Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security

1. The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plate...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 105; no. 4; pp. 921 - 929
Main Authors Thirkell, Thomas J., Charters, Michael D., Elliott, Ashleigh J., Sait, Steven M., Field, Katie J.
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.07.2017
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever-increasing human population, depletion of global rock-phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. 2. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. 3. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza-crop associations, such as lowtill or minimal chemical input often incur yield-reducing trade-offs. 4. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza-crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours?
AbstractList The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever‐increasing human population, depletion of global rock‐phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. Many important crops form symbioses with arbuscular mycorrhizal fungi ( AMF ), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza–crop associations, such as low‐till or minimal chemical input often incur yield‐reducing trade‐offs. Synthesis . We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza–crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours?
1. The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever-increasing human population, depletion of global rock-phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. 2. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. 3. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza-crop associations, such as lowtill or minimal chemical input often incur yield-reducing trade-offs. 4. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza-crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours?
The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever‐increasing human population, depletion of global rock‐phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza–crop associations, such as low‐till or minimal chemical input often incur yield‐reducing trade‐offs. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza–crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours?
Summary The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever-increasing human population, depletion of global rock-phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza-crop associations, such as low-till or minimal chemical input often incur yield-reducing trade-offs. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza-crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours?
Summary The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever‐increasing human population, depletion of global rock‐phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza–crop associations, such as low‐till or minimal chemical input often incur yield‐reducing trade‐offs. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza–crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours? In this mini‐review, we draw on ecological and physiological knowledge of arbuscular mycorrhizal fungi to inform their role in agroecosystems, providing a balanced look at mycorrhiza–crop symbioses in terms of plant ecophysiology and the wider role of mycorrhizas in agroecosystems, asking the question: are mycorrhizal fungi our sustainable saviours?
Author Sait, Steven M.
Field, Katie J.
Thirkell, Thomas J.
Charters, Michael D.
Elliott, Ashleigh J.
Author_xml – sequence: 1
  givenname: Thomas J.
  surname: Thirkell
  fullname: Thirkell, Thomas J.
– sequence: 2
  givenname: Michael D.
  surname: Charters
  fullname: Charters, Michael D.
– sequence: 3
  givenname: Ashleigh J.
  surname: Elliott
  fullname: Elliott, Ashleigh J.
– sequence: 4
  givenname: Steven M.
  surname: Sait
  fullname: Sait, Steven M.
– sequence: 5
  givenname: Katie J.
  surname: Field
  fullname: Field, Katie J.
BookMark eNqFkL9PAyEUx4mpibU6O5mQuLhcfXAHHJMxTf0VExddXAhyXKW5HhXuaupfL7XawUUWeC_fDzw-h2jQ-tYidEJgTNK6IDlnGRUFGxMqynIPDXedARoCUJpBIcQBOoxxDgBcMBiil6tg8WJtfAhv7lM3uO7bmcO-Dzj2sdOu1a-NxVGvXOrFSzzxbXSVDbpz6YRrH7A2b86uXDtLla9wtKYPrlsfof1aN9Ee_-wj9Hw9fZrcZg-PN3eTq4fM5ALKjDD2SssKuAQjQAogOq8JEwWtJJE8NyBKUxtbFVJWQmpBDOeMV7y0JZe8yEfofHvvMvj33sZOLVw0tml0a30fFQUKEhKTp-jZn-g8_apN0ykiCQha0Jym1MU2ZYKPMdhaLYNb6LBWBNTGtdqYVRuz6tt1Itgfwrju21AXtGv-5z5cY9f_PaPup5Nf7nTLzWPnw44rGNCSA-RfR3Ob5A
CitedBy_id crossref_primary_10_3390_f15040673
crossref_primary_10_1016_j_apsoil_2022_104797
crossref_primary_10_1111_1365_2745_12812
crossref_primary_10_3390_agronomy14091973
crossref_primary_10_3390_d15030391
crossref_primary_10_3389_fevo_2018_00067
crossref_primary_10_1051_bioconf_20237301013
crossref_primary_10_1126_science_aaz5192
crossref_primary_10_1111_nph_15600
crossref_primary_10_1525_elementa_2022_00043
crossref_primary_10_1038_s41598_022_10533_0
crossref_primary_10_1186_s43170_023_00168_0
crossref_primary_10_3389_fpls_2019_00895
crossref_primary_10_1007_s11756_022_01182_9
crossref_primary_10_1088_1755_1315_1297_1_012036
crossref_primary_10_1007_s12633_023_02363_0
crossref_primary_10_1177_1178622120934441
crossref_primary_10_3390_microorganisms12081550
crossref_primary_10_1007_s00572_019_00911_4
crossref_primary_10_1071_MA23002
crossref_primary_10_1007_s00248_022_02124_3
crossref_primary_10_1186_s12870_023_04053_w
crossref_primary_10_1128_spectrum_04027_22
crossref_primary_10_1002_etc_5400
crossref_primary_10_3390_plants11172256
crossref_primary_10_1016_j_jcs_2022_103436
crossref_primary_10_3389_fpls_2022_1080416
crossref_primary_10_3390_agronomy11112348
crossref_primary_10_3390_jof8070660
crossref_primary_10_1111_sum_12932
crossref_primary_10_3390_agriculture9080179
crossref_primary_10_1007_s11356_019_06005_0
crossref_primary_10_1007_s13199_021_00812_1
crossref_primary_10_31734_agronomy2023_27_157
crossref_primary_10_1007_s00572_022_01080_7
crossref_primary_10_1111_nph_17684
crossref_primary_10_7717_peerj_12861
crossref_primary_10_1002_ppp3_10174
crossref_primary_10_1111_mec_14924
crossref_primary_10_3390_agriculture14091601
crossref_primary_10_1007_s13199_021_00756_6
crossref_primary_10_1007_s00572_020_00950_2
crossref_primary_10_1016_j_heliyon_2024_e41196
crossref_primary_10_3390_microorganisms12040810
crossref_primary_10_1007_s00248_020_01582_x
crossref_primary_10_1016_j_micres_2022_127293
crossref_primary_10_3389_fmicb_2019_00744
crossref_primary_10_1016_j_apsoil_2022_104733
crossref_primary_10_3390_su151914643
crossref_primary_10_1080_00275514_2020_1771992
crossref_primary_10_1080_01448765_2020_1802777
crossref_primary_10_3117_rootres_28_23
crossref_primary_10_1016_j_ejsobi_2021_103286
crossref_primary_10_3390_agronomy9080471
crossref_primary_10_34220_issn_2222_7962_2022_1_1
crossref_primary_10_1016_j_jip_2024_108200
crossref_primary_10_3389_ffunb_2024_1448156
crossref_primary_10_2134_jeq2019_02_0070
crossref_primary_10_3389_fpls_2019_00157
crossref_primary_10_1007_s13199_024_00990_8
crossref_primary_10_30550_j_lil_2022_59_2_2022_12_02
crossref_primary_10_1111_nph_15308
crossref_primary_10_1016_j_scitotenv_2024_173975
crossref_primary_10_1080_00103624_2021_1892728
crossref_primary_10_3390_stresses2020017
crossref_primary_10_3390_microbiolres15020068
crossref_primary_10_1002_ppp3_10222
crossref_primary_10_3390_jof9090945
crossref_primary_10_1016_j_agee_2021_107442
crossref_primary_10_1002_ppp3_10180
crossref_primary_10_1371_journal_pone_0233878
crossref_primary_10_12677_BR_2022_113035
crossref_primary_10_1016_j_heliyon_2024_e30359
crossref_primary_10_1007_s11104_021_04957_2
crossref_primary_10_1016_j_scitotenv_2019_04_212
crossref_primary_10_1016_j_scitotenv_2022_156641
crossref_primary_10_7717_peerj_11119
crossref_primary_10_1111_nph_14962
crossref_primary_10_1016_j_crmicr_2022_100107
crossref_primary_10_3389_fmicb_2018_01461
crossref_primary_10_1007_s13593_020_00659_8
crossref_primary_10_1002_ppp3_10338
crossref_primary_10_3390_ijerph18010007
crossref_primary_10_1007_s12298_021_01091_2
crossref_primary_10_1111_nph_17958
crossref_primary_10_1002_ppp3_10151
crossref_primary_10_1016_j_jhazmat_2020_124495
crossref_primary_10_3389_ffunb_2023_1135263
crossref_primary_10_1007_s00248_021_01831_7
crossref_primary_10_1111_nph_17781
crossref_primary_10_1186_s12870_023_04608_x
crossref_primary_10_1016_j_jarmap_2024_100617
crossref_primary_10_3389_fpls_2022_964941
crossref_primary_10_1007_s42770_022_00805_2
crossref_primary_10_3390_ijerph192417058
crossref_primary_10_1111_1462_2920_15492
crossref_primary_10_1007_s11738_021_03250_0
crossref_primary_10_3390_plants12091908
crossref_primary_10_1007_s42729_021_00702_x
crossref_primary_10_3389_fpls_2021_617892
crossref_primary_10_3389_fmicb_2021_743512
crossref_primary_10_3390_ijms23169310
crossref_primary_10_3389_fpls_2025_1549384
crossref_primary_10_1002_ppp3_10302
crossref_primary_10_52804_ijaas2022_311
crossref_primary_10_1111_nph_17306
crossref_primary_10_3390_microorganisms10101897
crossref_primary_10_1007_s00442_021_05065_9
crossref_primary_10_1128_AEM_00880_20
crossref_primary_10_1007_s00572_022_01079_0
crossref_primary_10_1094_PBIOMES_02_24_0028_R
crossref_primary_10_1002_jsfa_10117
crossref_primary_10_1016_j_envexpbot_2022_104933
crossref_primary_10_1007_s13225_021_00481_x
crossref_primary_10_1016_j_pedsph_2024_02_002
crossref_primary_10_1080_21580103_2023_2167873
crossref_primary_10_3390_agronomy12020380
crossref_primary_10_3389_fmicb_2024_1288865
crossref_primary_10_3390_agronomy10121902
crossref_primary_10_3390_microorganisms8111795
crossref_primary_10_1155_2024_4934523
crossref_primary_10_1007_s00344_024_11319_6
crossref_primary_10_3389_fpls_2019_01312
crossref_primary_10_3390_su141912250
crossref_primary_10_1016_j_crmicr_2024_100285
crossref_primary_10_3389_fagro_2023_1287108
crossref_primary_10_3923_pjbs_2020_1276_1284
crossref_primary_10_1038_s41598_023_35148_x
crossref_primary_10_1186_s12870_023_04120_2
crossref_primary_10_3390_soilsystems6020050
crossref_primary_10_1002_ppp3_10372
crossref_primary_10_18615_anadolu_949814
crossref_primary_10_1002_fes3_370
crossref_primary_10_1016_j_heliyon_2018_e00704
crossref_primary_10_3389_fpls_2021_626709
crossref_primary_10_1002_ppp3_10090
crossref_primary_10_1002_ppp3_10092
crossref_primary_10_1002_ppp3_10094
crossref_primary_10_1016_j_jhazmat_2023_131291
crossref_primary_10_1021_acsapm_0c00874
crossref_primary_10_1093_femsec_fiy179
crossref_primary_10_3389_fpls_2022_860484
crossref_primary_10_53518_mjavl_1355101
crossref_primary_10_1016_j_tplants_2017_10_003
crossref_primary_10_3389_fpls_2022_1043171
crossref_primary_10_3390_agronomy7040075
crossref_primary_10_1038_s41598_021_92837_1
crossref_primary_10_3390_microorganisms12071281
crossref_primary_10_1002_ppp3_10128
crossref_primary_10_3389_fpls_2023_1276918
crossref_primary_10_1071_FP18327
crossref_primary_10_3390_biom10030376
crossref_primary_10_1111_nph_15570
crossref_primary_10_1007_s00572_018_0865_5
crossref_primary_10_1099_mic_0_001155
crossref_primary_10_1111_gcb_14851
crossref_primary_10_3389_fpls_2019_01068
crossref_primary_10_1002_eap_2444
crossref_primary_10_1007_s10530_018_1746_8
crossref_primary_10_1111_nph_18043
crossref_primary_10_3389_fpls_2018_00897
crossref_primary_10_1111_ejss_13578
crossref_primary_10_3390_microorganisms12030541
crossref_primary_10_1007_s00572_021_01039_0
crossref_primary_10_1016_S1002_0160_21_60061_9
crossref_primary_10_1007_s00374_023_01751_3
crossref_primary_10_1038_s41559_022_01799_8
Cites_doi 10.1073/pnas.1005874107
10.1017/S0953756201005196
10.1038/ncomms1831
10.1007/s11104-010-0361-y
10.1111/nph.13045
10.1016/j.soilbio.2014.10.016
10.1016/j.scitotenv.2016.05.178
10.1111/ele.12115
10.1016/j.still.2016.02.010
10.1674/amid-175-01-103-112.1
10.1007/s00572-015-0651-6
10.1016/j.soilbio.2014.07.007
10.1111/jipb.12434
10.1038/23932
10.1016/j.apsoil.2016.06.005
10.1016/j.tplants.2015.03.004
10.3389/fpls.2015.00786
10.1046/j.1469-8137.1997.00780.x
10.1890/09-0336.1
10.1046/j.1469-8137.2001.00137.x
10.1007/s00374-013-0847-x
10.1016/j.apsoil.2015.11.027
10.1038/nature13855
10.1007/s11104-011-0865-0
10.3390/agriculture3030443
10.1016/j.tplants.2013.06.004
10.1111/j.1469-8137.2006.01750.x
10.1002/ece3.2207
10.1080/01904167.2014.963114
10.1126/science.1185383
10.1007/s10725-015-0038-x
10.1890/110162
10.1078/0031-4056-00191
10.1007/s00572-013-0515-x
10.1890/08-1555.1
10.1111/1365-2745.12429
10.1007/s13199-015-0319-1
10.1111/1365-2664.12351
10.1111/plb.12277
10.1890/13-1821.1
10.1007/s11104-016-2863-8
10.1038/nplants.2015.159
10.1016/j.tree.2016.02.016
10.1111/jvs.12446
10.1016/j.agee.2012.10.003
10.1007/s00572-015-0654-3
10.1111/j.1365-2745.2009.01557.x
10.1016/j.soilbio.2014.03.016
10.1051/fruits/2014041
10.1111/nph.13024
10.1139/b04-082
10.1007/s00572-013-0527-6
10.1007/s10584-011-0149-y
10.1016/j.envexpbot.2013.10.005
10.1007/s13199-010-0089-8
10.1038/nclimate3061
10.1007/s11104-011-1040-3
10.1080/00103624.2014.981271
10.1007/s10457-015-9852-4
10.1007/s00572-015-0661-4
10.1111/j.1469-8137.2006.01846.x
10.1016/j.geoderma.2013.08.013
10.1016/j.cosust.2012.09.015
10.1016/j.soilbio.2011.01.016
10.1016/j.soilbio.2014.07.008
10.1007/s00442-009-1345-6
10.3389/fmicb.2015.01559
10.1126/science.1208473
10.1007/s13199-015-0334-2
10.1111/1365-2435.12181
10.1104/pp.112.195727
10.1111/j.1469-8137.2005.01602.x
10.1007/s00572-015-0631-x
10.2136/sssaj2004.1249
10.1139/b96-003
10.1111/nph.13172
10.1016/j.agee.2013.10.010
10.1146/annurev.ento.54.110807.090614
10.1007/s10886-012-0134-6
10.3390/su8030281
10.4025/actasciagron.v38i2.27230
10.1111/j.1469-8137.2008.02753.x
10.1016/j.ecoenv.2016.06.012
10.1111/1365-2664.12035
10.1371/journal.pone.0027825
10.1038/35095041
10.1111/j.1365-2435.2009.01647.x
10.1111/j.1469-8137.1983.tb03506.x
10.3109/07388551.2014.899964
10.1007/s005720050277
10.1890/ES14-00501.1
10.1038/ncomms3918
10.1111/j.1469-8137.2009.03110.x
10.1111/1365-2745.12496
10.1007/s11105-015-0903-9
10.1016/j.soilbio.2014.03.010
10.1080/00380768.2003.10410323
10.1111/nph.13288
10.1111/pce.12667
10.1080/00103624.2015.1103252
10.2136/sssaj2006.0377
10.2136/sssaj2000.641339x
10.1080/00380768.2014.993298
10.1002/ldr.1136
10.1146/annurev-arplant-042110-103846
10.1007/s003740050638
10.1111/j.1365-2435.2011.01953.x
10.1093/jxb/eru283
10.1016/j.soilbio.2010.12.020
10.1071/9781486303052
10.1111/j.1365-2435.2010.01708.x
10.1016/j.plaphy.2016.06.006
10.17221/77/2013-SWR
10.1139/b92-253
10.1016/j.soilbio.2015.12.016
10.1007/s11104-005-7082-7
10.1016/j.soilbio.2012.09.020
10.1016/j.soilbio.2015.11.019
10.1016/j.apsoil.2016.01.021
10.1007/s11104-016-3001-3
10.1111/nph.13132
10.1007/s11104-009-0202-z
10.1007/s11104-011-1095-1
10.3852/16-042
10.1080/01448765.2014.966147
10.4081/ija.2015.607
ContentType Journal Article
Copyright 2017 British Ecological Society
2017 The Authors. Journal of Ecology © 2017 British Ecological Society
Journal of Ecology © 2017 British Ecological Society
Copyright_xml – notice: 2017 British Ecological Society
– notice: 2017 The Authors. Journal of Ecology © 2017 British Ecological Society
– notice: Journal of Ecology © 2017 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
DOI 10.1111/1365-2745.12788
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 929
ExternalDocumentID 10_1111_1365_2745_12788
JEC12788
45028600
Genre reviewArticle
GrantInformation_xml – fundername: White Rose University Consortium
– fundername: BBSRC
  funderid: BB/M026825/1
– fundername: NERC
  funderid: NE/H021256/1
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29K
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACHJO
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
YF5
YQT
YZZ
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
3-9
31~
42X
8WZ
A6W
AAHHS
ABEFU
ABTAH
ABYAD
ACCFJ
ACTWD
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FVMVE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
MVM
WHG
WRC
XIH
YXE
ZCG
ZY4
AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c3708-155b28d0690c709701a3f15742d91963c078cfced499d79a71c6656d68e869643
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Fri Jul 11 18:33:16 EDT 2025
Fri Jul 25 10:38:34 EDT 2025
Tue Jul 01 03:13:41 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Wed Jan 22 16:49:55 EST 2025
Thu Jul 03 22:07:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3708-155b28d0690c709701a3f15742d91963c078cfced499d79a71c6656d68e869643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5196-2360
PQID 1910724232
PQPubID 37508
PageCount 9
ParticipantIDs proquest_miscellaneous_2020906653
proquest_journals_1910724232
crossref_primary_10_1111_1365_2745_12788
crossref_citationtrail_10_1111_1365_2745_12788
wiley_primary_10_1111_1365_2745_12788_JEC12788
jstor_primary_45028600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170701
July 2017
2017-07-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 7
  year: 2017
  text: 20170701
  day: 1
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2017
Publisher John Wiley & Sons Ltd
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons Ltd
– name: Blackwell Publishing Ltd
References 2011a; 348
2013; 3
2013; 4
2014b; 65
2010; 107
2015; 70
2015; 77
2016; 31
1983; 95
1996; 74
2010; 185
2014; 24
2007; 71
2015; 80
2006; 172
2006; 171
1998; 396
2016; 39
2016; 38
2012; 10
2016; 34
2010; 24
2009; 97
2013; 57
2013; 50
2009; 90
2014; 16
2003; 47
2003; 49
2012; 26
2014a; 28
2006; 169
2014; 98
2001; 413
2010; 327
2009; 182
2015; 52
2000; 64
2016; 95
2016; 94
2016; 566
2012; 38
2016; 160
2017; 410
2011; 6
2016; 99
2016; 6
2012; 353
2001; 150
2012; 355
2015; 61
2015; 66
2010; 333
2015; 65
2016; 27
2016; 26
2016; 8
2010; 52
2016; 175
2015; 35
2015; 38
2013; 24
2016; 108
2009; 160
2015; 103
2016; 107
2015; 31
2000; 9
2004; 68
2016; 101
2016; 104
2013; 164
2014; 213
2001; 105
2015; 46
2013; 18
2015; 174
2009; 54
2013; 16
2016; 90
2014; 9
2014; 50
2011b; 62
2014; 515
1997; 136
2015; 1
2011; 333
2015; 6
2015; 17
2004; 82
2016; 406
2005; 277
2015; 10
2008
2015; 206
2015; 205
2016; 58
1992; 70
2015; 25
2011; 109
2012; 3
2015; 20
2000; 31
2016; 133
2011; 43
2016
2014; 74
2014; 187
2010; 91
2012; 159
2012; 4
2014; 78
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
Smith S.E. (e_1_2_8_104_1) 2008
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
Ortiz N. (e_1_2_8_80_1) 2015; 174
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Wu Q.S. (e_1_2_8_127_1) 2014; 16
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
References_xml – volume: 6
  start-page: 786
  year: 2015
  article-title: Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus
  publication-title: Frontiers in Plant Science
– volume: 353
  start-page: 395
  year: 2012
  end-page: 408
  article-title: Arbuscular mycorrhizal fungi shift competitive relationships among crop and weed species
  publication-title: Plant and Soil
– volume: 90
  start-page: 265
  year: 2016
  end-page: 279
  article-title: Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi
  publication-title: Agroforestry Systems
– volume: 52
  start-page: 228
  year: 2015
  end-page: 239
  article-title: Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses
  publication-title: Journal of Applied Ecology
– volume: 6
  start-page: 95
  year: 2015
  article-title: European corn borer oviposition response to soil fertilization practices and arbuscular mycorrhizal colonization of corn
  publication-title: Ecosphere
– volume: 61
  start-page: 269
  year: 2015
  end-page: 274
  article-title: Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus
  publication-title: Soil Science and Plant Nutrition
– volume: 43
  start-page: 831
  year: 2011
  end-page: 834
  article-title: The bioprotective effect of AM root colonization against the soil‐borne fungal pathogen var. tritici in barley depends on the barley variety
  publication-title: Soil Biology & Biochemistry
– volume: 10
  start-page: 30
  year: 2015
  end-page: 33
  article-title: Field inoculation of arbuscular mycorrhiza on maize ( L.) under low inputs: preliminary study on quantitative and qualitative aspects
  publication-title: Italian Journal of Agronomy
– volume: 38
  start-page: 651
  year: 2012
  end-page: 664
  article-title: Mycorrhiza‐induced resistance and priming of plant defenses
  publication-title: Journal of Chemical Ecology
– volume: 187
  start-page: 87
  year: 2014
  end-page: 105
  article-title: Conservation agriculture and ecosystem services: an overview
  publication-title: Agriculture Ecosystems & Environment
– volume: 24
  start-page: 109
  year: 2014
  end-page: 119
  article-title: Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta‐analysis
  publication-title: Mycorrhiza
– volume: 78
  start-page: 76
  year: 2014
  end-page: 82
  article-title: Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field
  publication-title: Soil Biology & Biochemistry
– volume: 74
  start-page: 156
  year: 2014
  end-page: 166
  article-title: Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie
  publication-title: Soil Biology & Biochemistry
– volume: 82
  start-page: 1198
  year: 2004
  end-page: 1227
  article-title: Prospects and limitations for mycorrhizas in biocontrol of root pathogens
  publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique
– volume: 50
  start-page: 405
  year: 2014
  end-page: 414
  article-title: Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake
  publication-title: Biology and Fertility of Soils
– volume: 43
  start-page: 997
  year: 2011
  end-page: 1005
  article-title: Nitrogen losses from two grassland soils with different fungal biomass
  publication-title: Soil Biology & Biochemistry
– volume: 4
  start-page: 478
  year: 2012
  end-page: 488
  article-title: Assessing the impact of soil degradation on food production
  publication-title: Current Opinion in Environmental Sustainability
– volume: 91
  start-page: 1163
  year: 2010
  end-page: 1171
  article-title: Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems
  publication-title: Ecology
– volume: 4
  start-page: 2918
  year: 2013
  article-title: Distinguishing between yield advances and yield plateaus in historical crop production trends
  publication-title: Nature Communications
– volume: 277
  start-page: 221
  year: 2005
  end-page: 232
  article-title: Wheat responses to arbuscular mycorrhizal fungi in a highly calcareous soil differ from those of clover, and change with plant development and P supply
  publication-title: Plant and Soil
– volume: 413
  start-page: 297
  year: 2001
  end-page: 299
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
– volume: 71
  start-page: 1257
  year: 2007
  end-page: 1266
  article-title: Glomalin in ecosystems
  publication-title: Soil Science Society of America Journal
– volume: 31
  start-page: 150
  year: 2000
  end-page: 156
  article-title: Arbuscular mycorrhizae in a long‐term field trial comparing low‐input (organic, biological) and high‐input (conventional) farming systems in a crop rotation
  publication-title: Biology and Fertility of Soils
– volume: 74
  start-page: 19
  year: 1996
  end-page: 25
  article-title: Mycorrhizal response in wheat cultivars: relationship to phosphorus
  publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique
– volume: 104
  start-page: 261
  year: 2016
  end-page: 269
  article-title: Do arbuscular mycorrhizal fungi stabilize litter‐derived carbon in soil?
  publication-title: Journal of Ecology
– volume: 205
  start-page: 1385
  year: 2015
  end-page: 1388
  article-title: Plant root and mycorrhizal fungal traits for understanding soil aggregation
  publication-title: New Phytologist
– year: 2008
– volume: 74
  start-page: 184
  year: 2014
  end-page: 192
  article-title: Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes
  publication-title: Soil Biology & Biochemistry
– volume: 20
  start-page: 283
  year: 2015
  end-page: 290
  article-title: The role of arbuscular mycorrhizas in reducing soil nutrient loss
  publication-title: Trends in Plant Science
– volume: 54
  start-page: 323
  year: 2009
  end-page: 342
  article-title: Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context
  publication-title: Annual Review of Entomology
– volume: 70
  start-page: 37
  year: 2015
  end-page: 46
  article-title: The arbuscular mycorrhiza fungus MUCL 41833 decreases disease severity of Black Sigatoka on banana c.v. Grande name, under in vitro culture conditions
  publication-title: Fruits
– volume: 175
  start-page: 103
  year: 2016
  end-page: 112
  article-title: Plant genotype influences mycorrhiza benefits and susceptibility to a soil pathogen
  publication-title: American Midland Naturalist
– volume: 107
  start-page: 264
  year: 2016
  end-page: 272
  article-title: Arbuscular mycorrhiza improves yield and nutritional properties of onion ( )
  publication-title: Plant Physiology and Biochemistry
– volume: 108
  start-page: 1028
  year: 2016
  end-page: 1046
  article-title: A phylum‐level phylogenetic classification of zygomycete fungi based on genome‐scale data
  publication-title: Mycologia
– volume: 160
  start-page: 82
  year: 2016
  end-page: 91
  article-title: Mycorrhizal hyphal disruption induces changes in plant growth, glomalin‐related soil protein and soil aggregation of trifoliate orange in a core system
  publication-title: Soil & Tillage Research
– volume: 17
  start-page: 625
  year: 2015
  end-page: 631
  article-title: Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against
  publication-title: Plant Biology
– volume: 70
  start-page: 2032
  year: 1992
  end-page: 2040
  article-title: Mycorrhizal dependence of modern wheat‐varieties, landraces, and ancestors
  publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique
– volume: 58
  start-page: 193
  year: 2016
  end-page: 202
  article-title: Improving crop nutrient efficiency through root architecture modifications
  publication-title: Journal of Integrative Plant Biology
– volume: 26
  start-page: 532
  year: 2012
  end-page: 540
  article-title: Long‐term effects of soil nutrient deficiency on arbuscular mycorrhizal communities
  publication-title: Functional Ecology
– volume: 57
  start-page: 683
  year: 2013
  end-page: 694
  article-title: Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots
  publication-title: Soil Biology & Biochemistry
– volume: 182
  start-page: 347
  year: 2009
  end-page: 358
  article-title: More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses
  publication-title: New Phytologist
– volume: 169
  start-page: 829
  year: 2006
  end-page: 840
  article-title: Mechanism of control of root‐feeding nematodes by mycorrhizal fungi in the dune grass
  publication-title: New Phytologist
– volume: 9
  start-page: 331
  year: 2000
  end-page: 336
  article-title: Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize ( L.) grown in soil at different P and micronutrient levels
  publication-title: Mycorrhiza
– volume: 99
  start-page: 137
  year: 2016
  end-page: 140
  article-title: Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment
  publication-title: Applied Soil Ecology
– volume: 103
  start-page: 1224
  year: 2015
  end-page: 1232
  article-title: Arbuscular mycorrhizal fungal effects on plant competition and community structure
  publication-title: Journal of Ecology
– volume: 515
  start-page: 505
  year: 2014
  end-page: 511
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature
– volume: 172
  start-page: 536
  year: 2006
  end-page: 543
  article-title: Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus‐fixing soil even in the absence of positive growth responses
  publication-title: New Phytologist
– volume: 49
  start-page: 655
  year: 2003
  end-page: 668
  article-title: Arbuscular mycorrhizal dependency of different plant species and cultivars
  publication-title: Soil Science and Plant Nutrition
– volume: 566
  start-page: 1223
  year: 2016
  end-page: 1234
  article-title: Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions
  publication-title: Science of the Total Environment
– volume: 26
  start-page: 133
  year: 2016
  end-page: 140
  article-title: Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO
  publication-title: Mycorrhiza
– year: 2016
– volume: 105
  start-page: 1413
  year: 2001
  end-page: 1421
  article-title: A new fungal phylum, the Glomeromycota: phylogeny and evolution
  publication-title: Mycological Research
– volume: 46
  start-page: 2837
  year: 2015
  end-page: 2846
  article-title: Mycorrhizal inoculation and high arsenic concentrations in the soil increase the survival of soybean plants subjected to strong water stress
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 98
  start-page: 20
  year: 2014
  end-page: 31
  article-title: Protective effects of arbuscular mycorrhizal fungi on wheat ( L.) plants exposed to salinity
  publication-title: Environmental and Experimental Botany
– volume: 396
  start-page: 69
  year: 1998
  end-page: 72
  article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity
  publication-title: Nature
– volume: 77
  start-page: 77
  year: 2015
  end-page: 85
  article-title: Arbuscular mycorrhizal colonization alleviates Fusarium wilt in watermelon and modulates the composition of root exudates
  publication-title: Plant Growth Regulation
– volume: 68
  start-page: 1249
  year: 2004
  end-page: 1255
  article-title: Preferential accumulation of microbial carbon in aggregate structures of no‐tillage soils
  publication-title: Soil Science Society of America Journal
– volume: 10
  start-page: 425
  year: 2012
  end-page: 432
  article-title: Plant‐microbial linkages and ecosystem nitrogen retention: lessons for sustainable agriculture
  publication-title: Frontiers in Ecology and the Environment
– volume: 9
  start-page: 119
  year: 2014
  end-page: 126
  article-title: Interactive effects of arbuscular mycorrhizae and maize ( L.) straws on wheat ( L.) growth and organic carbon storage in a sandy loam soil
  publication-title: Soil and Water Research
– volume: 171
  start-page: 41
  year: 2006
  end-page: 53
  article-title: Mycorrhizas and soil structure
  publication-title: New Phytologist
– volume: 107
  start-page: 214
  year: 2016
  end-page: 223
  article-title: Effect of earthworms and arbuscular mycorrhizal fungi on the microbial community and maize growth under salt stress
  publication-title: Applied Soil Ecology
– volume: 25
  start-page: 533
  year: 2015
  end-page: 546
  article-title: High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism
  publication-title: Mycorrhiza
– volume: 47
  start-page: 281
  year: 2003
  end-page: 287
  article-title: Interaction between foliar‐feeding insects, mycorrhizal fungi, and rhizosphere protozoa on pea plants
  publication-title: Pedobiologia
– volume: 26
  start-page: 77
  year: 2016
  end-page: 83
  article-title: Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management
  publication-title: Mycorrhiza
– volume: 355
  start-page: 231
  year: 2012
  end-page: 250
  article-title: Mycorrhizal responsiveness trends in annual crop plants and their wild relatives‐a meta‐analysis on studies from 1981 to 2010
  publication-title: Plant and Soil
– volume: 80
  start-page: 283
  year: 2015
  end-page: 292
  article-title: Mycorrhizal effects on nutrient cycling, nutrient leaching and N O production in experimental grassland
  publication-title: Soil Biology & Biochemistry
– volume: 31
  start-page: 440
  year: 2016
  end-page: 452
  article-title: An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability
  publication-title: Trends in Ecology & Evolution
– volume: 205
  start-page: 1406
  year: 2015
  end-page: 1423
  article-title: Mycorrhizal ecology and evolution: the past, the present, and the future
  publication-title: New Phytologist
– volume: 26
  start-page: 209
  year: 2016
  end-page: 214
  article-title: Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield
  publication-title: Mycorrhiza
– volume: 64
  start-page: 339
  year: 2000
  end-page: 346
  article-title: Soil quality assessment after weed‐control tillage in a no‐till wheat‐fallow cropping system
  publication-title: Soil Science Society of America Journal
– volume: 150
  start-page: 611
  year: 2001
  end-page: 618
  article-title: Species‐specific responses of a root‐ and shoot‐feeding insect to arbuscular mycorrhizal colonization of its host plant
  publication-title: New Phytologist
– volume: 160
  start-page: 807
  year: 2009
  end-page: 816
  article-title: Trade‐offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in
  publication-title: Oecologia
– volume: 97
  start-page: 1274
  year: 2009
  end-page: 1280
  article-title: Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas
  publication-title: Journal of Ecology
– volume: 39
  start-page: 1683
  year: 2016
  end-page: 1690
  article-title: Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth
  publication-title: Plant, Cell & Environment
– volume: 46
  start-page: 343
  year: 2015
  end-page: 357
  article-title: Mineral uptake of mycorrhizal wheat ( L.) under salinity stress
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 78
  start-page: 38
  year: 2014
  end-page: 44
  article-title: Impacts of compost application on the formation and functioning of arbuscular mycorrhizas
  publication-title: Soil Biology & Biochemistry
– volume: 35
  start-page: 461
  year: 2015
  end-page: 474
  article-title: Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective
  publication-title: Critical Reviews in Biotechnology
– volume: 333
  start-page: 1
  year: 2010
  end-page: 5
  article-title: Arbuscular mycorrhizal fungi as (agro)ecosystem engineers
  publication-title: Plant and Soil
– volume: 62
  start-page: 227
  year: 2011b
  end-page: 250
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Annual Review of Plant Biology
– volume: 16
  start-page: 207
  year: 2014
  end-page: 212
  article-title: Contribution of arbuscular mycorrhizas to glomalin‐related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere
  publication-title: International Journal of Agriculture and Biology
– volume: 18
  start-page: 539
  year: 2013
  end-page: 545
  article-title: Mycorrhiza‐induced resistance: more than the sum of its parts?
  publication-title: Trends in Plant Science
– volume: 27
  start-page: 1243
  year: 2016
  end-page: 1253
  article-title: Functional responses of Mediterranean plant communities to soil resource heterogeneity: a mycorrhizal trait‐based approach
  publication-title: Journal of Vegetation Science
– volume: 213
  start-page: 203
  year: 2014
  end-page: 213
  article-title: The dimensions of soil security
  publication-title: Geoderma
– volume: 3
  start-page: 835
  year: 2012
  article-title: Contrasting arbuscular mycorrhizal responses of vascular and non‐vascular plants to a simulated Palaeozoic CO decline
  publication-title: Nature Communications
– volume: 107
  start-page: 13754
  year: 2010
  end-page: 13759
  article-title: Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 94
  start-page: 191
  year: 2016
  end-page: 199
  article-title: Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching
  publication-title: Soil Biology & Biochemistry
– volume: 65
  start-page: 65
  year: 2015
  end-page: 74
  article-title: Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect
  publication-title: Symbiosis
– volume: 50
  start-page: 355
  year: 2013
  end-page: 364
  article-title: Food production vs. biodiversity: comparing organic and conventional agriculture
  publication-title: Journal of Applied Ecology
– volume: 24
  start-page: 293
  year: 2010
  end-page: 300
  article-title: Support from the underground: induced plant resistance depends on arbuscular mycorrhizal fungi
  publication-title: Functional Ecology
– volume: 410
  start-page: 273
  year: 2017
  end-page: 281
  article-title: Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents
  publication-title: Plant and Soil
– volume: 133
  start-page: 47
  year: 2016
  end-page: 56
  article-title: Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean
  publication-title: Ecotoxicology and Environmental Safety
– volume: 6
  start-page: 1559
  year: 2016
  article-title: Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes
  publication-title: Frontiers in Microbiology
– volume: 90
  start-page: 2088
  year: 2009
  end-page: 2097
  article-title: Effects of mycorrhizal fungi on insect herbivores: a meta‐analysis
  publication-title: Ecology
– volume: 28
  start-page: 375
  year: 2014a
  end-page: 385
  article-title: Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission
  publication-title: Functional Ecology
– volume: 205
  start-page: 1473
  year: 2015
  end-page: 1484
  article-title: Mycorrhizal phenotypes and the Law of the Minimum
  publication-title: New Phytologist
– volume: 38
  start-page: 904
  year: 2015
  end-page: 919
  article-title: Uptake of heavy metals by mycorrhizal barley ( L.)
  publication-title: Journal of Plant Nutrition
– volume: 136
  start-page: 581
  year: 1997
  end-page: 590
  article-title: Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus
  publication-title: New Phytologist
– volume: 66
  start-page: 55
  year: 2015
  end-page: 64
  article-title: Mycorrhiza‐induced protection against pathogens is both genotype‐specific and graft‐transmissible
  publication-title: Symbiosis
– volume: 6
  start-page: 954
  year: 2016
  end-page: 958
  article-title: Current warming will reduce yields unless maize breeding and seed systems adapt immediately
  publication-title: Nature Climate Change
– volume: 24
  start-page: 1842
  year: 2014
  end-page: 1853
  article-title: Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota
  publication-title: Ecological Applications
– volume: 205
  start-page: 743
  year: 2015
  end-page: 756
  article-title: First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO
  publication-title: New Phytologist
– volume: 185
  start-page: 631
  year: 2010
  end-page: 647
  article-title: Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales
  publication-title: New Phytologist
– volume: 24
  start-page: 179
  year: 2014
  end-page: 186
  article-title: The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV)
  publication-title: Mycorrhiza
– volume: 95
  start-page: 173
  year: 2016
  end-page: 179
  article-title: Soil moisture legacy effects: impacts on soil nutrients, plants and mycorrhizal responsiveness
  publication-title: Soil Biology & Biochemistry
– volume: 406
  start-page: 173
  year: 2016
  end-page: 185
  article-title: Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems
  publication-title: Plant and Soil
– volume: 16
  start-page: 835
  year: 2013
  end-page: 843
  article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack
  publication-title: Ecology Letters
– volume: 65
  start-page: 5231
  year: 2014b
  end-page: 5241
  article-title: Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean ( ) to aphids
  publication-title: Journal of Experimental Botany
– volume: 327
  start-page: 812
  year: 2010
  end-page: 818
  article-title: Food security: the challenge of feeding 9 billion people
  publication-title: Science
– volume: 34
  start-page: 89
  year: 2016
  end-page: 102
  article-title: Arbuscular mycorrhizal symbiosis‐induced expression changes in leaves revealed by RNA‐seq analysis
  publication-title: Plant Molecular Biology Reporter
– volume: 38
  start-page: 171
  year: 2016
  end-page: 178
  article-title: Mycorrhizal association in soybean and weeds in competition
  publication-title: Acta Scientiarum‐Agronomy
– volume: 101
  start-page: 152
  year: 2016
  end-page: 164
  article-title: The activity of mycorrhizal symbiosis in suppressing Verticillium wilt in susceptible and tolerant strawberry ( Duch.) genotypes
  publication-title: Applied Soil Ecology
– volume: 6
  start-page: 12
  year: 2011
  article-title: Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds?
  publication-title: PLoS ONE
– volume: 174
  start-page: 87
  year: 2015
  end-page: 96
  article-title: Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought toleranceunder natural soil conditions: effectiveness of autochthonous or allochthonous strains
  publication-title: Functional Biotechnology
– volume: 348
  start-page: 63
  year: 2011a
  end-page: 79
  article-title: What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants?
  publication-title: Plant and Soil
– volume: 333
  start-page: 880
  year: 2011
  end-page: 882
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
– volume: 31
  start-page: 73
  year: 2015
  end-page: 90
  article-title: Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: a review
  publication-title: Biological Agriculture & Horticulture
– volume: 95
  start-page: 381
  year: 1983
  end-page: 396
  article-title: Hyphal uptake and transport of nitrogen from 2N‐15‐labeled sources by , a vesicular arbuscular mycorrhizal fungus
  publication-title: New Phytologist
– volume: 8
  start-page: 281
  year: 2016
  article-title: Soil degradation, land scarcity and food security: reviewing a complex challenge
  publication-title: Sustainability
– volume: 6
  start-page: 4332
  year: 2016
  end-page: 4346
  article-title: Plant‐fungus competition for nitrogen erases mycorrhizal growth benefits of under limited nitrogen supply
  publication-title: Ecology and Evolution
– volume: 206
  start-page: 107
  year: 2015
  end-page: 117
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytologist
– volume: 24
  start-page: 750
  year: 2010
  end-page: 758
  article-title: Gender dimorphism and mycorrhizal symbiosis affect floral visitors and reproductive output in
  publication-title: Functional Ecology
– volume: 333
  start-page: 7
  year: 2010
  end-page: 20
  article-title: Mycorrhizal fungi suppress aggressive agricultural weeds
  publication-title: Plant and Soil
– volume: 52
  start-page: 65
  year: 2010
  end-page: 74
  article-title: The use of mycorrhiza in organically‐grown crops under semi arid conditions: a review of benefits, constraints and future challenges
  publication-title: Symbiosis
– volume: 109
  start-page: 33
  year: 2011
  end-page: 57
  article-title: RCP 8.5‐A scenario of comparatively high greenhouse gas emissions
  publication-title: Climatic Change
– volume: 24
  start-page: 385
  year: 2013
  end-page: 392
  article-title: Mycorrhizal fungi protect the soil from wind erosion: a wind tunnel study
  publication-title: Land Degradation & Development
– volume: 3
  start-page: 443
  year: 2013
  end-page: 463
  article-title: Soil erosion threatens food production
  publication-title: Agriculture
– volume: 159
  start-page: 789
  year: 2012
  end-page: 797
  article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade
  publication-title: Plant Physiology
– volume: 164
  start-page: 14
  year: 2013
  end-page: 22
  article-title: Medium‐term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity
  publication-title: Agriculture Ecosystems & Environment
– volume: 1
  start-page: 7
  year: 2015
  article-title: Regulation of resource exchange in the arbuscular mycorrhizal symbiosis
  publication-title: Nature Plants
– ident: e_1_2_8_49_1
  doi: 10.1073/pnas.1005874107
– ident: e_1_2_8_99_1
  doi: 10.1017/S0953756201005196
– ident: e_1_2_8_32_1
  doi: 10.1038/ncomms1831
– ident: e_1_2_8_20_1
  doi: 10.1007/s11104-010-0361-y
– ident: e_1_2_8_91_1
  doi: 10.1111/nph.13045
– ident: e_1_2_8_10_1
  doi: 10.1016/j.soilbio.2014.10.016
– ident: e_1_2_8_16_1
  doi: 10.1016/j.scitotenv.2016.05.178
– ident: e_1_2_8_6_1
  doi: 10.1111/ele.12115
– ident: e_1_2_8_128_1
  doi: 10.1016/j.still.2016.02.010
– ident: e_1_2_8_94_1
  doi: 10.1674/amid-175-01-103-112.1
– ident: e_1_2_8_38_1
  doi: 10.1007/s00572-015-0651-6
– ident: e_1_2_8_23_1
  doi: 10.1016/j.soilbio.2014.07.007
– ident: e_1_2_8_66_1
  doi: 10.1111/jipb.12434
– ident: e_1_2_8_43_1
  doi: 10.1038/23932
– ident: e_1_2_8_129_1
  doi: 10.1016/j.apsoil.2016.06.005
– ident: e_1_2_8_25_1
  doi: 10.1016/j.tplants.2015.03.004
– ident: e_1_2_8_107_1
  doi: 10.3389/fpls.2015.00786
– ident: e_1_2_8_18_1
  doi: 10.1046/j.1469-8137.1997.00780.x
– ident: e_1_2_8_42_1
  doi: 10.1890/09-0336.1
– ident: e_1_2_8_35_1
  doi: 10.1046/j.1469-8137.2001.00137.x
– ident: e_1_2_8_97_1
  doi: 10.1007/s00374-013-0847-x
– ident: e_1_2_8_72_1
  doi: 10.1016/j.apsoil.2015.11.027
– ident: e_1_2_8_9_1
  doi: 10.1038/nature13855
– ident: e_1_2_8_105_1
  doi: 10.1007/s11104-011-0865-0
– ident: e_1_2_8_84_1
  doi: 10.3390/agriculture3030443
– ident: e_1_2_8_21_1
  doi: 10.1016/j.tplants.2013.06.004
– ident: e_1_2_8_92_1
  doi: 10.1111/j.1469-8137.2006.01750.x
– ident: e_1_2_8_85_1
  doi: 10.1002/ece3.2207
– ident: e_1_2_8_89_1
  doi: 10.1080/01904167.2014.963114
– ident: e_1_2_8_36_1
  doi: 10.1126/science.1185383
– ident: e_1_2_8_88_1
  doi: 10.1007/s10725-015-0038-x
– ident: e_1_2_8_121_1
  doi: 10.1890/110162
– ident: e_1_2_8_125_1
  doi: 10.1078/0031-4056-00191
– ident: e_1_2_8_51_1
  doi: 10.1007/s00572-013-0515-x
– ident: e_1_2_8_61_1
  doi: 10.1890/08-1555.1
– ident: e_1_2_8_68_1
  doi: 10.1111/1365-2745.12429
– ident: e_1_2_8_100_1
  doi: 10.1007/s13199-015-0319-1
– ident: e_1_2_8_11_1
  doi: 10.1111/1365-2664.12351
– ident: e_1_2_8_78_1
  doi: 10.1111/plb.12277
– ident: e_1_2_8_58_1
  doi: 10.1890/13-1821.1
– ident: e_1_2_8_86_1
  doi: 10.1007/s11104-016-2863-8
– ident: e_1_2_8_124_1
  doi: 10.1038/nplants.2015.159
– ident: e_1_2_8_12_1
  doi: 10.1016/j.tree.2016.02.016
– ident: e_1_2_8_79_1
  doi: 10.1111/jvs.12446
– ident: e_1_2_8_82_1
  doi: 10.1016/j.agee.2012.10.003
– ident: e_1_2_8_130_1
  doi: 10.1007/s00572-015-0654-3
– ident: e_1_2_8_101_1
  doi: 10.1111/j.1365-2745.2009.01557.x
– ident: e_1_2_8_27_1
  doi: 10.1016/j.soilbio.2014.03.016
– ident: e_1_2_8_4_1
  doi: 10.1051/fruits/2014041
– ident: e_1_2_8_33_1
  doi: 10.1111/nph.13024
– ident: e_1_2_8_126_1
  doi: 10.1139/b04-082
– ident: e_1_2_8_71_1
  doi: 10.1007/s00572-013-0527-6
– ident: e_1_2_8_90_1
  doi: 10.1007/s10584-011-0149-y
– ident: e_1_2_8_113_1
  doi: 10.1016/j.envexpbot.2013.10.005
– ident: e_1_2_8_87_1
  doi: 10.1007/s13199-010-0089-8
– ident: e_1_2_8_26_1
  doi: 10.1038/nclimate3061
– ident: e_1_2_8_28_1
  doi: 10.1007/s11104-011-1040-3
– ident: e_1_2_8_73_1
  doi: 10.1080/00103624.2014.981271
– volume-title: Mycorrhizal Symbiosis
  year: 2008
  ident: e_1_2_8_104_1
– ident: e_1_2_8_116_1
  doi: 10.1007/s10457-015-9852-4
– ident: e_1_2_8_47_1
  doi: 10.1007/s00572-015-0661-4
– ident: e_1_2_8_65_1
  doi: 10.1111/j.1469-8137.2006.01846.x
– ident: e_1_2_8_74_1
  doi: 10.1016/j.geoderma.2013.08.013
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cosust.2012.09.015
– ident: e_1_2_8_122_1
  doi: 10.1016/j.soilbio.2011.01.016
– ident: e_1_2_8_2_1
  doi: 10.1016/j.soilbio.2014.07.008
– ident: e_1_2_8_13_1
  doi: 10.1007/s00442-009-1345-6
– ident: e_1_2_8_14_1
  doi: 10.3389/fmicb.2015.01559
– ident: e_1_2_8_57_1
  doi: 10.1126/science.1208473
– ident: e_1_2_8_76_1
  doi: 10.1007/s13199-015-0334-2
– ident: e_1_2_8_7_1
  doi: 10.1111/1365-2435.12181
– ident: e_1_2_8_123_1
  doi: 10.1104/pp.112.195727
– ident: e_1_2_8_83_1
  doi: 10.1111/j.1469-8137.2005.01602.x
– ident: e_1_2_8_75_1
  doi: 10.1007/s00572-015-0631-x
– ident: e_1_2_8_102_1
  doi: 10.2136/sssaj2004.1249
– ident: e_1_2_8_46_1
  doi: 10.1139/b96-003
– ident: e_1_2_8_53_1
  doi: 10.1111/nph.13172
– ident: e_1_2_8_81_1
  doi: 10.1016/j.agee.2013.10.010
– ident: e_1_2_8_41_1
  doi: 10.1146/annurev.ento.54.110807.090614
– ident: e_1_2_8_54_1
  doi: 10.1007/s10886-012-0134-6
– ident: e_1_2_8_37_1
  doi: 10.3390/su8030281
– ident: e_1_2_8_31_1
  doi: 10.4025/actasciagron.v38i2.27230
– ident: e_1_2_8_103_1
  doi: 10.1111/j.1469-8137.2008.02753.x
– ident: e_1_2_8_109_1
  doi: 10.1016/j.ecoenv.2016.06.012
– ident: e_1_2_8_34_1
  doi: 10.1111/1365-2664.12035
– ident: e_1_2_8_119_1
  doi: 10.1371/journal.pone.0027825
– ident: e_1_2_8_48_1
  doi: 10.1038/35095041
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1365-2435.2009.01647.x
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1469-8137.1983.tb03506.x
– ident: e_1_2_8_62_1
  doi: 10.3109/07388551.2014.899964
– ident: e_1_2_8_69_1
  doi: 10.1007/s005720050277
– ident: e_1_2_8_77_1
  doi: 10.1890/ES14-00501.1
– ident: e_1_2_8_39_1
  doi: 10.1038/ncomms3918
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1469-8137.2009.03110.x
– ident: e_1_2_8_120_1
  doi: 10.1111/1365-2745.12496
– ident: e_1_2_8_40_1
  doi: 10.1007/s11105-015-0903-9
– ident: e_1_2_8_63_1
  doi: 10.1016/j.soilbio.2014.03.010
– ident: e_1_2_8_114_1
  doi: 10.1080/00380768.2003.10410323
– ident: e_1_2_8_44_1
  doi: 10.1111/nph.13288
– ident: e_1_2_8_115_1
  doi: 10.1111/pce.12667
– ident: e_1_2_8_110_1
  doi: 10.1080/00103624.2015.1103252
– ident: e_1_2_8_117_1
  doi: 10.2136/sssaj2006.0377
– ident: e_1_2_8_56_1
  doi: 10.2136/sssaj2000.641339x
– ident: e_1_2_8_98_1
  doi: 10.1080/00380768.2014.993298
– ident: e_1_2_8_19_1
  doi: 10.1002/ldr.1136
– ident: e_1_2_8_106_1
  doi: 10.1146/annurev-arplant-042110-103846
– volume: 174
  start-page: 87
  year: 2015
  ident: e_1_2_8_80_1
  article-title: Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought toleranceunder natural soil conditions: effectiveness of autochthonous or allochthonous strains
  publication-title: Functional Biotechnology
– ident: e_1_2_8_70_1
  doi: 10.1007/s003740050638
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1365-2435.2011.01953.x
– ident: e_1_2_8_8_1
  doi: 10.1093/jxb/eru283
– ident: e_1_2_8_22_1
  doi: 10.1016/j.soilbio.2010.12.020
– ident: e_1_2_8_112_1
  doi: 10.1071/9781486303052
– ident: e_1_2_8_118_1
  doi: 10.1111/j.1365-2435.2010.01708.x
– volume: 16
  start-page: 207
  year: 2014
  ident: e_1_2_8_127_1
  article-title: Contribution of arbuscular mycorrhizas to glomalin‐related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere
  publication-title: International Journal of Agriculture and Biology
– ident: e_1_2_8_95_1
  doi: 10.1016/j.plaphy.2016.06.006
– ident: e_1_2_8_50_1
  doi: 10.17221/77/2013-SWR
– ident: e_1_2_8_45_1
  doi: 10.1139/b92-253
– ident: e_1_2_8_24_1
  doi: 10.1016/j.soilbio.2015.12.016
– ident: e_1_2_8_67_1
  doi: 10.1007/s11104-005-7082-7
– ident: e_1_2_8_29_1
  doi: 10.1016/j.soilbio.2012.09.020
– ident: e_1_2_8_59_1
  doi: 10.1016/j.soilbio.2015.11.019
– ident: e_1_2_8_108_1
  doi: 10.1016/j.apsoil.2016.01.021
– ident: e_1_2_8_60_1
  doi: 10.1007/s11104-016-3001-3
– ident: e_1_2_8_17_1
  doi: 10.1111/nph.13132
– ident: e_1_2_8_93_1
  doi: 10.1007/s11104-009-0202-z
– ident: e_1_2_8_64_1
  doi: 10.1007/s11104-011-1095-1
– ident: e_1_2_8_111_1
  doi: 10.3852/16-042
– ident: e_1_2_8_30_1
  doi: 10.1080/01448765.2014.966147
– ident: e_1_2_8_96_1
  doi: 10.4081/ija.2015.607
SSID ssj0006750
Score 2.6107252
SecondaryResourceType review_article
Snippet 1. The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in...
Summary The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich...
The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in...
Summary The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 921
SubjectTerms Agricultural ecosystems
Agricultural practices
Agricultural production
agricultural productivity
Agrochemicals
agroecosystems
arbuscular mycorrhiza
Arbuscular mycorrhizas
Breeding
Chemical synthesis
Climate
Climate change
Crop yield
Crops
Depletion
Ecology
Ecophysiology
Energy
energy costs
environmental knowledge
Fertilizers
Food
Food security
Food supply
Foods
Fungi
human population
Human populations
Land management
mycorrhizal fungi
Nitrogen
pest resistance
Pesticide application
Pesticide resistance
Pesticides
Pests
Phosphorus
Plant breeding
Rocks
Security
Soil
Soil improvement
Soil resistance
Soil structure
Special Feature–Mini-review papers
Sustainability
sustainable agriculture
Symbiosis
vesicular arbuscular mycorrhizae
Title Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security
URI https://www.jstor.org/stable/45028600
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12788
https://www.proquest.com/docview/1910724232
https://www.proquest.com/docview/2020906653
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDDAde_DEdVqdE8OClpeuapj3JHBtjoAdxIF5K82M61E3W7bD99b6XtvsFIuKt65qSJn3N5yUv30fItQ-UqhqoAKCYsH3pRXYYDDj4PFoBv3OhFK7o3j8E3b7fe2ZFNCHuhcn0IZYTbmgZ5nuNBp6IdM3I891UPnPqHvhx8BXGM4hFjysBKcBht9ALd33Oc3EfjOXZKr8xLmWhiRvQuY6uZuzpHBBR1DoLOXl3ZlPhyMWWoOO_HuuQ7OdkSpvZq3REdvSoQspZrsp5hezejYEj4aDcNkLX82Py0pxo-jkH_3XyNlxAWRgkX4cUbkTT1b4smqIOwGyS3tIiO2g2S0iBlynGcmqc1IBfY0XTPJ3eCel32k-trp3narBlg6NCLGPCCxXqHkvuRtytJ41BnYHjrSI0cgkoIgdSK_CwFI8SXpcBoKQKQh0GqAlWJaXReKRPMdjKS1TAooAp4UehEC6q2jHuKs1FyKRFnKKnYpkLmWM-jY-4cGiwDWNsw9i0oUVulgW-Mg2Pny-tmq5fXuczADCAQovUinchzq08jcHXdTkCqWeRq-XfYJ-46JKM9HiWxh7weITrWw2ot-n43-oQ99otc3D21wLnZM9D6jDRxDVSmk5m-gKYaSoujVl8A9b0BlA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCi7siLIaiQOXVmkax8kJQVVUynJAICEuVr0UENCipj2Ur2fGSUpbCSHEzVFsy7E98Xv2-A3AUYAo1VRIAcBwVQy0HxejsCWQ81iD-F0oY-hE9_omrN8HjQf-MHIXJtWHGG64kWW4_zUZOG1Ij1h5dp0q4KWyj0RuGmYprrejVbffElIIiL1cMdwLhMjkfcibZ6KCsZUpdU4cg52j4NWtPufLoPN2p04nr6V-T5X054Sk4_8-bAWWMnDKTtPZtApTtr0G82m4ysEazJ11EEpiYr7mtK4H6_B42rXsfYAUtvv88ollcZ18emFYEUu-r2axhKQA-t3khOUBQtONQoaQmZE7p6V9DXzqGJZkEfU24P68dletF7NwDUVdESQSy7nyI0PSx1p4sfDKzUqrzJF7m5jsXCMa0S1tDZIsI-KmKOsQ0aQJIxuFJAu2CTPtTttukb-V3zQhj0NuVBBHSnkkbMeFZ6xQEdcFKOVDJXWmZU4hNd5kzmmoDyX1oXR9WIDjYYGPVMbj56ybbuyH-QKOGAxxYQF288kgM0NPJNJdTxAm9QtwOHyNJkrnLs227fQT6SMkj-mIq4LtdiP_Wxtko1Z1ie2_FjiAhfrd9ZW8uri53IFFn0CIcy7ehZlet2_3EEL11L6zkS9SLwpr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZH7OLCjiirkThwaZWmcZycEEsrdiEEEuJi1UuhAtqqaQ_t0zPjJGWREELcUiWOXNsTf2OP_wHYC5BSTYUUAAxXxUD7cTEKGwJ9HmuQ34UyhnZ0r67D0_vg_IHn0YR0FibVhxgtuJFluO81GXjHND4ZeXaaKuClso9-3DhMBqEX0cA-uf1QkEIe9nLBcC8QIlP3oWCeby_4MjGlsYlfqPMzu7rJpzYPKq92GnPyUur3VEkPvyk6_ut_LcBchqbsMB1LizBmW0swnSarHCzB1FEbQRIvpqtO6XqwDI-HXcveBujAdp-bQyyLs-RTk-GLWPJxMIslJATQ7yYHLE8Pmi4TMgRmRsGcllY18FfbsCTLp7cC97Xq3fFpMUvWUNQVQRKxnCs_MiR8rIUXC69crzTKHD1vE5OVa2QR3dDWoItlRFwXZR0iS5owslFIomCrMNFqt-waRVv5dRPyOORGBXGklEeydlx4xgoVcV2AUt5TUmdK5pRQ41XmHg21oaQ2lK4NC7A_KtBJRTx-fnTVdf3ouYAjgSEVFmAzHwsyM_NEorPrCSJSvwC7o9tooLTrUm_Zdj-RPgJ5TBtcFay36_jf6iDPq8fuYv2vBXZg5uakJi_Pri82YNYnAnGRxZsw0ev27RbyU09tOwt5By8FCSM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+mycorrhizal+fungi+our+sustainable+saviours%3F+Considerations+for+achieving+food+security&rft.jtitle=The+Journal+of+ecology&rft.au=Thirkell%2C+Thomas+J&rft.au=Charters%2C+Michael+D&rft.au=Elliott%2C+Ashleigh+J&rft.au=Sait%2C+Steven+M&rft.date=2017-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=105&rft.issue=4&rft.spage=921&rft_id=info:doi/10.1111%2F1365-2745.12788&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon