Temozolomide-Acquired Resistance Is Associated with Modulation of the Integrin Repertoire in Glioblastoma, Impact of α5β1 Integrin
Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standa...
Saved in:
Published in | Cancers Vol. 14; no. 2; p. 369 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2072-6694 2072-6694 |
DOI | 10.3390/cancers14020369 |
Cover
Loading…
Abstract | Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin. |
---|---|
AbstractList | Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin. Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin.Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin. Simple SummaryGlioblastomas are the deadliest brain tumours. The standard of care associates surgery, radio- and chemotherapy with Temozolomide as the reference drug. Despite this treatment, most of the tumours recur. The characterization of resistance mechanisms is of paramount importance to enable the proposal of more effective therapies. In this work we aimed to evaluate the molecular changes occurring during and after Temozolomide treatment in a glioma cell line. A high plasticity in the integrin repertoire exists in these cells. As an example, variations of the α5β1 integrin expression were observed with a reduction during the treatment and re-expression after removal of the drug. The association of integrin antagonists with p53 reactivators appears to be efficient in recurrent tumours. Specific integrins may thus be particularly targetable at different time points of glioblastoma treatment and combination therapies evaluated according to their time-dependent expression.AbstractDespite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin. |
Author | Etienne-Selloum, Nelly Dontenwill, Monique Marinelli, Luciana Martin, Sophie Sani, Saidu Reita, Damien Kessler, Horst Messe, Mélissa Entz-Werle, Natacha Foppolo, Sophie Bernhard, Chloé Pallaoro, Nikita |
AuthorAffiliation | 3 Department of Pharmacy, Institut de Cancérologie Strasbourg Europe (ICANS), 67200 Strasbourg, France 6 Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France 7 Département de Génétique Moléculaire des Cancers, Oncologie Moléculaire & Pharmacogénétique, University Hospital of Strasbourg, 67000 Strasbourg, France 4 Department of Chemistry, Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany; kessler@tum.de 5 Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy; lmarinel@unina.it 2 Cancer and Diabetic Research Group, Department of Biochemistry, Faculty of Biological Science, Federal University Ndufu-Alike Ikwo, Abakaliki 482131, Nigeria 1 Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; Sanisaidu96@gmail.com (S.S.); npallaoro@unistra.fr (N.P.); melissa.messe@etu.unistra.fr (M.M.); chloe.bernhard@e |
AuthorAffiliation_xml | – name: 5 Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy; lmarinel@unina.it – name: 7 Département de Génétique Moléculaire des Cancers, Oncologie Moléculaire & Pharmacogénétique, University Hospital of Strasbourg, 67000 Strasbourg, France – name: 4 Department of Chemistry, Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany; kessler@tum.de – name: 6 Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France – name: 2 Cancer and Diabetic Research Group, Department of Biochemistry, Faculty of Biological Science, Federal University Ndufu-Alike Ikwo, Abakaliki 482131, Nigeria – name: 3 Department of Pharmacy, Institut de Cancérologie Strasbourg Europe (ICANS), 67200 Strasbourg, France – name: 1 Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; Sanisaidu96@gmail.com (S.S.); npallaoro@unistra.fr (N.P.); melissa.messe@etu.unistra.fr (M.M.); chloe.bernhard@etu.unistra.fr (C.B.); nelly.etienne-selloum@unistra.fr (N.E.-S.); Natacha.Entz-Werle@chru-strasbourg.fr (N.E.-W.); sophie.foppolo@unistra.fr (S.F.); sophie.martin@unistra.fr (S.M.); damien.reita@gmail.com (D.R.) |
Author_xml | – sequence: 1 givenname: Saidu orcidid: 0000-0002-5696-2677 surname: Sani fullname: Sani, Saidu – sequence: 2 givenname: Nikita surname: Pallaoro fullname: Pallaoro, Nikita – sequence: 3 givenname: Mélissa surname: Messe fullname: Messe, Mélissa – sequence: 4 givenname: Chloé surname: Bernhard fullname: Bernhard, Chloé – sequence: 5 givenname: Nelly orcidid: 0000-0002-4558-4594 surname: Etienne-Selloum fullname: Etienne-Selloum, Nelly – sequence: 6 givenname: Horst orcidid: 0000-0002-7292-9789 surname: Kessler fullname: Kessler, Horst – sequence: 7 givenname: Luciana surname: Marinelli fullname: Marinelli, Luciana – sequence: 8 givenname: Natacha orcidid: 0000-0001-8418-7439 surname: Entz-Werle fullname: Entz-Werle, Natacha – sequence: 9 givenname: Sophie orcidid: 0000-0002-3167-8362 surname: Foppolo fullname: Foppolo, Sophie – sequence: 10 givenname: Sophie orcidid: 0000-0002-2907-7445 surname: Martin fullname: Martin, Sophie – sequence: 11 givenname: Damien orcidid: 0000-0001-6281-9909 surname: Reita fullname: Reita, Damien – sequence: 12 givenname: Monique orcidid: 0000-0002-5235-3014 surname: Dontenwill fullname: Dontenwill, Monique |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35053532$$D View this record in MEDLINE/PubMed https://hal.science/hal-03808909$$DView record in HAL |
BookMark | eNp1kstq3DAUhkVJaNJp1t0VQzct1I0utmRvCkNok4EJhZKuhSwfZxRsaSLJKc06L9Q-SJ6pciYZ0oEKgW7_9x9J57xCe9ZZQOgNwZ8Yq_GxVlaDD6TAFDNev0CHFAuac14Xe8_mB-gohCucGmNEcPESHbASl6xk9BDdXcDgbl3vBtNCPtfXo_HQZt8hmBAn_2wRsnkIThsV08FPE1fZuWvHXkXjbOa6LK6SyEa49MYmcA0-umSSpdVpb1zTqxDdoD5mi2GtdJyQ-9_l_R-ypV6j_U71AY4exxn68fXLxclZvvx2ujiZL3PNBK7zqq0K3rWFajkuNNSgdMcxZW3T1GWNSaeLohIN14XATFOmO6I5cCgaxUhi2Qx93viux2aAVoONXvVy7c2g_C_plJH_nlizkpfuRlZCME6qZPBhY7Dawc7mSzntYVbhqsb1DUna94_BvLseIUQ5mKCh75UFNwZJOaW0Sp0n6bsd6ZUbvU1fMakIFWJK3gy9fX77bfynZCbB8UagvQvBQ7eVECynipE7FZOIcofQJj4kNj3f9P_l_gLIhcj3 |
CitedBy_id | crossref_primary_10_3390_biomedicines12061163 crossref_primary_10_1016_j_bbadis_2024_167471 crossref_primary_10_1016_j_omto_2022_05_013 crossref_primary_10_3390_cells11213383 crossref_primary_10_1016_j_bioorg_2025_108193 |
Cites_doi | 10.1016/j.stem.2010.02.018 10.1056/NEJMoa043330 10.1016/j.trecan.2018.11.002 10.1038/s41568-019-0156-2 10.1016/j.gendis.2016.04.007 10.1038/s41419-019-2200-2 10.1126/science.1092472 10.1158/0008-5472.CAN-11-4199 10.1371/journal.pone.0080363 10.1007/s11060-020-03598-2 10.1038/cddis.2014.509 10.1158/1078-0432.CCR-15-1015 10.1002/ijc.25187 10.1158/1541-7786.MCR-18-0386 10.3390/ijms21030888 10.1038/cdd.2014.31 10.3389/fonc.2012.00157 10.1158/1078-0432.CCR-18-1580 10.3389/fphar.2015.00279 10.1016/j.canlet.2016.04.007 10.1021/acs.jmedchem.8b00004 10.1016/S1470-2045(14)70379-1 10.15252/emmm.201708420 10.1016/j.ajpath.2015.02.023 10.3171/2016.1.JNS152513 10.1016/j.ccr.2009.12.020 10.2174/187152010794728639 10.1038/onc.2017.248 10.18632/oncotarget.20372 10.1001/jama.2013.280319 10.1016/j.pharmthera.2021.107922 10.1016/S1470-2045(09)70025-7 10.3389/fphar.2020.579068 10.1158/0008-5472.CAN-18-1733 10.1073/pnas.1120375109 10.1038/s41419-018-0825-1 10.2533/chimia.2018.492 10.1016/j.bbagen.2014.04.024 10.1158/1078-0432.CCR-11-2390 10.1007/s13277-013-0871-3 10.18632/oncotarget.11552 10.1016/S1470-2045(14)70462-0 10.1038/cdd.2015.131 10.1016/j.cell.2013.09.034 10.3390/cancers9090116 10.3390/cancers13071711 10.3390/cancers13071560 10.1158/0008-5472.CAN-13-0011 10.3390/ph14090882 10.3390/biomedicines9030324 10.1002/cbic.200800045 10.3390/cancers13081795 10.1002/anie.201206370 10.3390/ph13110389 10.1593/tlo.12253 10.3389/fonc.2021.668090 10.1038/sj.onc.1202000 10.3390/cancers5010027 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM |
DOI | 10.3390/cancers14020369 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2072-6694 |
ExternalDocumentID | PMC8773618 oai_HAL_hal_03808909v1 35053532 10_3390_cancers14020369 |
Genre | Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GrantInformation_xml | – fundername: Franck Rayon de Soleil – fundername: association pour la recherche contre le cancer – fundername: Alex Akwueme Federal University Ndufu-Alike Ikwo – fundername: Life Pink. – fundername: French National Centre for Scientific Research grantid: 80|Prime – fundername: IDEX grantid: ANR-10-IDEX-0002 – fundername: French National Cancer Institute grantid: 11527 – fundername: La ligue contre le cancer grantid: 0 – fundername: SFRI grantid: ANR-20-SFRI-0012 – fundername: Lyons Club de Niederbronn |
GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS 3V. GROUPED_DOAJ NPM 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 1XC ADRAZ C1A IPNFZ PUEGO RIG VOOES 5PM |
ID | FETCH-LOGICAL-c3709-8d846fd4ad604ce9eacf6023dbb95901fc4487b6c4703c23cf1c6e6e4ba31d843 |
IEDL.DBID | M48 |
ISSN | 2072-6694 |
IngestDate | Thu Aug 21 13:55:27 EDT 2025 Sat Aug 30 06:24:37 EDT 2025 Thu Jul 10 23:20:46 EDT 2025 Fri Jul 25 12:02:26 EDT 2025 Thu Jan 02 22:56:14 EST 2025 Tue Jul 01 01:28:19 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | integrins temozolomide resistance glioblastoma p53 reactivation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3709-8d846fd4ad604ce9eacf6023dbb95901fc4487b6c4703c23cf1c6e6e4ba31d843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4558-4594 0000-0001-8418-7439 0000-0002-7292-9789 0000-0002-2907-7445 0000-0001-6281-9909 0000-0002-5235-3014 0000-0002-3167-8362 0000-0002-5696-2677 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers14020369 |
PMID | 35053532 |
PQID | 2621277000 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8773618 hal_primary_oai_HAL_hal_03808909v1 proquest_miscellaneous_2622282286 proquest_journals_2621277000 pubmed_primary_35053532 crossref_primary_10_3390_cancers14020369 crossref_citationtrail_10_3390_cancers14020369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220112 |
PublicationDateYYYYMMDD | 2022-01-12 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220112 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cancers |
PublicationTitleAlternate | Cancers (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Fishlock (ref_19) 2018; 72 Heckmann (ref_40) 2008; 9 Stupp (ref_47) 2009; 10 Park (ref_7) 2012; 5 ref_55 Tucci (ref_27) 2014; 15 ref_53 Blandin (ref_43) 2016; 376 Stupp (ref_26) 2014; 15 Rechenmacher (ref_25) 2010; 10 Ray (ref_34) 2014; 1840 Malric (ref_36) 2019; 17 Hotchkiss (ref_6) 2020; 151 Harris (ref_9) 1996; 56 Berberich (ref_18) 2019; 25 Renner (ref_39) 2016; 23 Dahan (ref_59) 2014; 5 Reifenberger (ref_16) 1993; 53 Verreault (ref_17) 2016; 22 Su (ref_22) 2020; 11 Serafim (ref_57) 2021; 11 ref_21 ref_20 Geraldo (ref_1) 2019; 5 ref_28 Vassilev (ref_14) 2004; 303 Her (ref_15) 2018; 9 Janouskova (ref_30) 2012; 72 Merlino (ref_42) 2018; 61 Schaffner (ref_32) 2013; 5 Holmes (ref_29) 2012; 109 Wang (ref_61) 2017; 126 Dumont (ref_56) 2020; 11 Lang (ref_51) 2021; 228 Blandin (ref_24) 2015; 6 ref_31 DeLay (ref_37) 2012; 18 Rechenmacher (ref_41) 2013; 52 Bicker (ref_35) 2018; 10 Ortiz (ref_49) 2021; 19 Brennan (ref_10) 2013; 155 Lathia (ref_45) 2010; 6 Malric (ref_23) 2017; 8 England (ref_13) 2013; 34 Renner (ref_33) 2016; 7 Lee (ref_50) 2016; 3 Omuro (ref_2) 2013; 310 Crespo (ref_12) 2015; 185 Grombacher (ref_8) 1998; 17 Auffinger (ref_58) 2014; 21 Faget (ref_52) 2019; 19 Aasland (ref_44) 2019; 79 ref_48 Stupp (ref_3) 2005; 10 Carbonell (ref_60) 2013; 73 Martinkova (ref_54) 2010; 127 ref_5 ref_4 Verhaak (ref_11) 2010; 17 Guerrero (ref_46) 2017; 36 Martin (ref_38) 2012; 2 |
References_xml | – volume: 6 start-page: 421 year: 2010 ident: ref_45 article-title: Integrin Alpha 6 Regulates Glioblastoma Stem Cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.02.018 – volume: 10 start-page: 987 year: 2005 ident: ref_3 article-title: Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa043330 – volume: 5 start-page: 46 year: 2019 ident: ref_1 article-title: Glioblastoma Therapy in the Age of Molecular Medicine publication-title: Trends Cancer doi: 10.1016/j.trecan.2018.11.002 – volume: 19 start-page: 439 year: 2019 ident: ref_52 article-title: Unmasking Senescence: Context-Dependent Effects of SASP in Cancer publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0156-2 – volume: 3 start-page: 198 year: 2016 ident: ref_50 article-title: Temozolomide Resistance in Glioblastoma Multiforme publication-title: Genes Dis. doi: 10.1016/j.gendis.2016.04.007 – volume: 11 start-page: 19 year: 2020 ident: ref_56 article-title: Identification of a Transient State during the Acquisition of Temozolomide Resistance in Glioblastoma publication-title: Cell Death Dis. doi: 10.1038/s41419-019-2200-2 – volume: 303 start-page: 844 year: 2004 ident: ref_14 article-title: In Vivo Activation of the P53 Pathway by Small-Molecule Antagonists of MDM2 publication-title: Science doi: 10.1126/science.1092472 – volume: 72 start-page: 3463 year: 2012 ident: ref_30 article-title: Integrin 5 1 Plays a Critical Role in Resistance to Temozolomide by Interfering with the P53 Pathway in High-Grade Glioma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-4199 – ident: ref_55 doi: 10.1371/journal.pone.0080363 – volume: 151 start-page: 55 year: 2020 ident: ref_6 article-title: Temozolomide Treatment Outcomes and Immunotherapy Efficacy in Brain Tumor publication-title: J. Neurooncol. doi: 10.1007/s11060-020-03598-2 – volume: 5 start-page: e1543 year: 2014 ident: ref_59 article-title: Ionizing Radiations Sustain Glioblastoma Cell Dedifferentiation to a Stem-like Phenotype through Survivin: Possible Involvement in Radioresistance publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.509 – volume: 22 start-page: 1185 year: 2016 ident: ref_17 article-title: Preclinical Efficacy of the MDM2 Inhibitor RG7112 in MDM2-Amplified and TP53 Wild-Type Glioblastomas publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1015 – volume: 127 start-page: 1240 year: 2010 ident: ref_54 article-title: A5β1 Integrin Antagonists Reduce Chemotherapy-Induced Premature Senescence and Facilitate Apoptosis in Human Glioblastoma Cells publication-title: Int. J. Cancer doi: 10.1002/ijc.25187 – volume: 17 start-page: 384 year: 2019 ident: ref_36 article-title: Inhibiting Integrin Β8 to Differentiate and Radiosensitize Glioblastoma-Initiating Cells publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-18-0386 – ident: ref_28 doi: 10.3390/ijms21030888 – volume: 21 start-page: 1119 year: 2014 ident: ref_58 article-title: Conversion of Differentiated Cancer Cells into Cancer Stem-like Cells in a Glioblastoma Model after Primary Chemotherapy publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.31 – volume: 2 start-page: 157 year: 2012 ident: ref_38 article-title: Integrins and P53 Pathways in Glioblastoma Resistance to Temozolomide publication-title: Front. Oncol. doi: 10.3389/fonc.2012.00157 – volume: 25 start-page: 253 year: 2019 ident: ref_18 article-title: Targeting Resistance against the MDM2 Inhibitor RG7388 in Glioblastoma Cells by the MEK Inhibitor Trametinib publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-1580 – volume: 6 start-page: 279 year: 2015 ident: ref_24 article-title: Β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer publication-title: Front. Pharmacol. doi: 10.3389/fphar.2015.00279 – volume: 376 start-page: 328 year: 2016 ident: ref_43 article-title: Glioma Cell Dispersion Is Driven by A5 Integrin-Mediated Cell–Matrix and Cell–Cell Interactions publication-title: Cancer Lett. doi: 10.1016/j.canlet.2016.04.007 – volume: 56 start-page: 2029 year: 1996 ident: ref_9 article-title: Wild-Type P53 Suppresses Transcription of the Human O6-Methylguanine-DNA Methyltransferase Gene publication-title: Cancer Res. – volume: 61 start-page: 4791 year: 2018 ident: ref_42 article-title: Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b00004 – volume: 19 start-page: 513 year: 2021 ident: ref_49 article-title: Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications publication-title: Curr. Neuropharmacol. – volume: 15 start-page: 1100 year: 2014 ident: ref_26 article-title: Cilengitide Combined with Standard Treatment for Patients with Newly Diagnosed Glioblastoma with Methylated MGMT Promoter (CENTRIC EORTC 26071-22072 Study): A Multicentre, Randomised, Open-Label, Phase 3 Trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(14)70379-1 – volume: 10 start-page: e8420 year: 2018 ident: ref_35 article-title: EGFL7 Enhances Surface Expression of Integrin α 5 β 1 to Promote Angiogenesis in Malignant Brain Tumors publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201708420 – volume: 185 start-page: 1820 year: 2015 ident: ref_12 article-title: Molecular and Genomic Alterations in Glioblastoma Multiforme publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2015.02.023 – volume: 126 start-page: 446 year: 2017 ident: ref_61 article-title: Combination Therapy in a Xenograft Model of Glioblastoma: Enhancement of the Antitumor Activity of Temozolomide by an MDM2 Antagonist publication-title: J. Neurosurg. doi: 10.3171/2016.1.JNS152513 – volume: 17 start-page: 98 year: 2010 ident: ref_11 article-title: Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 – volume: 10 start-page: 753 year: 2010 ident: ref_25 article-title: Cilengitide: The First Anti-Angiogenic Small Molecule Drug Candidate. Design, Synthesis and Clinical Evaluation publication-title: Anticancer Agents Med. Chem. doi: 10.2174/187152010794728639 – volume: 36 start-page: 6568 year: 2017 ident: ref_46 article-title: Glioblastoma Stem Cells Exploit the Avβ8 Integrin-TGFβ1 Signaling Axis to Drive Tumor Initiation and Progression publication-title: Oncogene doi: 10.1038/onc.2017.248 – volume: 8 start-page: 86947 year: 2017 ident: ref_23 article-title: Interest of Integrins Targeting in Glioblastoma According to Tumor Heterogeneity and Cancer Stem Cell Paradigm: An Update publication-title: Oncotarget doi: 10.18632/oncotarget.20372 – volume: 310 start-page: 1842 year: 2013 ident: ref_2 article-title: Glioblastoma and Other Malignant Gliomas: A Clinical Review publication-title: JAMA doi: 10.1001/jama.2013.280319 – volume: 228 start-page: 107922 year: 2021 ident: ref_51 article-title: Genotoxic Therapy and Resistance Mechanism in Gliomas publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2021.107922 – volume: 10 start-page: 459 year: 2009 ident: ref_47 article-title: Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(09)70025-7 – volume: 11 start-page: 579068 year: 2020 ident: ref_22 article-title: The Biological Functions and Clinical Applications of Integrins in Cancers publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.579068 – volume: 79 start-page: 99 year: 2019 ident: ref_44 article-title: Temozolomide Induces Senescence and Repression of DNA Repair Pathways in Glioblastoma Cells via Activation of ATR–CHK1, P21, and NF-ΚB publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-1733 – volume: 109 start-page: 3475 year: 2012 ident: ref_29 article-title: Insulin-like Growth Factor-Binding Protein 2-Driven Glioma Progression Is Prevented by Blocking a Clinically Significant Integrin, Integrin-Linked Kinase, and NF- B Network publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1120375109 – volume: 9 start-page: 792 year: 2018 ident: ref_15 article-title: Potent Effect of the MDM2 Inhibitor AMG232 on Suppression of Glioblastoma Stem Cells publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0825-1 – volume: 53 start-page: 2736 year: 1993 ident: ref_16 article-title: Amplification and Overexpression of the MDM2 Gene in a Subset of Human Malignant Gliomas without P53 Mutations publication-title: Cancer Res. – volume: 72 start-page: 492 year: 2018 ident: ref_19 article-title: Efficient Industrial Synthesis of the MDM2 Antagonist Idasanutlin via a Cu(I)-Catalyzed [3+2] Asymmetric Cycloaddition publication-title: Chim. Int. J. Chem. doi: 10.2533/chimia.2018.492 – volume: 1840 start-page: 2978 year: 2014 ident: ref_34 article-title: Single Cell Tracking Assay Reveals an Opposite Effect of Selective Small Non-Peptidic A5β1 or Avβ3/Β5 Integrin Antagonists in U87MG Glioma Cells publication-title: Biochim. Biophys. Acta BBA Gen. Subj. doi: 10.1016/j.bbagen.2014.04.024 – volume: 18 start-page: 2930 year: 2012 ident: ref_37 article-title: Microarray Analysis Verifies Two Distinct Phenotypes of Glioblastomas Resistant to Antiangiogenic Therapy publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-2390 – volume: 34 start-page: 2063 year: 2013 ident: ref_13 article-title: Current Understanding of the Role and Targeting of Tumor Suppressor P53 in Glioblastoma Multiforme publication-title: Tumor Biol. doi: 10.1007/s13277-013-0871-3 – volume: 7 start-page: 62194 year: 2016 ident: ref_33 article-title: Expression/Activation of A5β1 Integrin Is Linked to the β-Catenin Signaling Pathway to Drive Migration in Glioma Cells publication-title: Oncotarget doi: 10.18632/oncotarget.11552 – volume: 15 start-page: e584 year: 2014 ident: ref_27 article-title: Does Cilengitide Deserve Another Chance? publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(14)70462-0 – volume: 23 start-page: 640 year: 2016 ident: ref_39 article-title: Integrin A5β1 and P53 Convergent Pathways in the Control of Anti-Apoptotic Proteins PEA-15 and Survivin in High-Grade Glioma publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.131 – volume: 155 start-page: 462 year: 2013 ident: ref_10 article-title: The Somatic Genomic Landscape of Glioblastoma publication-title: Cell doi: 10.1016/j.cell.2013.09.034 – ident: ref_20 doi: 10.3390/cancers9090116 – ident: ref_21 doi: 10.3390/cancers13071711 – ident: ref_53 doi: 10.3390/cancers13071560 – volume: 73 start-page: 3145 year: 2013 ident: ref_60 article-title: Β1 Integrin Targeting Potentiates Antiangiogenic Therapy and Inhibits the Growth of Bevacizumab-Resistant Glioblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-0011 – ident: ref_31 doi: 10.3390/ph14090882 – ident: ref_48 doi: 10.3390/biomedicines9030324 – volume: 9 start-page: 1397 year: 2008 ident: ref_40 article-title: Rational Design of Highly Active and Selective Ligands for the A5β1 Integrin Receptor publication-title: ChemBioChem doi: 10.1002/cbic.200800045 – ident: ref_4 doi: 10.3390/cancers13081795 – volume: 52 start-page: 1572 year: 2013 ident: ref_41 article-title: Functionalizing Avβ3- or A5β1-Selective Integrin Antagonists for Surface Coating: A Method to Discriminate Integrin Subtypes In Vitro publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201206370 – ident: ref_5 doi: 10.3390/ph13110389 – volume: 5 start-page: 393 year: 2012 ident: ref_7 article-title: The Changes in MGMT Promoter Methylation Status in Initial and Recurrent Glioblastomas publication-title: Transl. Oncol. doi: 10.1593/tlo.12253 – volume: 11 start-page: 668090 year: 2021 ident: ref_57 article-title: Expression Profiling of Glioblastoma Cell Lines Reveals Novel Extracellular Matrix-Receptor Genes Correlated with the Responsiveness of Glioma Patients to Ionizing Radiation publication-title: Front. Oncol. doi: 10.3389/fonc.2021.668090 – volume: 17 start-page: 845 year: 1998 ident: ref_8 article-title: P53 Is Involved in Regulation of the DNA Repair Gene O6-Methylguanine-DNA Methyltransferase (MGMT) by DNA Damaging Agents publication-title: Oncogene doi: 10.1038/sj.onc.1202000 – volume: 5 start-page: 27 year: 2013 ident: ref_32 article-title: Integrin A5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors publication-title: Cancers doi: 10.3390/cancers5010027 |
SSID | ssj0000331767 |
Score | 2.282979 |
Snippet | Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to... Simple SummaryGlioblastomas are the deadliest brain tumours. The standard of care associates surgery, radio- and chemotherapy with Temozolomide as the... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 369 |
SubjectTerms | Amino acids Apoptosis Biochemistry, Molecular Biology Brain cancer Brain tumors Cancer Cell culture Cell growth Cell migration Cell proliferation Chemotherapy Clinical trials Genomics Glioblastoma Glioblastoma cells Glioma cells Integrins Life Sciences MDM2 protein Medical prognosis Neurobiology Neurons and Cognition Pharmaceutical sciences Pharmacology Proteins Senescence Temozolomide Therapeutic targets Transcriptomics Tumors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoKyEuiPJqSlsZxIEDpvFjneSEFtSyi2iFqlbqLUr8UFfqJstm2wNn_hD8kP4mZhJvyhbBMbEnsTz2zGd7_A0hrwFSe6UKwTJbxEwViWWFVwnTwnvlnCt8F-V7rEdn6vP54DxsuDUhrHJpE1tDbWuDe-T7QiMXeQIz-P3sG8OsUXi6GlJorJENKE1h8bXx4eD460m_yxJL8I866Th9JKzv9w125rzhqj2Cy1bc0doFBkP-jTTvBkz-4YEOH5GHATrSYafrTXLPVY_J_aNwOP6E_Dh10_o7GLPpxDo2NBjj6yw9cQ1iRGgPHTd0qQ4owC1YelTbkMCL1p4CGqTjlkBiUoHgzM0XNXyEwtOny0ldAtRe1NPiLR23lytR5Obn4OYX76WekrPDg9OPIxaSLDAjkzhjqQUE4q0qrI6VcRkYYq_BkduyzPBeqjewgEtKbRTYBiOk8dxop50qC8lBVj4j61VduS1CtVAu5cpwcPrKAdJxRqAC4LVEXruIvFv2dW4CAzkmwrjMYSWCysnvKCcib3qBWUe-8e-qr0B5fS0kzR4Nv-T4LpZpnGZxds0jsrPUbR6mapPfDqyIvOyLYZLhyUlRufqqrSMw3jbVEXneDYX-V3KAFDlSRCRZGSQrbVktqSYXLZF3miRS83T7_816QR4IvHMRc8bFDllfzK_cLiChRbkXhvtvAN4NBg priority: 102 providerName: ProQuest |
Title | Temozolomide-Acquired Resistance Is Associated with Modulation of the Integrin Repertoire in Glioblastoma, Impact of α5β1 Integrin |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35053532 https://www.proquest.com/docview/2621277000 https://www.proquest.com/docview/2622282286 https://hal.science/hal-03808909 https://pubmed.ncbi.nlm.nih.gov/PMC8773618 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELfoJiFe0PgfNiqDeOABj_hP7eQBoYK2tYhOaFqlvkWJY2uV2mS0HQKe-ULwQfaZuEvSQMeQeEzsSyLf2fe7-Pw7Qp4DpPZKpYLFeRoylZqcpV4ZpoX3yjmX-jrL91gPxur9pDf5XQ6oGcDltaEd1pMaL2b7Xz59fQMT_jVGnBCyv7I4PoslV9WuWtwh2-CWDM7SUYP1q2VZgqusKsqK0Aimdaxqqp_rnrHhpTpnmCP5NwC9mkf5h2M63CG3G0RJ-7UJ3CE3XHGX3Bw1e-b3yPdTNy-_wRo3n-aO9S2m_rqcnrglQkf4Hjpc0rWWoAH_zNJRmTd1vWjpKYBEOqx4JaYFCJ67xaqEh1C4OppNywwQ-Kqcpy_psDpziSKXP3qXP3krdZ-MDw9O3w1YU3uBWWnCmEU5ABOfqzTXobIuhvXZa_DveZbFeFzVW4jrTKatgiXDCmk9t9ppp7JUcpCVD8hWURbuEaFaKBdxZTlgAeUAADkrUBlwWyLdXUD212Od2IaYHOtjzBIIUFA5yRXlBORFK3Bec3L8u-szUF7bC7m0B_0PCd4LZRRGcRh_5gHZW-s2WRtgIjRy3xuwm4A8bZth7uGGSlq48qLqIzANN9IBeVibQvsq2UPmHCkCYjaMZONbNluK6VnF7x0ZIzWPHv_He3fJLYHnMULOuNgjW6vFhXsCKGmVdcn224Pjjydd0jma8G41F34Bp7wWCg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9tnQR7QfwnY4BBIPFAWGK7TvKAUIGNlrUVmjppbyFxHK3SmpSmA8EznwcJPsg-E3f5Bx2Ctz029qVW7nz3s33-HcBjhNSplBG3gyRybBl5iR2l0rMVT1NpjInSKst3rPqH8t1R92gNvjd3YSitsvGJpaNOck175DtcERe5hzP45fyjTVWj6HS1KaFRmcW--fIZl2zFi8Eb1O8Tzvd2J6_7dl1VwNbCcwLbTzDkpomMEuVIbQL0PKnCyJXEcUAXMVONKxYvVlriZNBc6NTVyigj40i4KCvwveuwIQUuZTqw8Wp3_P6g3dVxBMZj5VUcQkIEzo4m5S0KV5ZHfsFK-Fs_puTLv5Ht-QTNPyLe3lW4UkNV1qts6xqsmew6XBrVh_E34NvEzPKv6Dxn08TYPU05xSZhB6YgTIrjYYOCNerHBtryZaM8qQuGsTxliD7ZoCSsmGYoODeLZY4vYfjr7ck0jxHaL_NZ9IwNysucJHL2o3v2022lbsLhhXz-W9DJ8szcAaa4NL4rtYsgQxpEVkZzUgA-FsSjZ8Hz5luHumY8p8IbJyGufEg54TnlWPC0FZhXZB__7voIldf2IpLufm8Y0jNH-I4fOMEn14LtRrdh7RqK8LchW_CwbcZJTSc1UWby07IPp_xeX1lwuzKF9q9Elyh5BLfAWzGSlbGstmTT45I43Pc8oVx_6__DegCX-5PRMBwOxvt3YZPTfQ_HtV2-DZ3l4tTcQxS2jO_Xps_gw0XPtl-gakpP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61W6nigngTKGAQSBwIm9heJzkgtNAuu_Shqmql3kLi2OpK3WTZ3YLgzB-CIz-iv4mZvGCL4NZjYk9ieV6f7fEMwFOE1FbKhLtRlniuTILMTawMXMWtlcaYxFZRvntqeCTfH_eOV-BncxeGwiobm1ga6qzQtEfe5YpykQeowV1bh0Xsbw5eTz-6VEGKTlqbchqViGybL59x-TZ_NdpEXj_jfLB1-Hbo1hUGXC0CL3LDDN2vzWSSKU9qE6EVsgq9WJamEV3KtBpXL0GqtETF0Fxo62tllJFpInykFfjdVVgLcFXkdWDtzdbe_kG7w-MJ9M0qqPIJCRF5XU2MnM19WR7_RUuucPWEAjH_RrkXgzX_8H6Da3C1hq2sX8nZdVgx-Q1Y360P5m_Ct0MzKb6iIZ2MM-P2NcUXm4wdmDnhUxwPG81ZIwrYQNu_bLfI6uJhrLAMkSgblckrxjkSTs1sUeBHGD69Ox0XKcL8RTFJXrBRebGTSM6_985_-C3VLTi6lOm_DZ28yM1dYIpLE_pS-wg4pEGUZTQnBuBrQTn1HHjZzHWs6-znVITjNMZVEDEnvsAcB563BNMq8ce_uz5B5rW9KGH3sL8T0ztPhF4YedEn34GNhrdxbSbm8W-hduBx24wKTqc2SW6Ks7IPp1jfUDlwpxKF9leiR-l5BHcgWBKSpbEst-TjkzKJeBgEQvnhvf8P6xGso5bFO6O97ftwhdPVD893fb4BncXszDxAQLZIH9aSz-DDZSvbL7UIToQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temozolomide-Acquired+Resistance+Is+Associated+with+Modulation+of+the+Integrin+Repertoire+in+Glioblastoma%2C+Impact+of+%CE%B15%CE%B21+Integrin&rft.jtitle=Cancers&rft.au=Sani%2C+Saidu&rft.au=Pallaoro%2C+Nikita&rft.au=Messe%2C+M%C3%A9lissa&rft.au=Bernhard%2C+Chlo%C3%A9&rft.date=2022-01-12&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fcancers14020369&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |