Conductivitylike Gilbert Damping due to Intraband Scattering in Epitaxial Iron

Confirming the origin of Gilbert damping by experiment has remained a challenge for many decades, even for simple ferromagnetic metals. Here, we experimentally identify Gilbert damping that increases with decreasing electronic scattering in epitaxial thin films of pure Fe. This observation of conduc...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 124; no. 15; p. 157201
Main Authors Khodadadi, Behrouz, Rai, Anish, Sapkota, Arjun, Srivastava, Abhishek, Nepal, Bhuwan, Lim, Youngmin, Smith, David A, Mewes, Claudia, Budhathoki, Sujan, Hauser, Adam J, Gao, Min, Li, Jie-Fang, Viehland, Dwight D, Jiang, Zijian, Heremans, Jean J, Balachandran, Prasanna V, Mewes, Tim, Emori, Satoru
Format Journal Article
LanguageEnglish
Published United States 17.04.2020
Online AccessGet more information

Cover

Loading…
Abstract Confirming the origin of Gilbert damping by experiment has remained a challenge for many decades, even for simple ferromagnetic metals. Here, we experimentally identify Gilbert damping that increases with decreasing electronic scattering in epitaxial thin films of pure Fe. This observation of conductivitylike damping, which cannot be accounted for by classical eddy-current loss, is in excellent quantitative agreement with theoretical predictions of Gilbert damping due to intraband scattering. Our results resolve the long-standing question about a fundamental damping mechanism and offer hints for engineering low-loss magnetic metals for cryogenic spintronics and quantum devices.
AbstractList Confirming the origin of Gilbert damping by experiment has remained a challenge for many decades, even for simple ferromagnetic metals. Here, we experimentally identify Gilbert damping that increases with decreasing electronic scattering in epitaxial thin films of pure Fe. This observation of conductivitylike damping, which cannot be accounted for by classical eddy-current loss, is in excellent quantitative agreement with theoretical predictions of Gilbert damping due to intraband scattering. Our results resolve the long-standing question about a fundamental damping mechanism and offer hints for engineering low-loss magnetic metals for cryogenic spintronics and quantum devices.
Author Nepal, Bhuwan
Balachandran, Prasanna V
Mewes, Tim
Rai, Anish
Budhathoki, Sujan
Mewes, Claudia
Hauser, Adam J
Lim, Youngmin
Heremans, Jean J
Jiang, Zijian
Emori, Satoru
Smith, David A
Sapkota, Arjun
Srivastava, Abhishek
Gao, Min
Li, Jie-Fang
Viehland, Dwight D
Khodadadi, Behrouz
Author_xml – sequence: 1
  givenname: Behrouz
  surname: Khodadadi
  fullname: Khodadadi, Behrouz
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 2
  givenname: Anish
  surname: Rai
  fullname: Rai, Anish
  organization: Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487, USA
– sequence: 3
  givenname: Arjun
  surname: Sapkota
  fullname: Sapkota, Arjun
  organization: Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487, USA
– sequence: 4
  givenname: Abhishek
  surname: Srivastava
  fullname: Srivastava, Abhishek
  organization: Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487, USA
– sequence: 5
  givenname: Bhuwan
  surname: Nepal
  fullname: Nepal, Bhuwan
  organization: Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487, USA
– sequence: 6
  givenname: Youngmin
  surname: Lim
  fullname: Lim, Youngmin
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 7
  givenname: David A
  surname: Smith
  fullname: Smith, David A
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 8
  givenname: Claudia
  surname: Mewes
  fullname: Mewes, Claudia
  organization: Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487, USA
– sequence: 9
  givenname: Sujan
  surname: Budhathoki
  fullname: Budhathoki, Sujan
  organization: Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487, USA
– sequence: 10
  givenname: Adam J
  surname: Hauser
  fullname: Hauser, Adam J
  organization: Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487, USA
– sequence: 11
  givenname: Min
  surname: Gao
  fullname: Gao, Min
  organization: Department of Material Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 12
  givenname: Jie-Fang
  surname: Li
  fullname: Li, Jie-Fang
  organization: Department of Material Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 13
  givenname: Dwight D
  surname: Viehland
  fullname: Viehland, Dwight D
  organization: Department of Material Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 14
  givenname: Zijian
  surname: Jiang
  fullname: Jiang, Zijian
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 15
  givenname: Jean J
  surname: Heremans
  fullname: Heremans, Jean J
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
– sequence: 16
  givenname: Prasanna V
  surname: Balachandran
  fullname: Balachandran, Prasanna V
  organization: Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
– sequence: 17
  givenname: Tim
  surname: Mewes
  fullname: Mewes, Tim
  organization: Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487, USA
– sequence: 18
  givenname: Satoru
  surname: Emori
  fullname: Emori, Satoru
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32357022$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAQRS0Eog_4hco_kOIZt3G6RKWUSBEgHutq7EzAkDpR4lb07ykCVndxj67OHYnT0AQWYgJqCqD01eP7oX_ifcExTgFnU5gbVHAihqDMIjEAs4EY9f2HUgowzc7FQKOeG4U4FPfLJpQ7F_3ex0PtP1mufW25i_KGtq0Pb7LcsYyNzEPsyFIo5bOjGLn76XyQq9ZH-vJUy7xrwoU4q6ju-fIvx-L1dvWyvEuKh3W-vC4Sp42KCTLwjO1RlF06rzgjq1yWQlYZSkkRWiSldWWOFLiUywrApKwdL8iiQRyLye9uu7NbLjdt57fUHTb_x_Ab1j1UBQ
CitedBy_id crossref_primary_10_1103_PhysRevB_108_094402
crossref_primary_10_1103_PhysRevB_108_094424
crossref_primary_10_1063_5_0033259
crossref_primary_10_1016_j_tsf_2022_139494
crossref_primary_10_1103_PhysRevB_106_134409
crossref_primary_10_1103_PhysRevMaterials_6_024406
crossref_primary_10_1103_PhysRevB_103_165122
crossref_primary_10_1103_PhysRevB_104_224404
crossref_primary_10_1002_apxr_202300103
crossref_primary_10_1103_PhysRevB_106_224422
crossref_primary_10_1063_9_0000418
crossref_primary_10_1063_5_0156982
crossref_primary_10_1103_PhysRevB_109_L020406
crossref_primary_10_12677_APP_2023_136031
crossref_primary_10_1103_PhysRevB_103_L220403
crossref_primary_10_3389_fmats_2022_879711
crossref_primary_10_1103_PhysRevB_108_014433
crossref_primary_10_1103_PhysRevB_109_235147
crossref_primary_10_1103_PhysRevMaterials_7_124403
crossref_primary_10_1038_s41467_023_39529_8
crossref_primary_10_1063_5_0050062
crossref_primary_10_1103_PhysRevApplied_15_054031
crossref_primary_10_1103_PhysRevB_103_L220405
crossref_primary_10_1016_j_physrep_2022_03_002
crossref_primary_10_1038_s41598_024_53621_z
crossref_primary_10_1063_5_0165509
crossref_primary_10_1039_D3NR06197C
crossref_primary_10_1063_5_0198326
crossref_primary_10_1103_PhysRevApplied_14_034042
crossref_primary_10_1063_5_0157520
crossref_primary_10_1103_PhysRevB_105_174408
crossref_primary_10_1103_PhysRevB_104_094409
crossref_primary_10_1016_j_cnsns_2021_106054
crossref_primary_10_1103_PhysRevB_105_064422
crossref_primary_10_1021_acsanm_0c02662
crossref_primary_10_1016_j_jmmm_2022_169459
crossref_primary_10_1103_PhysRevMaterials_7_034408
crossref_primary_10_1109_TMAG_2023_3283187
crossref_primary_10_1063_5_0039577
crossref_primary_10_1016_j_physb_2022_413846
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.124.157201
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 32357022
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c370t-2e1e4eb157ec65fe8ab0c8618f7a6a0a2b2a033f7e4e1c6edf1176e3ce9ab2722
IngestDate Sat Sep 28 08:27:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-2e1e4eb157ec65fe8ab0c8618f7a6a0a2b2a033f7e4e1c6edf1176e3ce9ab2722
OpenAccessLink https://link.aps.org/accepted/10.1103/PhysRevLett.124.157201
PMID 32357022
ParticipantIDs pubmed_primary_32357022
PublicationCentury 2000
PublicationDate 2020-Apr-17
PublicationDateYYYYMMDD 2020-04-17
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-Apr-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2020
SSID ssj0001268
Score 2.5291636
Snippet Confirming the origin of Gilbert damping by experiment has remained a challenge for many decades, even for simple ferromagnetic metals. Here, we experimentally...
SourceID pubmed
SourceType Index Database
StartPage 157201
Title Conductivitylike Gilbert Damping due to Intraband Scattering in Epitaxial Iron
URI https://www.ncbi.nlm.nih.gov/pubmed/32357022
Volume 124
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBfpxkZexr4_ug497FWZJX_IfuxKSztYGGsLfSuSIlM3rR1SJ4y-7h_fnSQ7Ie3GNgImWLGw_fvlfDrf746QjzEKHAsjWZlnhiUq4ayIS80sx4e1zlNhMN7xdZwdniZfztKzweDnWtbSotUjc3uvruR_UIV9gCuqZP8B2X5S2AHfAV_YAsKw_SuM95oay7W6_g9X1RQAr7BkVQtYXjsd1GThOmMcYQRXuyRN4-ppBiHLPrYM-eHKbcwDPMFP_dbBF6QtV071s3rxc9FMFHxcKsBni71-btfeGPlMyeqmDzUfq9m08X7q7vxy0RPyeF4tFfinSz-kLzBDf7oeiRCYFsq88HJkvfWMZMEk96rQ3rx6jXTHo3TNWvJUCh_KuGvIIywogRf73S5R2TSCeUZ3DwBAZtcO3hgL90Re5Pzn0Y0C293QFtmSORrJMQZ8hl2YLsuDsBxO6dP9JzQkj7tJNlYnzks5eUqehOUF3fVceUYGtn5OHnk0b16Q8SZjaGAMDYyhwBjaNrRnDF0xhlY17RlDkTEvyenB_sneIQsdNZiJZdQyYblN4OmcSmuytLS50pHJM56XUmUqUkILFcVxKeFX3GR2UnIuMxsbWygtpBCvyIO6qe0bQmNcyxouVSpUAgcocJ0LpcqJklEJq4S35LW_EeczXzblvLtF7347sk2GK169Jw9L-J_aHXD6Wv3BwfILCcFZQg
link.rule.ids 786
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductivitylike+Gilbert+Damping+due+to+Intraband+Scattering+in+Epitaxial+Iron&rft.jtitle=Physical+review+letters&rft.au=Khodadadi%2C+Behrouz&rft.au=Rai%2C+Anish&rft.au=Sapkota%2C+Arjun&rft.au=Srivastava%2C+Abhishek&rft.date=2020-04-17&rft.eissn=1079-7114&rft.volume=124&rft.issue=15&rft.spage=157201&rft_id=info:doi/10.1103%2FPhysRevLett.124.157201&rft_id=info%3Apmid%2F32357022&rft_id=info%3Apmid%2F32357022&rft.externalDocID=32357022