066213
10.1145/958942.958948
10.1109/34.799904
10.1145/191839.191925
10.1016/0022-2836(81)90087-5
10.1109/TPAMI.2003.1195989
10.14778/1687627.1687721
10.1145/564691.564735
10.1145/1247480.1247544
10.14778/1687627.1687651
10.1109/ICDE.2008.4497477
10.1109/TKDE.2002.1019214
10.1145/1376616.1376656
10.1093/comjnl/41.8.559
10.1007/11564126_60
10.1145/1066157.1066235
10.1145/1559845.1559905
10.1145/253260.253264
10.1145/347090.347153
10.1145/1066157.1066238
10.1145/276304.276320
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/2000824.2000827
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
Applied Sciences
EISSN 1557-4644
EndPage 39
ExternalDocumentID 24516653
10_1145_2000824_2000827
GroupedDBID --Z
-DZ
-~X
.DC
23M
4.4
5GY
5VS
6J9
8US
8VB
9M8
AAFWJ
AAKMM
AALFJ
AAYFX
AAYXX
ABFSI
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMHC
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AEMOZ
AENEX
AENSD
AETEA
AFWIH
AFWXC
AHQJS
AI.
AIAGR
AIKLT
AKRVB
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BAAKF
BDXCO
CCLIF
CITATION
CS3
D0L
E.L
EBS
EJD
FEDTE
GUFHI
HF~
HGAVV
H~9
I07
IAO
ICD
IEA
IGS
IOF
ITC
K1G
LHSKQ
MVM
N95
NEJ
NHB
OHT
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TH9
U5U
UKR
UPT
VH1
WH7
X6Y
XH6
XJT
XOL
XSW
ZCA
ZCG
ZHY
ZL0
ZY4
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c370t-373507fb993c4793dc452ec84f2410c43d9c28d6892ef9dc3acbfccb0663fc43
ISSN 0362-5915
IngestDate Fri Jul 11 10:58:39 EDT 2025
Mon Jul 21 09:17:06 EDT 2025
Wed Sep 10 05:20:00 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nearest neighbour
Database query
nonmetric spaces
Warping
Theory
Dynamic time warping
Competitiveness
Time series
nearest neighbor retrieval
Algorithms
Query processing
Diagonal matrix
similarity matching
Database
Euclidean space
Embedding methods
Performance
non-Euclidean spaces
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-373507fb993c4793dc452ec84f2410c43d9c28d6892ef9dc3acbfccb0663fc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671286942
PQPubID 23500
PageCount 39
ParticipantIDs proquest_miscellaneous_1671286942
pascalfrancis_primary_24516653
crossref_primary_10_1145_2000824_2000827
crossref_citationtrail_10_1145_2000824_2000827
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM transactions on database systems
PublicationYear 2011
Publisher Association for Computing Machinery
Publisher_xml – name: Association for Computing Machinery
References Yi B.-K. (e_1_2_1_68_1)
Vlachos M. (e_1_2_1_61_1)
Chen L. (e_1_2_1_11_1)
e_1_2_1_60_1
Moon Y. (e_1_2_1_41_1)
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Levenshtein V. I. (e_1_2_1_34_1) 1966; 10
Morguet P. (e_1_2_1_42_1)
Koudas N. (e_1_2_1_30_1)
e_1_2_1_31_1
Rath T. M. (e_1_2_1_51_1); 2
e_1_2_1_8_1
Chen Y. (e_1_2_1_14_1)
Argyros T. (e_1_2_1_1_1)
e_1_2_1_56_1
Venkateswaran J. (e_1_2_1_59_1)
e_1_2_1_12_1
e_1_2_1_35_1
Weber R. (e_1_2_1_64_1)
e_1_2_1_4_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_37_1
e_1_2_1_58_1
e_1_2_1_18_1
Sakurai Y. (e_1_2_1_52_1)
Chakrabarti K. (e_1_2_1_9_1)
White D. A. (e_1_2_1_66_1)
Chan K.-P. (e_1_2_1_10_1)
Han W.-S. (e_1_2_1_20_1)
Meek C. (e_1_2_1_39_1)
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_46_1
Weber R. (e_1_2_1_65_1)
e_1_2_1_21_1
e_1_2_1_63_1
e_1_2_1_27_1
Ratanamahatana C. (e_1_2_1_50_1)
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_69_1
e_1_2_1_29_1
Gionis A. (e_1_2_1_19_1)
Li C. (e_1_2_1_36_1)
Navarro G. (e_1_2_1_44_1)
e_1_2_1_70_1
e_1_2_1_7_1
e_1_2_1_55_1
e_1_2_1_5_1
Athitsos V. (e_1_2_1_3_1)
e_1_2_1_57_1
e_1_2_1_13_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
Bingham E. (e_1_2_1_6_1)
Hristescu G. (e_1_2_1_23_1)
Sakurai Y. (e_1_2_1_54_1)
References_xml – volume-title: Proceedings of the SIAM International Data Mining Conference (SDM).
  ident: e_1_2_1_6_1
– ident: e_1_2_1_53_1
  doi: 10.1145/1065167.1065210
– ident: e_1_2_1_48_1
  doi: 10.1145/372202.372334
– ident: e_1_2_1_16_1
  doi: 10.1145/223784.223812
– ident: e_1_2_1_38_1
  doi: 10.1007/s10618-007-0064-z
– ident: e_1_2_1_70_1
  doi: 10.1145/872757.872780
– volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 303--314
  ident: e_1_2_1_36_1
– ident: e_1_2_1_8_1
  doi: 10.1145/299432.299460
– volume-title: Proceedings of the IEEE International Conference on Data Engineearing. 6--17
  ident: e_1_2_1_30_1
– ident: e_1_2_1_63_1
  doi: 10.1007/s101150050009
– ident: e_1_2_1_47_1
  doi: 10.1016/S0306-4379(02)00102-3
– ident: e_1_2_1_28_1
  doi: 10.1109/ICDM.2005.79
– ident: e_1_2_1_26_1
– volume-title: Proceedings of the International Conference on Very Large Data Bases. 516--526
  ident: e_1_2_1_54_1
– volume-title: Proceedings of the IEEE International Conference on Data Engineering. 201--208
  ident: e_1_2_1_68_1
– ident: e_1_2_1_27_1
  doi: 10.1142/9789812565402_0001
– volume-title: Proceedings of the International Conference on Very Large Databases (VLDB). 906--917
  ident: e_1_2_1_59_1
– ident: e_1_2_1_62_1
  doi: 10.1145/956750.956777
– ident: e_1_2_1_13_1
  doi: 10.1109/ICDE.2009.20
– ident: e_1_2_1_15_1
  doi: 10.1145/354756.354822
– volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 268--275
  ident: e_1_2_1_3_1
– ident: e_1_2_1_58_1
  doi: 10.1145/641007.641117
– ident: e_1_2_1_25_1
  doi: 10.5555/1287369.1287405
– ident: e_1_2_1_55_1
  doi: 10.1007/s10994-005-5828-3
– ident: e_1_2_1_37_1
  doi: 10.1109/ICDE.2008.4497440
– ident: e_1_2_1_7_1
  doi: 10.1145/502807.502809
– ident: e_1_2_1_60_1
  doi: 10.1145/1014052.1014144
– ident: e_1_2_1_18_1
  doi: 10.1007/s00778-006-0040-z
– volume-title: Proceedings of the Storage and Retrieval for Image and Video Databases (SPIE). 62--73
  ident: e_1_2_1_66_1
– ident: e_1_2_1_12_1
  doi: 10.1145/1066157.1066213
– volume-title: Proceedings of the International Conference on Data Engineering (ICDE). 786--795
  ident: e_1_2_1_14_1
– ident: e_1_2_1_22_1
  doi: 10.1145/958942.958948
– volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 792--803
  ident: e_1_2_1_11_1
– volume-title: Proceedings of the International Conference on Extending Database Technology: Advances in Database Technology. 21--35
  ident: e_1_2_1_64_1
– ident: e_1_2_1_33_1
  doi: 10.1109/34.799904
– volume-title: Proceedings of the International Conference on Very Large Databases. 518--529
  ident: e_1_2_1_19_1
– ident: e_1_2_1_17_1
  doi: 10.1145/191839.191925
– volume-title: CS Department
  ident: e_1_2_1_23_1
– volume-title: Proceedings of the IEEE International Conference on Data Engineering (ICDE). 263--272
  ident: e_1_2_1_41_1
– ident: e_1_2_1_56_1
  doi: 10.1016/0022-2836(81)90087-5
– ident: e_1_2_1_21_1
  doi: 10.1109/TPAMI.2003.1195989
– volume-title: Proceedings of the IEEE International Conference on Image Processing. 193--197
  ident: e_1_2_1_42_1
– ident: e_1_2_1_2_1
  doi: 10.14778/1687627.1687721
– ident: e_1_2_1_40_1
  doi: 10.1145/564691.564735
– ident: e_1_2_1_43_1
  doi: 10.1145/1247480.1247544
– volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 910--921
  ident: e_1_2_1_39_1
– volume-title: Proceedings of the SIAM International Data Mining Conference (SDM).
  ident: e_1_2_1_50_1
– ident: e_1_2_1_46_1
  doi: 10.14778/1687627.1687651
– ident: e_1_2_1_69_1
  doi: 10.1109/ICDE.2008.4497477
– volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 89--100
  ident: e_1_2_1_9_1
– ident: e_1_2_1_35_1
  doi: 10.1109/TKDE.2002.1019214
– volume-title: Proceedings of the IEEE International Conference on Data Engineearing (ICDE). 126--133
  ident: e_1_2_1_10_1
– ident: e_1_2_1_5_1
  doi: 10.1145/1376616.1376656
– ident: e_1_2_1_31_1
– ident: e_1_2_1_45_1
  doi: 10.1093/comjnl/41.8.559
– volume: 10
  start-page: 707
  year: 1966
  ident: e_1_2_1_34_1
  article-title: Binary codes capable of correcting deletions, insertions, and reversals
  publication-title: Soviet Phys.
– ident: e_1_2_1_32_1
  doi: 10.1007/11564126_60
– volume-title: Proceedings of the International Conference on Data Mining. 481--484
  ident: e_1_2_1_1_1
– volume-title: Proceedings of the IEEE International Conference on Data Engineering (ICDE). 673--684
  ident: e_1_2_1_61_1
– ident: e_1_2_1_67_1
  doi: 10.1145/1066157.1066235
– ident: e_1_2_1_57_1
  doi: 10.1145/1559845.1559905
– ident: e_1_2_1_49_1
  doi: 10.1145/253260.253264
– volume-title: Proceedings of the IEEE International Conference on Data Engineering (ICDE).
  ident: e_1_2_1_52_1
– volume-title: Proceedings of the 10th Annual Symposium on Combinatorial Pattern Matching. 163--185
  ident: e_1_2_1_44_1
– ident: e_1_2_1_29_1
  doi: 10.1145/347090.347153
– volume: 2
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  ident: e_1_2_1_51_1
– ident: e_1_2_1_4_1
  doi: 10.1145/1066157.1066238
– volume-title: Proceedings of the International Conference on Very Large Data Bases. 194--205
  ident: e_1_2_1_65_1
– ident: e_1_2_1_24_1
  doi: 10.1145/276304.276320
– volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 423--434
  ident: e_1_2_1_20_1
SSID ssj0004897
Score 2.2275438
Snippet We propose an embedding-based framework for subsequence matching in time-series databases that improves the efficiency of processing subsequence matching...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1
SubjectTerms Applied sciences
Computer science; control theory; systems
Dynamics
Exact sciences and technology
Information systems. Data bases
Matching
Mathematical analysis
Memory organisation. Data processing
Queries
Software
Vectors (mathematics)
Warpage
Warping
Title Embedding-based subsequence matching in time-series databases
URI https://www.proquest.com/docview/1671286942
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5FIozaMt2TYJKvSQsnibtWVJPi5pSmibEui25GYsWQJD1g6x95IfkN_dkSXbyqaBtBfbWLL8mPHMp9E8EPqgGKMJJRIoIFRAItWmvI0CndGMUSnUTLYOsj_o2S_y9TK-HI3uPK-lVSOm8vavcSX_Q1U4B3Q1UbL_QNl-UDgBx0Bf2AKFYfskGp8uhcqN8gmMMsonNUgB5xo9ASRq3SSNI2OxVIF5IlVPjEuo6V37sHR-cm6KRXSVw9slhK6jS_bcY-8LUK8AtW-qlUWgps5R1RR9-9y4M9bWe-83QPPiami7qJpsWdgYstZh32v7ZtKDV56h3jdIWAurM0gMgVhxYqM0p8rJ1ZgFhNpUj53gtZlPHINFnhSdeerYpjp6KOiJyYkRthCmNY3Bng06rVvHX1N1vQOiDceOUzeA27NnaDNkzCz3b84_n3__OUTY8rZMT_9qLkkUDPFp7Rnu4ZsX11kNv5q2NVIeqPsWwyy20Us3-cBzy0k7aKTKXbTVFfbATs7voh13VOMjl5b84yu0zm3Y4zbccRsuSuxxG-657TVafDldnJwFrvhGICN23IDiiWCqoAXgV2msr7kkcagkJxow37EkUZ7IkOeUJ6HSSS6jTAotpTAQVkPzG7RRVqXaQ5jHVABWUkQTmHtTzmfwGWOmNeVMJpSP0bT7Yql0ielNfZSr9BEqjdFRf8G1zcnyeNfDeyTo-4emQDWNozF639EkBcFqVsuyUlWrOp1RBtiNJiR8-_T7vUPPh19iH200Nyt1AKi1EYeOpf4A55aTdg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedding-based+subsequence+matching+in+time-series+databases&rft.jtitle=ACM+transactions+on+database+systems&rft.au=Papapetrou%2C+Panagiotis&rft.au=Athitsos%2C+Vassilis&rft.au=Potamias%2C+Michalis&rft.au=Kollios%2C+George&rft.date=2011-08-01&rft.issn=0362-5915&rft.eissn=1557-4644&rft.volume=36&rft.issue=3&rft.spage=1&rft.epage=39&rft_id=info:doi/10.1145%2F2000824.2000827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_2000824_2000827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-5915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-5915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-5915&client=summon