Effects of diffuse and collimated beam radiation on plume formation in natural convection within a cubical enclosure
•The collimated beam irradiation feature has been developed in OpenFOAM frame-work.•The flow field is much more complex due to collimated beam irradiation.•The critical flow field theory has been employed for the analysis of the flow field.•Q criterion reveals the regular and non-regular fluid-struc...
Saved in:
Published in | International journal of heat and mass transfer Vol. 188; p. 122558 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The collimated beam irradiation feature has been developed in OpenFOAM frame-work.•The flow field is much more complex due to collimated beam irradiation.•The critical flow field theory has been employed for the analysis of the flow field.•Q criterion reveals the regular and non-regular fluid-structures in the flow field.•The collimated beam irradiation causes the localized heating of the participating fluid.
In this paper, a comprehensive numerical simulation of coupled natural convection with diffuse and collimated beam irradiation has been performed in a cubic cavity. The cavity is convectively heated from the bottom; all four vertical walls of the cavity are isothermal and the top wall is adiabatic. A semitransparent window is created on the left wall of the cavity and a collimated beam is irradiated on this window at the polar and azimuthal angles of 900 and 1350, respectively. The numerical analysis has been performed for the transparent(τ=0) and the participating (τ=2.5 and 10) media within the cavity and keeping the value of other parameters, like Rayleigh number (Ra=105), Prandtl number (Pr=0.71), conduction-radiation parameter (N=1.5), irradiation (G=1000W/m2) fixed. The results reveal a quadrantal symmetry of fluid flow and heat transfer for various optical thicknesses and the cavity contains four conical vortices where each vortex is occupied in tetrahedron space in case of without collimated irradiation. Moreover, the Q-criterion reveals the formation of a mushroom like fluid-structure inside the cavity. However, with the inclusion of collimated irradiation, the quadrantal symmetry breaks and a bilaterally symmetric nature is established about the plane of the collimated beam. The flow structure becomes much more complex and has been explained by critical flow theory. In addition, the heat transfer characteristics also change in accordance with the dynamics of vortices inside the cavity. The Q-criterion reveals the formation of non-regular fluid structure which is same, however, orientation is opposite in the cavity for transparent and participating media. |
---|---|
AbstractList | In this paper, a comprehensive numerical simulation of coupled natural convection with diffuse and collimated beam irradiation has been performed in a cubic cavity. The cavity is convectively heated from the bottom; all four vertical walls of the cavity are isothermal and the top wall is adiabatic. A semitransparent window is created on the left wall of the cavity and a collimated beam is irradiated on this window at the polar and azimuthal angles of 900 and 1350, respectively. The numerical analysis has been performed for the transparent(τ=0) and the participating (τ=2.5 and 10) media within the cavity and keeping the value of other parameters, like Rayleigh number (Ra=105), Prandtl number (Pr=0.71), conduction-radiation parameter (N=1.5), irradiation (G=1000W/m2) fixed. The results reveal a quadrantal symmetry of fluid flow and heat transfer for various optical thicknesses and the cavity contains four conical vortices where each vortex is occupied in tetrahedron space in case of without collimated irradiation. Moreover, the Q-criterion reveals the formation of a mushroom like fluid-structure inside the cavity. However, with the inclusion of collimated irradiation, the quadrantal symmetry breaks and a bilaterally symmetric nature is established about the plane of the collimated beam. The flow structure becomes much more complex and has been explained by critical flow theory. In addition, the heat transfer characteristics also change in accordance with the dynamics of vortices inside the cavity. The Q-criterion reveals the formation of non-regular fluid structure which is same, however, orientation is opposite in the cavity for transparent and participating media. •The collimated beam irradiation feature has been developed in OpenFOAM frame-work.•The flow field is much more complex due to collimated beam irradiation.•The critical flow field theory has been employed for the analysis of the flow field.•Q criterion reveals the regular and non-regular fluid-structures in the flow field.•The collimated beam irradiation causes the localized heating of the participating fluid. In this paper, a comprehensive numerical simulation of coupled natural convection with diffuse and collimated beam irradiation has been performed in a cubic cavity. The cavity is convectively heated from the bottom; all four vertical walls of the cavity are isothermal and the top wall is adiabatic. A semitransparent window is created on the left wall of the cavity and a collimated beam is irradiated on this window at the polar and azimuthal angles of 900 and 1350, respectively. The numerical analysis has been performed for the transparent(τ=0) and the participating (τ=2.5 and 10) media within the cavity and keeping the value of other parameters, like Rayleigh number (Ra=105), Prandtl number (Pr=0.71), conduction-radiation parameter (N=1.5), irradiation (G=1000W/m2) fixed. The results reveal a quadrantal symmetry of fluid flow and heat transfer for various optical thicknesses and the cavity contains four conical vortices where each vortex is occupied in tetrahedron space in case of without collimated irradiation. Moreover, the Q-criterion reveals the formation of a mushroom like fluid-structure inside the cavity. However, with the inclusion of collimated irradiation, the quadrantal symmetry breaks and a bilaterally symmetric nature is established about the plane of the collimated beam. The flow structure becomes much more complex and has been explained by critical flow theory. In addition, the heat transfer characteristics also change in accordance with the dynamics of vortices inside the cavity. The Q-criterion reveals the formation of non-regular fluid structure which is same, however, orientation is opposite in the cavity for transparent and participating media. |
ArticleNumber | 122558 |
Author | Kumar, Pradeep Chanakya, G. |
Author_xml | – sequence: 1 givenname: G. surname: Chanakya fullname: Chanakya, G. – sequence: 2 givenname: Pradeep surname: Kumar fullname: Kumar, Pradeep email: pradeepkumar@iitmandi.ac.in |
BookMark | eNqVkMFu3CAQhlGUSNls-g5IvfTiLeA1xrdGqyRtFKmX9ozGeFCwbNgCTpS3D1v31F5SCWnE_DMf4rsi5z54JOQTZzvOuPw87tz4hJBnSClH8Mli3AkmxI4L0TTqjGy4artKcNWdkw1jvK26mrNLcpXSeLqyvdyQfGstmpxosHRw1i4JKfiBmjBNboaMA-0RZhphcJBd8LSc47TMSG2I89pynnrIS4Sp7Pnnwjt1X1x-KglQs_TOlAy9mUJaIl6TCwtTwg9_6pb8vLv9cfhaPX6__3a4eaxM3bJc8boHJWshOwCuGlmDFLzjDEXP-IB9Y1quFLBG9FJi29uh53vDBLYdsn3b1lvyceUeY_i1YMp6DEv05UktZLOvlVINL1N365SJIaWIVhuXf3-seHWT5kyfjOtR_2tcn4zr1XgBffkLdIzFYXz9H8TDisCi5dmVNBlXvOHgYtGqh-DeD3sDGSqwOA |
CitedBy_id | crossref_primary_10_1063_5_0148075 crossref_primary_10_1016_j_jmmm_2023_170354 crossref_primary_10_1063_5_0181690 crossref_primary_10_1063_5_0205446 crossref_primary_10_1002_htj_23021 crossref_primary_10_1016_j_buildenv_2024_111526 |
Cites_doi | 10.1007/s00348-001-0402-7 10.4319/lo.1990.35.8.1676 10.1063/1.870321 10.1115/1.2712477 10.1016/S0017-9310(98)00055-6 10.1016/j.csite.2017.05.003 10.1016/j.jqsrt.2014.04.021 10.1017/S0022112096008579 10.1016/j.icheatmasstransfer.2020.104650 10.1016/j.ijthermalsci.2017.09.006 10.1016/j.buildenv.2020.106863 10.1063/5.0019274 10.1016/j.enconman.2014.05.093 10.1155/2014/403690 10.1063/1.4896748 10.1016/j.crme.2019.02.003 10.1007/s00348-005-0067-8 10.1016/j.aej.2016.01.004 10.1017/jfm.2020.521 10.1063/1.4972057 10.1016/j.expthermflusci.2017.11.004 10.1017/S0022112069001480 10.1007/s00162-016-0383-z 10.1016/j.biortech.2014.01.052 10.1080/10407780802603121 10.1016/j.applthermaleng.2010.12.028 10.1017/S0022112093000072 10.1016/j.icheatmasstransfer.2021.105288 10.1061/(ASCE)0733-9429(1984)110:6(773) 10.1080/10407782.2010.511982 10.1016/j.icheatmasstransfer.2012.04.010 10.1016/j.jqsrt.2021.107746 10.1080/10407780290059404 10.1016/j.ijheatmasstransfer.2018.11.162 10.1016/j.expthermflusci.2017.08.030 10.1017/jfm.2014.680 10.1115/1.4000180 10.1016/S0045-7930(01)00083-4 10.1108/HFF-06-2018-0263 10.1016/j.ijheatmasstransfer.2016.12.033 10.1016/S0017-9310(02)00401-5 10.1016/j.ijheatfluidflow.2007.07.012 10.1016/j.compfluid.2007.11.003 10.1063/1.4874343 10.1016/S0022-4073(02)00031-6 10.1016/j.applthermaleng.2004.11.032 10.1016/j.ijhydene.2011.07.013 10.1016/j.rser.2017.10.106 10.1016/j.ces.2019.04.034 10.1016/S0017-9310(03)00387-9 10.1016/S0377-0265(97)00020-1 10.1016/j.ijthermalsci.2012.12.009 10.1146/annurev-fluid-010518-040558 10.1016/j.tsep.2021.101006 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2022 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2022.122558 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2022_122558 S0017931022000400 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29J 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDMP ABDPE ABJNI ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH T9H VOH WUQ ZY4 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c370t-13ba863269aa18563a621910e2b01deb5c7188a052b66e7bfdb14c02e79e04773 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 08:35:35 EDT 2025 Tue Jul 01 04:24:11 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Fri Feb 23 02:39:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bottom heating Collimated beam irradiation RTE Natural convection bBCF bBSF Semitransparent window |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-13ba863269aa18563a621910e2b01deb5c7188a052b66e7bfdb14c02e79e04773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2654388851 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2654388851 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2022_122558 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122558 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2022_122558 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yong, Fu-Qiang, Xin-Lin, He-Ping, Ying-Chun (bib0008) 2011; 36 Lei, Patterson (bib0007) 2002; 32 Bees (bib0049) 2020; 52 Moreno, Casado, Marugan (bib0058) 2019; 205 Liu, Gong, Cheng (bib0023) 2014; 6 Sheu, Rani, Tan, Tsai (bib0037) 2008; 37 Herrmann, Kumar (bib0010) 2021 Modest (bib0001) 2013 Lacroix, Parent, Asllanaj, Jeandel (bib0043) 2002; 75 Maatki, Ghachem, Kolsi, Hussein, Borjini, Aissia (bib0030) 2016; 273 Colomer, Costa, Consul, Oliva (bib0031) 2004; 47 Sharma, Tariq, Mishra (bib0039) 2018; 91 Krishnamurti (bib0011) 1998; 27 Torrance, Orloff, Rockett (bib0062) 1969; 36 Liu, Zhou, Hong, Han (bib0042) 2021; 271 Creyssels (bib0066) 2020; 900 Kaluri, Basak (bib0025) 2010; 58 Kumar, Eswaran (bib0020) 2013; 67 kumar (bib0052) 2009 Maruyama (bib0040) 1998; 41 Panigrahi, Schröder, Kompenhans (bib0036) 2006; 40 Lei, Patterson (bib0013) 2003; 46 Ghachem, Kolsi, Mâatki, Hussein, Borjini (bib0027) 2012; 39 Sezai, Mohamad (bib0065) 2000; 12 Mondal, Mishra (bib0017) 2008; 55 Borjini, Aissia, Halouani, Zeghmati (bib0032) 2008; 29 Chanakya, Kumar (bib0051) 2021 Eric Adams, Wells (bib0004) 1984; 110 Panda (bib0048) 2020; 32 Kong, Vigil (bib0046) 2014; 158 Kirk (bib0003) 1994 Rostamzadeh, Hansen, Kelso, Dally (bib0038) 2014; 26 Gelfgat (bib0061) 2016; 30 Amber, O’Donovan (bib0016) 2018; 82 Kumar, Eswaran (bib0033) 2010; 132 Farrow, Patterson (bib0015) 1993; 246 Calcagni, Marsili, Paroncini (bib0063) 2005; 25 Chanakya, Kumar (bib0050) 2021 Sun, Chénier, Lauriat (bib0019) 2011; 31 Panda, Singh, Mishra, Mohanty (bib0047) 2016; 28 Al-Rashed, Kolsi, Hussein, Hassen, Aichouni, Borjini (bib0029) 2017; 10 Hussein, Lioua, Chand, Sivasankaran, Nikbakhti, Li, Naceur, Habib (bib0028) 2016; 55 El-Maghlany, Saqr, Teamah (bib0026) 2014; 85 Kumar, Chanakya, Bartwal (bib0057) 2021; 125 Naghib, Patterson, Lei (bib0006) 2018; 90 Karatas, Derbentli (bib0022) 2018; 123 Al-Rashed, Kolsi, Tashkandi, Malekshah, Chamkha, Borjini (bib0034) 2019 Moukalled, Mangani, Darwish (bib0055) 2015 Patankar (bib0054) 2018 Parmananda, Khan, Dalal, Natarajan (bib0021) 2017; 108 Prasanna, Venkateshan (bib0044) 2014; 26 Howell, Mengüç, Daun, Siegel (bib0002) 2020 Wypych (bib0059) 2020 Kogawa, Shoji, Okajima, Komiya, Maruyama (bib0018) 2019; 132 Vincent, Hill (bib0045) 1996; 327 Nia, Nassab (bib0064) 2019; 347 Cheng, Zhou (bib0041) 2007; 129 Sheu, Tsai (bib0035) 2002; 31 Coelho (bib0056) 2014; 145 Fluent (bib0060) 2017 Hattori, Patterson, Lei (bib0014) 2015; 763 Li, Hussein, Younis, Afrand, Feng (bib0024) 2020; 116 Monismith, Imberger, Morison (bib0005) 1990; 35 Open FOAM, The open source CFD toolbox: User guide, OpenFOAM v1706, 2017 Wu, Li, Lin, Yan, Tu (bib0009) 2020; 177 Lei, Patterson (bib0012) 2002; 42 Hussein (10.1016/j.ijheatmasstransfer.2022.122558_bib0028) 2016; 55 Eric Adams (10.1016/j.ijheatmasstransfer.2022.122558_bib0004) 1984; 110 Li (10.1016/j.ijheatmasstransfer.2022.122558_bib0024) 2020; 116 Sharma (10.1016/j.ijheatmasstransfer.2022.122558_bib0039) 2018; 91 Al-Rashed (10.1016/j.ijheatmasstransfer.2022.122558_bib0034) 2019 Sheu (10.1016/j.ijheatmasstransfer.2022.122558_bib0035) 2002; 31 Maruyama (10.1016/j.ijheatmasstransfer.2022.122558_bib0040) 1998; 41 Naghib (10.1016/j.ijheatmasstransfer.2022.122558_bib0006) 2018; 90 Panda (10.1016/j.ijheatmasstransfer.2022.122558_bib0048) 2020; 32 Kumar (10.1016/j.ijheatmasstransfer.2022.122558_bib0020) 2013; 67 Sheu (10.1016/j.ijheatmasstransfer.2022.122558_bib0037) 2008; 37 Patankar (10.1016/j.ijheatmasstransfer.2022.122558_bib0054) 2018 Sezai (10.1016/j.ijheatmasstransfer.2022.122558_bib0065) 2000; 12 Kogawa (10.1016/j.ijheatmasstransfer.2022.122558_bib0018) 2019; 132 Lei (10.1016/j.ijheatmasstransfer.2022.122558_bib0012) 2002; 42 Karatas (10.1016/j.ijheatmasstransfer.2022.122558_bib0022) 2018; 123 Moreno (10.1016/j.ijheatmasstransfer.2022.122558_bib0058) 2019; 205 Amber (10.1016/j.ijheatmasstransfer.2022.122558_bib0016) 2018; 82 Ghachem (10.1016/j.ijheatmasstransfer.2022.122558_bib0027) 2012; 39 Prasanna (10.1016/j.ijheatmasstransfer.2022.122558_bib0044) 2014; 26 Yong (10.1016/j.ijheatmasstransfer.2022.122558_bib0008) 2011; 36 Hattori (10.1016/j.ijheatmasstransfer.2022.122558_bib0014) 2015; 763 Moukalled (10.1016/j.ijheatmasstransfer.2022.122558_bib0055) 2015 Al-Rashed (10.1016/j.ijheatmasstransfer.2022.122558_bib0029) 2017; 10 Kirk (10.1016/j.ijheatmasstransfer.2022.122558_bib0003) 1994 Kumar (10.1016/j.ijheatmasstransfer.2022.122558_bib0033) 2010; 132 Vincent (10.1016/j.ijheatmasstransfer.2022.122558_bib0045) 1996; 327 Coelho (10.1016/j.ijheatmasstransfer.2022.122558_bib0056) 2014; 145 Lei (10.1016/j.ijheatmasstransfer.2022.122558_bib0007) 2002; 32 Sun (10.1016/j.ijheatmasstransfer.2022.122558_bib0019) 2011; 31 Borjini (10.1016/j.ijheatmasstransfer.2022.122558_bib0032) 2008; 29 Liu (10.1016/j.ijheatmasstransfer.2022.122558_bib0042) 2021; 271 Monismith (10.1016/j.ijheatmasstransfer.2022.122558_bib0005) 1990; 35 Lacroix (10.1016/j.ijheatmasstransfer.2022.122558_bib0043) 2002; 75 Wypych (10.1016/j.ijheatmasstransfer.2022.122558_bib0059) 2020 Chanakya (10.1016/j.ijheatmasstransfer.2022.122558_bib0051) 2021 Gelfgat (10.1016/j.ijheatmasstransfer.2022.122558_bib0061) 2016; 30 Maatki (10.1016/j.ijheatmasstransfer.2022.122558_bib0030) 2016; 273 Torrance (10.1016/j.ijheatmasstransfer.2022.122558_bib0062) 1969; 36 Calcagni (10.1016/j.ijheatmasstransfer.2022.122558_bib0063) 2005; 25 Kumar (10.1016/j.ijheatmasstransfer.2022.122558_bib0057) 2021; 125 Modest (10.1016/j.ijheatmasstransfer.2022.122558_bib0001) 2013 Liu (10.1016/j.ijheatmasstransfer.2022.122558_bib0023) 2014; 6 Kong (10.1016/j.ijheatmasstransfer.2022.122558_bib0046) 2014; 158 Bees (10.1016/j.ijheatmasstransfer.2022.122558_bib0049) 2020; 52 kumar (10.1016/j.ijheatmasstransfer.2022.122558_bib0052) 2009 Panda (10.1016/j.ijheatmasstransfer.2022.122558_bib0047) 2016; 28 Nia (10.1016/j.ijheatmasstransfer.2022.122558_bib0064) 2019; 347 Creyssels (10.1016/j.ijheatmasstransfer.2022.122558_bib0066) 2020; 900 Chanakya (10.1016/j.ijheatmasstransfer.2022.122558_bib0050) 2021 Kaluri (10.1016/j.ijheatmasstransfer.2022.122558_bib0025) 2010; 58 Krishnamurti (10.1016/j.ijheatmasstransfer.2022.122558_bib0011) 1998; 27 Parmananda (10.1016/j.ijheatmasstransfer.2022.122558_bib0021) 2017; 108 Rostamzadeh (10.1016/j.ijheatmasstransfer.2022.122558_bib0038) 2014; 26 Lei (10.1016/j.ijheatmasstransfer.2022.122558_bib0013) 2003; 46 Wu (10.1016/j.ijheatmasstransfer.2022.122558_bib0009) 2020; 177 Fluent (10.1016/j.ijheatmasstransfer.2022.122558_bib0060) 2017 10.1016/j.ijheatmasstransfer.2022.122558_bib0053 Cheng (10.1016/j.ijheatmasstransfer.2022.122558_bib0041) 2007; 129 Mondal (10.1016/j.ijheatmasstransfer.2022.122558_bib0017) 2008; 55 Panigrahi (10.1016/j.ijheatmasstransfer.2022.122558_bib0036) 2006; 40 Howell (10.1016/j.ijheatmasstransfer.2022.122558_bib0002) 2020 El-Maghlany (10.1016/j.ijheatmasstransfer.2022.122558_bib0026) 2014; 85 Colomer (10.1016/j.ijheatmasstransfer.2022.122558_bib0031) 2004; 47 Herrmann (10.1016/j.ijheatmasstransfer.2022.122558_bib0010) 2021 Farrow (10.1016/j.ijheatmasstransfer.2022.122558_bib0015) 1993; 246 |
References_xml | – volume: 110 start-page: 773 year: 1984 end-page: 793 ident: bib0004 article-title: Field measurements on side arms of Lake Anna, Va publication-title: J. Hydraul. Eng. – year: 2009 ident: bib0052 publication-title: Radiative heat transfer in a participating gray medium and its interaction with fluid flow – volume: 75 start-page: 589 year: 2002 end-page: 609 ident: bib0043 article-title: Coupled radiative and conductive heat transfer in a non-grey absorbing and emitting semitransparent media under collimated radiation publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 145 start-page: 121 year: 2014 end-page: 146 ident: bib0056 article-title: Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media publication-title: J. Quant. Spectrosc. Radiat. Transf. – year: 2020 ident: bib0002 article-title: Thermal Radiation Heat Transfer – start-page: 101006 year: 2021 ident: bib0050 article-title: Effects of diffuse and collimated beam radiation on a symmetrical cooling case of natural convection publication-title: Therm. Sci. Eng. Prog. – year: 2018 ident: bib0054 article-title: Numerical Heat Transfer and Fluid Flow – volume: 35 start-page: 1676 year: 1990 end-page: 1702 ident: bib0005 article-title: Convective motions in the sidearm of a small reservoir publication-title: Limnol. Oceanogr. – volume: 327 start-page: 343 year: 1996 end-page: 371 ident: bib0045 article-title: Bioconvection in a suspension of phototactic algae publication-title: J. Fluid Mech. – volume: 129 start-page: 634 year: 2007 end-page: 645 ident: bib0041 article-title: The DRESOR method for a collimated irradiation on an isotropically scattering layer publication-title: J. Heat Transf. – volume: 42 start-page: 13 year: 2002 end-page: 32 ident: bib0012 article-title: Natural convection in a reservoir sidearm subject to solar radiation: a two-dimensional simulation publication-title: Numer. Heat Transf. Part A – volume: 52 start-page: 449 year: 2020 end-page: 476 ident: bib0049 article-title: Advances in bioconvection publication-title: Annu. Rev. Fluid Mech. – volume: 205 start-page: 151 year: 2019 end-page: 164 ident: bib0058 article-title: Improved discrete ordinate method for accurate simulation radiation transport using solar and led light sources publication-title: Chem. Eng. Sci. – volume: 82 start-page: 3526 year: 2018 end-page: 3545 ident: bib0016 article-title: Natural convection induced by the absorption of solar radiation: a review publication-title: Renew. Sustain. Energy Rev. – year: 2019 ident: bib0034 article-title: Three-dimensional combined radiation-magnetoconvection of low electrically conductive dielectric oxide melt publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 31 start-page: 911 year: 2002 end-page: 934 ident: bib0035 article-title: Flow topology in a steady three-dimensional lid-driven cavity publication-title: Comput. Fluids – volume: 125 start-page: 105288 year: 2021 ident: bib0057 article-title: Investigations of non-gray/gray radiative heat transfer effect on natural convection in tall cavities at low operating temperature publication-title: Int. Commun. Heat Mass Transf. – year: 2013 ident: bib0001 article-title: Radiative Heat Transfer – start-page: 1 year: 2021 end-page: 18 ident: bib0051 article-title: Investigation of thermal adiabatic boundary condition on semitransparent wall in combined radiation and natural convection publication-title: Int. J. Comput. Methods Eng. Sci. Mech. – volume: 763 start-page: 352 year: 2015 end-page: 368 ident: bib0014 article-title: Mixing in internally heated natural convection flow and scaling for a quasi-steady boundary layer publication-title: J. Fluid Mech. – volume: 46 start-page: 1183 year: 2003 end-page: 1197 ident: bib0013 article-title: A direct three-dimensional simulation of radiation-induced natural convection in a shallow wedge publication-title: Int. J. Heat Mass Transf. – volume: 36 start-page: 12148 year: 2011 end-page: 12158 ident: bib0008 article-title: Radiative properties of a solar cavity receiver/reactor with quartz window publication-title: Int. J. Hydrogen Energy – volume: 26 start-page: 107101 year: 2014 ident: bib0038 article-title: The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification publication-title: Phys. Fluids – volume: 28 start-page: 124104 year: 2016 ident: bib0047 article-title: Effects of both diffuse and collimated incident radiation on phototactic bioconvection publication-title: Phys. Fluids – volume: 29 start-page: 107 year: 2008 end-page: 118 ident: bib0032 article-title: Effect of radiative heat transfer on the three-dimensional Boyancy flow in cubic enclosure heated from the side publication-title: Int. J. Heat Fluid Flow – volume: 246 start-page: 143 year: 1993 end-page: 161 ident: bib0015 article-title: On the response of a reservoir sidearm to diurnal heating and cooling publication-title: J. Fluid Mech. – volume: 12 start-page: 432 year: 2000 end-page: 443 ident: bib0065 article-title: Natural convection in a rectangular cavity heated from below and cooled from top as well as the sides publication-title: Phys. Fluids – volume: 30 start-page: 339 year: 2016 end-page: 348 ident: bib0061 article-title: Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions publication-title: Theor. Comput. Fluid Dyn. – volume: 85 start-page: 333 year: 2014 end-page: 342 ident: bib0026 article-title: Numerical simulations of the effect of an isotropic heat field on the entropy generation due to natural convection in a square cavity publication-title: Energy Convers. Manage. – year: 2017 ident: bib0060 article-title: 18.0 Ansys Fluent Theory Guide 18.0 – volume: 26 start-page: 056603 year: 2014 ident: bib0044 article-title: Convection induced by radiative cooling of a layer of participating medium publication-title: Phys. Fluids – reference: Open FOAM, The open source CFD toolbox: User guide, OpenFOAM v1706, 2017, – volume: 36 start-page: 21 year: 1969 end-page: 31 ident: bib0062 article-title: Experiments on natural convection in enclosures with localized heating from below publication-title: J. Fluid Mech. – volume: 32 start-page: 590 year: 2002 end-page: 599 ident: bib0007 article-title: Natural convection in a reservoir sidearm subject to solar radiation: experimental observations publication-title: Exp. Fluids – volume: 40 start-page: 277 year: 2006 end-page: 300 ident: bib0036 article-title: PIV investigation of flow behind surface mounted permeable ribs publication-title: Exp. Fluids – volume: 347 start-page: 406 year: 2019 end-page: 422 ident: bib0064 article-title: Thermohydrodynamic characteristics of combined double-diffusive radiation convection heat transfer in a cavity publication-title: C.R. Mec. – volume: 10 start-page: 100 year: 2017 end-page: 110 ident: bib0029 article-title: Numerical study of three-dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls publication-title: Case Stud. Therm. Eng. – volume: 123 start-page: 129 year: 2018 end-page: 139 ident: bib0022 article-title: Natural convection and radiation in rectangular cavities with one active vertical wall publication-title: Int. J. Therm. Sci. – volume: 6 start-page: 403690 year: 2014 ident: bib0023 article-title: Combined natural convection and radiation heat transfer of various absorbing-emitting-scattering media in a square cavity publication-title: Adv. Mech. Eng. – volume: 55 start-page: 741 year: 2016 end-page: 755 ident: bib0028 article-title: Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with an isothermal bottom wall publication-title: Alex. Eng. J. – volume: 90 start-page: 101 year: 2018 end-page: 114 ident: bib0006 article-title: Natural convection induced by absorption of solar radiation in the near shore region of lakes and reservoirs: experimental results publication-title: Exp. Therm. Fluid Sci. – volume: 158 start-page: 141 year: 2014 end-page: 148 ident: bib0046 article-title: Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model publication-title: Bioresour. Technol. – volume: 25 start-page: 2522 year: 2005 end-page: 2531 ident: bib0063 article-title: Natural convective heat transfer in square enclosures heated from below publication-title: Appl. Therm. Eng. – volume: 58 start-page: 475 year: 2010 end-page: 504 ident: bib0025 article-title: Entropy generation minimization versus thermal mixing due to natural convection in differentially and discretely heated square cavities publication-title: Numer. Heat Transf. Part A – year: 2015 ident: bib0055 article-title: The Finite Volume Method in Computational Fluid Dynamics – volume: 31 start-page: 1252 year: 2011 end-page: 1262 ident: bib0019 article-title: Effect of surface radiation on the breakdown of steady natural convection flows in a square, air-filled cavity containing a centered inner body publication-title: Appl. Therm. Eng. – volume: 273 start-page: 178 year: 2016 end-page: 189 ident: bib0030 article-title: Inclination effects of magnetic field direction in 3d double-diffusive natural convection publication-title: Appl. Math. Comput. – volume: 32 start-page: 091903 year: 2020 ident: bib0048 article-title: Effects of anisotropic scattering on the onset of phototactic bioconvection with diffuse and collimated irradiation publication-title: Phys. Fluids – volume: 132 year: 2010 ident: bib0033 article-title: A numerical simulation of combined radiation and natural convection in a differential heated cubic cavity publication-title: J. Heat Transf. – volume: 27 start-page: 367 year: 1998 end-page: 382 ident: bib0011 article-title: Convection induced by selective absorption of radiation: a laboratory model of conditional instability publication-title: Dyn. Atmos. Oceans – year: 1994 ident: bib0003 article-title: Light and Photosynthesis in Aquatic Ecosystems – year: 2020 ident: bib0059 article-title: Handbook of UV Degradation and Stabilization – volume: 39 start-page: 869 year: 2012 end-page: 876 ident: bib0027 article-title: Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller publication-title: Int. Commun. Heat Mass Transf. – volume: 41 start-page: 2847 year: 1998 end-page: 2856 ident: bib0040 article-title: Radiative heat transfer in anisotropic scattering media with specular boundary subjected to collimated irradiation publication-title: Int. J. Heat Mass Transf. – volume: 116 start-page: 104650 year: 2020 ident: bib0024 article-title: Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects publication-title: Int. Commun. Heat Mass Transf. – volume: 132 start-page: 1239 year: 2019 end-page: 1249 ident: bib0018 article-title: Experimental evaluation of thermal radiation effects on natural convection with a rayleigh number of 108–109 by using an interferometer publication-title: Int. J. Heat Mass Transf. – volume: 55 start-page: 18 year: 2008 end-page: 41 ident: bib0017 article-title: Simulation of natural convection in the presence of volumetric radiation using the lattice Boltzmann method publication-title: Numer. Heat Transf. Part A – volume: 37 start-page: 1011 year: 2008 end-page: 1028 ident: bib0037 article-title: Multiple states, topology and bifurcations of natural convection in a cubical cavity publication-title: Comput. Fluids – volume: 67 start-page: 96 year: 2013 end-page: 106 ident: bib0020 article-title: The effect of radiation on natural convection in slanted cavities of angle publication-title: Int. J. Therm. Sci. – volume: 108 start-page: 627 year: 2017 end-page: 644 ident: bib0021 article-title: Critical assessment of numerical algorithms for convective-radiative heat transfer in enclosures with different geometries publication-title: Int. J. Heat Mass Transf. – volume: 47 start-page: 257 year: 2004 end-page: 269 ident: bib0031 article-title: Three-dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method publication-title: Int. J. Heat Mass Transf. – volume: 271 start-page: 107746 year: 2021 ident: bib0042 article-title: Optimization of the DRESOR method for application in a medium with large scattering albedo publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 177 start-page: 106863 year: 2020 ident: bib0009 article-title: A PMV-based HVAC control strategy for office rooms subjected to solar radiation publication-title: Build. Environ. – start-page: 111107 year: 2021 ident: bib0010 article-title: A review of prefabricated self-sufficient facades with integrated decentralised HVAC and renewable energy generation and storage publication-title: Energy Build. – volume: 900 year: 2020 ident: bib0066 article-title: Model for classical and ultimate regimes of radiatively driven turbulent convection publication-title: J. Fluid Mech. – volume: 91 start-page: 479 year: 2018 end-page: 508 ident: bib0039 article-title: Experimental investigation of flow structure due to truncated prismatic rib turbulators using particle image velocimetry publication-title: Exp. Therm. Fluid Sci. – volume: 32 start-page: 590 issue: 5 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0007 article-title: Natural convection in a reservoir sidearm subject to solar radiation: experimental observations publication-title: Exp. Fluids doi: 10.1007/s00348-001-0402-7 – volume: 35 start-page: 1676 issue: 8 year: 1990 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0005 article-title: Convective motions in the sidearm of a small reservoir publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1990.35.8.1676 – volume: 273 start-page: 178 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0030 article-title: Inclination effects of magnetic field direction in 3d double-diffusive natural convection publication-title: Appl. Math. Comput. – volume: 12 start-page: 432 issue: 2 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0065 article-title: Natural convection in a rectangular cavity heated from below and cooled from top as well as the sides publication-title: Phys. Fluids doi: 10.1063/1.870321 – volume: 129 start-page: 634 issue: 5 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0041 article-title: The DRESOR method for a collimated irradiation on an isotropically scattering layer publication-title: J. Heat Transf. doi: 10.1115/1.2712477 – volume: 41 start-page: 2847 issue: 18 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0040 article-title: Radiative heat transfer in anisotropic scattering media with specular boundary subjected to collimated irradiation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(98)00055-6 – volume: 10 start-page: 100 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0029 article-title: Numerical study of three-dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2017.05.003 – volume: 145 start-page: 121 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0056 article-title: Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2014.04.021 – volume: 327 start-page: 343 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0045 article-title: Bioconvection in a suspension of phototactic algae publication-title: J. Fluid Mech. doi: 10.1017/S0022112096008579 – volume: 116 start-page: 104650 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0024 article-title: Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104650 – volume: 123 start-page: 129 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0022 article-title: Natural convection and radiation in rectangular cavities with one active vertical wall publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.09.006 – year: 1994 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0003 – volume: 177 start-page: 106863 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0009 article-title: A PMV-based HVAC control strategy for office rooms subjected to solar radiation publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.106863 – volume: 32 start-page: 091903 issue: 9 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0048 article-title: Effects of anisotropic scattering on the onset of phototactic bioconvection with diffuse and collimated irradiation publication-title: Phys. Fluids doi: 10.1063/5.0019274 – year: 2017 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0060 – volume: 85 start-page: 333 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0026 article-title: Numerical simulations of the effect of an isotropic heat field on the entropy generation due to natural convection in a square cavity publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.05.093 – volume: 6 start-page: 403690 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0023 article-title: Combined natural convection and radiation heat transfer of various absorbing-emitting-scattering media in a square cavity publication-title: Adv. Mech. Eng. doi: 10.1155/2014/403690 – year: 2013 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0001 – volume: 26 start-page: 107101 issue: 10 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0038 article-title: The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification publication-title: Phys. Fluids doi: 10.1063/1.4896748 – volume: 347 start-page: 406 issue: 5 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0064 article-title: Thermohydrodynamic characteristics of combined double-diffusive radiation convection heat transfer in a cavity publication-title: C.R. Mec. doi: 10.1016/j.crme.2019.02.003 – volume: 40 start-page: 277 issue: 2 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0036 article-title: PIV investigation of flow behind surface mounted permeable ribs publication-title: Exp. Fluids doi: 10.1007/s00348-005-0067-8 – volume: 55 start-page: 741 issue: 2 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0028 article-title: Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with an isothermal bottom wall publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.01.004 – volume: 900 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0066 article-title: Model for classical and ultimate regimes of radiatively driven turbulent convection publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.521 – volume: 28 start-page: 124104 issue: 12 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0047 article-title: Effects of both diffuse and collimated incident radiation on phototactic bioconvection publication-title: Phys. Fluids doi: 10.1063/1.4972057 – volume: 91 start-page: 479 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0039 article-title: Experimental investigation of flow structure due to truncated prismatic rib turbulators using particle image velocimetry publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.11.004 – volume: 36 start-page: 21 issue: 1 year: 1969 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0062 article-title: Experiments on natural convection in enclosures with localized heating from below publication-title: J. Fluid Mech. doi: 10.1017/S0022112069001480 – volume: 30 start-page: 339 issue: 4 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0061 article-title: Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-016-0383-z – volume: 158 start-page: 141 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0046 article-title: Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.052 – volume: 55 start-page: 18 issue: 1 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0017 article-title: Simulation of natural convection in the presence of volumetric radiation using the lattice Boltzmann method publication-title: Numer. Heat Transf. Part A doi: 10.1080/10407780802603121 – volume: 31 start-page: 1252 issue: 6–7 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0019 article-title: Effect of surface radiation on the breakdown of steady natural convection flows in a square, air-filled cavity containing a centered inner body publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.12.028 – start-page: 111107 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0010 article-title: A review of prefabricated self-sufficient facades with integrated decentralised HVAC and renewable energy generation and storage publication-title: Energy Build. – volume: 246 start-page: 143 year: 1993 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0015 article-title: On the response of a reservoir sidearm to diurnal heating and cooling publication-title: J. Fluid Mech. doi: 10.1017/S0022112093000072 – volume: 125 start-page: 105288 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0057 article-title: Investigations of non-gray/gray radiative heat transfer effect on natural convection in tall cavities at low operating temperature publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105288 – year: 2020 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0002 – volume: 110 start-page: 773 issue: 6 year: 1984 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0004 article-title: Field measurements on side arms of Lake Anna, Va publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1984)110:6(773) – start-page: 1 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0051 article-title: Investigation of thermal adiabatic boundary condition on semitransparent wall in combined radiation and natural convection publication-title: Int. J. Comput. Methods Eng. Sci. Mech. – volume: 58 start-page: 475 issue: 6 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0025 article-title: Entropy generation minimization versus thermal mixing due to natural convection in differentially and discretely heated square cavities publication-title: Numer. Heat Transf. Part A doi: 10.1080/10407782.2010.511982 – volume: 39 start-page: 869 issue: 6 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0027 article-title: Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2012.04.010 – volume: 271 start-page: 107746 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0042 article-title: Optimization of the DRESOR method for application in a medium with large scattering albedo publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2021.107746 – volume: 42 start-page: 13 issue: 1–2 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0012 article-title: Natural convection in a reservoir sidearm subject to solar radiation: a two-dimensional simulation publication-title: Numer. Heat Transf. Part A doi: 10.1080/10407780290059404 – volume: 132 start-page: 1239 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0018 article-title: Experimental evaluation of thermal radiation effects on natural convection with a rayleigh number of 108–109 by using an interferometer publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.11.162 – volume: 90 start-page: 101 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0006 article-title: Natural convection induced by absorption of solar radiation in the near shore region of lakes and reservoirs: experimental results publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.08.030 – volume: 763 start-page: 352 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0014 article-title: Mixing in internally heated natural convection flow and scaling for a quasi-steady boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.680 – volume: 132 issue: 2 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0033 article-title: A numerical simulation of combined radiation and natural convection in a differential heated cubic cavity publication-title: J. Heat Transf. doi: 10.1115/1.4000180 – volume: 31 start-page: 911 issue: 8 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0035 article-title: Flow topology in a steady three-dimensional lid-driven cavity publication-title: Comput. Fluids doi: 10.1016/S0045-7930(01)00083-4 – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0034 article-title: Three-dimensional combined radiation-magnetoconvection of low electrically conductive dielectric oxide melt publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-06-2018-0263 – volume: 108 start-page: 627 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0021 article-title: Critical assessment of numerical algorithms for convective-radiative heat transfer in enclosures with different geometries publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.12.033 – volume: 46 start-page: 1183 issue: 7 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0013 article-title: A direct three-dimensional simulation of radiation-induced natural convection in a shallow wedge publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(02)00401-5 – year: 2015 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0055 – volume: 29 start-page: 107 issue: 1 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0032 article-title: Effect of radiative heat transfer on the three-dimensional Boyancy flow in cubic enclosure heated from the side publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2007.07.012 – volume: 37 start-page: 1011 issue: 8 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0037 article-title: Multiple states, topology and bifurcations of natural convection in a cubical cavity publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2007.11.003 – volume: 26 start-page: 056603 issue: 5 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0044 article-title: Convection induced by radiative cooling of a layer of participating medium publication-title: Phys. Fluids doi: 10.1063/1.4874343 – volume: 75 start-page: 589 issue: 5 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0043 article-title: Coupled radiative and conductive heat transfer in a non-grey absorbing and emitting semitransparent media under collimated radiation publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/S0022-4073(02)00031-6 – volume: 25 start-page: 2522 issue: 16 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0063 article-title: Natural convective heat transfer in square enclosures heated from below publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.11.032 – volume: 36 start-page: 12148 issue: 19 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0008 article-title: Radiative properties of a solar cavity receiver/reactor with quartz window publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.07.013 – volume: 82 start-page: 3526 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0016 article-title: Natural convection induced by the absorption of solar radiation: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.10.106 – volume: 205 start-page: 151 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0058 article-title: Improved discrete ordinate method for accurate simulation radiation transport using solar and led light sources publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.04.034 – volume: 47 start-page: 257 issue: 2 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0031 article-title: Three-dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00387-9 – volume: 27 start-page: 367 issue: 1–4 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0011 article-title: Convection induced by selective absorption of radiation: a laboratory model of conditional instability publication-title: Dyn. Atmos. Oceans doi: 10.1016/S0377-0265(97)00020-1 – year: 2009 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0052 – volume: 67 start-page: 96 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0020 article-title: The effect of radiation on natural convection in slanted cavities of angle γ= 45 and 60 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2012.12.009 – year: 2018 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0054 – ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0053 – year: 2020 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0059 – volume: 52 start-page: 449 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0049 article-title: Advances in bioconvection publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010518-040558 – start-page: 101006 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2022.122558_bib0050 article-title: Effects of diffuse and collimated beam radiation on a symmetrical cooling case of natural convection publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2021.101006 |
SSID | ssj0017046 |
Score | 2.4196157 |
Snippet | •The collimated beam irradiation feature has been developed in OpenFOAM frame-work.•The flow field is much more complex due to collimated beam irradiation.•The... In this paper, a comprehensive numerical simulation of coupled natural convection with diffuse and collimated beam irradiation has been performed in a cubic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122558 |
SubjectTerms | Beams (radiation) Bottom heating Collimated beam irradiation Criteria Critical flow Flow theory Fluid dynamics Fluid flow Free convection Heat transfer Irradiation Natural convection Numerical analysis Parameters Prandtl number Radiation Semitransparent window Symmetry Tetrahedra Vortices Windows (apertures) |
Title | Effects of diffuse and collimated beam radiation on plume formation in natural convection within a cubical enclosure |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.122558 https://www.proquest.com/docview/2654388851 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFB6KongRV6zWMgcPXmIn2yQ5SSmWarEHsehtmJlMIGLT0uXqb_e9SVJxuRSEQMg2CfO9fO9LeAshV6GrPW207-hUxk6gMukosCQHlAWPvQwcjK3A9zjig3Hw8Bq-NkivzoXBsMqK-0tOt2xd7elUs9mZ5Tnm-KJx4RcLs6aIGexBhFZ-87EO83AjVibrIBvj2bvk-ivGK39DxpuATF1amWiwQqjn3bhg5dgE_m9X9YO0rSfqH5D9SkLSbvmUh6RhiiOyY0M59eKYLMuCxAs6zSi2P1ktDJVFShHxHPSpSakyckLnWJUAYaGwzJCj6DqTkeYFtSU_4T42Lt1mP1D8aQtHJNUrheBSmK73Kf5jPCHj_t1zb-BUvRUc7UcMO9ArGXPQbomU4LK5Lzlwl8uMp5ibGhVqcFqxZKGnODeRylLlBpp5JkoMC6LIPyVbxbQwZ4T6HFRmFsMIfhhIE0rQCDxRgTEsTTI_aJLbehqFrgqPY_-Ld1FHmL2J30AIBEKUQDRJsh5hVhbh2ODaXo2c-GZYAnzGBqO0atBF9ZIvhId5uXEMmvX8X25yQfZwqwxEa5Gt5XxlLkHyLFXb2nSbbHfvh4MRrodPL8NPj7UHqw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BEcsFsYodHzhwCTibk5wQqqhalp5A4mbZjiMFQVrR9v-ZcZIilgsSUk6xYkd-kzcvySwAZ7FvAmNN6JlcpV6kC-VptCQPlYVIgwIdjKvA9zAU_afo9jl-XoBumwtDYZUN99ec7ti6OXPZ7ObluCwpx5eMi95YuDPFRVii6lRxB5auB3f94fxnQsLrfB0iZLpgBc4_w7zKFyK9N1SqU6cULRUJDYILHw2d-sD_7q2-8bZzRr0NWG9UJLuub3QTFmy1BcsumtNMtmFa1ySesFHBqAPKbGKZqnJGoJcoUW3OtFVv7J0KExAyDI8x0RSbJzOysmKu6ieu40LTXQIEo--2OKKYmWnCl-GOvY7oM-MOPPVuHrt9r2mv4Jkw4dSEXqtUoHzLlEKvLUIlkL58bgPN_dzq2KDfShWPAy2ETXSRaz8yPLBJZnmUJOEudKpRZfeAhQKFZpHiDGEcKRsrlAki05G1PM-KMNqHq3YbpWlqj1MLjFfZBpm9yJ9ASAJC1kDsQzafYVzX4fjDtd0WOfnFtiS6jT_MctSCLpvnfCIDSs1NU5StB_-yyCms9h8f7uX9YHh3CGs0UselHUFn-j6zx6iApvqksfAPP0QIuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+diffuse+and+collimated+beam+radiation+on+plume+formation+in+natural+convection+within+a+cubical+enclosure&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Chanakya%2C+G.&rft.au=Kumar%2C+Pradeep&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=188&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2022.122558&rft.externalDocID=S0017931022000400 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |