Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries

Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 57; no. 16; pp. 249 - 252
Main Authors Zhang, Xueting, Zhu, Zhenye, Tan, Yuanbo, Qin, Ke, Ma, Fei-Xiang, Zhang, Jiaheng
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 25.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm −2 for the OER, outperforming commercial Pt/C and IrO 2 , respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm −2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion. CoFe@HNSs exhibited bifunctional oxygen electrocatalytic activity, and exhibit a high-power density of 131.3 mW cm −2 and long-term stability over 140 h.
AbstractList Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm−2 for the OER, outperforming commercial Pt/C and IrO2, respectively. Furthermore, as the air-cathode for rechargeable Zn–air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm−2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion.
Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm −2 for the OER, outperforming commercial Pt/C and IrO 2 , respectively. Furthermore, as the air-cathode for rechargeable Zn–air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm −2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion.
Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm-2 for the OER, outperforming commercial Pt/C and IrO2, respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm-2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion.Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm-2 for the OER, outperforming commercial Pt/C and IrO2, respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm-2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion.
Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm⁻² for the OER, outperforming commercial Pt/C and IrO₂, respectively. Furthermore, as the air-cathode for rechargeable Zn–air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm⁻² and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion.
Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm −2 for the OER, outperforming commercial Pt/C and IrO 2 , respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm −2 and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion. CoFe@HNSs exhibited bifunctional oxygen electrocatalytic activity, and exhibit a high-power density of 131.3 mW cm −2 and long-term stability over 140 h.
Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen electrocatalytic activity (0.704 V) with very positive half-wave potential (0.897 V) for the ORR and small potential (1.601 V) to drive 10 mA cm for the OER, outperforming commercial Pt/C and IrO , respectively. Furthermore, as the air-cathode for rechargeable Zn-air batteries, the CoFe@HNS based device exhibits a high-power density of 131.3 mW cm and long-term stability over 140 h, indicating the attractive potential of CoFe@HNSs applied in energy storage and conversion.
Author Zhang, Xueting
Ma, Fei-Xiang
Tan, Yuanbo
Qin, Ke
Zhu, Zhenye
Zhang, Jiaheng
AuthorAffiliation Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen)
Department of Mechanical Engineering, City University of Hong Kong Kowloon
School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen
AuthorAffiliation_xml – name: Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen)
– name: School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen
– name: Department of Mechanical Engineering, City University of Hong Kong Kowloon
Author_xml – sequence: 1
  givenname: Xueting
  surname: Zhang
  fullname: Zhang, Xueting
– sequence: 2
  givenname: Zhenye
  surname: Zhu
  fullname: Zhu, Zhenye
– sequence: 3
  givenname: Yuanbo
  surname: Tan
  fullname: Tan, Yuanbo
– sequence: 4
  givenname: Ke
  surname: Qin
  fullname: Qin, Ke
– sequence: 5
  givenname: Fei-Xiang
  surname: Ma
  fullname: Ma, Fei-Xiang
– sequence: 6
  givenname: Jiaheng
  surname: Zhang
  fullname: Zhang, Jiaheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33507178$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rFTEQAPAgFfuhF-9KwIsUV_O5SY6yta1Q8NKDeFmy2dm-LXnJM8mC7783r69VKIXmkMzhN8Mwk2N0EGIAhN5S8pkSbr6MxDmiVKvGF-iI8lY0UuifB7tYmkZxIQ_Rcc63pB4q9St0yLkkiip9hDZd_ITPAbs4xg2MeBU9bLGzaYgBBxtiXgGUjG3GwzwtwZU5Butx_LO9gYDBgyspOlus3-bqpphwArey6Qbs4AH_Co2dEx5sKZBmyK_Ry8n6DG_u3xN0ff7turtsrn5cfO--XjWOK1IayoViDAYjGCPU1mtsWz2piQtTe9dMt1KwUUDLJgUTGUZlWiOsBGpACn6CPu7LblL8vUAu_XrODry3AeKSeyaZYIZTxZ6nQrO2NmNkpR8e0du4pDqPnTJMa9VqWtX7e7UMaxj7TZrXNm37h6lXQPbApZhzgql3c7G7yZZkZ99T0u8W25-Rrrtb7FlNOX2U8lD1Sfxuj1N2_9z_X8L_Aop2qxI
CitedBy_id crossref_primary_10_1088_1361_6528_ac85c4
crossref_primary_10_1039_D2TA08566F
crossref_primary_10_1002_aenm_202203609
crossref_primary_10_1016_j_jallcom_2023_169713
crossref_primary_10_1007_s11708_024_0928_6
crossref_primary_10_1039_D3NR00061C
crossref_primary_10_1016_j_jcis_2023_10_104
crossref_primary_10_1016_j_enrev_2024_100076
crossref_primary_10_1016_j_jcis_2022_04_002
crossref_primary_10_1002_smll_202106635
crossref_primary_10_1016_j_jpowsour_2023_233069
crossref_primary_10_1039_D2TA03744K
crossref_primary_10_1002_smll_202309932
crossref_primary_10_1002_smll_202105928
crossref_primary_10_1039_D2YA00128D
crossref_primary_10_1002_celc_202101108
crossref_primary_10_1039_D4CC01090F
crossref_primary_10_1039_D1CC04330G
crossref_primary_10_1039_D4CC05698A
crossref_primary_10_1039_D2QM01288J
crossref_primary_10_1016_j_ica_2023_121753
crossref_primary_10_1002_smll_202207991
crossref_primary_10_1016_j_micromeso_2022_111850
crossref_primary_10_1039_D2CC04560E
crossref_primary_10_1002_smll_202205033
crossref_primary_10_1039_D1QI00113B
crossref_primary_10_1016_j_apcatb_2024_123882
crossref_primary_10_1002_smll_202305700
Cites_doi 10.1002/chem.201904769
10.1021/ja206477z
10.1007/s40843-018-9269-x
10.1016/j.apcatb.2018.11.039
10.1016/j.nanoen.2018.06.023
10.1016/j.jpowsour.2019.227512
10.1016/j.apcatb.2018.09.024
10.1002/adfm.202007602
10.1016/j.ensm.2015.08.001
10.1002/smll.201902551
10.1038/s41428-020-0305-1
10.1002/adma.201901666
10.1016/j.ensm.2018.11.010
10.1016/j.apsusc.2019.05.014
10.1016/j.jechem.2020.07.012
10.1016/j.apcatb.2019.118198
10.1021/acscatal.7b01695
10.1002/adma.202002170
10.1002/aenm.201200013
10.1016/j.apcatb.2020.119411
10.1021/acsami.6b04548
10.1016/j.jpowsour.2020.228570
10.1007/s40843-019-1190-3
10.1039/D0TA02825H
10.1002/aenm.201800955
10.1007/s12274-019-2415-7
10.1007/s12274-020-2702-3
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d0cc07767d
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 252
ExternalDocumentID 33507178
10_1039_D0CC07767D
d0cc07767d
Genre Journal Article
GroupedDBID -
0-7
0R
1TJ
29B
4.4
53G
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
IH2
J3I
JG
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RCNCU
RIG
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X
X7L
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACBEA
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-134722eb942201a220d668f7f3495078286542d4e62f7ef0bd79694a5e19e543
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 06:04:55 EDT 2025
Fri Jul 11 10:27:58 EDT 2025
Mon Jun 30 06:07:15 EDT 2025
Mon Jul 21 06:05:47 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Tue Jul 01 04:09:21 EDT 2025
Sat Jan 08 03:48:20 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-134722eb942201a220d668f7f3495078286542d4e62f7ef0bd79694a5e19e543
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0cc07767d
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2377-9796
0000-0002-2502-7790
0000-0001-9601-7963
0000-0002-2449-9139
PMID 33507178
PQID 2492887681
PQPubID 2047502
PageCount 4
ParticipantIDs crossref_citationtrail_10_1039_D0CC07767D
proquest_miscellaneous_2524293172
proquest_miscellaneous_2482672295
rsc_primary_d0cc07767d
crossref_primary_10_1039_D0CC07767D
pubmed_primary_33507178
proquest_journals_2492887681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-25
PublicationDateYYYYMMDD 2021-02-25
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Jin (D0CC07767D-(cit11)/*[position()=1]) 2020; 13
Du (D0CC07767D-(cit12)/*[position()=1]) 2019; 63
Li (D0CC07767D-(cit19)/*[position()=1]) 2018; 61
Pei (D0CC07767D-(cit2)/*[position()=1]) 2019; 20
Chen (D0CC07767D-(cit3)/*[position()=1]) 2015; 1
Douka (D0CC07767D-(cit9)/*[position()=1]) 2020; 32
Wang (D0CC07767D-(cit27)/*[position()=1]) 2017; 7
Chen (D0CC07767D-(cit8)/*[position()=1]) 2021; 55
Li (D0CC07767D-(cit24)/*[position()=1]) 2019; 244
Duan (D0CC07767D-(cit7)/*[position()=1]) 2020; 8
Jirkovsky (D0CC07767D-(cit17)/*[position()=1]) 2011; 133
Yang (D0CC07767D-(cit25)/*[position()=1]) 2018; 50
Yang (D0CC07767D-(cit5)/*[position()=1]) 2020
Tu (D0CC07767D-(cit14)/*[position()=1]) 2020; 26
Yu (D0CC07767D-(cit4)/*[position()=1]) 2019; 31
Li (D0CC07767D-(cit20)/*[position()=1]) 2019; 487
Han (D0CC07767D-(cit6)/*[position()=1]) 2018; 8
Tan (D0CC07767D-(cit22)/*[position()=1]) 2020; 473
Zhu (D0CC07767D-(cit26)/*[position()=1]) 2020; 449
Sun (D0CC07767D-(cit1)/*[position()=1]) 2020
Wang (D0CC07767D-(cit23)/*[position()=1]) 2020; 52
Liu (D0CC07767D-(cit21)/*[position()=1]) 2019; 12
Li (D0CC07767D-(cit13)/*[position()=1]) 2019; 241
Cao (D0CC07767D-(cit16)/*[position()=1]) 2012; 2
Han (D0CC07767D-(cit28)/*[position()=1]) 2021; 280
Meng (D0CC07767D-(cit10)/*[position()=1]) 2019; 15
Cheng (D0CC07767D-(cit18)/*[position()=1]) 2020; 260
Khan (D0CC07767D-(cit15)/*[position()=1]) 2016; 8
References_xml – volume: 26
  start-page: 6525
  year: 2020
  ident: D0CC07767D-(cit14)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201904769
– volume: 133
  start-page: 19432
  year: 2011
  ident: D0CC07767D-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206477z
– volume: 61
  start-page: 1305
  year: 2018
  ident: D0CC07767D-(cit19)/*[position()=1]
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-018-9269-x
– volume: 244
  start-page: 150
  year: 2019
  ident: D0CC07767D-(cit24)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.11.039
– volume: 50
  start-page: 691
  year: 2018
  ident: D0CC07767D-(cit25)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.023
– volume: 449
  start-page: 227512
  year: 2020
  ident: D0CC07767D-(cit26)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227512
– volume: 241
  start-page: 95
  year: 2019
  ident: D0CC07767D-(cit13)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.09.024
– start-page: 2007602
  year: 2020
  ident: D0CC07767D-(cit5)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007602
– volume: 1
  start-page: 17
  year: 2015
  ident: D0CC07767D-(cit3)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.08.001
– volume: 15
  start-page: 1902551
  year: 2019
  ident: D0CC07767D-(cit10)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201902551
– volume: 52
  start-page: 539
  year: 2020
  ident: D0CC07767D-(cit23)/*[position()=1]
  publication-title: Polym. J.
  doi: 10.1038/s41428-020-0305-1
– volume: 31
  start-page: e1901666
  year: 2019
  ident: D0CC07767D-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901666
– volume: 20
  start-page: 234
  year: 2019
  ident: D0CC07767D-(cit2)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.11.010
– volume: 487
  start-page: 496
  year: 2019
  ident: D0CC07767D-(cit20)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.014
– volume: 55
  start-page: 183
  year: 2021
  ident: D0CC07767D-(cit8)/*[position()=1]
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.07.012
– volume: 260
  start-page: 118198
  year: 2020
  ident: D0CC07767D-(cit18)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118198
– volume: 7
  start-page: 6144
  year: 2017
  ident: D0CC07767D-(cit27)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01695
– volume: 32
  start-page: 2002170
  year: 2020
  ident: D0CC07767D-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002170
– volume: 2
  start-page: 816
  year: 2012
  ident: D0CC07767D-(cit16)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200013
– volume: 280
  start-page: 119411
  year: 2021
  ident: D0CC07767D-(cit28)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119411
– volume: 8
  start-page: 17268
  year: 2016
  ident: D0CC07767D-(cit15)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04548
– volume: 473
  start-page: 228570
  year: 2020
  ident: D0CC07767D-(cit22)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228570
– volume: 63
  start-page: 327
  year: 2019
  ident: D0CC07767D-(cit12)/*[position()=1]
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-1190-3
– start-page: 2000459
  year: 2020
  ident: D0CC07767D-(cit1)/*[position()=1]
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 9355
  year: 2020
  ident: D0CC07767D-(cit7)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02825H
– volume: 8
  start-page: 1800955
  year: 2018
  ident: D0CC07767D-(cit6)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800955
– volume: 12
  start-page: 1651
  year: 2019
  ident: D0CC07767D-(cit21)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2415-7
– volume: 13
  start-page: 818
  year: 2020
  ident: D0CC07767D-(cit11)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2702-3
SSID ssj0000158
Score 2.4880245
Snippet Unique Co, Fe codoped holey carbon nanosheets with high surface area and abundant bimetal single atoms (CoFe@HNSs) exhibited remarkable bifunctional oxygen...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 249
SubjectTerms Bimetals
Carbon
Cobalt
Electrocatalysts
energy
Energy storage
Iron
Metal air batteries
Nanosheets
oxygen
Rechargeable batteries
surface area
Zinc-oxygen batteries
Title Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/33507178
https://www.proquest.com/docview/2492887681
https://www.proquest.com/docview/2482672295
https://www.proquest.com/docview/2524293172
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaG6QEuiK0wtCAjuKCSksTZfKzSjsp6GqSBy8hbaCWUjCaJ1OEH8Lt5thMnpQUBF2tkO5nI74vfEr_vIfSCKEp4KmJPCiE9QIjyWJbFXsSCAvRfwoNCO4ofPiann6K3y3g5mfwYnVpqG34ovl-bV_I_UoU-kKvOkv0HybqbQgf8BvlCCxKG9q9knJs451wfOJfVGkxHXex2q9mmOQi1ZGVVnynV1LqYDD_XKqyL_FUX26-a3t_WwDEhnG3dGGqGA9gCNXuSMjlVX0qPnW8OuGHh7M8b9sQGPdeAGCeZmCiuywQzW62tEzKKObgo9bI1GddDf2s-lpypcusAt7Ah2s8tK3nl4rSW-uCdGkctwsBkgcejjZbE1EuJpZI8VF1fEnngQS3Hu7Olr-5ReGmvtVynndoOLRHuFY3gE02oKn0hDHGRHPSeO404DN5AOyG4G-EU7RydLN68HxGRmUqv7ql7oltCXw9XXzZtrvgrYL1s-qoyxnpZ3EG3O7cDH1kM3UUTVd5DN_O-2t99tM6rV3iucIckbJCELZLwgCTMajxGErZIwr8iCQOS8BhJ2CIJOyQ9QIv5ySI_9bpqHJ4gqd94Ouc4DBWnUQhGI4NGJklWpAUBH1sbmpmufSYjlYRFqgqfy5QmNGKxCqiKI7KLpmVVqkcIJ0ImGUuZUAWLlAwz7keBT6XyaSaKIpihl_06rkTHVK8LpnxbmRMThK6O_Tw3a348Q8_d3LXlZ7l21n4vjlX3_tYrzZUJKjbJ4A-fuWFYdv3JjJWqavUccL9TXfL-D3NiMHMp2OHhDD20onaPQoj2t9JshnZB9q57wMzj3w3soVvDe7OPps2mVU_A_m340w6cPwFEW7LN
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co%2C+Fe+codoped+holey+carbon+nanosheets+as+bifunctional+oxygen+electrocatalysts+for+rechargeable+Zn-air+batteries&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Zhang%2C+Xueting&rft.au=Zhu%2C+Zhenye&rft.au=Tan%2C+Yuanbo&rft.au=Qin%2C+Ke&rft.date=2021-02-25&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=57&rft.issue=16&rft.spage=249&rft.epage=252&rft_id=info:doi/10.1039%2Fd0cc07767d&rft.externalDocID=d0cc07767d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon