Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security
1. The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plate...
Saved in:
Published in | The Journal of ecology Vol. 105; no. 4; pp. 921 - 929 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.07.2017
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever-increasing human population, depletion of global rock-phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. 2. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. 3. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza-crop associations, such as lowtill or minimal chemical input often incur yield-reducing trade-offs. 4. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza-crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours? |
---|---|
AbstractList | The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever‐increasing human population, depletion of global rock‐phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security.
Many important crops form symbioses with arbuscular mycorrhizal fungi (
AMF
), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote
AMF
in agroecosystems.
Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However,
AMF
colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza–crop associations, such as low‐till or minimal chemical input often incur yield‐reducing trade‐offs.
Synthesis
. We draw on ecological knowledge of
AMF
to inform their role in agroecosystems, providing a balanced look at mycorrhiza–crop symbioses in terms of plant ecophysiology and the wider role of
AMF
in agroecosystems and ask the question: are
AMF
our sustainable saviours? 1. The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever-increasing human population, depletion of global rock-phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. 2. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. 3. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza-crop associations, such as lowtill or minimal chemical input often incur yield-reducing trade-offs. 4. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza-crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours? The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever‐increasing human population, depletion of global rock‐phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza–crop associations, such as low‐till or minimal chemical input often incur yield‐reducing trade‐offs. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza–crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours? Summary The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever-increasing human population, depletion of global rock-phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza-crop associations, such as low-till or minimal chemical input often incur yield-reducing trade-offs. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza-crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours? Summary The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in nitrogen and phosphorus, and advances in plant breeding and genetic technologies. In the last 15 years, however, many key crop yields have plateaued. Climate change, an ever‐increasing human population, depletion of global rock‐phosphorus and growing energy prices make current fertiliser production unsustainable and represent sizeable challenges to global food security. Many important crops form symbioses with arbuscular mycorrhizal fungi (AMF), and this has motivated the development of novel approaches in crop breeding and agricultural practices to support and promote AMF in agroecosystems. Arbuscular mycorrhizal fungal symbiosis can be high beneficial in crops and wider agroecosystems in many ways, including improved soil structure and resistance to pests. However, AMF colonisation does not necessarily translate directly into enhanced plant performance or crop yield, while land management practices that would encourage mycorrhiza–crop associations, such as low‐till or minimal chemical input often incur yield‐reducing trade‐offs. Synthesis. We draw on ecological knowledge of AMF to inform their role in agroecosystems, providing a balanced look at mycorrhiza–crop symbioses in terms of plant ecophysiology and the wider role of AMF in agroecosystems and ask the question: are AMF our sustainable saviours? In this mini‐review, we draw on ecological and physiological knowledge of arbuscular mycorrhizal fungi to inform their role in agroecosystems, providing a balanced look at mycorrhiza–crop symbioses in terms of plant ecophysiology and the wider role of mycorrhizas in agroecosystems, asking the question: are mycorrhizal fungi our sustainable saviours? |
Author | Sait, Steven M. Field, Katie J. Thirkell, Thomas J. Charters, Michael D. Elliott, Ashleigh J. |
Author_xml | – sequence: 1 givenname: Thomas J. surname: Thirkell fullname: Thirkell, Thomas J. – sequence: 2 givenname: Michael D. surname: Charters fullname: Charters, Michael D. – sequence: 3 givenname: Ashleigh J. surname: Elliott fullname: Elliott, Ashleigh J. – sequence: 4 givenname: Steven M. surname: Sait fullname: Sait, Steven M. – sequence: 5 givenname: Katie J. surname: Field fullname: Field, Katie J. |
BookMark | eNqFkL9PAyEUx4mpibU6O5mQuLhcfXAHHJMxTf0VExddXAhyXKW5HhXuaupfL7XawUUWeC_fDzw-h2jQ-tYidEJgTNK6IDlnGRUFGxMqynIPDXedARoCUJpBIcQBOoxxDgBcMBiil6tg8WJtfAhv7lM3uO7bmcO-Dzj2sdOu1a-NxVGvXOrFSzzxbXSVDbpz6YRrH7A2b86uXDtLla9wtKYPrlsfof1aN9Ee_-wj9Hw9fZrcZg-PN3eTq4fM5ALKjDD2SssKuAQjQAogOq8JEwWtJJE8NyBKUxtbFVJWQmpBDOeMV7y0JZe8yEfofHvvMvj33sZOLVw0tml0a30fFQUKEhKTp-jZn-g8_apN0ykiCQha0Jym1MU2ZYKPMdhaLYNb6LBWBNTGtdqYVRuz6tt1Itgfwrju21AXtGv-5z5cY9f_PaPup5Nf7nTLzWPnw44rGNCSA-RfR3Ob5A |
CitedBy_id | crossref_primary_10_3390_f15040673 crossref_primary_10_1016_j_apsoil_2022_104797 crossref_primary_10_1111_1365_2745_12812 crossref_primary_10_3390_agronomy14091973 crossref_primary_10_3390_d15030391 crossref_primary_10_3389_fevo_2018_00067 crossref_primary_10_1051_bioconf_20237301013 crossref_primary_10_1126_science_aaz5192 crossref_primary_10_1111_nph_15600 crossref_primary_10_1525_elementa_2022_00043 crossref_primary_10_1038_s41598_022_10533_0 crossref_primary_10_1186_s43170_023_00168_0 crossref_primary_10_3389_fpls_2019_00895 crossref_primary_10_1007_s11756_022_01182_9 crossref_primary_10_1088_1755_1315_1297_1_012036 crossref_primary_10_1007_s12633_023_02363_0 crossref_primary_10_1177_1178622120934441 crossref_primary_10_3390_microorganisms12081550 crossref_primary_10_1007_s00572_019_00911_4 crossref_primary_10_1071_MA23002 crossref_primary_10_1007_s00248_022_02124_3 crossref_primary_10_1186_s12870_023_04053_w crossref_primary_10_1128_spectrum_04027_22 crossref_primary_10_1002_etc_5400 crossref_primary_10_3390_plants11172256 crossref_primary_10_1016_j_jcs_2022_103436 crossref_primary_10_3389_fpls_2022_1080416 crossref_primary_10_3390_agronomy11112348 crossref_primary_10_3390_jof8070660 crossref_primary_10_1111_sum_12932 crossref_primary_10_3390_agriculture9080179 crossref_primary_10_1007_s11356_019_06005_0 crossref_primary_10_1007_s13199_021_00812_1 crossref_primary_10_31734_agronomy2023_27_157 crossref_primary_10_1007_s00572_022_01080_7 crossref_primary_10_1111_nph_17684 crossref_primary_10_7717_peerj_12861 crossref_primary_10_1002_ppp3_10174 crossref_primary_10_1111_mec_14924 crossref_primary_10_3390_agriculture14091601 crossref_primary_10_1007_s13199_021_00756_6 crossref_primary_10_1007_s00572_020_00950_2 crossref_primary_10_1016_j_heliyon_2024_e41196 crossref_primary_10_3390_microorganisms12040810 crossref_primary_10_1007_s00248_020_01582_x crossref_primary_10_1016_j_micres_2022_127293 crossref_primary_10_3389_fmicb_2019_00744 crossref_primary_10_1016_j_apsoil_2022_104733 crossref_primary_10_3390_su151914643 crossref_primary_10_1080_00275514_2020_1771992 crossref_primary_10_1080_01448765_2020_1802777 crossref_primary_10_3117_rootres_28_23 crossref_primary_10_1016_j_ejsobi_2021_103286 crossref_primary_10_3390_agronomy9080471 crossref_primary_10_34220_issn_2222_7962_2022_1_1 crossref_primary_10_1016_j_jip_2024_108200 crossref_primary_10_3389_ffunb_2024_1448156 crossref_primary_10_2134_jeq2019_02_0070 crossref_primary_10_3389_fpls_2019_00157 crossref_primary_10_1007_s13199_024_00990_8 crossref_primary_10_30550_j_lil_2022_59_2_2022_12_02 crossref_primary_10_1111_nph_15308 crossref_primary_10_1016_j_scitotenv_2024_173975 crossref_primary_10_1080_00103624_2021_1892728 crossref_primary_10_3390_stresses2020017 crossref_primary_10_3390_microbiolres15020068 crossref_primary_10_1002_ppp3_10222 crossref_primary_10_3390_jof9090945 crossref_primary_10_1016_j_agee_2021_107442 crossref_primary_10_1002_ppp3_10180 crossref_primary_10_1371_journal_pone_0233878 crossref_primary_10_12677_BR_2022_113035 crossref_primary_10_1016_j_heliyon_2024_e30359 crossref_primary_10_1007_s11104_021_04957_2 crossref_primary_10_1016_j_scitotenv_2019_04_212 crossref_primary_10_1016_j_scitotenv_2022_156641 crossref_primary_10_7717_peerj_11119 crossref_primary_10_1111_nph_14962 crossref_primary_10_1016_j_crmicr_2022_100107 crossref_primary_10_3389_fmicb_2018_01461 crossref_primary_10_1007_s13593_020_00659_8 crossref_primary_10_1002_ppp3_10338 crossref_primary_10_3390_ijerph18010007 crossref_primary_10_1007_s12298_021_01091_2 crossref_primary_10_1111_nph_17958 crossref_primary_10_1002_ppp3_10151 crossref_primary_10_1016_j_jhazmat_2020_124495 crossref_primary_10_3389_ffunb_2023_1135263 crossref_primary_10_1007_s00248_021_01831_7 crossref_primary_10_1111_nph_17781 crossref_primary_10_1186_s12870_023_04608_x crossref_primary_10_1016_j_jarmap_2024_100617 crossref_primary_10_3389_fpls_2022_964941 crossref_primary_10_1007_s42770_022_00805_2 crossref_primary_10_3390_ijerph192417058 crossref_primary_10_1111_1462_2920_15492 crossref_primary_10_1007_s11738_021_03250_0 crossref_primary_10_3390_plants12091908 crossref_primary_10_1007_s42729_021_00702_x crossref_primary_10_3389_fpls_2021_617892 crossref_primary_10_3389_fmicb_2021_743512 crossref_primary_10_3390_ijms23169310 crossref_primary_10_3389_fpls_2025_1549384 crossref_primary_10_1002_ppp3_10302 crossref_primary_10_52804_ijaas2022_311 crossref_primary_10_1111_nph_17306 crossref_primary_10_3390_microorganisms10101897 crossref_primary_10_1007_s00442_021_05065_9 crossref_primary_10_1128_AEM_00880_20 crossref_primary_10_1007_s00572_022_01079_0 crossref_primary_10_1094_PBIOMES_02_24_0028_R crossref_primary_10_1002_jsfa_10117 crossref_primary_10_1016_j_envexpbot_2022_104933 crossref_primary_10_1007_s13225_021_00481_x crossref_primary_10_1016_j_pedsph_2024_02_002 crossref_primary_10_1080_21580103_2023_2167873 crossref_primary_10_3390_agronomy12020380 crossref_primary_10_3389_fmicb_2024_1288865 crossref_primary_10_3390_agronomy10121902 crossref_primary_10_3390_microorganisms8111795 crossref_primary_10_1155_2024_4934523 crossref_primary_10_1007_s00344_024_11319_6 crossref_primary_10_3389_fpls_2019_01312 crossref_primary_10_3390_su141912250 crossref_primary_10_1016_j_crmicr_2024_100285 crossref_primary_10_3389_fagro_2023_1287108 crossref_primary_10_3923_pjbs_2020_1276_1284 crossref_primary_10_1038_s41598_023_35148_x crossref_primary_10_1186_s12870_023_04120_2 crossref_primary_10_3390_soilsystems6020050 crossref_primary_10_1002_ppp3_10372 crossref_primary_10_18615_anadolu_949814 crossref_primary_10_1002_fes3_370 crossref_primary_10_1016_j_heliyon_2018_e00704 crossref_primary_10_3389_fpls_2021_626709 crossref_primary_10_1002_ppp3_10090 crossref_primary_10_1002_ppp3_10092 crossref_primary_10_1002_ppp3_10094 crossref_primary_10_1016_j_jhazmat_2023_131291 crossref_primary_10_1021_acsapm_0c00874 crossref_primary_10_1093_femsec_fiy179 crossref_primary_10_3389_fpls_2022_860484 crossref_primary_10_53518_mjavl_1355101 crossref_primary_10_1016_j_tplants_2017_10_003 crossref_primary_10_3389_fpls_2022_1043171 crossref_primary_10_3390_agronomy7040075 crossref_primary_10_1038_s41598_021_92837_1 crossref_primary_10_3390_microorganisms12071281 crossref_primary_10_1002_ppp3_10128 crossref_primary_10_3389_fpls_2023_1276918 crossref_primary_10_1071_FP18327 crossref_primary_10_3390_biom10030376 crossref_primary_10_1111_nph_15570 crossref_primary_10_1007_s00572_018_0865_5 crossref_primary_10_1099_mic_0_001155 crossref_primary_10_1111_gcb_14851 crossref_primary_10_3389_fpls_2019_01068 crossref_primary_10_1002_eap_2444 crossref_primary_10_1007_s10530_018_1746_8 crossref_primary_10_1111_nph_18043 crossref_primary_10_3389_fpls_2018_00897 crossref_primary_10_1111_ejss_13578 crossref_primary_10_3390_microorganisms12030541 crossref_primary_10_1007_s00572_021_01039_0 crossref_primary_10_1016_S1002_0160_21_60061_9 crossref_primary_10_1007_s00374_023_01751_3 crossref_primary_10_1038_s41559_022_01799_8 |
Cites_doi | 10.1073/pnas.1005874107 10.1017/S0953756201005196 10.1038/ncomms1831 10.1007/s11104-010-0361-y 10.1111/nph.13045 10.1016/j.soilbio.2014.10.016 10.1016/j.scitotenv.2016.05.178 10.1111/ele.12115 10.1016/j.still.2016.02.010 10.1674/amid-175-01-103-112.1 10.1007/s00572-015-0651-6 10.1016/j.soilbio.2014.07.007 10.1111/jipb.12434 10.1038/23932 10.1016/j.apsoil.2016.06.005 10.1016/j.tplants.2015.03.004 10.3389/fpls.2015.00786 10.1046/j.1469-8137.1997.00780.x 10.1890/09-0336.1 10.1046/j.1469-8137.2001.00137.x 10.1007/s00374-013-0847-x 10.1016/j.apsoil.2015.11.027 10.1038/nature13855 10.1007/s11104-011-0865-0 10.3390/agriculture3030443 10.1016/j.tplants.2013.06.004 10.1111/j.1469-8137.2006.01750.x 10.1002/ece3.2207 10.1080/01904167.2014.963114 10.1126/science.1185383 10.1007/s10725-015-0038-x 10.1890/110162 10.1078/0031-4056-00191 10.1007/s00572-013-0515-x 10.1890/08-1555.1 10.1111/1365-2745.12429 10.1007/s13199-015-0319-1 10.1111/1365-2664.12351 10.1111/plb.12277 10.1890/13-1821.1 10.1007/s11104-016-2863-8 10.1038/nplants.2015.159 10.1016/j.tree.2016.02.016 10.1111/jvs.12446 10.1016/j.agee.2012.10.003 10.1007/s00572-015-0654-3 10.1111/j.1365-2745.2009.01557.x 10.1016/j.soilbio.2014.03.016 10.1051/fruits/2014041 10.1111/nph.13024 10.1139/b04-082 10.1007/s00572-013-0527-6 10.1007/s10584-011-0149-y 10.1016/j.envexpbot.2013.10.005 10.1007/s13199-010-0089-8 10.1038/nclimate3061 10.1007/s11104-011-1040-3 10.1080/00103624.2014.981271 10.1007/s10457-015-9852-4 10.1007/s00572-015-0661-4 10.1111/j.1469-8137.2006.01846.x 10.1016/j.geoderma.2013.08.013 10.1016/j.cosust.2012.09.015 10.1016/j.soilbio.2011.01.016 10.1016/j.soilbio.2014.07.008 10.1007/s00442-009-1345-6 10.3389/fmicb.2015.01559 10.1126/science.1208473 10.1007/s13199-015-0334-2 10.1111/1365-2435.12181 10.1104/pp.112.195727 10.1111/j.1469-8137.2005.01602.x 10.1007/s00572-015-0631-x 10.2136/sssaj2004.1249 10.1139/b96-003 10.1111/nph.13172 10.1016/j.agee.2013.10.010 10.1146/annurev.ento.54.110807.090614 10.1007/s10886-012-0134-6 10.3390/su8030281 10.4025/actasciagron.v38i2.27230 10.1111/j.1469-8137.2008.02753.x 10.1016/j.ecoenv.2016.06.012 10.1111/1365-2664.12035 10.1371/journal.pone.0027825 10.1038/35095041 10.1111/j.1365-2435.2009.01647.x 10.1111/j.1469-8137.1983.tb03506.x 10.3109/07388551.2014.899964 10.1007/s005720050277 10.1890/ES14-00501.1 10.1038/ncomms3918 10.1111/j.1469-8137.2009.03110.x 10.1111/1365-2745.12496 10.1007/s11105-015-0903-9 10.1016/j.soilbio.2014.03.010 10.1080/00380768.2003.10410323 10.1111/nph.13288 10.1111/pce.12667 10.1080/00103624.2015.1103252 10.2136/sssaj2006.0377 10.2136/sssaj2000.641339x 10.1080/00380768.2014.993298 10.1002/ldr.1136 10.1146/annurev-arplant-042110-103846 10.1007/s003740050638 10.1111/j.1365-2435.2011.01953.x 10.1093/jxb/eru283 10.1016/j.soilbio.2010.12.020 10.1071/9781486303052 10.1111/j.1365-2435.2010.01708.x 10.1016/j.plaphy.2016.06.006 10.17221/77/2013-SWR 10.1139/b92-253 10.1016/j.soilbio.2015.12.016 10.1007/s11104-005-7082-7 10.1016/j.soilbio.2012.09.020 10.1016/j.soilbio.2015.11.019 10.1016/j.apsoil.2016.01.021 10.1007/s11104-016-3001-3 10.1111/nph.13132 10.1007/s11104-009-0202-z 10.1007/s11104-011-1095-1 10.3852/16-042 10.1080/01448765.2014.966147 10.4081/ija.2015.607 |
ContentType | Journal Article |
Copyright | 2017 British Ecological Society 2017 The Authors. Journal of Ecology © 2017 British Ecological Society Journal of Ecology © 2017 British Ecological Society |
Copyright_xml | – notice: 2017 British Ecological Society – notice: 2017 The Authors. Journal of Ecology © 2017 British Ecological Society – notice: Journal of Ecology © 2017 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/1365-2745.12788 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 929 |
ExternalDocumentID | 10_1111_1365_2745_12788 JEC12788 45028600 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: White Rose University Consortium – fundername: BBSRC funderid: BB/M026825/1 – fundername: NERC funderid: NE/H021256/1 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1OC 29K 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACHJO ACNCT ACPOU ACPRK ACSCC ACSTJ ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CUYZI D-E D-F D-I DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R YF5 YQT YZZ ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 3-9 31~ 42X 8WZ A6W AAHHS ABEFU ABTAH ABYAD ACCFJ ACTWD ADULT AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FVMVE GTFYD HF~ HGD HQ2 HTVGU HVGLF JSODD MVM WHG WRC XIH YXE ZCG ZY4 AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3708-155b28d0690c709701a3f15742d91963c078cfced499d79a71c6656d68e869643 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Fri Jul 11 18:33:16 EDT 2025 Fri Jul 25 10:38:34 EDT 2025 Tue Jul 01 03:13:41 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Wed Jan 22 16:49:55 EST 2025 Thu Jul 03 22:07:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3708-155b28d0690c709701a3f15742d91963c078cfced499d79a71c6656d68e869643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5196-2360 |
PQID | 1910724232 |
PQPubID | 37508 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2020906653 proquest_journals_1910724232 crossref_primary_10_1111_1365_2745_12788 crossref_citationtrail_10_1111_1365_2745_12788 wiley_primary_10_1111_1365_2745_12788_JEC12788 jstor_primary_45028600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170701 July 2017 2017-07-00 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 7 year: 2017 text: 20170701 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2017 |
Publisher | John Wiley & Sons Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Blackwell Publishing Ltd |
References | 2011a; 348 2013; 3 2013; 4 2014b; 65 2010; 107 2015; 70 2015; 77 2016; 31 1983; 95 1996; 74 2010; 185 2014; 24 2007; 71 2015; 80 2006; 172 2006; 171 1998; 396 2016; 39 2016; 38 2012; 10 2016; 34 2010; 24 2009; 97 2013; 57 2013; 50 2009; 90 2014; 16 2003; 47 2003; 49 2012; 26 2014a; 28 2006; 169 2014; 98 2001; 413 2010; 327 2009; 182 2015; 52 2000; 64 2016; 95 2016; 94 2016; 566 2012; 38 2016; 160 2017; 410 2011; 6 2016; 99 2016; 6 2012; 353 2001; 150 2012; 355 2015; 61 2015; 66 2010; 333 2015; 65 2016; 27 2016; 26 2016; 8 2010; 52 2016; 175 2015; 35 2015; 38 2013; 24 2016; 108 2009; 160 2015; 103 2016; 107 2015; 31 2000; 9 2004; 68 2016; 101 2016; 104 2013; 164 2014; 213 2001; 105 2015; 46 2013; 18 2015; 174 2009; 54 2013; 16 2016; 90 2014; 9 2014; 50 2011b; 62 2014; 515 1997; 136 2015; 1 2011; 333 2015; 6 2015; 17 2004; 82 2016; 406 2005; 277 2015; 10 2008 2015; 206 2015; 205 2016; 58 1992; 70 2015; 25 2011; 109 2012; 3 2015; 20 2000; 31 2016; 133 2011; 43 2016 2014; 74 2014; 187 2010; 91 2012; 159 2012; 4 2014; 78 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 Smith S.E. (e_1_2_8_104_1) 2008 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 Ortiz N. (e_1_2_8_80_1) 2015; 174 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Wu Q.S. (e_1_2_8_127_1) 2014; 16 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 |
References_xml | – volume: 6 start-page: 786 year: 2015 article-title: Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus publication-title: Frontiers in Plant Science – volume: 353 start-page: 395 year: 2012 end-page: 408 article-title: Arbuscular mycorrhizal fungi shift competitive relationships among crop and weed species publication-title: Plant and Soil – volume: 90 start-page: 265 year: 2016 end-page: 279 article-title: Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi publication-title: Agroforestry Systems – volume: 52 start-page: 228 year: 2015 end-page: 239 article-title: Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses publication-title: Journal of Applied Ecology – volume: 6 start-page: 95 year: 2015 article-title: European corn borer oviposition response to soil fertilization practices and arbuscular mycorrhizal colonization of corn publication-title: Ecosphere – volume: 61 start-page: 269 year: 2015 end-page: 274 article-title: Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus publication-title: Soil Science and Plant Nutrition – volume: 43 start-page: 831 year: 2011 end-page: 834 article-title: The bioprotective effect of AM root colonization against the soil‐borne fungal pathogen var. tritici in barley depends on the barley variety publication-title: Soil Biology & Biochemistry – volume: 10 start-page: 30 year: 2015 end-page: 33 article-title: Field inoculation of arbuscular mycorrhiza on maize ( L.) under low inputs: preliminary study on quantitative and qualitative aspects publication-title: Italian Journal of Agronomy – volume: 38 start-page: 651 year: 2012 end-page: 664 article-title: Mycorrhiza‐induced resistance and priming of plant defenses publication-title: Journal of Chemical Ecology – volume: 187 start-page: 87 year: 2014 end-page: 105 article-title: Conservation agriculture and ecosystem services: an overview publication-title: Agriculture Ecosystems & Environment – volume: 24 start-page: 109 year: 2014 end-page: 119 article-title: Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta‐analysis publication-title: Mycorrhiza – volume: 78 start-page: 76 year: 2014 end-page: 82 article-title: Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field publication-title: Soil Biology & Biochemistry – volume: 74 start-page: 156 year: 2014 end-page: 166 article-title: Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie publication-title: Soil Biology & Biochemistry – volume: 82 start-page: 1198 year: 2004 end-page: 1227 article-title: Prospects and limitations for mycorrhizas in biocontrol of root pathogens publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique – volume: 50 start-page: 405 year: 2014 end-page: 414 article-title: Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake publication-title: Biology and Fertility of Soils – volume: 43 start-page: 997 year: 2011 end-page: 1005 article-title: Nitrogen losses from two grassland soils with different fungal biomass publication-title: Soil Biology & Biochemistry – volume: 4 start-page: 478 year: 2012 end-page: 488 article-title: Assessing the impact of soil degradation on food production publication-title: Current Opinion in Environmental Sustainability – volume: 91 start-page: 1163 year: 2010 end-page: 1171 article-title: Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems publication-title: Ecology – volume: 4 start-page: 2918 year: 2013 article-title: Distinguishing between yield advances and yield plateaus in historical crop production trends publication-title: Nature Communications – volume: 277 start-page: 221 year: 2005 end-page: 232 article-title: Wheat responses to arbuscular mycorrhizal fungi in a highly calcareous soil differ from those of clover, and change with plant development and P supply publication-title: Plant and Soil – volume: 413 start-page: 297 year: 2001 end-page: 299 article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material publication-title: Nature – volume: 71 start-page: 1257 year: 2007 end-page: 1266 article-title: Glomalin in ecosystems publication-title: Soil Science Society of America Journal – volume: 31 start-page: 150 year: 2000 end-page: 156 article-title: Arbuscular mycorrhizae in a long‐term field trial comparing low‐input (organic, biological) and high‐input (conventional) farming systems in a crop rotation publication-title: Biology and Fertility of Soils – volume: 74 start-page: 19 year: 1996 end-page: 25 article-title: Mycorrhizal response in wheat cultivars: relationship to phosphorus publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique – volume: 104 start-page: 261 year: 2016 end-page: 269 article-title: Do arbuscular mycorrhizal fungi stabilize litter‐derived carbon in soil? publication-title: Journal of Ecology – volume: 205 start-page: 1385 year: 2015 end-page: 1388 article-title: Plant root and mycorrhizal fungal traits for understanding soil aggregation publication-title: New Phytologist – year: 2008 – volume: 74 start-page: 184 year: 2014 end-page: 192 article-title: Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes publication-title: Soil Biology & Biochemistry – volume: 20 start-page: 283 year: 2015 end-page: 290 article-title: The role of arbuscular mycorrhizas in reducing soil nutrient loss publication-title: Trends in Plant Science – volume: 54 start-page: 323 year: 2009 end-page: 342 article-title: Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context publication-title: Annual Review of Entomology – volume: 70 start-page: 37 year: 2015 end-page: 46 article-title: The arbuscular mycorrhiza fungus MUCL 41833 decreases disease severity of Black Sigatoka on banana c.v. Grande name, under in vitro culture conditions publication-title: Fruits – volume: 175 start-page: 103 year: 2016 end-page: 112 article-title: Plant genotype influences mycorrhiza benefits and susceptibility to a soil pathogen publication-title: American Midland Naturalist – volume: 107 start-page: 264 year: 2016 end-page: 272 article-title: Arbuscular mycorrhiza improves yield and nutritional properties of onion ( ) publication-title: Plant Physiology and Biochemistry – volume: 108 start-page: 1028 year: 2016 end-page: 1046 article-title: A phylum‐level phylogenetic classification of zygomycete fungi based on genome‐scale data publication-title: Mycologia – volume: 160 start-page: 82 year: 2016 end-page: 91 article-title: Mycorrhizal hyphal disruption induces changes in plant growth, glomalin‐related soil protein and soil aggregation of trifoliate orange in a core system publication-title: Soil & Tillage Research – volume: 17 start-page: 625 year: 2015 end-page: 631 article-title: Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against publication-title: Plant Biology – volume: 70 start-page: 2032 year: 1992 end-page: 2040 article-title: Mycorrhizal dependence of modern wheat‐varieties, landraces, and ancestors publication-title: Canadian Journal of Botany‐Revue Canadienne De Botanique – volume: 58 start-page: 193 year: 2016 end-page: 202 article-title: Improving crop nutrient efficiency through root architecture modifications publication-title: Journal of Integrative Plant Biology – volume: 26 start-page: 532 year: 2012 end-page: 540 article-title: Long‐term effects of soil nutrient deficiency on arbuscular mycorrhizal communities publication-title: Functional Ecology – volume: 57 start-page: 683 year: 2013 end-page: 694 article-title: Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots publication-title: Soil Biology & Biochemistry – volume: 182 start-page: 347 year: 2009 end-page: 358 article-title: More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses publication-title: New Phytologist – volume: 169 start-page: 829 year: 2006 end-page: 840 article-title: Mechanism of control of root‐feeding nematodes by mycorrhizal fungi in the dune grass publication-title: New Phytologist – volume: 9 start-page: 331 year: 2000 end-page: 336 article-title: Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize ( L.) grown in soil at different P and micronutrient levels publication-title: Mycorrhiza – volume: 99 start-page: 137 year: 2016 end-page: 140 article-title: Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment publication-title: Applied Soil Ecology – volume: 103 start-page: 1224 year: 2015 end-page: 1232 article-title: Arbuscular mycorrhizal fungal effects on plant competition and community structure publication-title: Journal of Ecology – volume: 515 start-page: 505 year: 2014 end-page: 511 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature – volume: 172 start-page: 536 year: 2006 end-page: 543 article-title: Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus‐fixing soil even in the absence of positive growth responses publication-title: New Phytologist – volume: 49 start-page: 655 year: 2003 end-page: 668 article-title: Arbuscular mycorrhizal dependency of different plant species and cultivars publication-title: Soil Science and Plant Nutrition – volume: 566 start-page: 1223 year: 2016 end-page: 1234 article-title: Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions publication-title: Science of the Total Environment – volume: 26 start-page: 133 year: 2016 end-page: 140 article-title: Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO publication-title: Mycorrhiza – year: 2016 – volume: 105 start-page: 1413 year: 2001 end-page: 1421 article-title: A new fungal phylum, the Glomeromycota: phylogeny and evolution publication-title: Mycological Research – volume: 46 start-page: 2837 year: 2015 end-page: 2846 article-title: Mycorrhizal inoculation and high arsenic concentrations in the soil increase the survival of soybean plants subjected to strong water stress publication-title: Communications in Soil Science and Plant Analysis – volume: 98 start-page: 20 year: 2014 end-page: 31 article-title: Protective effects of arbuscular mycorrhizal fungi on wheat ( L.) plants exposed to salinity publication-title: Environmental and Experimental Botany – volume: 396 start-page: 69 year: 1998 end-page: 72 article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity publication-title: Nature – volume: 77 start-page: 77 year: 2015 end-page: 85 article-title: Arbuscular mycorrhizal colonization alleviates Fusarium wilt in watermelon and modulates the composition of root exudates publication-title: Plant Growth Regulation – volume: 68 start-page: 1249 year: 2004 end-page: 1255 article-title: Preferential accumulation of microbial carbon in aggregate structures of no‐tillage soils publication-title: Soil Science Society of America Journal – volume: 10 start-page: 425 year: 2012 end-page: 432 article-title: Plant‐microbial linkages and ecosystem nitrogen retention: lessons for sustainable agriculture publication-title: Frontiers in Ecology and the Environment – volume: 9 start-page: 119 year: 2014 end-page: 126 article-title: Interactive effects of arbuscular mycorrhizae and maize ( L.) straws on wheat ( L.) growth and organic carbon storage in a sandy loam soil publication-title: Soil and Water Research – volume: 171 start-page: 41 year: 2006 end-page: 53 article-title: Mycorrhizas and soil structure publication-title: New Phytologist – volume: 107 start-page: 214 year: 2016 end-page: 223 article-title: Effect of earthworms and arbuscular mycorrhizal fungi on the microbial community and maize growth under salt stress publication-title: Applied Soil Ecology – volume: 25 start-page: 533 year: 2015 end-page: 546 article-title: High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism publication-title: Mycorrhiza – volume: 47 start-page: 281 year: 2003 end-page: 287 article-title: Interaction between foliar‐feeding insects, mycorrhizal fungi, and rhizosphere protozoa on pea plants publication-title: Pedobiologia – volume: 26 start-page: 77 year: 2016 end-page: 83 article-title: Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management publication-title: Mycorrhiza – volume: 355 start-page: 231 year: 2012 end-page: 250 article-title: Mycorrhizal responsiveness trends in annual crop plants and their wild relatives‐a meta‐analysis on studies from 1981 to 2010 publication-title: Plant and Soil – volume: 80 start-page: 283 year: 2015 end-page: 292 article-title: Mycorrhizal effects on nutrient cycling, nutrient leaching and N O production in experimental grassland publication-title: Soil Biology & Biochemistry – volume: 31 start-page: 440 year: 2016 end-page: 452 article-title: An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability publication-title: Trends in Ecology & Evolution – volume: 205 start-page: 1406 year: 2015 end-page: 1423 article-title: Mycorrhizal ecology and evolution: the past, the present, and the future publication-title: New Phytologist – volume: 26 start-page: 209 year: 2016 end-page: 214 article-title: Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield publication-title: Mycorrhiza – volume: 64 start-page: 339 year: 2000 end-page: 346 article-title: Soil quality assessment after weed‐control tillage in a no‐till wheat‐fallow cropping system publication-title: Soil Science Society of America Journal – volume: 150 start-page: 611 year: 2001 end-page: 618 article-title: Species‐specific responses of a root‐ and shoot‐feeding insect to arbuscular mycorrhizal colonization of its host plant publication-title: New Phytologist – volume: 160 start-page: 807 year: 2009 end-page: 816 article-title: Trade‐offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in publication-title: Oecologia – volume: 97 start-page: 1274 year: 2009 end-page: 1280 article-title: Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas publication-title: Journal of Ecology – volume: 39 start-page: 1683 year: 2016 end-page: 1690 article-title: Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth publication-title: Plant, Cell & Environment – volume: 46 start-page: 343 year: 2015 end-page: 357 article-title: Mineral uptake of mycorrhizal wheat ( L.) under salinity stress publication-title: Communications in Soil Science and Plant Analysis – volume: 78 start-page: 38 year: 2014 end-page: 44 article-title: Impacts of compost application on the formation and functioning of arbuscular mycorrhizas publication-title: Soil Biology & Biochemistry – volume: 35 start-page: 461 year: 2015 end-page: 474 article-title: Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective publication-title: Critical Reviews in Biotechnology – volume: 333 start-page: 1 year: 2010 end-page: 5 article-title: Arbuscular mycorrhizal fungi as (agro)ecosystem engineers publication-title: Plant and Soil – volume: 62 start-page: 227 year: 2011b end-page: 250 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales publication-title: Annual Review of Plant Biology – volume: 16 start-page: 207 year: 2014 end-page: 212 article-title: Contribution of arbuscular mycorrhizas to glomalin‐related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere publication-title: International Journal of Agriculture and Biology – volume: 18 start-page: 539 year: 2013 end-page: 545 article-title: Mycorrhiza‐induced resistance: more than the sum of its parts? publication-title: Trends in Plant Science – volume: 27 start-page: 1243 year: 2016 end-page: 1253 article-title: Functional responses of Mediterranean plant communities to soil resource heterogeneity: a mycorrhizal trait‐based approach publication-title: Journal of Vegetation Science – volume: 213 start-page: 203 year: 2014 end-page: 213 article-title: The dimensions of soil security publication-title: Geoderma – volume: 3 start-page: 835 year: 2012 article-title: Contrasting arbuscular mycorrhizal responses of vascular and non‐vascular plants to a simulated Palaeozoic CO decline publication-title: Nature Communications – volume: 107 start-page: 13754 year: 2010 end-page: 13759 article-title: Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 94 start-page: 191 year: 2016 end-page: 199 article-title: Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching publication-title: Soil Biology & Biochemistry – volume: 65 start-page: 65 year: 2015 end-page: 74 article-title: Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect publication-title: Symbiosis – volume: 50 start-page: 355 year: 2013 end-page: 364 article-title: Food production vs. biodiversity: comparing organic and conventional agriculture publication-title: Journal of Applied Ecology – volume: 24 start-page: 293 year: 2010 end-page: 300 article-title: Support from the underground: induced plant resistance depends on arbuscular mycorrhizal fungi publication-title: Functional Ecology – volume: 410 start-page: 273 year: 2017 end-page: 281 article-title: Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents publication-title: Plant and Soil – volume: 133 start-page: 47 year: 2016 end-page: 56 article-title: Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean publication-title: Ecotoxicology and Environmental Safety – volume: 6 start-page: 1559 year: 2016 article-title: Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes publication-title: Frontiers in Microbiology – volume: 90 start-page: 2088 year: 2009 end-page: 2097 article-title: Effects of mycorrhizal fungi on insect herbivores: a meta‐analysis publication-title: Ecology – volume: 28 start-page: 375 year: 2014a end-page: 385 article-title: Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission publication-title: Functional Ecology – volume: 205 start-page: 1473 year: 2015 end-page: 1484 article-title: Mycorrhizal phenotypes and the Law of the Minimum publication-title: New Phytologist – volume: 38 start-page: 904 year: 2015 end-page: 919 article-title: Uptake of heavy metals by mycorrhizal barley ( L.) publication-title: Journal of Plant Nutrition – volume: 136 start-page: 581 year: 1997 end-page: 590 article-title: Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus publication-title: New Phytologist – volume: 66 start-page: 55 year: 2015 end-page: 64 article-title: Mycorrhiza‐induced protection against pathogens is both genotype‐specific and graft‐transmissible publication-title: Symbiosis – volume: 6 start-page: 954 year: 2016 end-page: 958 article-title: Current warming will reduce yields unless maize breeding and seed systems adapt immediately publication-title: Nature Climate Change – volume: 24 start-page: 1842 year: 2014 end-page: 1853 article-title: Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota publication-title: Ecological Applications – volume: 205 start-page: 743 year: 2015 end-page: 756 article-title: First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO publication-title: New Phytologist – volume: 185 start-page: 631 year: 2010 end-page: 647 article-title: Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales publication-title: New Phytologist – volume: 24 start-page: 179 year: 2014 end-page: 186 article-title: The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV) publication-title: Mycorrhiza – volume: 95 start-page: 173 year: 2016 end-page: 179 article-title: Soil moisture legacy effects: impacts on soil nutrients, plants and mycorrhizal responsiveness publication-title: Soil Biology & Biochemistry – volume: 406 start-page: 173 year: 2016 end-page: 185 article-title: Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems publication-title: Plant and Soil – volume: 16 start-page: 835 year: 2013 end-page: 843 article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack publication-title: Ecology Letters – volume: 65 start-page: 5231 year: 2014b end-page: 5241 article-title: Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean ( ) to aphids publication-title: Journal of Experimental Botany – volume: 327 start-page: 812 year: 2010 end-page: 818 article-title: Food security: the challenge of feeding 9 billion people publication-title: Science – volume: 34 start-page: 89 year: 2016 end-page: 102 article-title: Arbuscular mycorrhizal symbiosis‐induced expression changes in leaves revealed by RNA‐seq analysis publication-title: Plant Molecular Biology Reporter – volume: 38 start-page: 171 year: 2016 end-page: 178 article-title: Mycorrhizal association in soybean and weeds in competition publication-title: Acta Scientiarum‐Agronomy – volume: 101 start-page: 152 year: 2016 end-page: 164 article-title: The activity of mycorrhizal symbiosis in suppressing Verticillium wilt in susceptible and tolerant strawberry ( Duch.) genotypes publication-title: Applied Soil Ecology – volume: 6 start-page: 12 year: 2011 article-title: Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? publication-title: PLoS ONE – volume: 174 start-page: 87 year: 2015 end-page: 96 article-title: Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought toleranceunder natural soil conditions: effectiveness of autochthonous or allochthonous strains publication-title: Functional Biotechnology – volume: 348 start-page: 63 year: 2011a end-page: 79 article-title: What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? publication-title: Plant and Soil – volume: 333 start-page: 880 year: 2011 end-page: 882 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science – volume: 31 start-page: 73 year: 2015 end-page: 90 article-title: Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: a review publication-title: Biological Agriculture & Horticulture – volume: 95 start-page: 381 year: 1983 end-page: 396 article-title: Hyphal uptake and transport of nitrogen from 2N‐15‐labeled sources by , a vesicular arbuscular mycorrhizal fungus publication-title: New Phytologist – volume: 8 start-page: 281 year: 2016 article-title: Soil degradation, land scarcity and food security: reviewing a complex challenge publication-title: Sustainability – volume: 6 start-page: 4332 year: 2016 end-page: 4346 article-title: Plant‐fungus competition for nitrogen erases mycorrhizal growth benefits of under limited nitrogen supply publication-title: Ecology and Evolution – volume: 206 start-page: 107 year: 2015 end-page: 117 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytologist – volume: 24 start-page: 750 year: 2010 end-page: 758 article-title: Gender dimorphism and mycorrhizal symbiosis affect floral visitors and reproductive output in publication-title: Functional Ecology – volume: 333 start-page: 7 year: 2010 end-page: 20 article-title: Mycorrhizal fungi suppress aggressive agricultural weeds publication-title: Plant and Soil – volume: 52 start-page: 65 year: 2010 end-page: 74 article-title: The use of mycorrhiza in organically‐grown crops under semi arid conditions: a review of benefits, constraints and future challenges publication-title: Symbiosis – volume: 109 start-page: 33 year: 2011 end-page: 57 article-title: RCP 8.5‐A scenario of comparatively high greenhouse gas emissions publication-title: Climatic Change – volume: 24 start-page: 385 year: 2013 end-page: 392 article-title: Mycorrhizal fungi protect the soil from wind erosion: a wind tunnel study publication-title: Land Degradation & Development – volume: 3 start-page: 443 year: 2013 end-page: 463 article-title: Soil erosion threatens food production publication-title: Agriculture – volume: 159 start-page: 789 year: 2012 end-page: 797 article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade publication-title: Plant Physiology – volume: 164 start-page: 14 year: 2013 end-page: 22 article-title: Medium‐term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity publication-title: Agriculture Ecosystems & Environment – volume: 1 start-page: 7 year: 2015 article-title: Regulation of resource exchange in the arbuscular mycorrhizal symbiosis publication-title: Nature Plants – ident: e_1_2_8_49_1 doi: 10.1073/pnas.1005874107 – ident: e_1_2_8_99_1 doi: 10.1017/S0953756201005196 – ident: e_1_2_8_32_1 doi: 10.1038/ncomms1831 – ident: e_1_2_8_20_1 doi: 10.1007/s11104-010-0361-y – ident: e_1_2_8_91_1 doi: 10.1111/nph.13045 – ident: e_1_2_8_10_1 doi: 10.1016/j.soilbio.2014.10.016 – ident: e_1_2_8_16_1 doi: 10.1016/j.scitotenv.2016.05.178 – ident: e_1_2_8_6_1 doi: 10.1111/ele.12115 – ident: e_1_2_8_128_1 doi: 10.1016/j.still.2016.02.010 – ident: e_1_2_8_94_1 doi: 10.1674/amid-175-01-103-112.1 – ident: e_1_2_8_38_1 doi: 10.1007/s00572-015-0651-6 – ident: e_1_2_8_23_1 doi: 10.1016/j.soilbio.2014.07.007 – ident: e_1_2_8_66_1 doi: 10.1111/jipb.12434 – ident: e_1_2_8_43_1 doi: 10.1038/23932 – ident: e_1_2_8_129_1 doi: 10.1016/j.apsoil.2016.06.005 – ident: e_1_2_8_25_1 doi: 10.1016/j.tplants.2015.03.004 – ident: e_1_2_8_107_1 doi: 10.3389/fpls.2015.00786 – ident: e_1_2_8_18_1 doi: 10.1046/j.1469-8137.1997.00780.x – ident: e_1_2_8_42_1 doi: 10.1890/09-0336.1 – ident: e_1_2_8_35_1 doi: 10.1046/j.1469-8137.2001.00137.x – ident: e_1_2_8_97_1 doi: 10.1007/s00374-013-0847-x – ident: e_1_2_8_72_1 doi: 10.1016/j.apsoil.2015.11.027 – ident: e_1_2_8_9_1 doi: 10.1038/nature13855 – ident: e_1_2_8_105_1 doi: 10.1007/s11104-011-0865-0 – ident: e_1_2_8_84_1 doi: 10.3390/agriculture3030443 – ident: e_1_2_8_21_1 doi: 10.1016/j.tplants.2013.06.004 – ident: e_1_2_8_92_1 doi: 10.1111/j.1469-8137.2006.01750.x – ident: e_1_2_8_85_1 doi: 10.1002/ece3.2207 – ident: e_1_2_8_89_1 doi: 10.1080/01904167.2014.963114 – ident: e_1_2_8_36_1 doi: 10.1126/science.1185383 – ident: e_1_2_8_88_1 doi: 10.1007/s10725-015-0038-x – ident: e_1_2_8_121_1 doi: 10.1890/110162 – ident: e_1_2_8_125_1 doi: 10.1078/0031-4056-00191 – ident: e_1_2_8_51_1 doi: 10.1007/s00572-013-0515-x – ident: e_1_2_8_61_1 doi: 10.1890/08-1555.1 – ident: e_1_2_8_68_1 doi: 10.1111/1365-2745.12429 – ident: e_1_2_8_100_1 doi: 10.1007/s13199-015-0319-1 – ident: e_1_2_8_11_1 doi: 10.1111/1365-2664.12351 – ident: e_1_2_8_78_1 doi: 10.1111/plb.12277 – ident: e_1_2_8_58_1 doi: 10.1890/13-1821.1 – ident: e_1_2_8_86_1 doi: 10.1007/s11104-016-2863-8 – ident: e_1_2_8_124_1 doi: 10.1038/nplants.2015.159 – ident: e_1_2_8_12_1 doi: 10.1016/j.tree.2016.02.016 – ident: e_1_2_8_79_1 doi: 10.1111/jvs.12446 – ident: e_1_2_8_82_1 doi: 10.1016/j.agee.2012.10.003 – ident: e_1_2_8_130_1 doi: 10.1007/s00572-015-0654-3 – ident: e_1_2_8_101_1 doi: 10.1111/j.1365-2745.2009.01557.x – ident: e_1_2_8_27_1 doi: 10.1016/j.soilbio.2014.03.016 – ident: e_1_2_8_4_1 doi: 10.1051/fruits/2014041 – ident: e_1_2_8_33_1 doi: 10.1111/nph.13024 – ident: e_1_2_8_126_1 doi: 10.1139/b04-082 – ident: e_1_2_8_71_1 doi: 10.1007/s00572-013-0527-6 – ident: e_1_2_8_90_1 doi: 10.1007/s10584-011-0149-y – ident: e_1_2_8_113_1 doi: 10.1016/j.envexpbot.2013.10.005 – ident: e_1_2_8_87_1 doi: 10.1007/s13199-010-0089-8 – ident: e_1_2_8_26_1 doi: 10.1038/nclimate3061 – ident: e_1_2_8_28_1 doi: 10.1007/s11104-011-1040-3 – ident: e_1_2_8_73_1 doi: 10.1080/00103624.2014.981271 – volume-title: Mycorrhizal Symbiosis year: 2008 ident: e_1_2_8_104_1 – ident: e_1_2_8_116_1 doi: 10.1007/s10457-015-9852-4 – ident: e_1_2_8_47_1 doi: 10.1007/s00572-015-0661-4 – ident: e_1_2_8_65_1 doi: 10.1111/j.1469-8137.2006.01846.x – ident: e_1_2_8_74_1 doi: 10.1016/j.geoderma.2013.08.013 – ident: e_1_2_8_15_1 doi: 10.1016/j.cosust.2012.09.015 – ident: e_1_2_8_122_1 doi: 10.1016/j.soilbio.2011.01.016 – ident: e_1_2_8_2_1 doi: 10.1016/j.soilbio.2014.07.008 – ident: e_1_2_8_13_1 doi: 10.1007/s00442-009-1345-6 – ident: e_1_2_8_14_1 doi: 10.3389/fmicb.2015.01559 – ident: e_1_2_8_57_1 doi: 10.1126/science.1208473 – ident: e_1_2_8_76_1 doi: 10.1007/s13199-015-0334-2 – ident: e_1_2_8_7_1 doi: 10.1111/1365-2435.12181 – ident: e_1_2_8_123_1 doi: 10.1104/pp.112.195727 – ident: e_1_2_8_83_1 doi: 10.1111/j.1469-8137.2005.01602.x – ident: e_1_2_8_75_1 doi: 10.1007/s00572-015-0631-x – ident: e_1_2_8_102_1 doi: 10.2136/sssaj2004.1249 – ident: e_1_2_8_46_1 doi: 10.1139/b96-003 – ident: e_1_2_8_53_1 doi: 10.1111/nph.13172 – ident: e_1_2_8_81_1 doi: 10.1016/j.agee.2013.10.010 – ident: e_1_2_8_41_1 doi: 10.1146/annurev.ento.54.110807.090614 – ident: e_1_2_8_54_1 doi: 10.1007/s10886-012-0134-6 – ident: e_1_2_8_37_1 doi: 10.3390/su8030281 – ident: e_1_2_8_31_1 doi: 10.4025/actasciagron.v38i2.27230 – ident: e_1_2_8_103_1 doi: 10.1111/j.1469-8137.2008.02753.x – ident: e_1_2_8_109_1 doi: 10.1016/j.ecoenv.2016.06.012 – ident: e_1_2_8_34_1 doi: 10.1111/1365-2664.12035 – ident: e_1_2_8_119_1 doi: 10.1371/journal.pone.0027825 – ident: e_1_2_8_48_1 doi: 10.1038/35095041 – ident: e_1_2_8_55_1 doi: 10.1111/j.1365-2435.2009.01647.x – ident: e_1_2_8_3_1 doi: 10.1111/j.1469-8137.1983.tb03506.x – ident: e_1_2_8_62_1 doi: 10.3109/07388551.2014.899964 – ident: e_1_2_8_69_1 doi: 10.1007/s005720050277 – ident: e_1_2_8_77_1 doi: 10.1890/ES14-00501.1 – ident: e_1_2_8_39_1 doi: 10.1038/ncomms3918 – ident: e_1_2_8_52_1 doi: 10.1111/j.1469-8137.2009.03110.x – ident: e_1_2_8_120_1 doi: 10.1111/1365-2745.12496 – ident: e_1_2_8_40_1 doi: 10.1007/s11105-015-0903-9 – ident: e_1_2_8_63_1 doi: 10.1016/j.soilbio.2014.03.010 – ident: e_1_2_8_114_1 doi: 10.1080/00380768.2003.10410323 – ident: e_1_2_8_44_1 doi: 10.1111/nph.13288 – ident: e_1_2_8_115_1 doi: 10.1111/pce.12667 – ident: e_1_2_8_110_1 doi: 10.1080/00103624.2015.1103252 – ident: e_1_2_8_117_1 doi: 10.2136/sssaj2006.0377 – ident: e_1_2_8_56_1 doi: 10.2136/sssaj2000.641339x – ident: e_1_2_8_98_1 doi: 10.1080/00380768.2014.993298 – ident: e_1_2_8_19_1 doi: 10.1002/ldr.1136 – ident: e_1_2_8_106_1 doi: 10.1146/annurev-arplant-042110-103846 – volume: 174 start-page: 87 year: 2015 ident: e_1_2_8_80_1 article-title: Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought toleranceunder natural soil conditions: effectiveness of autochthonous or allochthonous strains publication-title: Functional Biotechnology – ident: e_1_2_8_70_1 doi: 10.1007/s003740050638 – ident: e_1_2_8_5_1 doi: 10.1111/j.1365-2435.2011.01953.x – ident: e_1_2_8_8_1 doi: 10.1093/jxb/eru283 – ident: e_1_2_8_22_1 doi: 10.1016/j.soilbio.2010.12.020 – ident: e_1_2_8_112_1 doi: 10.1071/9781486303052 – ident: e_1_2_8_118_1 doi: 10.1111/j.1365-2435.2010.01708.x – volume: 16 start-page: 207 year: 2014 ident: e_1_2_8_127_1 article-title: Contribution of arbuscular mycorrhizas to glomalin‐related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere publication-title: International Journal of Agriculture and Biology – ident: e_1_2_8_95_1 doi: 10.1016/j.plaphy.2016.06.006 – ident: e_1_2_8_50_1 doi: 10.17221/77/2013-SWR – ident: e_1_2_8_45_1 doi: 10.1139/b92-253 – ident: e_1_2_8_24_1 doi: 10.1016/j.soilbio.2015.12.016 – ident: e_1_2_8_67_1 doi: 10.1007/s11104-005-7082-7 – ident: e_1_2_8_29_1 doi: 10.1016/j.soilbio.2012.09.020 – ident: e_1_2_8_59_1 doi: 10.1016/j.soilbio.2015.11.019 – ident: e_1_2_8_108_1 doi: 10.1016/j.apsoil.2016.01.021 – ident: e_1_2_8_60_1 doi: 10.1007/s11104-016-3001-3 – ident: e_1_2_8_17_1 doi: 10.1111/nph.13132 – ident: e_1_2_8_93_1 doi: 10.1007/s11104-009-0202-z – ident: e_1_2_8_64_1 doi: 10.1007/s11104-011-1095-1 – ident: e_1_2_8_111_1 doi: 10.3852/16-042 – ident: e_1_2_8_30_1 doi: 10.1080/01448765.2014.966147 – ident: e_1_2_8_96_1 doi: 10.4081/ija.2015.607 |
SSID | ssj0006750 |
Score | 2.6107252 |
SecondaryResourceType | review_article |
Snippet | 1. The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in... Summary The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich... The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich in... Summary The 20th century saw dramatic increases in agricultural productivity, largely through the development and application of pesticides, fertilisers rich... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 921 |
SubjectTerms | Agricultural ecosystems Agricultural practices Agricultural production agricultural productivity Agrochemicals agroecosystems arbuscular mycorrhiza Arbuscular mycorrhizas Breeding Chemical synthesis Climate Climate change Crop yield Crops Depletion Ecology Ecophysiology Energy energy costs environmental knowledge Fertilizers Food Food security Food supply Foods Fungi human population Human populations Land management mycorrhizal fungi Nitrogen pest resistance Pesticide application Pesticide resistance Pesticides Pests Phosphorus Plant breeding Rocks Security Soil Soil improvement Soil resistance Soil structure Special Feature–Mini-review papers Sustainability sustainable agriculture Symbiosis vesicular arbuscular mycorrhizae |
Title | Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security |
URI | https://www.jstor.org/stable/45028600 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12788 https://www.proquest.com/docview/1910724232 https://www.proquest.com/docview/2020906653 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDDAde_DEdVqdE8OClpeuapj3JHBtjoAdxIF5K82M61E3W7bD99b6XtvsFIuKt65qSJn3N5yUv30fItQ-UqhqoAKCYsH3pRXYYDDj4PFoBv3OhFK7o3j8E3b7fe2ZFNCHuhcn0IZYTbmgZ5nuNBp6IdM3I891UPnPqHvhx8BXGM4hFjysBKcBht9ALd33Oc3EfjOXZKr8xLmWhiRvQuY6uZuzpHBBR1DoLOXl3ZlPhyMWWoOO_HuuQ7OdkSpvZq3REdvSoQspZrsp5hezejYEj4aDcNkLX82Py0pxo-jkH_3XyNlxAWRgkX4cUbkTT1b4smqIOwGyS3tIiO2g2S0iBlynGcmqc1IBfY0XTPJ3eCel32k-trp3narBlg6NCLGPCCxXqHkvuRtytJ41BnYHjrSI0cgkoIgdSK_CwFI8SXpcBoKQKQh0GqAlWJaXReKRPMdjKS1TAooAp4UehEC6q2jHuKs1FyKRFnKKnYpkLmWM-jY-4cGiwDWNsw9i0oUVulgW-Mg2Pny-tmq5fXuczADCAQovUinchzq08jcHXdTkCqWeRq-XfYJ-46JKM9HiWxh7weITrWw2ot-n43-oQ99otc3D21wLnZM9D6jDRxDVSmk5m-gKYaSoujVl8A9b0BlA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCi7siLIaiQOXVmkax8kJQVVUynJAICEuVr0UENCipj2Ur2fGSUpbCSHEzVFsy7E98Xv2-A3AUYAo1VRIAcBwVQy0HxejsCWQ81iD-F0oY-hE9_omrN8HjQf-MHIXJtWHGG64kWW4_zUZOG1Ij1h5dp0q4KWyj0RuGmYprrejVbffElIIiL1cMdwLhMjkfcibZ6KCsZUpdU4cg52j4NWtPufLoPN2p04nr6V-T5X054Sk4_8-bAWWMnDKTtPZtApTtr0G82m4ysEazJ11EEpiYr7mtK4H6_B42rXsfYAUtvv88ollcZ18emFYEUu-r2axhKQA-t3khOUBQtONQoaQmZE7p6V9DXzqGJZkEfU24P68dletF7NwDUVdESQSy7nyI0PSx1p4sfDKzUqrzJF7m5jsXCMa0S1tDZIsI-KmKOsQ0aQJIxuFJAu2CTPtTttukb-V3zQhj0NuVBBHSnkkbMeFZ6xQEdcFKOVDJXWmZU4hNd5kzmmoDyX1oXR9WIDjYYGPVMbj56ybbuyH-QKOGAxxYQF288kgM0NPJNJdTxAm9QtwOHyNJkrnLs227fQT6SMkj-mIq4LtdiP_Wxtko1Z1ie2_FjiAhfrd9ZW8uri53IFFn0CIcy7ehZlet2_3EEL11L6zkS9SLwpr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZH7OLCjiirkThwaZWmcZycEEsrdiEEEuJi1UuhAtqqaQ_t0zPjJGWREELcUiWOXNsTf2OP_wHYC5BSTYUUAAxXxUD7cTEKGwJ9HmuQ34UyhnZ0r67D0_vg_IHn0YR0FibVhxgtuJFluO81GXjHND4ZeXaaKuClso9-3DhMBqEX0cA-uf1QkEIe9nLBcC8QIlP3oWCeby_4MjGlsYlfqPMzu7rJpzYPKq92GnPyUur3VEkPvyk6_ut_LcBchqbsMB1LizBmW0swnSarHCzB1FEbQRIvpqtO6XqwDI-HXcveBujAdp-bQyyLs-RTk-GLWPJxMIslJATQ7yYHLE8Pmi4TMgRmRsGcllY18FfbsCTLp7cC97Xq3fFpMUvWUNQVQRKxnCs_MiR8rIUXC69crzTKHD1vE5OVa2QR3dDWoItlRFwXZR0iS5owslFIomCrMNFqt-waRVv5dRPyOORGBXGklEeydlx4xgoVcV2AUt5TUmdK5pRQ41XmHg21oaQ2lK4NC7A_KtBJRTx-fnTVdf3ouYAjgSEVFmAzHwsyM_NEorPrCSJSvwC7o9tooLTrUm_Zdj-RPgJ5TBtcFay36_jf6iDPq8fuYv2vBXZg5uakJi_Pri82YNYnAnGRxZsw0ev27RbyU09tOwt5By8FCSM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+mycorrhizal+fungi+our+sustainable+saviours%3F+Considerations+for+achieving+food+security&rft.jtitle=The+Journal+of+ecology&rft.au=Thirkell%2C+Thomas+J&rft.au=Charters%2C+Michael+D&rft.au=Elliott%2C+Ashleigh+J&rft.au=Sait%2C+Steven+M&rft.date=2017-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=105&rft.issue=4&rft.spage=921&rft_id=info:doi/10.1111%2F1365-2745.12788&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |