Embedding-based subsequence matching in time-series databases
We propose an embedding-based framework for subsequence matching in time-series databases that improves the efficiency of processing subsequence matching queries under the Dynamic Time Warping (DTW) distance measure. This framework partially reduces subsequence matching to vector matching, using an...
Saved in:
Published in | ACM transactions on database systems Vol. 36; no. 3; pp. 1 - 39 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Association for Computing Machinery
01.08.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0362-5915 1557-4644 |
DOI | 10.1145/2000824.2000827 |
Cover
Abstract | We propose an embedding-based framework for subsequence matching in time-series databases that improves the efficiency of processing subsequence matching queries under the Dynamic Time Warping (DTW) distance measure. This framework partially reduces subsequence matching to vector matching, using an embedding that maps each query sequence to a vector and each database time series into a sequence of vectors. The database embedding is computed offline, as a preprocessing step. At runtime, given a query object, an embedding of that object is computed online. Relatively few areas of interest are efficiently identified in the database sequences by comparing the embedding of the query with the database vectors. Those areas of interest are then fully explored using the exact DTW-based subsequence matching algorithm. We apply the proposed framework to define two specific methods. The first method focuses on time-series subsequence matching under unconstrained Dynamic Time Warping. The second method targets subsequence matching under constrained Dynamic Time Warping (cDTW), where warping paths are not allowed to stray too much off the diagonal. In our experiments, good trade-offs between retrieval accuracy and retrieval efficiency are obtained for both methods, and the results are competitive with respect to current state-of-the-art methods. |
---|---|
AbstractList | We propose an embedding-based framework for subsequence matching in time-series databases that improves the efficiency of processing subsequence matching queries under the Dynamic Time Warping (DTW) distance measure. This framework partially reduces subsequence matching to vector matching, using an embedding that maps each query sequence to a vector and each database time series into a sequence of vectors. The database embedding is computed offline, as a preprocessing step. At runtime, given a query object, an embedding of that object is computed online. Relatively few areas of interest are efficiently identified in the database sequences by comparing the embedding of the query with the database vectors. Those areas of interest are then fully explored using the exact DTW-based subsequence matching algorithm. We apply the proposed framework to define two specific methods. The first method focuses on time-series subsequence matching under unconstrained Dynamic Time Warping. The second method targets subsequence matching under constrained Dynamic Time Warping (cDTW), where warping paths are not allowed to stray too much off the diagonal. In our experiments, good trade-offs between retrieval accuracy and retrieval efficiency are obtained for both methods, and the results are competitive with respect to current state-of-the-art methods. |
Author | Kollios, George Potamias, Michalis Papapetrou, Panagiotis Gunopulos, Dimitrios Athitsos, Vassilis |
Author_xml | – sequence: 1 givenname: Panagiotis surname: Papapetrou fullname: Papapetrou, Panagiotis organization: Aalto University, Finland – sequence: 2 givenname: Vassilis surname: Athitsos fullname: Athitsos, Vassilis organization: University of Texas at Arlington, TX – sequence: 3 givenname: Michalis surname: Potamias fullname: Potamias, Michalis organization: Boston University, Boston, MA – sequence: 4 givenname: George surname: Kollios fullname: Kollios, George organization: Boston University, Boston, MA – sequence: 5 givenname: Dimitrios surname: Gunopulos fullname: Gunopulos, Dimitrios organization: University of Athens, Greece |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24516653$$DView record in Pascal Francis |
BookMark | eNp1kDtPwzAUhS1UJNrCzJoFiSWt344HBlSVh1SJpXvkXNtglDgldgf-PakaMSAxneF839XVWaBZ7KND6JbgFSFcrCnGuKJ8dU51geZECFVyyfkMzTGTtBSaiCu0SOlzZHil1Rw9bLvGWRvie9mY5GyRjk1yX0cXwRWdyfAxVkWIRQ6dK5MbgkuFNdmc6HSNLr1pk7uZcon2T9v95qXcvT2_bh53JTCFc8kUE1j5RmsGXGlmgQvqoOKecoKBM6uBVlZWmjqvLTADjQdosJTMj_US3Z_PHoZ-fC3lugsJXNua6PpjqolUhFZSczqidxNqEpjWDyZCSPVhCJ0ZvmvKBZFSsJFbnzkY-pQG538RguvTnvW055RqNMQfA0I2OfQxDya0_3o_6md5Uw |
CODEN | ATDSD3 |
CitedBy_id | crossref_primary_10_1142_S0218001418560074 crossref_primary_10_1007_s10618_016_0489_3 crossref_primary_10_1109_TCBB_2018_2843364 crossref_primary_10_1145_3057741 crossref_primary_10_1371_journal_pone_0085458 crossref_primary_10_1155_2023_3172181 crossref_primary_10_1016_j_ins_2018_03_023 crossref_primary_10_1145_2949741_2949758 crossref_primary_10_1007_s00778_016_0432_7 crossref_primary_10_1109_JAS_2021_1004108 crossref_primary_10_1016_j_scitotenv_2023_167767 crossref_primary_10_1145_2500489 crossref_primary_10_14778_2556549_2556552 crossref_primary_10_1007_s10618_016_0455_0 crossref_primary_10_1007_s11227_015_1525_6 crossref_primary_10_1145_3044711 crossref_primary_10_1016_j_is_2018_08_002 crossref_primary_10_1016_j_eswa_2016_02_017 crossref_primary_10_1109_ACCESS_2020_2987761 crossref_primary_10_1145_2648583 crossref_primary_10_1007_s11390_014_1491_0 crossref_primary_10_1007_s00778_015_0387_0 crossref_primary_10_1155_2021_6690930 crossref_primary_10_1016_j_physa_2012_03_036 crossref_primary_10_1109_TKDE_2020_2998002 crossref_primary_10_3390_ijgi12040179 |
Cites_doi | 10.1145/1065167.1065210 10.1145/372202.372334 10.1145/223784.223812 10.1007/s10618-007-0064-z 10.1145/872757.872780 10.1145/299432.299460 10.1007/s101150050009 10.1016/S0306-4379(02)00102-3 10.1109/ICDM.2005.79 10.1142/9789812565402_0001 10.1145/956750.956777 10.1109/ICDE.2009.20 10.1145/354756.354822 10.1145/641007.641117 10.5555/1287369.1287405 10.1007/s10994-005-5828-3 10.1109/ICDE.2008.4497440 10.1145/502807.502809 10.1145/1014052.1014144 10.1007/s00778-006-0040-z 10.1145/1066157.1066213 10.1145/958942.958948 10.1109/34.799904 10.1145/191839.191925 10.1016/0022-2836(81)90087-5 10.1109/TPAMI.2003.1195989 10.14778/1687627.1687721 10.1145/564691.564735 10.1145/1247480.1247544 10.14778/1687627.1687651 10.1109/ICDE.2008.4497477 10.1109/TKDE.2002.1019214 10.1145/1376616.1376656 10.1093/comjnl/41.8.559 10.1007/11564126_60 10.1145/1066157.1066235 10.1145/1559845.1559905 10.1145/253260.253264 10.1145/347090.347153 10.1145/1066157.1066238 10.1145/276304.276320 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1145/2000824.2000827 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Computer Science Applied Sciences |
EISSN | 1557-4644 |
EndPage | 39 |
ExternalDocumentID | 24516653 10_1145_2000824_2000827 |
GroupedDBID | --Z -DZ -~X .DC 23M 4.4 5GY 5VS 6J9 8US 8VB 9M8 AAFWJ AAKMM AALFJ AAYFX AAYXX ABFSI ABPPZ ACGFO ACGOD ACM ADBCU ADL ADMHC ADMLS AEBYY AEFXT AEGXH AEJOY AEMOZ AENEX AENSD AETEA AFWIH AFWXC AHQJS AI. AIAGR AIKLT AKRVB AKVCP ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BAAKF BDXCO CCLIF CITATION CS3 D0L E.L EBS EJD FEDTE GUFHI HF~ HGAVV H~9 I07 IAO ICD IEA IGS IOF ITC K1G LHSKQ MVM N95 NEJ NHB OHT P1C P2P PQQKQ QWB RNS ROL RXW TAE TH9 U5U UKR UPT VH1 WH7 X6Y XH6 XJT XOL XSW ZCA ZCG ZHY ZL0 ZY4 IQODW 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c370t-373507fb993c4793dc452ec84f2410c43d9c28d6892ef9dc3acbfccb0663fc43 |
ISSN | 0362-5915 |
IngestDate | Fri Jul 11 10:58:39 EDT 2025 Mon Jul 21 09:17:06 EDT 2025 Wed Sep 10 05:20:00 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Nearest neighbour Database query nonmetric spaces Warping Theory Dynamic time warping Competitiveness Time series nearest neighbor retrieval Algorithms Query processing Diagonal matrix similarity matching Database Euclidean space Embedding methods Performance non-Euclidean spaces |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-373507fb993c4793dc452ec84f2410c43d9c28d6892ef9dc3acbfccb0663fc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671286942 |
PQPubID | 23500 |
PageCount | 39 |
ParticipantIDs | proquest_miscellaneous_1671286942 pascalfrancis_primary_24516653 crossref_primary_10_1145_2000824_2000827 crossref_citationtrail_10_1145_2000824_2000827 |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | ACM transactions on database systems |
PublicationYear | 2011 |
Publisher | Association for Computing Machinery |
Publisher_xml | – name: Association for Computing Machinery |
References | Yi B.-K. (e_1_2_1_68_1) Vlachos M. (e_1_2_1_61_1) Chen L. (e_1_2_1_11_1) e_1_2_1_60_1 Moon Y. (e_1_2_1_41_1) e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_62_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 Levenshtein V. I. (e_1_2_1_34_1) 1966; 10 Morguet P. (e_1_2_1_42_1) Koudas N. (e_1_2_1_30_1) e_1_2_1_31_1 Rath T. M. (e_1_2_1_51_1); 2 e_1_2_1_8_1 Chen Y. (e_1_2_1_14_1) Argyros T. (e_1_2_1_1_1) e_1_2_1_56_1 Venkateswaran J. (e_1_2_1_59_1) e_1_2_1_12_1 e_1_2_1_35_1 Weber R. (e_1_2_1_64_1) e_1_2_1_4_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_37_1 e_1_2_1_58_1 e_1_2_1_18_1 Sakurai Y. (e_1_2_1_52_1) Chakrabarti K. (e_1_2_1_9_1) White D. A. (e_1_2_1_66_1) Chan K.-P. (e_1_2_1_10_1) Han W.-S. (e_1_2_1_20_1) Meek C. (e_1_2_1_39_1) e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_46_1 Weber R. (e_1_2_1_65_1) e_1_2_1_21_1 e_1_2_1_63_1 e_1_2_1_27_1 Ratanamahatana C. (e_1_2_1_50_1) e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_69_1 e_1_2_1_29_1 Gionis A. (e_1_2_1_19_1) Li C. (e_1_2_1_36_1) Navarro G. (e_1_2_1_44_1) e_1_2_1_70_1 e_1_2_1_7_1 e_1_2_1_55_1 e_1_2_1_5_1 Athitsos V. (e_1_2_1_3_1) e_1_2_1_57_1 e_1_2_1_13_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 Bingham E. (e_1_2_1_6_1) Hristescu G. (e_1_2_1_23_1) Sakurai Y. (e_1_2_1_54_1) |
References_xml | – volume-title: Proceedings of the SIAM International Data Mining Conference (SDM). ident: e_1_2_1_6_1 – ident: e_1_2_1_53_1 doi: 10.1145/1065167.1065210 – ident: e_1_2_1_48_1 doi: 10.1145/372202.372334 – ident: e_1_2_1_16_1 doi: 10.1145/223784.223812 – ident: e_1_2_1_38_1 doi: 10.1007/s10618-007-0064-z – ident: e_1_2_1_70_1 doi: 10.1145/872757.872780 – volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 303--314 ident: e_1_2_1_36_1 – ident: e_1_2_1_8_1 doi: 10.1145/299432.299460 – volume-title: Proceedings of the IEEE International Conference on Data Engineearing. 6--17 ident: e_1_2_1_30_1 – ident: e_1_2_1_63_1 doi: 10.1007/s101150050009 – ident: e_1_2_1_47_1 doi: 10.1016/S0306-4379(02)00102-3 – ident: e_1_2_1_28_1 doi: 10.1109/ICDM.2005.79 – ident: e_1_2_1_26_1 – volume-title: Proceedings of the International Conference on Very Large Data Bases. 516--526 ident: e_1_2_1_54_1 – volume-title: Proceedings of the IEEE International Conference on Data Engineering. 201--208 ident: e_1_2_1_68_1 – ident: e_1_2_1_27_1 doi: 10.1142/9789812565402_0001 – volume-title: Proceedings of the International Conference on Very Large Databases (VLDB). 906--917 ident: e_1_2_1_59_1 – ident: e_1_2_1_62_1 doi: 10.1145/956750.956777 – ident: e_1_2_1_13_1 doi: 10.1109/ICDE.2009.20 – ident: e_1_2_1_15_1 doi: 10.1145/354756.354822 – volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 268--275 ident: e_1_2_1_3_1 – ident: e_1_2_1_58_1 doi: 10.1145/641007.641117 – ident: e_1_2_1_25_1 doi: 10.5555/1287369.1287405 – ident: e_1_2_1_55_1 doi: 10.1007/s10994-005-5828-3 – ident: e_1_2_1_37_1 doi: 10.1109/ICDE.2008.4497440 – ident: e_1_2_1_7_1 doi: 10.1145/502807.502809 – ident: e_1_2_1_60_1 doi: 10.1145/1014052.1014144 – ident: e_1_2_1_18_1 doi: 10.1007/s00778-006-0040-z – volume-title: Proceedings of the Storage and Retrieval for Image and Video Databases (SPIE). 62--73 ident: e_1_2_1_66_1 – ident: e_1_2_1_12_1 doi: 10.1145/1066157.1066213 – volume-title: Proceedings of the International Conference on Data Engineering (ICDE). 786--795 ident: e_1_2_1_14_1 – ident: e_1_2_1_22_1 doi: 10.1145/958942.958948 – volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 792--803 ident: e_1_2_1_11_1 – volume-title: Proceedings of the International Conference on Extending Database Technology: Advances in Database Technology. 21--35 ident: e_1_2_1_64_1 – ident: e_1_2_1_33_1 doi: 10.1109/34.799904 – volume-title: Proceedings of the International Conference on Very Large Databases. 518--529 ident: e_1_2_1_19_1 – ident: e_1_2_1_17_1 doi: 10.1145/191839.191925 – volume-title: CS Department ident: e_1_2_1_23_1 – volume-title: Proceedings of the IEEE International Conference on Data Engineering (ICDE). 263--272 ident: e_1_2_1_41_1 – ident: e_1_2_1_56_1 doi: 10.1016/0022-2836(81)90087-5 – ident: e_1_2_1_21_1 doi: 10.1109/TPAMI.2003.1195989 – volume-title: Proceedings of the IEEE International Conference on Image Processing. 193--197 ident: e_1_2_1_42_1 – ident: e_1_2_1_2_1 doi: 10.14778/1687627.1687721 – ident: e_1_2_1_40_1 doi: 10.1145/564691.564735 – ident: e_1_2_1_43_1 doi: 10.1145/1247480.1247544 – volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 910--921 ident: e_1_2_1_39_1 – volume-title: Proceedings of the SIAM International Data Mining Conference (SDM). ident: e_1_2_1_50_1 – ident: e_1_2_1_46_1 doi: 10.14778/1687627.1687651 – ident: e_1_2_1_69_1 doi: 10.1109/ICDE.2008.4497477 – volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 89--100 ident: e_1_2_1_9_1 – ident: e_1_2_1_35_1 doi: 10.1109/TKDE.2002.1019214 – volume-title: Proceedings of the IEEE International Conference on Data Engineearing (ICDE). 126--133 ident: e_1_2_1_10_1 – ident: e_1_2_1_5_1 doi: 10.1145/1376616.1376656 – ident: e_1_2_1_31_1 – ident: e_1_2_1_45_1 doi: 10.1093/comjnl/41.8.559 – volume: 10 start-page: 707 year: 1966 ident: e_1_2_1_34_1 article-title: Binary codes capable of correcting deletions, insertions, and reversals publication-title: Soviet Phys. – ident: e_1_2_1_32_1 doi: 10.1007/11564126_60 – volume-title: Proceedings of the International Conference on Data Mining. 481--484 ident: e_1_2_1_1_1 – volume-title: Proceedings of the IEEE International Conference on Data Engineering (ICDE). 673--684 ident: e_1_2_1_61_1 – ident: e_1_2_1_67_1 doi: 10.1145/1066157.1066235 – ident: e_1_2_1_57_1 doi: 10.1145/1559845.1559905 – ident: e_1_2_1_49_1 doi: 10.1145/253260.253264 – volume-title: Proceedings of the IEEE International Conference on Data Engineering (ICDE). ident: e_1_2_1_52_1 – volume-title: Proceedings of the 10th Annual Symposium on Combinatorial Pattern Matching. 163--185 ident: e_1_2_1_44_1 – ident: e_1_2_1_29_1 doi: 10.1145/347090.347153 – volume: 2 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). ident: e_1_2_1_51_1 – ident: e_1_2_1_4_1 doi: 10.1145/1066157.1066238 – volume-title: Proceedings of the International Conference on Very Large Data Bases. 194--205 ident: e_1_2_1_65_1 – ident: e_1_2_1_24_1 doi: 10.1145/276304.276320 – volume-title: Proceedings of the International Conference on Very Large Data Bases (VLDB). 423--434 ident: e_1_2_1_20_1 |
SSID | ssj0004897 |
Score | 2.2275438 |
Snippet | We propose an embedding-based framework for subsequence matching in time-series databases that improves the efficiency of processing subsequence matching... |
SourceID | proquest pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1 |
SubjectTerms | Applied sciences Computer science; control theory; systems Dynamics Exact sciences and technology Information systems. Data bases Matching Mathematical analysis Memory organisation. Data processing Queries Software Vectors (mathematics) Warpage Warping |
Title | Embedding-based subsequence matching in time-series databases |
URI | https://www.proquest.com/docview/1671286942 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5FIozaMt2TYJKvSQsnibtWVJPi5pSmibEui25GYsWQJD1g6x95IfkN_dkSXbyqaBtBfbWLL8mPHMp9E8EPqgGKMJJRIoIFRAItWmvI0CndGMUSnUTLYOsj_o2S_y9TK-HI3uPK-lVSOm8vavcSX_Q1U4B3Q1UbL_QNl-UDgBx0Bf2AKFYfskGp8uhcqN8gmMMsonNUgB5xo9ASRq3SSNI2OxVIF5IlVPjEuo6V37sHR-cm6KRXSVw9slhK6jS_bcY-8LUK8AtW-qlUWgps5R1RR9-9y4M9bWe-83QPPiami7qJpsWdgYstZh32v7ZtKDV56h3jdIWAurM0gMgVhxYqM0p8rJ1ZgFhNpUj53gtZlPHINFnhSdeerYpjp6KOiJyYkRthCmNY3Bng06rVvHX1N1vQOiDceOUzeA27NnaDNkzCz3b84_n3__OUTY8rZMT_9qLkkUDPFp7Rnu4ZsX11kNv5q2NVIeqPsWwyy20Us3-cBzy0k7aKTKXbTVFfbATs7voh13VOMjl5b84yu0zm3Y4zbccRsuSuxxG-657TVafDldnJwFrvhGICN23IDiiWCqoAXgV2msr7kkcagkJxow37EkUZ7IkOeUJ6HSSS6jTAotpTAQVkPzG7RRVqXaQ5jHVABWUkQTmHtTzmfwGWOmNeVMJpSP0bT7Yql0ielNfZSr9BEqjdFRf8G1zcnyeNfDeyTo-4emQDWNozF639EkBcFqVsuyUlWrOp1RBtiNJiR8-_T7vUPPh19iH200Nyt1AKi1EYeOpf4A55aTdg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedding-based+subsequence+matching+in+time-series+databases&rft.jtitle=ACM+transactions+on+database+systems&rft.au=Papapetrou%2C+Panagiotis&rft.au=Athitsos%2C+Vassilis&rft.au=Potamias%2C+Michalis&rft.au=Kollios%2C+George&rft.date=2011-08-01&rft.issn=0362-5915&rft.eissn=1557-4644&rft.volume=36&rft.issue=3&rft.spage=1&rft.epage=39&rft_id=info:doi/10.1145%2F2000824.2000827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_2000824_2000827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-5915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-5915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-5915&client=summon |