Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 57; no. 16; pp. 249 - 252 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
25.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm
−2
for the OER, outperforming commercial Pt/C and IrO
2
, respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm
−2
and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion.
CoFe@HNSs exhibited bifunctional oxygen electrocatalytic activity, and exhibit a high-power density of 131.3 mW cm
−2
and long-term stability over 140 h. |
---|---|
AbstractList | Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm−2 for the OER, outperforming commercial Pt/C and IrO2, respectively. Furthermore, as the air-cathode for rechargeable Zn–air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm−2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion. Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm −2 for the OER, outperforming commercial Pt/C and IrO 2 , respectively. Furthermore, as the air-cathode for rechargeable Zn–air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm −2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion. Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm-2 for the OER, outperforming commercial Pt/C and IrO2, respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm-2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion.Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm-2 for the OER, outperforming commercial Pt/C and IrO2, respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm-2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion. Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm⁻² for the OER, outperforming commercial Pt/C and IrO₂, respectively. Furthermore, as the air-cathode for rechargeable Zn–air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm⁻² and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion. Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm −2 for the OER, outperforming commercial Pt/C and IrO 2 , respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm −2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion. CoFe@HNSs exhibited bifunctional oxygen electrocatalytic activity, and exhibit a high-power density of 131.3 mW cm −2 and long-term stability over 140 h. Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm for the OER, outperforming commercial Pt/C and IrO , respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion. |
Author | Zhang, Xueting Ma, Fei-Xiang Tan, Yuanbo Qin, Ke Zhu, Zhenye Zhang, Jiaheng |
AuthorAffiliation | Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Department of Mechanical Engineering, City University of Hong Kong Kowloon School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen |
AuthorAffiliation_xml | – name: Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) – name: School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen – name: Department of Mechanical Engineering, City University of Hong Kong Kowloon |
Author_xml | – sequence: 1 givenname: Xueting surname: Zhang fullname: Zhang, Xueting – sequence: 2 givenname: Zhenye surname: Zhu fullname: Zhu, Zhenye – sequence: 3 givenname: Yuanbo surname: Tan fullname: Tan, Yuanbo – sequence: 4 givenname: Ke surname: Qin fullname: Qin, Ke – sequence: 5 givenname: Fei-Xiang surname: Ma fullname: Ma, Fei-Xiang – sequence: 6 givenname: Jiaheng surname: Zhang fullname: Zhang, Jiaheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33507178$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rFTEQAPAgFfuhF-9KwIsUV_O5SY6yta1Q8NKDeFmy2dm-LXnJM8mC7783r69VKIXmkMzhN8Mwk2N0EGIAhN5S8pkSbr6MxDmiVKvGF-iI8lY0UuifB7tYmkZxIQ_Rcc63pB4q9St0yLkkiip9hDZd_ITPAbs4xg2MeBU9bLGzaYgBBxtiXgGUjG3GwzwtwZU5Butx_LO9gYDBgyspOlus3-bqpphwArey6Qbs4AH_Co2dEx5sKZBmyK_Ry8n6DG_u3xN0ff7turtsrn5cfO--XjWOK1IayoViDAYjGCPU1mtsWz2piQtTe9dMt1KwUUDLJgUTGUZlWiOsBGpACn6CPu7LblL8vUAu_XrODry3AeKSeyaZYIZTxZ6nQrO2NmNkpR8e0du4pDqPnTJMa9VqWtX7e7UMaxj7TZrXNm37h6lXQPbApZhzgql3c7G7yZZkZ99T0u8W25-Rrrtb7FlNOX2U8lD1Sfxuj1N2_9z_X8L_Aop2qxI |
CitedBy_id | crossref_primary_10_1088_1361_6528_ac85c4 crossref_primary_10_1039_D2TA08566F crossref_primary_10_1002_aenm_202203609 crossref_primary_10_1016_j_jallcom_2023_169713 crossref_primary_10_1007_s11708_024_0928_6 crossref_primary_10_1039_D3NR00061C crossref_primary_10_1016_j_jcis_2023_10_104 crossref_primary_10_1016_j_enrev_2024_100076 crossref_primary_10_1016_j_jcis_2022_04_002 crossref_primary_10_1002_smll_202106635 crossref_primary_10_1016_j_jpowsour_2023_233069 crossref_primary_10_1039_D2TA03744K crossref_primary_10_1002_smll_202309932 crossref_primary_10_1002_smll_202105928 crossref_primary_10_1039_D2YA00128D crossref_primary_10_1002_celc_202101108 crossref_primary_10_1039_D4CC01090F crossref_primary_10_1039_D1CC04330G crossref_primary_10_1039_D4CC05698A crossref_primary_10_1039_D2QM01288J crossref_primary_10_1016_j_ica_2023_121753 crossref_primary_10_1002_smll_202207991 crossref_primary_10_1016_j_micromeso_2022_111850 crossref_primary_10_1039_D2CC04560E crossref_primary_10_1002_smll_202205033 crossref_primary_10_1039_D1QI00113B crossref_primary_10_1016_j_apcatb_2024_123882 crossref_primary_10_1002_smll_202305700 |
Cites_doi | 10.1002/chem.201904769 10.1021/ja206477z 10.1007/s40843-018-9269-x 10.1016/j.apcatb.2018.11.039 10.1016/j.nanoen.2018.06.023 10.1016/j.jpowsour.2019.227512 10.1016/j.apcatb.2018.09.024 10.1002/adfm.202007602 10.1016/j.ensm.2015.08.001 10.1002/smll.201902551 10.1038/s41428-020-0305-1 10.1002/adma.201901666 10.1016/j.ensm.2018.11.010 10.1016/j.apsusc.2019.05.014 10.1016/j.jechem.2020.07.012 10.1016/j.apcatb.2019.118198 10.1021/acscatal.7b01695 10.1002/adma.202002170 10.1002/aenm.201200013 10.1016/j.apcatb.2020.119411 10.1021/acsami.6b04548 10.1016/j.jpowsour.2020.228570 10.1007/s40843-019-1190-3 10.1039/D0TA02825H 10.1002/aenm.201800955 10.1007/s12274-019-2415-7 10.1007/s12274-020-2702-3 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d0cc07767d |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 252 |
ExternalDocumentID | 33507178 10_1039_D0CC07767D d0cc07767d |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 1TJ 29B 4.4 53G 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ IH2 J3I JG M4U N9A O9- P2P R7B R7C R7D RCNCU RIG RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X X7L --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACBEA ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-134722eb942201a220d668f7f3495078286542d4e62f7ef0bd79694a5e19e543 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 06:04:55 EDT 2025 Fri Jul 11 10:27:58 EDT 2025 Mon Jun 30 06:07:15 EDT 2025 Mon Jul 21 06:05:47 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Tue Jul 01 04:09:21 EDT 2025 Sat Jan 08 03:48:20 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-134722eb942201a220d668f7f3495078286542d4e62f7ef0bd79694a5e19e543 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0cc07767d ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2377-9796 0000-0002-2502-7790 0000-0001-9601-7963 0000-0002-2449-9139 |
PMID | 33507178 |
PQID | 2492887681 |
PQPubID | 2047502 |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1039_D0CC07767D proquest_miscellaneous_2524293172 proquest_miscellaneous_2482672295 rsc_primary_d0cc07767d crossref_primary_10_1039_D0CC07767D pubmed_primary_33507178 proquest_journals_2492887681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-25 |
PublicationDateYYYYMMDD | 2021-02-25 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Jin (D0CC07767D-(cit11)/*[position()=1]) 2020; 13 Du (D0CC07767D-(cit12)/*[position()=1]) 2019; 63 Li (D0CC07767D-(cit19)/*[position()=1]) 2018; 61 Pei (D0CC07767D-(cit2)/*[position()=1]) 2019; 20 Chen (D0CC07767D-(cit3)/*[position()=1]) 2015; 1 Douka (D0CC07767D-(cit9)/*[position()=1]) 2020; 32 Wang (D0CC07767D-(cit27)/*[position()=1]) 2017; 7 Chen (D0CC07767D-(cit8)/*[position()=1]) 2021; 55 Li (D0CC07767D-(cit24)/*[position()=1]) 2019; 244 Duan (D0CC07767D-(cit7)/*[position()=1]) 2020; 8 Jirkovsky (D0CC07767D-(cit17)/*[position()=1]) 2011; 133 Yang (D0CC07767D-(cit25)/*[position()=1]) 2018; 50 Yang (D0CC07767D-(cit5)/*[position()=1]) 2020 Tu (D0CC07767D-(cit14)/*[position()=1]) 2020; 26 Yu (D0CC07767D-(cit4)/*[position()=1]) 2019; 31 Li (D0CC07767D-(cit20)/*[position()=1]) 2019; 487 Han (D0CC07767D-(cit6)/*[position()=1]) 2018; 8 Tan (D0CC07767D-(cit22)/*[position()=1]) 2020; 473 Zhu (D0CC07767D-(cit26)/*[position()=1]) 2020; 449 Sun (D0CC07767D-(cit1)/*[position()=1]) 2020 Wang (D0CC07767D-(cit23)/*[position()=1]) 2020; 52 Liu (D0CC07767D-(cit21)/*[position()=1]) 2019; 12 Li (D0CC07767D-(cit13)/*[position()=1]) 2019; 241 Cao (D0CC07767D-(cit16)/*[position()=1]) 2012; 2 Han (D0CC07767D-(cit28)/*[position()=1]) 2021; 280 Meng (D0CC07767D-(cit10)/*[position()=1]) 2019; 15 Cheng (D0CC07767D-(cit18)/*[position()=1]) 2020; 260 Khan (D0CC07767D-(cit15)/*[position()=1]) 2016; 8 |
References_xml | – volume: 26 start-page: 6525 year: 2020 ident: D0CC07767D-(cit14)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201904769 – volume: 133 start-page: 19432 year: 2011 ident: D0CC07767D-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206477z – volume: 61 start-page: 1305 year: 2018 ident: D0CC07767D-(cit19)/*[position()=1] publication-title: Sci. China Mater. doi: 10.1007/s40843-018-9269-x – volume: 244 start-page: 150 year: 2019 ident: D0CC07767D-(cit24)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.11.039 – volume: 50 start-page: 691 year: 2018 ident: D0CC07767D-(cit25)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.023 – volume: 449 start-page: 227512 year: 2020 ident: D0CC07767D-(cit26)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227512 – volume: 241 start-page: 95 year: 2019 ident: D0CC07767D-(cit13)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.09.024 – start-page: 2007602 year: 2020 ident: D0CC07767D-(cit5)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007602 – volume: 1 start-page: 17 year: 2015 ident: D0CC07767D-(cit3)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.08.001 – volume: 15 start-page: 1902551 year: 2019 ident: D0CC07767D-(cit10)/*[position()=1] publication-title: Small doi: 10.1002/smll.201902551 – volume: 52 start-page: 539 year: 2020 ident: D0CC07767D-(cit23)/*[position()=1] publication-title: Polym. J. doi: 10.1038/s41428-020-0305-1 – volume: 31 start-page: e1901666 year: 2019 ident: D0CC07767D-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201901666 – volume: 20 start-page: 234 year: 2019 ident: D0CC07767D-(cit2)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.11.010 – volume: 487 start-page: 496 year: 2019 ident: D0CC07767D-(cit20)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.014 – volume: 55 start-page: 183 year: 2021 ident: D0CC07767D-(cit8)/*[position()=1] publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.07.012 – volume: 260 start-page: 118198 year: 2020 ident: D0CC07767D-(cit18)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118198 – volume: 7 start-page: 6144 year: 2017 ident: D0CC07767D-(cit27)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b01695 – volume: 32 start-page: 2002170 year: 2020 ident: D0CC07767D-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.202002170 – volume: 2 start-page: 816 year: 2012 ident: D0CC07767D-(cit16)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200013 – volume: 280 start-page: 119411 year: 2021 ident: D0CC07767D-(cit28)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119411 – volume: 8 start-page: 17268 year: 2016 ident: D0CC07767D-(cit15)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04548 – volume: 473 start-page: 228570 year: 2020 ident: D0CC07767D-(cit22)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228570 – volume: 63 start-page: 327 year: 2019 ident: D0CC07767D-(cit12)/*[position()=1] publication-title: Sci. China Mater. doi: 10.1007/s40843-019-1190-3 – start-page: 2000459 year: 2020 ident: D0CC07767D-(cit1)/*[position()=1] publication-title: Adv. Energy Mater. – volume: 8 start-page: 9355 year: 2020 ident: D0CC07767D-(cit7)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02825H – volume: 8 start-page: 1800955 year: 2018 ident: D0CC07767D-(cit6)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800955 – volume: 12 start-page: 1651 year: 2019 ident: D0CC07767D-(cit21)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-019-2415-7 – volume: 13 start-page: 818 year: 2020 ident: D0CC07767D-(cit11)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-020-2702-3 |
SSID | ssj0000158 |
Score | 2.4880245 |
Snippet | Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 249 |
SubjectTerms | Bimetals Carbon Cobalt Electrocatalysts energy Energy storage Iron Metal air batteries Nanosheets oxygen Rechargeable batteries surface area Zinc-oxygen batteries |
Title | Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33507178 https://www.proquest.com/docview/2492887681 https://www.proquest.com/docview/2482672295 https://www.proquest.com/docview/2524293172 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaG6QEuiK0wtCAjuKCSksTZfKzSjsp6GqSBy8hbaCWUjCaJ1OEH8Lt5thMnpQUBF2tkO5nI74vfEr_vIfSCKEp4KmJPCiE9QIjyWJbFXsSCAvRfwoNCO4ofPiann6K3y3g5mfwYnVpqG34ovl-bV_I_UoU-kKvOkv0HybqbQgf8BvlCCxKG9q9knJs451wfOJfVGkxHXex2q9mmOQi1ZGVVnynV1LqYDD_XKqyL_FUX26-a3t_WwDEhnG3dGGqGA9gCNXuSMjlVX0qPnW8OuGHh7M8b9sQGPdeAGCeZmCiuywQzW62tEzKKObgo9bI1GddDf2s-lpypcusAt7Ah2s8tK3nl4rSW-uCdGkctwsBkgcejjZbE1EuJpZI8VF1fEnngQS3Hu7Olr-5ReGmvtVynndoOLRHuFY3gE02oKn0hDHGRHPSeO404DN5AOyG4G-EU7RydLN68HxGRmUqv7ql7oltCXw9XXzZtrvgrYL1s-qoyxnpZ3EG3O7cDH1kM3UUTVd5DN_O-2t99tM6rV3iucIckbJCELZLwgCTMajxGErZIwr8iCQOS8BhJ2CIJOyQ9QIv5ySI_9bpqHJ4gqd94Ouc4DBWnUQhGI4NGJklWpAUBH1sbmpmufSYjlYRFqgqfy5QmNGKxCqiKI7KLpmVVqkcIJ0ImGUuZUAWLlAwz7keBT6XyaSaKIpihl_06rkTHVK8LpnxbmRMThK6O_Tw3a348Q8_d3LXlZ7l21n4vjlX3_tYrzZUJKjbJ4A-fuWFYdv3JjJWqavUccL9TXfL-D3NiMHMp2OHhDD20onaPQoj2t9JshnZB9q57wMzj3w3soVvDe7OPps2mVU_A_m340w6cPwFEW7LN |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co%2C+Fe+codoped+holey+carbon+nanosheets+as+bifunctional+oxygen+electrocatalysts+for+rechargeable+Zn-air+batteries&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Zhang%2C+Xueting&rft.au=Zhu%2C+Zhenye&rft.au=Tan%2C+Yuanbo&rft.au=Qin%2C+Ke&rft.date=2021-02-25&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=57&rft.issue=16&rft.spage=249&rft.epage=252&rft_id=info:doi/10.1039%2Fd0cc07767d&rft.externalDocID=d0cc07767d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |