Freezing colloidal suspensions: periodic ice lenses and compaction
Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. (J. Fluid Mech.,...
Saved in:
Published in | Journal of fluid mechanics Vol. 758; pp. 786 - 808 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. (J. Fluid Mech., vol. 498, 2004, pp. 227–244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses. |
---|---|
AbstractList | Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512-16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempelᅡ etᅡ al. (J. Fluid Mech., vol. 498, 2004, pp. 227-244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses. Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. (J. Fluid Mech., vol. 498, 2004, pp. 227–244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses. Abstract Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir , vol. 28 (48), 2012, pp. 16512–16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. ( J. Fluid Mech. , vol. 498, 2004, pp. 227–244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses. |
Author | Grae Worster, M. Anderson, Anthony M. |
Author_xml | – sequence: 1 givenname: Anthony M. surname: Anderson fullname: Anderson, Anthony M. email: a.anderson@damtp.cam.ac.uk organization: Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK – sequence: 2 givenname: M. surname: Grae Worster fullname: Grae Worster, M. organization: Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28919561$$DView record in Pascal Francis |
BookMark | eNptkE1LAzEQQINUsFZv_oAF8eau-dhsNt60WBUKXvQcZrNJSdkma9Ie9Neb0iIePA0Mb97AO0cTH7xB6IrgimAi7tZ2U1FM6opjfIKmpG5kKZqaT9AUY0pLQig-Q-cprTEmDEsxRY-LaMy386tCh2EIroehSLs0Gp9c8Om-GE10oXe6cNoUQ16bVIDvM74ZQW8zdIFOLQzJXB7nDH0snt7nL-Xy7fl1_rAsNRN4W1IJHLQAxij0GEjX6VYKw41kNQfeQcM722ouQPS9tbTWtmu46FpZtz1jms3Q9cE7xvC5M2mr1mEXfX6piJSUtwwTnKnbA6VjSCkaq8boNhC_FMFqX0nlSmpfSeVKGb85SiFpGGwEr136vaGtJJI3JHPVUQubLrp-Zf58_0_8A6sneMY |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1016_j_coldregions_2020_103125 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120074 crossref_primary_10_7498_aps_68_20181645 crossref_primary_10_1103_PhysRevE_99_052601 crossref_primary_10_1002_adfm_202112509 crossref_primary_10_1109_JQE_2024_3366470 crossref_primary_10_1016_j_pmatsci_2018_01_001 crossref_primary_10_1039_C8SM01572D crossref_primary_10_1063_5_0084094 crossref_primary_10_1016_j_jeurceramsoc_2019_04_007 crossref_primary_10_1088_1674_1056_25_12_128202 crossref_primary_10_1038_srep23358 crossref_primary_10_1016_j_physd_2023_133841 crossref_primary_10_3390_ma9120983 crossref_primary_10_1016_j_epsl_2019_115725 crossref_primary_10_1016_j_colsurfa_2018_05_092 crossref_primary_10_1017_jfm_2019_1065 crossref_primary_10_1038_s41598_021_82713_3 crossref_primary_10_1016_j_coldregions_2019_102964 crossref_primary_10_1021_acs_langmuir_7b00472 crossref_primary_10_1002_adma_201907176 crossref_primary_10_1111_maps_13138 crossref_primary_10_1016_j_jpowsour_2022_232441 crossref_primary_10_1021_acsomega_6b00217 crossref_primary_10_1016_j_actamat_2016_11_038 crossref_primary_10_1016_j_nanoen_2023_108968 crossref_primary_10_1063_5_0044935 crossref_primary_10_1088_1468_6996_16_4_043501 crossref_primary_10_1002_eem2_12106 crossref_primary_10_1017_jfm_2023_366 crossref_primary_10_1002_adfm_202315532 |
Cites_doi | 10.1017/S0022112003006761 10.1152/ajpcell.1984.247.3.C125 10.1002/9781118684931 10.1126/science.1120937 10.1103/PhysRevE.84.041402 10.1146/annurev.fluid.37.061903.175758 10.1103/PhysRevE.81.031604 10.2136/vzj2012.0049 10.1137/100788197 10.1017/CBO9780511546747 10.1103/PhysRevLett.100.238301 10.1086/623637 10.1016/0021-9797(78)90188-1 10.1038/nmat2571 10.1103/PhysRevLett.87.088501 10.1103/PhysRevLett.94.018302 10.1016/S0022-0248(00)00353-5 10.1137/0149060 10.1016/0022-0248(92)90014-A 10.1016/0021-9797(83)90166-2 10.2136/vzj2012.0045 10.1017/S0022112006009268 10.1038/nmat1487 10.1021/la100125v 10.1103/RevModPhys.78.695 10.1017/S0022112008000219 10.1029/2006JF000525 10.1029/WR021i003p00281 10.1016/S0022-0248(01)02271-0 10.1017/jfm.2011.545 10.1021/la303458m 10.1063/1.1915027 10.1086/623720 |
ContentType | Journal Article |
Copyright | 2014 Cambridge University Press 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Cambridge University Press – notice: 2015 INIST-CNRS |
DBID | IQODW AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PQEST PQQKQ PQUKI PTHSS Q9U S0W |
DOI | 10.1017/jfm.2014.500 |
DatabaseName | Pascal-Francis CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics Chemistry |
DocumentTitleAlternate | A. M. Anderson and M. G. Worster Freezing colloidal suspensions: periodic ice lenses and compaction |
EISSN | 1469-7645 |
EndPage | 808 |
ExternalDocumentID | 10_1017_jfm_2014_500 28919561 |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZMEZD ZYDXJ ~02 -1F -2V -~N 08R 6TJ 6~7 8W4 8WZ 9M5 A6W ABBJB ABDMP ABFLS ABFSI ABKAW ABTAH ABTRL ABVFV ABZUI ACETC ACKIV ADOVH AEBPU AENCP AHGVY AI. AIAFM ALEEW BESQT BQFHP CAG CCUQV CDIZJ COF G8K H~9 I.9 IOO IPNFZ IQODW KAFGG KC5 NMFBF PQEST PQUKI VH1 VOH ZJOSE ZY4 ~V1 AAYXX ABVZP ABXAU CITATION 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC Q9U |
ID | FETCH-LOGICAL-c370t-29a5ac7a332ad0a1bbc897e5e9345a5ba65bf8c57a7ddff24cfb657b8948d33c3 |
IEDL.DBID | 8FG |
ISSN | 0022-1120 |
IngestDate | Thu Nov 07 08:47:42 EST 2024 Thu Sep 26 17:01:10 EDT 2024 Fri Nov 25 19:04:05 EST 2022 Wed Mar 13 05:46:51 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | suspensions phase change solidification/melting Directional solidification Colloidal suspension Segregation Phase change Ice Modeling Freezing |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-29a5ac7a332ad0a1bbc897e5e9345a5ba65bf8c57a7ddff24cfb657b8948d33c3 |
OpenAccessLink | https://www.repository.cam.ac.uk/bitstreams/160f3f62-f8c1-4f43-88dc-2cf0091f4a13/download |
PQID | 1992583010 |
PQPubID | 34769 |
PageCount | 23 |
ParticipantIDs | proquest_journals_1992583010 crossref_primary_10_1017_jfm_2014_500 pascalfrancis_primary_28919561 cambridge_journals_10_1017_jfm_2014_500 |
PublicationCentury | 2000 |
PublicationDate | 2014-11-10 |
PublicationDateYYYYMMDD | 2014-11-10 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2014 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S002211201400500X_r2 S002211201400500X_r3 S002211201400500X_r4 S002211201400500X_r5 S002211201400500X_r6 S002211201400500X_r7 S002211201400500X_r30 S002211201400500X_r8 S002211201400500X_r9 S002211201400500X_r32 S002211201400500X_r10 S002211201400500X_r31 S002211201400500X_r34 S002211201400500X_r12 S002211201400500X_r11 S002211201400500X_r36 S002211201400500X_r35 S002211201400500X_r16 S002211201400500X_r15 S002211201400500X_r37 S002211201400500X_r18 S002211201400500X_r17 S002211201400500X_r19 Israelachvili (S002211201400500X_r13) 2011 Andersland (S002211201400500X_r1) 2004 Mazur (S002211201400500X_r14) 1984; 247 S002211201400500X_r21 S002211201400500X_r20 S002211201400500X_r22 S002211201400500X_r25 S002211201400500X_r24 S002211201400500X_r27 S002211201400500X_r26 S002211201400500X_r29 S002211201400500X_r28 Rapatz (S002211201400500X_r23) 1966 Velez-Ruiz (S002211201400500X_r33) 2007 |
References_xml | – ident: S002211201400500X_r27 doi: 10.1017/S0022112003006761 – volume: 247 start-page: 125 year: 1984 ident: S002211201400500X_r14 article-title: Freezing of living cells: mechanisms and implications publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.1984.247.3.C125 contributor: fullname: Mazur – ident: S002211201400500X_r10 doi: 10.1002/9781118684931 – ident: S002211201400500X_r8 doi: 10.1126/science.1120937 – ident: S002211201400500X_r29 doi: 10.1103/PhysRevE.84.041402 – ident: S002211201400500X_r36 doi: 10.1146/annurev.fluid.37.061903.175758 – ident: S002211201400500X_r12 doi: 10.1103/PhysRevE.81.031604 – ident: S002211201400500X_r21 doi: 10.2136/vzj2012.0049 – volume-title: Frozen Ground Engineering year: 2004 ident: S002211201400500X_r1 contributor: fullname: Andersland – ident: S002211201400500X_r20 doi: 10.1137/100788197 – ident: S002211201400500X_r6 doi: 10.1017/CBO9780511546747 – ident: S002211201400500X_r22 doi: 10.1103/PhysRevLett.100.238301 – ident: S002211201400500X_r30 doi: 10.1086/623637 – ident: S002211201400500X_r15 doi: 10.1016/0021-9797(78)90188-1 – ident: S002211201400500X_r7 doi: 10.1038/nmat2571 – ident: S002211201400500X_r26 doi: 10.1103/PhysRevLett.87.088501 – ident: S002211201400500X_r32 doi: 10.1103/PhysRevLett.94.018302 – ident: S002211201400500X_r35 doi: 10.1016/S0022-0248(00)00353-5 – volume-title: Cryobiology year: 1966 ident: S002211201400500X_r23 contributor: fullname: Rapatz – ident: S002211201400500X_r9 doi: 10.1137/0149060 – ident: S002211201400500X_r4 doi: 10.1016/0022-0248(92)90014-A – ident: S002211201400500X_r3 doi: 10.1016/0021-9797(83)90166-2 – volume-title: Handbook of Food Preservation year: 2007 ident: S002211201400500X_r33 contributor: fullname: Velez-Ruiz – ident: S002211201400500X_r25 doi: 10.2136/vzj2012.0045 – ident: S002211201400500X_r18 doi: 10.1017/S0022112006009268 – ident: S002211201400500X_r37 doi: 10.1038/nmat1487 – ident: S002211201400500X_r11 doi: 10.1021/la100125v – ident: S002211201400500X_r5 doi: 10.1103/RevModPhys.78.695 – ident: S002211201400500X_r19 doi: 10.1017/S0022112008000219 – ident: S002211201400500X_r24 doi: 10.1029/2006JF000525 – ident: S002211201400500X_r16 doi: 10.1029/WR021i003p00281 – ident: S002211201400500X_r34 doi: 10.1016/S0022-0248(01)02271-0 – ident: S002211201400500X_r28 doi: 10.1017/jfm.2011.545 – volume-title: Intermolecular and Surface Forces. 3rd edn year: 2011 ident: S002211201400500X_r13 contributor: fullname: Israelachvili – ident: S002211201400500X_r2 doi: 10.1021/la303458m – ident: S002211201400500X_r17 doi: 10.1063/1.1915027 – ident: S002211201400500X_r31 doi: 10.1086/623720 |
SSID | ssj0013097 |
Score | 2.3714433 |
Snippet | Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512–16523)... Abstract Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir , vol. 28 (48), 2012, pp.... Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512-16523)... |
SourceID | proquest crossref pascalfrancis cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 786 |
SubjectTerms | Aluminum oxide Banded structure Bifurcations Chaos Chemistry Colloidal state and disperse state Colloids Compaction Directional solidification Exact sciences and technology Experiments Frameworks Freezing General and physical chemistry Growth kinetics Ice Ice cover Ice lenses Kinetics Lenses Modelling Physical and chemical studies. Granulometry. Electrokinetic phenomena Segregation Sequencing Soil Soil compaction Temperature gradients Thickness Viscous flow |
Title | Freezing colloidal suspensions: periodic ice lenses and compaction |
URI | https://www.cambridge.org/core/product/identifier/S002211201400500X/type/journal_article https://www.proquest.com/docview/1992583010 |
Volume | 758 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSyMxEB7UIiiiXk-xWkse7vBpvf2VJvFFVKwinIgo-LYk2QT0oa2mvvjXO7NNq3Kcr5uwgZnJzCT55huAX2nfKo-apedGn5TG5ImxpU-8lMoQBb_jVJz897p_eV9ePfCHeOEWIqxy5hMbR12PLN2R_yGYJJdojunx-DmhrlH0uhpbaCxCK8uFoMOXHFx8vCKkSszYwjGvSCPwnSijnzyVoWflIafatg9ahS_haW2sA0rKT1tc_OOtmxA02IT1mDuyk6myf8CCG7ZhI-aRLO7S0IbVTySDbVhuQJ42_ITTwYtzb_iRkfZHjzX-LLyGMWHY0fiOGLEej-pHy9B7MAxHwQWmhzVrgOpNAcQW3A_O784uk9hDIbGFSCdJrjTXVuiiyHWd6swYK5Vw3Kmi5Job3efGS8uFFnXtfV5ab_pcGKlKWReFLbZhaTgauh1gXtE415iO47TMaTyUY3wrDAZBrqTrwMFcjFXcCaGaoshEhQKvSOAVCrwDv2dCrsZTUo3_zOt90cB8Mp4Sqc4x60B3ppJPK84tZff74T1YoZWSBtTXhaXJy6vbxxRjYnqNHfWgdXp-fXP7DtAM0Pw |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7UIirioyrWZw6Kp9Vtd9PdeBErlqptEVHwtiTZBOqhraZe_PXObNOqiF43YQMzk5lJ8s03AEdhXQuLmqXnRhvEStUCpWMb2DQViij4Dafi5E633nqKb5_5s79wcx5WOfGJhaPOB5ruyM8IJslTNMfwYvgaUNcoel31LTRmoURUVXj4KjWuu_cPX-8IoUgmfOGYWYQe-k6k0S-WCtGr8Smn6rYvYoUfAWp5KB3Kyo6bXPzy10UQaq7Bis8e2eVY3eswY_plWPWZJPP71JVh6RvNYBnmC5indhvQaL4Z84EfGel_0MvxZ-7dDQnFjuZ3zoj3eJD3NEP_wTAgOeOY7OesgKoXJRCb8NS8frxqBb6LQqCjJBwFNSG51ImMoprMQ1lVSqciMdyIKOaSK1nnyqaaJzLJc2trsbaqzhOVijjNo0hHWzDXH_TNNjAraJxLTMhxWtVIPJZjhIsUhkEuUlOBk6kYM78XXDbGkSUZCjwjgWco8AocT4ScDce0Gn_MO_ihgelkPCdSpWO1AnsTlXxbcWorO_8PH8JC67HTzto33btdWKRVgwLitwdzo7d3s48Jx0gdeKv6BL5z07M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freezing+colloidal+suspensions%3A+periodic+ice+lenses+and+compaction&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Anderson%2C+Anthony%C2%A0M.&rft.au=Grae+Worster%2C+M.&rft.date=2014-11-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=758&rft.spage=786&rft.epage=808&rft_id=info:doi/10.1017%2Fjfm.2014.500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2014_500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |