Combined TRAF6 Targeting and Proteasome Blockade Has Anti-myeloma and Anti-Bone Resorptive Effects

TNF receptor–associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patie...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer research Vol. 15; no. 5; pp. 598 - 609
Main Authors Chen, Haiming, Li, Mingjie, Sanchez, Eric, Wang, Cathy S., Lee, Tiffany, Soof, Camilia M., Casas, Christian E., Cao, Jasmin, Xie, Colin, Udd, Kyle A., DeCorso, Kevin, Tang, George Y., Spektor, Tanya M., Berenson, James R.
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TNF receptor–associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. TRAF6 expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant–negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti–multiple myeloma effects and also decreased TLR/TRAF6/NF-κB–related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14+ monocytes, induced with RANKL and mCSF, and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti–multiple myeloma effects and reduces bone loss. Implications: The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. Mol Cancer Res; 15(5); 598–609. ©2017 AACR.
AbstractList TNF receptor–associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. TRAF6 expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant–negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti–multiple myeloma effects and also decreased TLR/TRAF6/NF-κB–related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14+ monocytes, induced with RANKL and mCSF, and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti–multiple myeloma effects and reduces bone loss.Implications: The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. Mol Cancer Res; 15(5); 598–609. ©2017 AACR.
TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. TRAF6 expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant-negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti-multiple myeloma effects and also decreased TLR/TRAF6/NF-κB-related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14+ monocytes, induced with RANKL and mCSF, and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti-multiple myeloma effects and reduces bone loss.Implications: The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. Mol Cancer Res; 15(5); 598-609. ©2017 AACR.TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. TRAF6 expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant-negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti-multiple myeloma effects and also decreased TLR/TRAF6/NF-κB-related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14+ monocytes, induced with RANKL and mCSF, and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti-multiple myeloma effects and reduces bone loss.Implications: The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. Mol Cancer Res; 15(5); 598-609. ©2017 AACR.
TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of I Kappa B kinase (IKK) to regulate the NF- Kappa B and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. TRAF6 expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant-negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti-multiple myeloma effects and also decreased TLR/TRAF6/NF- Kappa B-related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14+ monocytes, induced with RANKL and mCSF, and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti-multiple myeloma effects and reduces bone loss.Implications: The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. Mol Cancer Res; 15(5); 598-609. [copy2017 AACR.
TNF receptor–associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. TRAF6 expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant–negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti–multiple myeloma effects and also decreased TLR/TRAF6/NF-κB–related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14+ monocytes, induced with RANKL and mCSF, and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti–multiple myeloma effects and reduces bone loss. Implications: The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. Mol Cancer Res; 15(5); 598–609. ©2017 AACR.
TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of kinase (IKK) to regulate the NF-κB and JNK signaling pathways. Here, TRAF6 protein was determined to be overexpressed in bone marrow mononuclear cells (BMMC) from patients with multiple myeloma. expression in BMMCs from patients with progressive disease is significantly elevated as compared with individuals in complete remission, with monoclonal gammopathy of undetermined significance, or healthy subjects. Furthermore, TRAF6 dominant-negative (TRAF6dn) peptides were constructed which specifically reduced TRAF6 signaling and activation of IKK. TRAF6 not only reduced cellular growth but also increased the apoptosis of multiple myeloma tumor cells in a concentration-dependent fashion. Because TRAF6 activates IKK through polyubiquitination, independent of its proteasome activity, a TRAF6dn peptide was combined with the proteasome inhibitors bortezomib or carfilzomib to treat multiple myeloma. Importantly, targeting of TRAF6 in the presence of proteasome inhibition enhanced anti-multiple myeloma effects and also decreased TLR/TRAF6/NF-κB-related signaling. Finally, TRAF6dn dose dependently inhibited osteoclast cell formation from CD14 monocytes, induced with and , and markedly reduced bone resorption in dentin pits. In all, these data demonstrate that blocking TRAF6 signaling has anti-multiple myeloma effects and reduces bone loss. The ability to target TRAF6 signaling and associated pathways in multiple myeloma suggests a promising new therapeutic approach. .
Author Xie, Colin
Udd, Kyle A.
Lee, Tiffany
Chen, Haiming
Tang, George Y.
Wang, Cathy S.
Cao, Jasmin
Casas, Christian E.
Li, Mingjie
DeCorso, Kevin
Berenson, James R.
Spektor, Tanya M.
Sanchez, Eric
Soof, Camilia M.
Author_xml – sequence: 1
  givenname: Haiming
  surname: Chen
  fullname: Chen, Haiming
– sequence: 2
  givenname: Mingjie
  surname: Li
  fullname: Li, Mingjie
– sequence: 3
  givenname: Eric
  surname: Sanchez
  fullname: Sanchez, Eric
– sequence: 4
  givenname: Cathy S.
  surname: Wang
  fullname: Wang, Cathy S.
– sequence: 5
  givenname: Tiffany
  surname: Lee
  fullname: Lee, Tiffany
– sequence: 6
  givenname: Camilia M.
  surname: Soof
  fullname: Soof, Camilia M.
– sequence: 7
  givenname: Christian E.
  surname: Casas
  fullname: Casas, Christian E.
– sequence: 8
  givenname: Jasmin
  surname: Cao
  fullname: Cao, Jasmin
– sequence: 9
  givenname: Colin
  surname: Xie
  fullname: Xie, Colin
– sequence: 10
  givenname: Kyle A.
  surname: Udd
  fullname: Udd, Kyle A.
– sequence: 11
  givenname: Kevin
  surname: DeCorso
  fullname: DeCorso, Kevin
– sequence: 12
  givenname: George Y.
  surname: Tang
  fullname: Tang, George Y.
– sequence: 13
  givenname: Tanya M.
  surname: Spektor
  fullname: Spektor, Tanya M.
– sequence: 14
  givenname: James R.
  surname: Berenson
  fullname: Berenson, James R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28122920$$D View this record in MEDLINE/PubMed
BookMark eNqN0Utv1DAQB3ALFdEHfASQJS5cUvyIHxGn7aqlSEWg1d4tx55ULom92F6kfnuS7sKhFzjZsn4z8sz_HJ3EFAGht5RcUir0Rypa2iil5eXX9aahsiGs4y_QGRVCNZwycbLcj-YUnZfyQAgjVMlX6JRpyljHyBnq12nqQwSPt5vVjcRbm--hhniPbfT4e04VbEkT4KsxuR_WA761Ba9iDc30CGOa7BN8eriaf4g3UFLe1fAL8PUwgKvlNXo52LHAm-N5gbY319v1bXP37fOX9equcVyR2tB-8MprLiyAo9K7bhAtUUS0XA89B-kl68msqHaM8FZoIckgPW-tUo7xC_Th0HaX0889lGqmUByMo42Q9sVQ3Sku58HJf1DJmOa8W-j7Z_Qh7XOc5zC001yLeY98Vu-Oat9P4M0uh8nmR_NnzzMQB-ByKiXD8JdQYpY8zZKVWbIyc56GSkMOjT89q3Oh2hpSrNmG8R_VvwEhQaL3
CitedBy_id crossref_primary_10_3390_molecules26237349
crossref_primary_10_1007_s00223_017_0349_1
crossref_primary_10_1111_bjh_16158
crossref_primary_10_1080_21623945_2023_2193280
crossref_primary_10_1134_S0026893324060037
crossref_primary_10_3390_ijms20030702
crossref_primary_10_3390_ijms24031823
crossref_primary_10_1158_0008_5472_CAN_17_3115
crossref_primary_10_3389_fimmu_2018_02111
crossref_primary_10_1186_s12935_020_01517_z
crossref_primary_10_1002_jcla_23101
crossref_primary_10_1016_j_bcp_2022_114992
crossref_primary_10_1016_j_semcancer_2018_02_007
crossref_primary_10_1530_ERC_17_0246
crossref_primary_10_1007_s12272_021_01330_w
crossref_primary_10_1080_17474086_2018_1447921
crossref_primary_10_1016_j_ejmech_2023_115875
crossref_primary_10_1016_j_biocel_2019_105644
Cites_doi 10.1016/j.leukres.2012.07.018
10.1111/j.1365-2141.2011.08884.x
10.1016/S1470-2045(13)70398-X
10.1182/blood-2007-10-078022
10.1126/science.1175065
10.1074/jbc.M112.442459
10.1111/j.1600-0609.2009.01384.x
10.1074/jbc.M111.310102
10.1074/jbc.M609503200
10.1074/jbc.271.46.28745
10.1182/blood-2013-05-484782
10.3816/CLM.2007.s.020
10.1038/nature00888
10.1111/bjh.12129
10.1016/S0092-8674(00)00126-4
10.1158/1541-7786.MCR-15-0135
10.1073/pnas.1314715110
10.1111/j.1600-065X.2012.01108.x
10.1038/sj.onc.1209653
10.1038/35085597
10.1016/S0093-7754(01)90036-3
10.4161/cbt.5.9.3306
10.1158/1078-0432.CCR-06-1812
10.1182/blood-2009-05-223677
10.1038/ni1110
10.1080/15384101.2014.998067
10.1101/sqb.1999.64.473
10.1016/j.bbrc.2007.05.151
10.4161/cbt.5.9.3307
10.1158/1078-0432.CCR-12-1881
10.1007/s12016-015-8523-6
10.1172/JCI34257
10.1158/1535-7163.MCT-11-0433
10.1007/s00277-008-0501-0
10.1186/ar320
10.18553/jmcp.2008.14.S7-A.12
10.1007/s00277-013-1910-2
10.1182/blood-2012-10-459883
10.1182/blood.V99.9.3163
10.1158/1078-0432.CCR-10-2130
10.1158/1078-0432.CCR-04-1936
10.1126/science.1179972
10.1038/ncb0805-758
10.1016/j.clml.2012.01.006
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright American Association for Cancer Research Inc May 2017
Copyright_xml – notice: 2017 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research Inc May 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U7
C1K
H94
7X8
DOI 10.1158/1541-7786.MCR-16-0293
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1557-3125
EndPage 609
ExternalDocumentID 28122920
10_1158_1541_7786_MCR_16_0293
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
18M
2FS
2WC
34G
39C
53G
5RE
5VS
AAJMC
AAYXX
ACGFO
ACPRK
ADBBV
ADCOW
AENEX
AFHIN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
IH2
KQ8
L7B
OK1
QTD
RCR
RHI
TR2
W8F
WOQ
YKV
.55
.GJ
3O-
ABEFU
AFFNX
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NPM
WHG
X7M
ZGI
7TO
7U7
C1K
H94
7X8
ID FETCH-LOGICAL-c370t-1bfd7d835aeec16dc9f540705438fb3e6d62b01bf18c203458560f6d34a77c23
ISSN 1541-7786
1557-3125
IngestDate Thu Jul 10 17:18:23 EDT 2025
Fri Jul 11 00:23:39 EDT 2025
Mon Jun 30 16:44:32 EDT 2025
Thu Apr 03 07:00:09 EDT 2025
Tue Jul 01 04:31:25 EDT 2025
Thu Apr 24 23:04:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2017 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-1bfd7d835aeec16dc9f540705438fb3e6d62b01bf18c203458560f6d34a77c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28122920
PQID 1983852293
PQPubID 2046228
PageCount 12
ParticipantIDs proquest_miscellaneous_1897368120
proquest_miscellaneous_1862283390
proquest_journals_1983852293
pubmed_primary_28122920
crossref_primary_10_1158_1541_7786_MCR_16_0293
crossref_citationtrail_10_1158_1541_7786_MCR_16_0293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Molecular cancer research
PublicationTitleAlternate Mol Cancer Res
PublicationYear 2017
Publisher American Association for Cancer Research Inc
Publisher_xml – name: American Association for Cancer Research Inc
References Berenson (2022060704063561500_bib5) 2014; 93
Cao (2022060704063561500_bib22) 1999; 64
Berenson (2022060704063561500_bib48) 2006; 5
Berenson (2022060704063561500_bib13) 2013; 160
Ye (2022060704063561500_bib38) 2002; 418
Yang (2022060704063561500_bib23) 2009; 325
Kortuem (2022060704063561500_bib4) 2013; 121
Shah (2022060704063561500_bib46) 2015; 13
Berenson (2022060704063561500_bib44) 2008; 87
Berenson (2022060704063561500_bib34) 2002; 99
Ishida (2022060704063561500_bib33) 1996; 271
Murray (2022060704063561500_bib45) 2015; 14
Berenson (2022060704063561500_bib47) 2007; 13
Chen (2022060704063561500_bib20) 2012; 246
Chen (2022060704063561500_bib17) 2006; 25
Zhang (2022060704063561500_bib27) 2013; 288
Berenson (2022060704063561500_bib43) 2007; 7
Lamothe (2022060704063561500_bib40) 2007; 282
Poblenz (2022060704063561500_bib29) 2007; 359
Liu (2022060704063561500_bib28) 2012; 287
Lacy (2022060704063561500_bib9) 2013; 122
Liu (2022060704063561500_bib18) 2012; 12
Jin (2022060704063561500_bib25) 2008; 118
Berenson (2022060704063561500_bib12) 2007; 13
Campbell (2022060704063561500_bib10) 2010; 84
Berenson (2022060704063561500_bib39) 2006; 5
Restuccia (2022060704063561500_bib31) 2009; 325
Satoh (2022060704063561500_bib3) 2011; 14
Ma (2022060704063561500_bib16) 2003; 9
Arron (2022060704063561500_bib37) 2002; 11
Dimopoulos (2022060704063561500_bib6) 2013; 14
Emmerich (2022060704063561500_bib19) 2013; 110
Deng (2022060704063561500_bib53) 2000; 103
Sabokbar (2022060704063561500_bib42) 2015; 51
Parlati (2022060704063561500_bib51) 2009; 114
Berenson (2022060704063561500_bib49) 2006; 5
Boone (2022060704063561500_bib26) 2004; 5
Kyle (2022060704063561500_bib1) 2008; 111
Toyosaki-Maeda (2022060704063561500_bib41) 2001; 3
Ma (2022060704063561500_bib36) 2003; 9
Sanda (2022060704063561500_bib35) 2005; 11
LeBlanc (2022060704063561500_bib50) 2002; 62
Berenson (2022060704063561500_bib11) 2011; 155
Hideshima (2022060704063561500_bib7) 2011; 10
Berenson (2022060704063561500_bib15) 2001; 28
Munshi (2022060704063561500_bib14) 2013; 19
Chen (2022060704063561500_bib24) 2005; 7
Emmerich (2022060704063561500_bib32) 2013; 110
Schwartz (2022060704063561500_bib2) 2008; 14
Yang (2022060704063561500_bib30) 2009; 325
Sacco (2022060704063561500_bib52) 2011; 17
Sanchez (2022060704063561500_bib8) 2012; 36
Wang (2022060704063561500_bib21) 2001; 412
References_xml – volume: 36
  start-page: 1422
  year: 2012
  ident: 2022060704063561500_bib8
  article-title: CEP-18770 (delanzomib) in combination with dexamethasone and lenalidomide inhibits the growth of multiple myeloma
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2012.07.018
– volume: 155
  start-page: 580
  year: 2011
  ident: 2022060704063561500_bib11
  article-title: A modified regimen of pegylated liposomal doxorubicin, bortezomib and dexamethasone (DVD) is effective and well tolerated for previously untreated multiple myeloma patients
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2011.08884.x
– volume: 14
  start-page: 1129
  year: 2013
  ident: 2022060704063561500_bib6
  article-title: Vorinostat or placebo in combination with bortezomib in patients with multiple myeloma (VANTAGE 088): a multicentre, randomised, double-blind study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(13)70398-X
– volume: 11
  start-page: Unit 11 19D
  year: 2002
  ident: 2022060704063561500_bib37
  article-title: TRAF-mediated TNFR-family signaling
  publication-title: Curr Protoc Immunol
– volume: 111
  start-page: 2962
  year: 2008
  ident: 2022060704063561500_bib1
  article-title: Multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2007-10-078022
– volume: 325
  start-page: 1134
  year: 2009
  ident: 2022060704063561500_bib30
  article-title: The E3 ligase TRAF6 regulates Akt ubiquitination and activation
  publication-title: Science
  doi: 10.1126/science.1175065
– volume: 288
  start-page: 22359
  year: 2013
  ident: 2022060704063561500_bib27
  article-title: Ubiquitin E3 ligase Itch negatively regulates osteoclast formation by promoting deubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.442459
– volume: 84
  start-page: 201
  year: 2010
  ident: 2022060704063561500_bib10
  article-title: Vorinostat enhances the anti-myeloma effects of melphalan and bortezomib
  publication-title: Eur J Hematol
  doi: 10.1111/j.1600-0609.2009.01384.x
– volume: 287
  start-page: 16132
  year: 2012
  ident: 2022060704063561500_bib28
  article-title: TRAF6 protein couples Toll-like receptor 4 signaling to Src family kinase activation and opening of paracellular pathway in human lung microvascular endothelia
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.310102
– volume: 282
  start-page: 4102
  year: 2007
  ident: 2022060704063561500_bib40
  article-title: Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M609503200
– volume: 271
  start-page: 28745
  year: 1996
  ident: 2022060704063561500_bib33
  article-title: Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.46.28745
– volume: 122
  start-page: 2305
  year: 2013
  ident: 2022060704063561500_bib9
  article-title: Pomalidomide
  publication-title: Blood
  doi: 10.1182/blood-2013-05-484782
– volume: 7
  start-page: S182
  year: 2007
  ident: 2022060704063561500_bib43
  article-title: Proteasome inhibitors: closing the garbage can opens up new therapeutic options for patients with B-cell malignancies
  publication-title: Clin Lymphoma Myeloma
  doi: 10.3816/CLM.2007.s.020
– volume: 418
  start-page: 443
  year: 2002
  ident: 2022060704063561500_bib38
  article-title: Distinct molecular mechanism for initiating TRAF6 signalling
  publication-title: Nature
  doi: 10.1038/nature00888
– volume: 160
  start-page: 321
  year: 2013
  ident: 2022060704063561500_bib13
  article-title: Phase I/II trial assessing bendamustine plus bortezomib combination therapy for the treatment of patients with relapsed or refractory multiple myeloma
  publication-title: Br J Haematol
  doi: 10.1111/bjh.12129
– volume: 103
  start-page: 351
  year: 2000
  ident: 2022060704063561500_bib53
  article-title: Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00126-4
– volume: 13
  start-page: 1163
  year: 2015
  ident: 2022060704063561500_bib46
  article-title: When cancer fights back: multiple myeloma, proteasome inhibition, and the heat shock response
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-15-0135
– volume: 110
  start-page: 15247
  year: 2013
  ident: 2022060704063561500_bib32
  article-title: Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1314715110
– volume: 246
  start-page: 95
  year: 2012
  ident: 2022060704063561500_bib20
  article-title: Ubiquitination in Signaling to and Activation of IKK
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2012.01108.x
– volume: 25
  start-page: 6520
  year: 2006
  ident: 2022060704063561500_bib17
  article-title: Interference with nuclear factor kappa B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209653
– volume: 412
  start-page: 346
  year: 2001
  ident: 2022060704063561500_bib21
  article-title: TAK1 is a ubiquitin-dependent kinaseof MKK and IKK
  publication-title: Nature
  doi: 10.1038/35085597
– volume: 28
  start-page: 626
  year: 2001
  ident: 2022060704063561500_bib15
  article-title: The role of nuclear factor-kappaB in the biology and treatment of multiple myeloma
  publication-title: Semin Oncol
  doi: 10.1016/S0093-7754(01)90036-3
– volume: 5
  start-page: 1078
  year: 2006
  ident: 2022060704063561500_bib39
  article-title: Pathophysiology of bone metastases
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.5.9.3306
– volume: 13
  start-page: 1762
  year: 2007
  ident: 2022060704063561500_bib47
  article-title: A phase I/II study of arsenic trioxide/bortezomib/ascorbic acid combination therapy for the treatment of relapsed or refractory multiple myeloma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-1812
– volume: 114
  start-page: 3439
  year: 2009
  ident: 2022060704063561500_bib51
  article-title: Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome
  publication-title: Blood
  doi: 10.1182/blood-2009-05-223677
– volume: 5
  start-page: 1052
  year: 2004
  ident: 2022060704063561500_bib26
  article-title: The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses
  publication-title: Nat Immunol
  doi: 10.1038/ni1110
– volume: 14
  start-page: 2367
  year: 2015
  ident: 2022060704063561500_bib45
  article-title: Ibrutinib inhibits BTK-driven NF-κB p65 activity to overcome bortezomib-resistance in multiple myeloma
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2014.998067
– volume: 325
  start-page: 1134
  year: 2009
  ident: 2022060704063561500_bib23
  article-title: The E3 ligase TRAF6 regulates Akt ubiquitination and activation
  publication-title: Science
  doi: 10.1126/science.1175065
– volume: 64
  start-page: 473
  year: 1999
  ident: 2022060704063561500_bib22
  article-title: NF-kappa B activation by tumor necrosis factor and interleukin-1
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/sqb.1999.64.473
– volume: 359
  start-page: 510
  year: 2007
  ident: 2022060704063561500_bib29
  article-title: Inhibition of RANKL-mediated osteoclast differentiation by selective TRAF6 decoy peptides
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2007.05.151
– volume: 5
  start-page: 1082
  year: 2006
  ident: 2022060704063561500_bib49
  article-title: Bone complications in multiple myeloma
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.5.9.3307
– volume: 19
  start-page: 3337
  year: 2013
  ident: 2022060704063561500_bib14
  article-title: New strategies in the treatment of multiple myeloma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-1881
– volume: 51
  start-page: 16
  year: 2015
  ident: 2022060704063561500_bib42
  article-title: Non-canonical (RANKL-Independent) pathways of osteoclast differentiation and their role in musculoskeletal diseases
  publication-title: Clin Rev Allergy Immunol
  doi: 10.1007/s12016-015-8523-6
– volume: 118
  start-page: 1858
  year: 2008
  ident: 2022060704063561500_bib25
  article-title: Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice
  publication-title: J Clin Investig
  doi: 10.1172/JCI34257
– volume: 10
  start-page: 2034
  year: 2011
  ident: 2022060704063561500_bib7
  article-title: Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-11-0433
– volume: 87
  start-page: 623
  year: 2008
  ident: 2022060704063561500_bib44
  article-title: Safety and efficacy of bortezomib and melphalan combination in patients with relapsed or refractory multiple myeloma: updated results of a phase 1/2 study after longer follow-up
  publication-title: Ann Hematol
  doi: 10.1007/s00277-008-0501-0
– volume: 3
  start-page: 306
  year: 2001
  ident: 2022060704063561500_bib41
  article-title: Differentiation of monocytes into multinucleated giant bone-resorbing cells: two-step differentiation induced by nurse-like cells and cytokines
  publication-title: Arthritis Res
  doi: 10.1186/ar320
– volume: 14
  start-page: 12
  year: 2008
  ident: 2022060704063561500_bib2
  article-title: Current and emerging treatments for multiple myeloma
  publication-title: J Manag Care Pharm
  doi: 10.18553/jmcp.2008.14.S7-A.12
– volume: 13
  start-page: 1762
  year: 2007
  ident: 2022060704063561500_bib12
  article-title: A Phase I/II study of arsenic trioxide/bortezomib/ascorbic acid combination therapy for the treatment of relapsed or refractory multiple myeloma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-1812
– volume: 110
  start-page: 15247
  year: 2013
  ident: 2022060704063561500_bib19
  article-title: Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1314715110
– volume: 93
  start-page: 89
  year: 2014
  ident: 2022060704063561500_bib5
  article-title: A phase 1/2 study of oral panobinostat combined with melphalan for patients with relapsed or refractory multiple myeloma
  publication-title: Ann Hematol Ann Hematol
  doi: 10.1007/s00277-013-1910-2
– volume: 14
  start-page: 78
  year: 2011
  ident: 2022060704063561500_bib3
  article-title: Clinical assessment of bortezomib for multiple myeloma in comparison with thalidomide
  publication-title: J Pharm Sci
– volume: 121
  start-page: 893
  year: 2013
  ident: 2022060704063561500_bib4
  article-title: Carfilzomib
  publication-title: Blood
  doi: 10.1182/blood-2012-10-459883
– volume: 9
  start-page: 1136
  year: 2003
  ident: 2022060704063561500_bib16
  article-title: The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents
  publication-title: Clin Cancer Res
– volume: 99
  start-page: 3163
  year: 2002
  ident: 2022060704063561500_bib34
  article-title: Maintenance therapy with alternate-day prednisone improves survival in multiple myeloma patients
  publication-title: Blood
  doi: 10.1182/blood.V99.9.3163
– volume: 17
  start-page: 1753
  year: 2011
  ident: 2022060704063561500_bib52
  article-title: Carfilzomib-dependent selective inhibition of the chymotrypsin-like activity of the proteasome leads to antitumor activity in Waldenstrom's Macroglobulinemia
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-2130
– volume: 11
  start-page: 1974
  year: 2005
  ident: 2022060704063561500_bib35
  article-title: Growth inhibition of multiple myeloma cells by a novel IkappaB kinase inhibitor
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-1936
– volume: 5
  start-page: 1078
  year: 2006
  ident: 2022060704063561500_bib48
  article-title: Pathophysiology of bone metastases
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.5.9.3306
– volume: 62
  start-page: 4996
  year: 2002
  ident: 2022060704063561500_bib50
  article-title: Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model
  publication-title: Cancer Res
– volume: 9
  start-page: 1136
  year: 2003
  ident: 2022060704063561500_bib36
  article-title: The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents
  publication-title: Clin Cancer Res
– volume: 325
  start-page: 1083
  year: 2009
  ident: 2022060704063561500_bib31
  article-title: Cell signaling. Blocking Akt-ivity
  publication-title: Science
  doi: 10.1126/science.1179972
– volume: 7
  start-page: 758
  year: 2005
  ident: 2022060704063561500_bib24
  article-title: Ubiquitin signaling in the NF-κB pathway
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0805-758
– volume: 12
  start-page: 155
  year: 2012
  ident: 2022060704063561500_bib18
  article-title: TRAF6 activation in multiple myeloma: a potential therapeutic target
  publication-title: Clin Lymphoma Myeloma Leuk
  doi: 10.1016/j.clml.2012.01.006
SSID ssj0020176
Score 2.303275
Snippet TNF receptor–associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate...
TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of kinase (IKK) to regulate the...
TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of IκB kinase (IKK) to regulate...
TNF receptor-associated factor 6 (TRAF6) has been implicated in polyubiquitin-mediated IL1R/TLR signaling through activation of I Kappa B kinase (IKK) to...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 598
SubjectTerms Activation
Apoptosis
Biocompatibility
Biomedical materials
Bone loss
Bone marrow
Bone resorption
Bortezomib
Bortezomib - pharmacology
Cancer
CD14 antigen
Cell Line, Tumor
Cell Proliferation - drug effects
Cell Survival - drug effects
Dentin
Dose-Response Relationship, Drug
Gene Expression Regulation, Neoplastic - drug effects
Humans
I-kappa B Kinase - metabolism
Interleukin 1
Interleukin 1 receptors
JNK protein
Leukocytes (mononuclear)
Monoclonal gammopathy
Monoclonal Gammopathy of Undetermined Significance - genetics
Monoclonal Gammopathy of Undetermined Significance - metabolism
Monocytes
Multiple myeloma
Multiple Myeloma - genetics
Multiple Myeloma - metabolism
NF-κB protein
Oligopeptides - pharmacology
Patients
Peptides
Peptides - pharmacology
Proteasome inhibitors
Remission
Signal transduction
Signal Transduction - drug effects
Signaling
TNF Receptor-Associated Factor 6 - antagonists & inhibitors
TNF Receptor-Associated Factor 6 - genetics
TNF Receptor-Associated Factor 6 - metabolism
TRAF6 protein
TRANCE protein
Tumor cells
Tumor necrosis factor
Tumor necrosis factor receptors
Ubiquitination - drug effects
Up-Regulation
Title Combined TRAF6 Targeting and Proteasome Blockade Has Anti-myeloma and Anti-Bone Resorptive Effects
URI https://www.ncbi.nlm.nih.gov/pubmed/28122920
https://www.proquest.com/docview/1983852293
https://www.proquest.com/docview/1862283390
https://www.proquest.com/docview/1897368120
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCMQLgvE1GMhIvFUpSew4yeNWrSqwDjQyqW-R4zijsLZT2z2Uv54723E7UWDwklaOE1u-ny935_sg5C2vIjzsQsmNhQEXog6kSKsg4TLmtQQBusET3eGJGJzxD6NktHa3NdEly6qrfmyNK_kfqkIb0BWjZP-Bsv6l0AD_gb5wBQrD9UY0hs0Mii2IjMXpQV90CuPV3UYdfsYMDHIxm-jOIXyxvstadwZygekCxsFkpS9mExOPZRsOZ1NtbPnzS-NMZLMaLzZl12FbSRc9xZSed1yiIG9Q7rlIj4HEUmHn3tdnbP3zp-ffxh5GX-AVX631Glnx2q5veQ8GJq6cWdbZJOA75z0AWzaaoPXThjR39Za2lvcmGxhLNhhpYmtT_8rgEwxaALkvCjDzXXfYOw0idKO2dRavJ9Q--VT2z46Py-JoVNwmd2LQJIzW_f6j18lh8iYArZ2cC_KCYd5tHeS6-PIbncTIJsVD8sApFfTAIuQRuaWnu-SuLTO62iX3hs6B4jGpWshQAxnqIUMBCXQNGdpChgJk6CZkTEcPGbqGDHWQeUKK_lHRGwSuzEagWBoug6hq6rQGSVxqrSJRq7zBrIwgy7OsqZgWtYirEHpFmYpDxkHBFGEjasZlmqqYPSU7UxjwOaEhS6swj2WuVMZz0eQ84hp-FZNZU4tqj_B28UrlUtBjJZSL0qiiSVbimpe45iWseRmJEtd8j3T9Y5c2B8vfHthvKVO67booozxjGWgbePuNvw3MFE_I5FTPrqAP6Pcgb7M8_FOfPGWYtQ_6PLNU97OKoRnLv724wQgvyf311tknO8v5lX4FAu6yem0g-hOAPp65
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+TRAF6+Targeting+and+Proteasome+Blockade+Has+Anti-myeloma+and+Anti-Bone+Resorptive+Effects&rft.jtitle=Molecular+cancer+research&rft.au=Chen%2C+Haiming&rft.au=Li%2C+Mingjie&rft.au=Sanchez%2C+Eric&rft.au=Wang%2C+Cathy+S&rft.date=2017-05-01&rft.issn=1557-3125&rft.eissn=1557-3125&rft.volume=15&rft.issue=5&rft.spage=598&rft_id=info:doi/10.1158%2F1541-7786.MCR-16-0293&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7786&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7786&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7786&client=summon