Engineering Unspecific Peroxygenases for Enantioselective α‐Hydroxylation of β‐Ketoesters
Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450 enzymes (P450s), the catalytic potential of UPOs has been less investigated, largely due to their limited natural diversity and the challenges associated with their optimization...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 34; pp. e202509359 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
18.08.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202509359 |
Cover
Abstract | Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450 enzymes (P450s), the catalytic potential of UPOs has been less investigated, largely due to their limited natural diversity and the challenges associated with their optimization through enzyme engineering. In this study, we engineered an UPO from Aspergillus niger (AniUPO) to catalyze the enantioselective α‐hydroxylation of β‐ketoesters, a valuable transformation yet to be realized in biocatalysis. Through enzyme engineering, two AniUPO variants, AniUPO‐M3 and AniUPO‐M6, were developed to produce a wide range of enantioenriched α‐hydroxy‐β‐ketoesters, achieving up to 97% yield, 4140 total turnover number (TTN), and >99:1 enantiomeric ratio (er). The biocatalytic process operates under mild conditions and is scalable for preparative applications. This study broadens the catalytic repertoire of UPOs and enhances their potential for industrial applications.
An unspecific peroxygenase from Aspergillus niger (AniUPO) has been successfully engineered to catalyze the enantioselective α‐hydroxylation of β‐ketoesters. This biocatalytic process demonstrates high efficiency and selectivity with scalability to preparative levels, expanding the catalytic repertoire and synthetic applicability of UPOs in selective oxyfunctionalization. |
---|---|
AbstractList | Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450 enzymes (P450s), the catalytic potential of UPOs has been less investigated, largely due to their limited natural diversity and the challenges associated with their optimization through enzyme engineering. In this study, we engineered an UPO from Aspergillus niger ( Ani UPO) to catalyze the enantioselective α‐hydroxylation of β‐ketoesters, a valuable transformation yet to be realized in biocatalysis. Through enzyme engineering, two Ani UPO variants, Ani UPO‐M3 and Ani UPO‐M6, were developed to produce a wide range of enantioenriched α‐hydroxy‐β‐ketoesters, achieving up to 97% yield, 4140 total turnover number (TTN), and >99:1 enantiomeric ratio (er). The biocatalytic process operates under mild conditions and is scalable for preparative applications. This study broadens the catalytic repertoire of UPOs and enhances their potential for industrial applications. Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450 enzymes (P450s), the catalytic potential of UPOs has been less investigated, largely due to their limited natural diversity and the challenges associated with their optimization through enzyme engineering. In this study, we engineered an UPO from Aspergillus niger (AniUPO) to catalyze the enantioselective α‐hydroxylation of β‐ketoesters, a valuable transformation yet to be realized in biocatalysis. Through enzyme engineering, two AniUPO variants, AniUPO‐M3 and AniUPO‐M6, were developed to produce a wide range of enantioenriched α‐hydroxy‐β‐ketoesters, achieving up to 97% yield, 4140 total turnover number (TTN), and >99:1 enantiomeric ratio (er). The biocatalytic process operates under mild conditions and is scalable for preparative applications. This study broadens the catalytic repertoire of UPOs and enhances their potential for industrial applications. Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450 enzymes (P450s), the catalytic potential of UPOs has been less investigated, largely due to their limited natural diversity and the challenges associated with their optimization through enzyme engineering. In this study, we engineered an UPO from Aspergillus niger (AniUPO) to catalyze the enantioselective α‐hydroxylation of β‐ketoesters, a valuable transformation yet to be realized in biocatalysis. Through enzyme engineering, two AniUPO variants, AniUPO‐M3 and AniUPO‐M6, were developed to produce a wide range of enantioenriched α‐hydroxy‐β‐ketoesters, achieving up to 97% yield, 4140 total turnover number (TTN), and >99:1 enantiomeric ratio (er). The biocatalytic process operates under mild conditions and is scalable for preparative applications. This study broadens the catalytic repertoire of UPOs and enhances their potential for industrial applications. An unspecific peroxygenase from Aspergillus niger (AniUPO) has been successfully engineered to catalyze the enantioselective α‐hydroxylation of β‐ketoesters. This biocatalytic process demonstrates high efficiency and selectivity with scalability to preparative levels, expanding the catalytic repertoire and synthetic applicability of UPOs in selective oxyfunctionalization. Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450s, the catalytic potential of UPOs has been less investigated, largely due to their limited natural diversity and the challenges associated with their optimization through enzyme engineering. In this study, we engineered an UPO from Aspergillus niger (AniUPO) to catalyze the enantioselective α-hydroxylation of β‑ketoesters, a valuable transformation yet to be realized in biocatalysis. Through enzyme engineering, two AniUPO variants, AniUPO-M3 and AniUPO-M6, were developed to produce a wide range of enantioenriched α-hydroxy β-ketoesters, achieving up to 97% yield, 4140 total turnover number (TTN), and >99:1 enantiomeric ratio (er). The biocatalytic process operates under mild conditions and is scalable for preparative applications. This study broadens the catalytic repertoire of UPOs and enhances their potential for industrial applications.Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450s, the catalytic potential of UPOs has been less investigated, largely due to their limited natural diversity and the challenges associated with their optimization through enzyme engineering. In this study, we engineered an UPO from Aspergillus niger (AniUPO) to catalyze the enantioselective α-hydroxylation of β‑ketoesters, a valuable transformation yet to be realized in biocatalysis. Through enzyme engineering, two AniUPO variants, AniUPO-M3 and AniUPO-M6, were developed to produce a wide range of enantioenriched α-hydroxy β-ketoesters, achieving up to 97% yield, 4140 total turnover number (TTN), and >99:1 enantiomeric ratio (er). The biocatalytic process operates under mild conditions and is scalable for preparative applications. This study broadens the catalytic repertoire of UPOs and enhances their potential for industrial applications. |
Author | Jia, Zhi‐Jun Chen, Peng Zhang, Chun Lin, Guang‐Xin Wu, Ying Liu, Yang Liu, Xiao‐Qi Wang, Zhen‐Yu Ma, Xin‐Yuan Zheng, Yongxiang |
Author_xml | – sequence: 1 givenname: Zhen‐Yu surname: Wang fullname: Wang, Zhen‐Yu organization: Sichuan University – sequence: 2 givenname: Xin‐Yuan surname: Ma fullname: Ma, Xin‐Yuan organization: Sichuan University – sequence: 3 givenname: Ying surname: Wu fullname: Wu, Ying organization: Sichuan University – sequence: 4 givenname: Yang surname: Liu fullname: Liu, Yang organization: Sichuan University – sequence: 5 givenname: Guang‐Xin surname: Lin fullname: Lin, Guang‐Xin organization: Sichuan University – sequence: 6 givenname: Xiao‐Qi surname: Liu fullname: Liu, Xiao‐Qi organization: Sichuan University – sequence: 7 givenname: Chun surname: Zhang fullname: Zhang, Chun organization: Sichuan University – sequence: 8 givenname: Peng orcidid: 0009-0005-7249-8180 surname: Chen fullname: Chen, Peng email: peng_chen@scu.edu.cn organization: Sichuan University – sequence: 9 givenname: Yongxiang surname: Zheng fullname: Zheng, Yongxiang email: yongxiangzheng@scu.edu.cn organization: Sichuan University – sequence: 10 givenname: Zhi‐Jun orcidid: 0000-0002-5143-4875 surname: Jia fullname: Jia, Zhi‐Jun email: zhijun_jia@scu.edu.cn organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40474860$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0btOwzAUBmALFVFaWBlRJBaWFN8SxyNChSIqYIDZSp2Tyii1i90C2XgEXgUehIfgSXBVLhILk63j7_j291DHOgsI7RE8IBjTo9IaGFBMMyxZJjfQNskoSZkQrBPnnLFUFBnpol4Id9EXBc63UJdjLniR422khnZqLIA3dprc2jAHbWqjk2vw7qmdgi0DhKR2Phna0i6MC9CAXpgHSN5fP55fRm21gk0Zl2zi6uT9LVYvYOEgLMCHHbRZl02A3a-xj25Phzcno3R8dXZ-cjxONRNYppWuqkrSCS8oK2rOeZlpWUhRV2witBZUSMIrhkHXmFLIZazGFwCQggspJ6yPDtf7zr27X8az1cwEDU1TWnDLoBglOcs5FzTSgz_0zi29jbeLimMhec5JVPtfajmZQaXm3sxK36rvr4tgsAbauxA81D-EYLXKRq2yUT_ZxAa5bng0DbT_aHV8eT787f0ESPWWKg |
Cites_doi | 10.1016/S0040-4039(00)92107-5 10.1002/ange.202302844 10.1016/j.enzmictec.2015.03.004 10.3390/antiox11020223 10.1002/ejoc.202100098 10.1016/j.sbi.2022.102342 10.1002/anie.201006368 10.1038/nature18941 10.1039/C4CY01477D 10.1002/chem.202302772 10.1039/c0cc03165h 10.1038/s44160-022-00166-6 10.1021/acscatal.4c02169 10.21769/BioProtoc.1594 10.1039/C6GC01245K 10.1021/ja0668825 10.1186/s12862-019-1394-3 10.1002/anie.202302844 10.3390/antiox11010163 10.1002/advs.202302826 10.1039/c0sc00607f 10.1016/j.tibtech.2019.01.001 10.1002/ange.202217372 10.1039/D1SC01272J 10.1038/s41570-023-00534-6 10.1073/pnas.0907203106 10.1039/b907151b 10.1021/acs.orglett.6b03554 10.1002/ange.201006368 10.1021/jacs.3c09172 10.1021/jacsau.1c00251 10.1007/BF00351857 10.1021/acs.accounts.9b00285 10.1128/AEM.00490-14 10.1021/jacs.0c11787 10.1016/j.biotechadv.2021.107703 10.1021/jacs.6b11418 10.1002/ange.201800343 10.1016/j.biotechadv.2022.108051 10.1039/C4CC09218J 10.1016/j.checat.2023.100889 10.1039/D0CS00440E 10.1002/chem.201604153 10.1039/D0OB02152K 10.1021/sb300037w 10.3390/microorganisms12122639 10.1021/acs.orglett.6b01614 10.1016/j.cbpa.2014.01.015 10.1016/j.cogsc.2023.100786 10.1002/anie.202217372 10.1021/cr0307143 10.1021/acscatal.3c01477 10.1007/s00253-014-5767-7 10.1002/ejoc.201402019 10.1016/j.cbpa.2016.10.007 10.1021/jacs.2c10148 10.1002/anie.201800343 10.1016/j.biotechadv.2020.107615 10.1002/bit.27810 10.1002/adsc.202301517 10.1002/1526-4998(200102)57:2<153::AID-PS288>3.0.CO;2-O 10.1039/c4cc01631a 10.1021/ja8088907 10.1093/nar/gkab294 10.1016/j.cbpa.2018.10.004 10.3389/fctls.2024.1470616 10.1021/acscatal.8b03401 10.1002/adsc.202000290 10.1002/ange.201914151 10.1038/nchem.2285 10.1021/cs300001x 10.1073/pnas.0307716101 10.1002/adsc.201500911 10.1002/anie.201914151 10.1021/jo00084a042 10.3389/fbioe.2021.705630 10.1016/j.tetasy.2010.05.011 10.1002/adsc.201300335 10.1021/bk-2002-0800.ch017 10.1016/j.cogsc.2022.100745 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202509359 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 40474860 10_1002_anie_202509359 ANIE202509359 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2021YFC2102004 – fundername: National Key Research and Development Program of China grantid: 2021YFC2102004 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3709-dcddd92b48238f444a5c9897fd3b7cc727914d30ecf022e69b7c748ee184799b3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 17:11:37 EDT 2025 Tue Aug 19 13:14:25 EDT 2025 Wed Sep 03 02:13:53 EDT 2025 Thu Aug 21 00:06:59 EDT 2025 Wed Aug 20 09:40:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | Oxyfunctionalization Biocatalysis Enantioselectivity Enzyme engineering Unspecific peroxygenase |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3709-dcddd92b48238f444a5c9897fd3b7cc727914d30ecf022e69b7c748ee184799b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0005-7249-8180 0000-0002-5143-4875 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202509359 |
PMID | 40474860 |
PQID | 3240794641 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_3216364472 proquest_journals_3240794641 pubmed_primary_40474860 crossref_primary_10_1002_anie_202509359 wiley_primary_10_1002_anie_202509359_ANIE202509359 |
PublicationCentury | 2000 |
PublicationDate | August 18, 2025 |
PublicationDateYYYYMMDD | 2025-08-18 |
PublicationDate_xml | – month: 08 year: 2025 text: August 18, 2025 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1993; 24 2013; 2 2023; 39 2019; 52 2023; 7 2022; 73 2020; 362 2023; 145 2020 2020; 59 132 2019; 19 2010; 21 2018; 8 2015; 73‐74 2017; 37 2001 2023; 29 2018 2018; 57 130 2005; 105 2021; 118 2020; 49 2013; 355 2014; 19 2016; 358 2024; 4 2001; 57 2014; 50 2006; 128 2014; 98 2021; 2021 2021; 9 2004; 101 2023; 10 2021; 49 2023; 13 2015; 5 2011; 2 2015; 51 1991; 32 2019; 37 2009 2014; 2014 2023 2023; 62 135 2024; 366 2024; 12 2024; 57 2009; 131 2021; 143 2021; 1 2024; 14 2016; 18 2015; 7 2021; 51 2017; 139 2023; 41 2012; 2 2014; 80 2021; 12 2016; 537 2022; 61 2021; 19 2019; 49 2017; 19 2011 2011; 50 123 1994; 59 2022; 1 2011; 47 2022; 11 2009; 106 2016; 22 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_36_2 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Fan S. (e_1_2_6_18_1) 2024; 57 e_1_2_6_9_1 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_1_2 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_75_2 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 537 start-page: 214 year: 2016 end-page: 219 publication-title: Nature – volume: 1 start-page: 936 year: 2022 end-page: 945 publication-title: Nat. Synth. – volume: 5 start-page: 2038 year: 2015 end-page: 2052 publication-title: Catal. Sci. Technol. – volume: 98 start-page: 6185 year: 2014 end-page: 6203 publication-title: Appl. Microbiol. Biotechnol. – volume: 4 year: 2024 publication-title: Front. Catal. – volume: 362 start-page: 2976 year: 2020 end-page: 2983 publication-title: Adv. Synth. Catal. – volume: 32 start-page: 867 year: 1991 end-page: 870 publication-title: Tetrahedron Lett. – volume: 57 start-page: 613 year: 2024 end-page: 624 publication-title: Acc. Chem. Res. – volume: 143 start-page: 1078 year: 2021 end-page: 1087 publication-title: J. Am. Chem. Soc. – volume: 51 year: 2021 publication-title: Biotechnol. Adv. – volume: 61 year: 2022 publication-title: Biotechnol. Adv. 61 – volume: 22 start-page: 17339 year: 2016 end-page: 17344 publication-title: Chem. Eur. J. – start-page: 3925 year: 2009 end-page: 3927 publication-title: Chem. Commun. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 2 start-page: 83 year: 2013 end-page: 92 publication-title: ACS Synth. Biol. – volume: 105 start-page: 2253 year: 2005 end-page: 2278 publication-title: Chem. Rev. – volume: 12 start-page: 8967 year: 2021 end-page: 8995 publication-title: Chem. Sci. – volume: 128 start-page: 16488 year: 2006 end-page: 16489 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 13334 year: 2024 end-page: 13342 publication-title: ACS Catal. – volume: 18 start-page: 5493 year: 2016 end-page: 5499 publication-title: Green Chem. – volume: 49 start-page: 8137 year: 2020 end-page: 8155 publication-title: Chem. Soc. Rev. – volume: 4 year: 2024 publication-title: Chem. Catal. – volume: 24 start-page: 455 year: 1993 end-page: 459 publication-title: Curr. Genet. – volume: 57 130 start-page: 9238 9380 year: 2018 2018 end-page: 9261 9404 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 year: 2023 publication-title: Curr. Opin. Green Sustain. Chem. – volume: 13 start-page: 7538 year: 2023 end-page: 7543 publication-title: ACS Catal. – volume: 7 start-page: 783 year: 2023 end-page: 799 publication-title: Nat. Rev. Chem. – volume: 62 135 year: 2023 2023 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 2370 year: 2019 end-page: 2381 publication-title: Acc. Chem. Res. – volume: 59 132 start-page: 4846 4876 year: 2020 2020 end-page: 4850 4880 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 116 year: 2014 end-page: 125 publication-title: Curr. Opin. Chem. Biol. – volume: 19 start-page: 448 year: 2017 end-page: 451 publication-title: Org. Lett. – volume: 37 start-page: 1 year: 2017 end-page: 9 publication-title: Curr. Opin. Chem. Biol. – volume: 2014 start-page: 3491 year: 2014 end-page: 3495 publication-title: Eur. J. Org. Chem. – volume: 2021 start-page: 1758 year: 2021 end-page: 1762 publication-title: Eur. J. Org. Chem. – volume: 2 start-page: 1141 year: 2011 end-page: 1144 publication-title: Chem. Sci. – volume: 1 start-page: 1312 year: 2021 end-page: 1329 publication-title: JACS Au – volume: 106 start-page: 18463 year: 2009 end-page: 18468 publication-title: Proc. Natl. Acad. Sci. USA – volume: 50 123 start-page: 3362 3422 year: 2011 2011 end-page: 3374 3435 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 start-page: 153 year: 2001 end-page: 164 publication-title: Pest Manag. Sci. – volume: 19 start-page: 76 year: 2019 publication-title: BMC Evol. Biol. – volume: 49 start-page: 67 year: 2019 end-page: 75 publication-title: Curr. Opin. Chem. Biol. – volume: 7 start-page: 653 year: 2015 end-page: 660 publication-title: Nat. Chem. – volume: 118 start-page: 3002 year: 2021 end-page: 3014 publication-title: Biotechnol. Bioeng. – volume: 101 start-page: 5810 year: 2004 end-page: 5814 publication-title: Proc. Natl. Acad. Sci. USA – volume: 366 start-page: 3698 year: 2024 end-page: 3738 publication-title: Adv. Synth. Catal. – volume: 131 start-page: 4562 year: 2009 end-page: 4563 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 162 year: 2021 end-page: 165 publication-title: Org. Biomol. Chem. – volume: 37 start-page: 882 year: 2019 end-page: 897 publication-title: Trends Biotechnol. – volume: 50 start-page: 7870 year: 2014 end-page: 7873 publication-title: Chem. Commun. – volume: 139 start-page: 63 year: 2017 end-page: 66 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 794 year: 2010 end-page: 799 publication-title: Tetrahedron: Asymmetry – volume: 11 start-page: 223 year: 2022 publication-title: Antioxidants – volume: 11 start-page: 163 year: 2022 publication-title: Antioxidants – volume: 5 year: 2015 publication-title: Bio‐protocol – start-page: 178 year: 2001 end-page: 185 – volume: 51 start-page: 2208 year: 2015 end-page: 2224 publication-title: Chem. Commun. – volume: 145 start-page: 15742 year: 2023 end-page: 15753 publication-title: J. Am. Chem. Soc. – volume: 73‐74 start-page: 29 year: 2015 end-page: 33 publication-title: Enzyme Microb. Technol. – volume: 9 year: 2021 publication-title: Front. Bioeng. Biotech. – volume: 8 start-page: 10964 year: 2018 end-page: 10976 publication-title: ACS Catal. – volume: 358 start-page: 737 year: 2016 end-page: 745 publication-title: Adv. Synth. Catal. – volume: 2 start-page: 647 year: 2012 end-page: 666 publication-title: ACS Catal. – volume: 47 start-page: 2490 year: 2011 end-page: 2501 publication-title: Chem. Commun. – volume: 59 start-page: 1184 year: 1994 end-page: 1190 publication-title: J. Org. Chem. – volume: 12 start-page: 2639 year: 2024 publication-title: Microorganisms – volume: 29 year: 2023 publication-title: Chem. Eur. J. – volume: 39 year: 2023 publication-title: Curr. Opin. Green Sustain. Chem. – volume: 355 start-page: 1924 year: 2013 end-page: 1930 publication-title: Adv. Synth. Catal. – volume: 80 start-page: 3496 year: 2014 end-page: 3507 publication-title: Appl. Environ. Microb. – volume: 49 start-page: W530 year: 2021 end-page: W534 publication-title: Nucleic Acids Res. – volume: 145 start-page: 22276 year: 2023 end-page: 22283 publication-title: J. Am. Chem. Soc. – volume: 73 year: 2022 publication-title: Curr. Opin. Struc. Biol. – volume: 18 start-page: 3602 year: 2016 end-page: 3605 publication-title: Org. Lett. – ident: e_1_2_6_69_1 doi: 10.1016/S0040-4039(00)92107-5 – ident: e_1_2_6_37_2 doi: 10.1002/ange.202302844 – ident: e_1_2_6_63_1 doi: 10.1016/j.enzmictec.2015.03.004 – ident: e_1_2_6_62_1 doi: 10.3390/antiox11020223 – ident: e_1_2_6_76_1 doi: 10.1002/ejoc.202100098 – ident: e_1_2_6_30_1 doi: 10.1016/j.sbi.2022.102342 – ident: e_1_2_6_1_1 doi: 10.1002/anie.201006368 – ident: e_1_2_6_6_1 doi: 10.1038/nature18941 – ident: e_1_2_6_24_1 doi: 10.1039/C4CY01477D – ident: e_1_2_6_5_1 doi: 10.1002/chem.202302772 – ident: e_1_2_6_22_1 doi: 10.1039/c0cc03165h – ident: e_1_2_6_21_1 doi: 10.1038/s44160-022-00166-6 – ident: e_1_2_6_38_1 doi: 10.1021/acscatal.4c02169 – ident: e_1_2_6_73_1 doi: 10.21769/BioProtoc.1594 – ident: e_1_2_6_59_1 doi: 10.1039/C6GC01245K – ident: e_1_2_6_46_1 doi: 10.1021/ja0668825 – ident: e_1_2_6_40_1 doi: 10.1186/s12862-019-1394-3 – ident: e_1_2_6_37_1 doi: 10.1002/anie.202302844 – ident: e_1_2_6_33_1 doi: 10.3390/antiox11010163 – ident: e_1_2_6_64_1 doi: 10.1002/advs.202302826 – ident: e_1_2_6_49_1 doi: 10.1039/c0sc00607f – ident: e_1_2_6_16_1 doi: 10.1016/j.tibtech.2019.01.001 – ident: e_1_2_6_36_2 doi: 10.1002/ange.202217372 – ident: e_1_2_6_3_1 doi: 10.1039/D1SC01272J – ident: e_1_2_6_4_1 doi: 10.1038/s41570-023-00534-6 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.0907203106 – ident: e_1_2_6_48_1 doi: 10.1039/b907151b – ident: e_1_2_6_52_1 doi: 10.1021/acs.orglett.6b03554 – ident: e_1_2_6_1_2 doi: 10.1002/ange.201006368 – ident: e_1_2_6_8_1 doi: 10.1021/jacs.3c09172 – ident: e_1_2_6_27_1 doi: 10.1021/jacsau.1c00251 – ident: e_1_2_6_72_1 doi: 10.1007/BF00351857 – ident: e_1_2_6_2_1 doi: 10.1021/acs.accounts.9b00285 – ident: e_1_2_6_41_1 doi: 10.1128/AEM.00490-14 – ident: e_1_2_6_60_1 doi: 10.1021/jacs.0c11787 – ident: e_1_2_6_32_1 doi: 10.1016/j.biotechadv.2021.107703 – ident: e_1_2_6_53_1 doi: 10.1021/jacs.6b11418 – ident: e_1_2_6_9_2 doi: 10.1002/ange.201800343 – ident: e_1_2_6_17_1 doi: 10.1016/j.biotechadv.2022.108051 – ident: e_1_2_6_13_1 doi: 10.1039/C4CC09218J – ident: e_1_2_6_39_1 doi: 10.1016/j.checat.2023.100889 – ident: e_1_2_6_10_1 doi: 10.1039/D0CS00440E – ident: e_1_2_6_57_1 doi: 10.1002/chem.201604153 – ident: e_1_2_6_67_1 doi: 10.1039/D0OB02152K – ident: e_1_2_6_71_1 doi: 10.1021/sb300037w – ident: e_1_2_6_68_1 doi: 10.3390/microorganisms12122639 – ident: e_1_2_6_58_1 doi: 10.1021/acs.orglett.6b01614 – ident: e_1_2_6_31_1 doi: 10.1016/j.cbpa.2014.01.015 – ident: e_1_2_6_34_1 doi: 10.1016/j.cogsc.2023.100786 – ident: e_1_2_6_36_1 doi: 10.1002/anie.202217372 – ident: e_1_2_6_11_1 doi: 10.1021/cr0307143 – ident: e_1_2_6_61_1 doi: 10.1021/acscatal.3c01477 – ident: e_1_2_6_23_1 doi: 10.1007/s00253-014-5767-7 – ident: e_1_2_6_55_1 doi: 10.1002/ejoc.201402019 – ident: e_1_2_6_29_1 doi: 10.1016/j.cbpa.2016.10.007 – ident: e_1_2_6_7_1 doi: 10.1021/jacs.2c10148 – ident: e_1_2_6_9_1 doi: 10.1002/anie.201800343 – ident: e_1_2_6_25_1 doi: 10.1016/j.biotechadv.2020.107615 – ident: e_1_2_6_42_1 doi: 10.1002/bit.27810 – ident: e_1_2_6_44_1 doi: 10.1002/adsc.202301517 – ident: e_1_2_6_43_1 doi: 10.1002/1526-4998(200102)57:2<153::AID-PS288>3.0.CO;2-O – ident: e_1_2_6_51_1 doi: 10.1039/c4cc01631a – ident: e_1_2_6_54_1 doi: 10.1021/ja8088907 – ident: e_1_2_6_74_1 doi: 10.1093/nar/gkab294 – ident: e_1_2_6_15_1 doi: 10.1016/j.cbpa.2018.10.004 – ident: e_1_2_6_35_1 doi: 10.3389/fctls.2024.1470616 – ident: e_1_2_6_14_1 doi: 10.1021/acscatal.8b03401 – ident: e_1_2_6_66_1 doi: 10.1002/adsc.202000290 – ident: e_1_2_6_75_2 doi: 10.1002/ange.201914151 – ident: e_1_2_6_20_1 doi: 10.1038/nchem.2285 – ident: e_1_2_6_12_1 doi: 10.1021/cs300001x – volume: 57 start-page: 613 year: 2024 ident: e_1_2_6_18_1 publication-title: Acc. Chem. Res. – ident: e_1_2_6_45_1 doi: 10.1073/pnas.0307716101 – ident: e_1_2_6_56_1 doi: 10.1002/adsc.201500911 – ident: e_1_2_6_75_1 doi: 10.1002/anie.201914151 – ident: e_1_2_6_70_1 doi: 10.1021/jo00084a042 – ident: e_1_2_6_26_1 doi: 10.3389/fbioe.2021.705630 – ident: e_1_2_6_47_1 doi: 10.1016/j.tetasy.2010.05.011 – ident: e_1_2_6_50_1 doi: 10.1002/adsc.201300335 – ident: e_1_2_6_65_1 doi: 10.1021/bk-2002-0800.ch017 – ident: e_1_2_6_28_1 doi: 10.1016/j.cogsc.2022.100745 |
SSID | ssj0028806 |
Score | 2.4845922 |
Snippet | Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450 enzymes (P450s), the catalytic... Unspecific peroxygenases (UPOs) are promising biocatalysts for selective oxyfunctionalization. Compared to cytochrome P450s, the catalytic potential of UPOs... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202509359 |
SubjectTerms | Aspergillus niger - enzymology Biocatalysis Biocatalysts Catalysis Cytochrome P450 Cytochromes P450 Enantiomers Enantioselectivity Enzyme engineering Hydroxylation Industrial applications Ketoesters Ketones - chemistry Ketones - metabolism Mixed Function Oxygenases - chemistry Mixed Function Oxygenases - genetics Mixed Function Oxygenases - metabolism Oxyfunctionalization Protein Engineering Stereoisomerism Unspecific peroxygenase |
Title | Engineering Unspecific Peroxygenases for Enantioselective α‐Hydroxylation of β‐Ketoesters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202509359 https://www.ncbi.nlm.nih.gov/pubmed/40474860 https://www.proquest.com/docview/3240794641 https://www.proquest.com/docview/3216364472 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB0hLuVCW6AlZUFGQuKUJbG96_i42i5aQCCEutLeIjtxpKpSUjXZQ3vqJ_RX6IfwEf2SziSbsAuHSvSWOLbieGzPG2fmDcAJggKnOEoAkZtBA0U535jaAyDj0qHCsoYCha9vhtOZvJwP5itR_A0_RHfgRiuj3q9pgRtbnj2ShlIENtp3qMIpuBQ34VAMiTz_413HH4V9CJrwIiF8ykLfsjYG_Gy9-bpWegY115FrrXrOX4NpO914nHzpLyrbT3484XP8n696A9tLXMpGzUR6Cxsu34FX4zYd3C7EK8yFbJZThCZ5GbFbR93CaYjqsGQIgdmEfGs-F2WdYQc3U_Zw_-fnr-n3lCo2rnesyNjDbyy9clVRczWUezA7n3waT_1ldgY_ESrQfpqkaaq5lRFq_UxKaQaJjrTKUmFVkiAu0qFMReCSDHGCG2osVTJyDm1KpbUV72AzL3K3DwyteysytI91JqQbhEZEFCKccssj61TkwWkrnfhrQ8IRN3TLPKYBi7sB86DXCi9eLsYyJs5B4tGXoQfH3WMcPvo3YnJXLKgOAlPEhop78L4RevcqGUhFubo84LXo_tGHeHRzMenuPryk0QFs0TWdXYdRDzarbwt3iOCnskf1BP8LgFn_KA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5ROMClhba0KT81EhKn7GZtL46PCBbtsssKoV2JmxUnjlRVSqpu9tCe-gh9lfIgPARPwkyyCWw5VKLHOLYy8diZb5yZbwAOERQ4xVEDiNwidFCU86OojABIuXRosGxEicKX4-P-VF7cdOtoQsqFqfghmgM32hnl95o2OB1Itx9ZQykFGx08tOGUXfoK1iSiDfK_zq4bBimUIqgSjITwqQ59zdsY8Pby-GW79AxsLmPX0vicvwFbi13FnHxtzQvbin_-xej4X--1Ca8X0JSdVGtpC1Zc9hbWT-uKcO_APCEvZNOMkjQp0IhdOZILVyJaxBlDFMx6FF7zJZ-VRXbwe8ru_tz_-t3_kVDHKvqO5Sm7u8XWoSvykq5h9h6m573Jad9fFGjwY6EC7SdxkiSaWxmi4U-llFE31qFWaSKsimOERrojExG4OEWo4I41tioZOodupdLaim1YzfLMfQSGDr4VKbrIOhXSdTuRCClLOOGWh9ap0IOjWj3mW8XDYSrGZW5owkwzYR7s1tozi_04M0Q7SFT6suPBQXMbp49-j0SZy-fUB7EpwkPFPfhQab15lAykonJdHvBSd_-QwZyMB73m6tNLBn2G9f7kcmRGg_FwBzaonY6yO-EurBbf524PsVBh98vV_gByvANW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61ILVcgP5BgFJXQuopkLW96_i42u5qKe0KVV2JmxXHjoQqJYjdPcCJR-BV4EF4CJ6EmWSTsuVQqRzj2MrEY2e-cWa-AdhDUOAVRw0gckvQQVE-TJIyAiDj0qPBsgklCv8YdYZj-e2kffIoi7_ih2gO3GhnlN9r2uBnLjv4QxpKGdjo36EJp-TSl7AsOwgnCBb9bAikUIioyi8SIqQy9DVtY8QPFscvmqUnWHMRupa2Z7AGSS11FXLye382tfvp5V-Ejs95rXVYnQNT1q1W0ht44fO38LpX14N7B-YRdSEb55SiSWFG7NiTWLgO0R5OGGJg1qfgmtNiUpbYwa8pu7u5v7oeXjjqWMXesSJjd7fYeuSnRUnWMHkP40H_V28YzsszhKlQkQ5d6pzT3MoYzX4mpUzaqY61ypywKk0RGOmWdCLyaYZAwXc0tioZe49OpdLaig-wlBe53wSG7r0VGTrIOhPSt1uJiClH2HHLY-tVHMCXWjvmrGLhMBXfMjc0YaaZsAB2auWZ-W6cGCIdJCJ92Qrgc3Mbp49-jiS5L2bUB5EpgkPFA9iolN48SkZSUbGuAHipun_IYLqjw35ztfU_gz7Bq-OvA_P9cHS0DSvUTOfYrXgHlqbnM_8RgdDU7pZr_QFtGAIF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Unspecific+Peroxygenases+for+Enantioselective+%CE%B1%E2%80%90Hydroxylation+of+%CE%B2%E2%80%90Ketoesters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Zhen%E2%80%90Yu&rft.au=Ma%2C+Xin%E2%80%90Yuan&rft.au=Wu%2C+Ying&rft.au=Liu%2C+Yang&rft.date=2025-08-18&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202509359&rft.externalDBID=10.1002%252Fanie.202509359&rft.externalDocID=ANIE202509359 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |