Freezing colloidal suspensions: periodic ice lenses and compaction

Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. (J. Fluid Mech.,...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 758; pp. 786 - 808
Main Authors Anderson, Anthony M., Grae Worster, M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. (J. Fluid Mech., vol. 498, 2004, pp. 227–244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses.
AbstractList Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512-16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempelᅡ etᅡ al. (J. Fluid Mech., vol. 498, 2004, pp. 227-244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses.
Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. (J. Fluid Mech., vol. 498, 2004, pp. 227–244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses.
Abstract Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir , vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel  et al. ( J. Fluid Mech. , vol. 498, 2004, pp. 227–244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses.
Author Grae Worster, M.
Anderson, Anthony M.
Author_xml – sequence: 1
  givenname: Anthony M.
  surname: Anderson
  fullname: Anderson, Anthony M.
  email: a.anderson@damtp.cam.ac.uk
  organization: Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
– sequence: 2
  givenname: M.
  surname: Grae Worster
  fullname: Grae Worster, M.
  organization: Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28919561$$DView record in Pascal Francis
BookMark eNptkE1LAzEQQINUsFZv_oAF8eau-dhsNt60WBUKXvQcZrNJSdkma9Ie9Neb0iIePA0Mb97AO0cTH7xB6IrgimAi7tZ2U1FM6opjfIKmpG5kKZqaT9AUY0pLQig-Q-cprTEmDEsxRY-LaMy386tCh2EIroehSLs0Gp9c8Om-GE10oXe6cNoUQ16bVIDvM74ZQW8zdIFOLQzJXB7nDH0snt7nL-Xy7fl1_rAsNRN4W1IJHLQAxij0GEjX6VYKw41kNQfeQcM722ouQPS9tbTWtmu46FpZtz1jms3Q9cE7xvC5M2mr1mEXfX6piJSUtwwTnKnbA6VjSCkaq8boNhC_FMFqX0nlSmpfSeVKGb85SiFpGGwEr136vaGtJJI3JHPVUQubLrp-Zf58_0_8A6sneMY
CODEN JFLSA7
CitedBy_id crossref_primary_10_1016_j_coldregions_2020_103125
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120074
crossref_primary_10_7498_aps_68_20181645
crossref_primary_10_1103_PhysRevE_99_052601
crossref_primary_10_1002_adfm_202112509
crossref_primary_10_1109_JQE_2024_3366470
crossref_primary_10_1016_j_pmatsci_2018_01_001
crossref_primary_10_1039_C8SM01572D
crossref_primary_10_1063_5_0084094
crossref_primary_10_1016_j_jeurceramsoc_2019_04_007
crossref_primary_10_1088_1674_1056_25_12_128202
crossref_primary_10_1038_srep23358
crossref_primary_10_1016_j_physd_2023_133841
crossref_primary_10_3390_ma9120983
crossref_primary_10_1016_j_epsl_2019_115725
crossref_primary_10_1016_j_colsurfa_2018_05_092
crossref_primary_10_1017_jfm_2019_1065
crossref_primary_10_1038_s41598_021_82713_3
crossref_primary_10_1016_j_coldregions_2019_102964
crossref_primary_10_1021_acs_langmuir_7b00472
crossref_primary_10_1002_adma_201907176
crossref_primary_10_1111_maps_13138
crossref_primary_10_1016_j_jpowsour_2022_232441
crossref_primary_10_1021_acsomega_6b00217
crossref_primary_10_1016_j_actamat_2016_11_038
crossref_primary_10_1016_j_nanoen_2023_108968
crossref_primary_10_1063_5_0044935
crossref_primary_10_1088_1468_6996_16_4_043501
crossref_primary_10_1002_eem2_12106
crossref_primary_10_1017_jfm_2023_366
crossref_primary_10_1002_adfm_202315532
Cites_doi 10.1017/S0022112003006761
10.1152/ajpcell.1984.247.3.C125
10.1002/9781118684931
10.1126/science.1120937
10.1103/PhysRevE.84.041402
10.1146/annurev.fluid.37.061903.175758
10.1103/PhysRevE.81.031604
10.2136/vzj2012.0049
10.1137/100788197
10.1017/CBO9780511546747
10.1103/PhysRevLett.100.238301
10.1086/623637
10.1016/0021-9797(78)90188-1
10.1038/nmat2571
10.1103/PhysRevLett.87.088501
10.1103/PhysRevLett.94.018302
10.1016/S0022-0248(00)00353-5
10.1137/0149060
10.1016/0022-0248(92)90014-A
10.1016/0021-9797(83)90166-2
10.2136/vzj2012.0045
10.1017/S0022112006009268
10.1038/nmat1487
10.1021/la100125v
10.1103/RevModPhys.78.695
10.1017/S0022112008000219
10.1029/2006JF000525
10.1029/WR021i003p00281
10.1016/S0022-0248(01)02271-0
10.1017/jfm.2011.545
10.1021/la303458m
10.1063/1.1915027
10.1086/623720
ContentType Journal Article
Copyright 2014 Cambridge University Press
2015 INIST-CNRS
Copyright_xml – notice: 2014 Cambridge University Press
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2014.500
DatabaseName Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
Chemistry
DocumentTitleAlternate A. M. Anderson and M. G. Worster
Freezing colloidal suspensions: periodic ice lenses and compaction
EISSN 1469-7645
EndPage 808
ExternalDocumentID 10_1017_jfm_2014_500
28919561
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
-1F
-2V
-~N
08R
6TJ
6~7
8W4
8WZ
9M5
A6W
ABBJB
ABDMP
ABFLS
ABFSI
ABKAW
ABTAH
ABTRL
ABVFV
ABZUI
ACETC
ACKIV
ADOVH
AEBPU
AENCP
AHGVY
AI.
AIAFM
ALEEW
BESQT
BQFHP
CAG
CCUQV
CDIZJ
COF
G8K
H~9
I.9
IOO
IPNFZ
IQODW
KAFGG
KC5
NMFBF
PQEST
PQUKI
VH1
VOH
ZJOSE
ZY4
~V1
AAYXX
ABVZP
ABXAU
CITATION
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
Q9U
ID FETCH-LOGICAL-c370t-29a5ac7a332ad0a1bbc897e5e9345a5ba65bf8c57a7ddff24cfb657b8948d33c3
IEDL.DBID 8FG
ISSN 0022-1120
IngestDate Thu Nov 07 08:47:42 EST 2024
Thu Sep 26 17:01:10 EDT 2024
Fri Nov 25 19:04:05 EST 2022
Wed Mar 13 05:46:51 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords suspensions
phase change
solidification/melting
Directional solidification
Colloidal suspension
Segregation
Phase change
Ice
Modeling
Freezing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-29a5ac7a332ad0a1bbc897e5e9345a5ba65bf8c57a7ddff24cfb657b8948d33c3
OpenAccessLink https://www.repository.cam.ac.uk/bitstreams/160f3f62-f8c1-4f43-88dc-2cf0091f4a13/download
PQID 1992583010
PQPubID 34769
PageCount 23
ParticipantIDs proquest_journals_1992583010
crossref_primary_10_1017_jfm_2014_500
pascalfrancis_primary_28919561
cambridge_journals_10_1017_jfm_2014_500
PublicationCentury 2000
PublicationDate 2014-11-10
PublicationDateYYYYMMDD 2014-11-10
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2014
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S002211201400500X_r2
S002211201400500X_r3
S002211201400500X_r4
S002211201400500X_r5
S002211201400500X_r6
S002211201400500X_r7
S002211201400500X_r30
S002211201400500X_r8
S002211201400500X_r9
S002211201400500X_r32
S002211201400500X_r10
S002211201400500X_r31
S002211201400500X_r34
S002211201400500X_r12
S002211201400500X_r11
S002211201400500X_r36
S002211201400500X_r35
S002211201400500X_r16
S002211201400500X_r15
S002211201400500X_r37
S002211201400500X_r18
S002211201400500X_r17
S002211201400500X_r19
Israelachvili (S002211201400500X_r13) 2011
Andersland (S002211201400500X_r1) 2004
Mazur (S002211201400500X_r14) 1984; 247
S002211201400500X_r21
S002211201400500X_r20
S002211201400500X_r22
S002211201400500X_r25
S002211201400500X_r24
S002211201400500X_r27
S002211201400500X_r26
S002211201400500X_r29
S002211201400500X_r28
Rapatz (S002211201400500X_r23) 1966
Velez-Ruiz (S002211201400500X_r33) 2007
References_xml – ident: S002211201400500X_r27
  doi: 10.1017/S0022112003006761
– volume: 247
  start-page: 125
  year: 1984
  ident: S002211201400500X_r14
  article-title: Freezing of living cells: mechanisms and implications
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.1984.247.3.C125
  contributor:
    fullname: Mazur
– ident: S002211201400500X_r10
  doi: 10.1002/9781118684931
– ident: S002211201400500X_r8
  doi: 10.1126/science.1120937
– ident: S002211201400500X_r29
  doi: 10.1103/PhysRevE.84.041402
– ident: S002211201400500X_r36
  doi: 10.1146/annurev.fluid.37.061903.175758
– ident: S002211201400500X_r12
  doi: 10.1103/PhysRevE.81.031604
– ident: S002211201400500X_r21
  doi: 10.2136/vzj2012.0049
– volume-title: Frozen Ground Engineering
  year: 2004
  ident: S002211201400500X_r1
  contributor:
    fullname: Andersland
– ident: S002211201400500X_r20
  doi: 10.1137/100788197
– ident: S002211201400500X_r6
  doi: 10.1017/CBO9780511546747
– ident: S002211201400500X_r22
  doi: 10.1103/PhysRevLett.100.238301
– ident: S002211201400500X_r30
  doi: 10.1086/623637
– ident: S002211201400500X_r15
  doi: 10.1016/0021-9797(78)90188-1
– ident: S002211201400500X_r7
  doi: 10.1038/nmat2571
– ident: S002211201400500X_r26
  doi: 10.1103/PhysRevLett.87.088501
– ident: S002211201400500X_r32
  doi: 10.1103/PhysRevLett.94.018302
– ident: S002211201400500X_r35
  doi: 10.1016/S0022-0248(00)00353-5
– volume-title: Cryobiology
  year: 1966
  ident: S002211201400500X_r23
  contributor:
    fullname: Rapatz
– ident: S002211201400500X_r9
  doi: 10.1137/0149060
– ident: S002211201400500X_r4
  doi: 10.1016/0022-0248(92)90014-A
– ident: S002211201400500X_r3
  doi: 10.1016/0021-9797(83)90166-2
– volume-title: Handbook of Food Preservation
  year: 2007
  ident: S002211201400500X_r33
  contributor:
    fullname: Velez-Ruiz
– ident: S002211201400500X_r25
  doi: 10.2136/vzj2012.0045
– ident: S002211201400500X_r18
  doi: 10.1017/S0022112006009268
– ident: S002211201400500X_r37
  doi: 10.1038/nmat1487
– ident: S002211201400500X_r11
  doi: 10.1021/la100125v
– ident: S002211201400500X_r5
  doi: 10.1103/RevModPhys.78.695
– ident: S002211201400500X_r19
  doi: 10.1017/S0022112008000219
– ident: S002211201400500X_r24
  doi: 10.1029/2006JF000525
– ident: S002211201400500X_r16
  doi: 10.1029/WR021i003p00281
– ident: S002211201400500X_r34
  doi: 10.1016/S0022-0248(01)02271-0
– ident: S002211201400500X_r28
  doi: 10.1017/jfm.2011.545
– volume-title: Intermolecular and Surface Forces. 3rd edn
  year: 2011
  ident: S002211201400500X_r13
  contributor:
    fullname: Israelachvili
– ident: S002211201400500X_r2
  doi: 10.1021/la303458m
– ident: S002211201400500X_r17
  doi: 10.1063/1.1915027
– ident: S002211201400500X_r31
  doi: 10.1086/623720
SSID ssj0013097
Score 2.3714433
Snippet Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523)...
Abstract Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir , vol. 28 (48), 2012, pp....
Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512-16523)...
SourceID proquest
crossref
pascalfrancis
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 786
SubjectTerms Aluminum oxide
Banded structure
Bifurcations
Chaos
Chemistry
Colloidal state and disperse state
Colloids
Compaction
Directional solidification
Exact sciences and technology
Experiments
Frameworks
Freezing
General and physical chemistry
Growth kinetics
Ice
Ice cover
Ice lenses
Kinetics
Lenses
Modelling
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Segregation
Sequencing
Soil
Soil compaction
Temperature gradients
Thickness
Viscous flow
Title Freezing colloidal suspensions: periodic ice lenses and compaction
URI https://www.cambridge.org/core/product/identifier/S002211201400500X/type/journal_article
https://www.proquest.com/docview/1992583010
Volume 758
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSyMxEB7UIiiiXk-xWkse7vBpvf2VJvFFVKwinIgo-LYk2QT0oa2mvvjXO7NNq3Kcr5uwgZnJzCT55huAX2nfKo-apedGn5TG5ImxpU-8lMoQBb_jVJz897p_eV9ePfCHeOEWIqxy5hMbR12PLN2R_yGYJJdojunx-DmhrlH0uhpbaCxCK8uFoMOXHFx8vCKkSszYwjGvSCPwnSijnzyVoWflIafatg9ahS_haW2sA0rKT1tc_OOtmxA02IT1mDuyk6myf8CCG7ZhI-aRLO7S0IbVTySDbVhuQJ42_ITTwYtzb_iRkfZHjzX-LLyGMWHY0fiOGLEej-pHy9B7MAxHwQWmhzVrgOpNAcQW3A_O784uk9hDIbGFSCdJrjTXVuiiyHWd6swYK5Vw3Kmi5Job3efGS8uFFnXtfV5ab_pcGKlKWReFLbZhaTgauh1gXtE415iO47TMaTyUY3wrDAZBrqTrwMFcjFXcCaGaoshEhQKvSOAVCrwDv2dCrsZTUo3_zOt90cB8Mp4Sqc4x60B3ppJPK84tZff74T1YoZWSBtTXhaXJy6vbxxRjYnqNHfWgdXp-fXP7DtAM0Pw
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7UIirioyrWZw6Kp9Vtd9PdeBErlqptEVHwtiTZBOqhraZe_PXObNOqiF43YQMzk5lJ8s03AEdhXQuLmqXnRhvEStUCpWMb2DQViij4Dafi5E633nqKb5_5s79wcx5WOfGJhaPOB5ruyM8IJslTNMfwYvgaUNcoel31LTRmoURUVXj4KjWuu_cPX-8IoUgmfOGYWYQe-k6k0S-WCtGr8Smn6rYvYoUfAWp5KB3Kyo6bXPzy10UQaq7Bis8e2eVY3eswY_plWPWZJPP71JVh6RvNYBnmC5indhvQaL4Z84EfGel_0MvxZ-7dDQnFjuZ3zoj3eJD3NEP_wTAgOeOY7OesgKoXJRCb8NS8frxqBb6LQqCjJBwFNSG51ImMoprMQ1lVSqciMdyIKOaSK1nnyqaaJzLJc2trsbaqzhOVijjNo0hHWzDXH_TNNjAraJxLTMhxWtVIPJZjhIsUhkEuUlOBk6kYM78XXDbGkSUZCjwjgWco8AocT4ScDce0Gn_MO_ihgelkPCdSpWO1AnsTlXxbcWorO_8PH8JC67HTzto33btdWKRVgwLitwdzo7d3s48Jx0gdeKv6BL5z07M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freezing+colloidal+suspensions%3A+periodic+ice+lenses+and+compaction&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Anderson%2C+Anthony%C2%A0M.&rft.au=Grae+Worster%2C+M.&rft.date=2014-11-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=758&rft.spage=786&rft.epage=808&rft_id=info:doi/10.1017%2Fjfm.2014.500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2014_500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon