The determination of the path with minimum-cost norm value

The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different criteria are considered for the arc costs. Solving the MSPP implies determining all the nondominated paths; there may be many such paths, m...

Full description

Saved in:
Bibliographic Details
Published inNetworks Vol. 41; no. 4; pp. 184 - 196
Main Authors Paixão, José M. P., de Queirós Vieira Martins, Ernesto, Rosa, Mário S., Santos, José Luis E.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2003
John Wiley & Sons
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different criteria are considered for the arc costs. Solving the MSPP implies determining all the nondominated paths; there may be many such paths, making the selection process a very hard task to accomplish. A traditional way of dealing with such a difficulty is using a utility function where the parameters are aggregated with different weights. In this work, an alternative utility function based on the norm value associated with each path is considered. Two algorithms for solving the minimum‐cost norm path problem are then proposed and some computational results are presented. © 2003 Wiley Periodicals, Inc.
AbstractList The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different criteria are considered for the arc costs. Solving the MSPP implies determining all the nondominated paths; there may be many such paths, making the selection process a very hard task to accomplish. A traditional way of dealing with such a difficulty is using a utility function where the parameters are aggregated with different weights. In this work, an alternative utility function based on the norm value associated with each path is considered. Two algorithms for solving the minimum‐cost norm path problem are then proposed and some computational results are presented. © 2003 Wiley Periodicals, Inc.
Abstract The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different criteria are considered for the arc costs. Solving the MSPP implies determining all the nondominated paths; there may be many such paths, making the selection process a very hard task to accomplish. A traditional way of dealing with such a difficulty is using a utility function where the parameters are aggregated with different weights. In this work, an alternative utility function based on the norm value associated with each path is considered. Two algorithms for solving the minimum‐cost norm path problem are then proposed and some computational results are presented. © 2003 Wiley Periodicals, Inc.
Author Paixão, José M. P.
Rosa, Mário S.
de Queirós Vieira Martins, Ernesto
Santos, José Luis E.
Author_xml – sequence: 1
  givenname: José M. P.
  surname: Paixão
  fullname: Paixão, José M. P.
  organization: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
– sequence: 2
  givenname: Ernesto
  surname: de Queirós Vieira Martins
  fullname: de Queirós Vieira Martins, Ernesto
  organization: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
– sequence: 3
  givenname: Mário S.
  surname: Rosa
  fullname: Rosa, Mário S.
  organization: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
– sequence: 4
  givenname: José Luis E.
  surname: Santos
  fullname: Santos, José Luis E.
  email: zeluis@mat.uc.pt
  organization: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14903859$$DView record in Pascal Francis
BookMark eNp1j01PAjEQhhuDiYAe_Ad78eBhZbrdZXa9GQKoQbygJl6abmlDdT9Iu4D8e4vrx8lkMjOZed43eXukU9WVIuScwhUFiAaVag4L4hHpUsgwBGDYIV3_S0MGcXJCes69AVCa0LRLrhcrFSxVo2xpKtGYugpqHTT-uBbNKtgZ3_zHlJsylLVrgqq2ZbAVxUadkmMtCqfOvmefPE3Gi9FtOHuc3o1uZqFkCBhGucyXNE4ZKEwgjViuMMq1jhnmNJKYDJXMUA4h9hXHKTImWL6ESOoEM6VZn1y2vtLWzlml-dqaUtg9p8APobkPzb9Ce_aiZdfCSVFoKypp3J8gzoClSea5QcvtTKH2_xvy-Xjx4xy2CuMa9fGrEPadD5Fhwl_mU85eJ88RndzzB_YJIzh1fA
CODEN NTWKAA
CitedBy_id crossref_primary_10_3141_2196_09
crossref_primary_10_3390_a17060222
crossref_primary_10_1007_s12652_017_0601_6
crossref_primary_10_1080_15472450_2017_1358624
crossref_primary_10_1016_j_cor_2014_03_016
crossref_primary_10_1016_j_ejor_2007_06_048
crossref_primary_10_3182_20060522_3_FR_2904_00021
crossref_primary_10_1016_j_ejor_2009_10_015
crossref_primary_10_1111_j_1475_3995_2011_00815_x
Cites_doi 10.1002/net.3230140208
10.1023/A:1012602011914
10.1287/opre.35.1.70
10.1016/S0305-0548(98)00094-X
10.1016/0377-2217(93)90140-I
10.1016/0377-2217(84)90077-8
10.1016/0377-2217(89)90215-4
10.1007/978-3-642-48782-8_9
10.1016/S0167-6377(97)00008-4
10.1016/0305-0548(90)90042-6
10.1002/net.3230070204
10.1142/S0129054199000186
10.1016/0377-2217(82)90205-3
10.1090/trans2/158/18
10.1016/0377-2217(86)90092-5
10.1515/9781400874651
10.1287/trsc.21.3.188
10.1090/qam/102435
ContentType Journal Article
Copyright Copyright © 2003 Wiley Periodicals, Inc.
2003 INIST-CNRS
Copyright_xml – notice: Copyright © 2003 Wiley Periodicals, Inc.
– notice: 2003 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
DOI 10.1002/net.10077
DatabaseName Istex
Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1097-0037
EndPage 196
ExternalDocumentID 10_1002_net_10077
14903859
NET10077
ark_67375_WNG_3ZFV21FJ_M
Genre article
GrantInformation_xml – fundername: CMUC (Centro de Matemática da Universidade de Coimbra)
– fundername: CISUC (Centro de Informática e Sistemas da Universidade de Coimbra)
– fundername: CIO/UL (Centro de Investigação Operacional da Universidade de Lisboa)
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
6TU
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RXW
SAMSI
SUPJJ
TAE
TN5
TUS
TWZ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZCA
ZY4
ZZTAW
~IA
~WT
G8K
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
AAYXX
CITATION
ID FETCH-LOGICAL-c3707-2bcbd14830e750823be72bff437b12c756ec97c604604448733a3bd02cf579ef3
IEDL.DBID DR2
ISSN 0028-3045
IngestDate Fri Aug 23 01:35:02 EDT 2024
Sun Oct 22 16:08:46 EDT 2023
Sat Aug 24 00:51:14 EDT 2024
Wed Oct 30 09:55:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Cost minimization
Value function
multiobjective shortest path
ranking paths
Utility function
dominance relation
Process selection
Shortest path
Problem solving
Dominance
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3707-2bcbd14830e750823be72bff437b12c756ec97c604604448733a3bd02cf579ef3
Notes ArticleID:NET10077
Dedication: The paper is dedicated to Professor Ernesto Martins. His main work on multiobjective and ranking shortest paths problems constitute an important foundation for the results reported in the paper and still is a precious inspiration for our research.
ark:/67375/WNG-3ZFV21FJ-M
CISUC (Centro de Informática e Sistemas da Universidade de Coimbra)
istex:4DB66DD459270AB6BF9608F666954686940558F5
CMUC (Centro de Matemática da Universidade de Coimbra)
CIO/UL (Centro de Investigação Operacional da Universidade de Lisboa)
Deceased on November 8, 2000
Dedication
The paper is dedicated to Professor Ernesto Martins. His main work on multiobjective and ranking shortest paths problems constitute an important foundation for the results reported in the paper and still is a precious inspiration for our research.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/net.10077
PageCount 13
ParticipantIDs crossref_primary_10_1002_net_10077
pascalfrancis_primary_14903859
wiley_primary_10_1002_net_10077_NET10077
istex_primary_ark_67375_WNG_3ZFV21FJ_M
PublicationCentury 2000
PublicationDate July 2003
PublicationDateYYYYMMDD 2003-07-01
PublicationDate_xml – month: 07
  year: 2003
  text: July 2003
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
PublicationTitle Networks
PublicationTitleAlternate Networks
PublicationYear 2003
Publisher Wiley Subscription Services, Inc., A Wiley Company
John Wiley & Sons
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: John Wiley & Sons
References A. Warburton, Approximation of Pareto optima in multiple-objective shortest path problems, Oper Res 35 (1987), 70-79.
E.Q. Martins, M.M. Pascoal, and J.L. Santos, Deviation algorithms for ranking shortest paths, Int J Found Comput Sci 10 (1999), 247-261.
B. Golden and T. Magnanti, Deterministic network optimization: A bibliography, Networks 7 (1977), 149-183.
J.R. Current, C.S. ReVelle, and J.L. Cohon, An interactive approach to identify the best compromise solution for the two objective shortest path problems, Comput Oper Res 17 (1990), 187-198.
A.D. Vainshtein, The vector shortest path problem in the ℓ∞-norm, Am Math Soc Translat 158 (1994), 207-215.
J.M. Coutinho-Rodrigues, J.N. Clímaco, and J.R. Current, An interactive biobjective shortest-path approach: Searching for unsupported nondominated solutions, Comput Oper Res 26 (1999), 789-798.
E.F. Moore, The shortest path through a maze, Proc Int Symp Theory of Switching, Harvard University Press, Cambridge, MA, 1959, pp. 285-292.
R.E. Bellman and S.E. Dreyfus, Applied dynamic programming, Princeton University Press, Princeton, NJ, 1962.
F. Guerriero and R. Musmanno, Label correcting methods to solve multicriteria shortest path problems, J Optimiz Theory App 111 (2001), 589-613.
P. Vincke, Problèmes multicritères, Cah Centre Etudes Rech Oper 16 (1974), 425-439.
E.Q. Martins, M.M. Pascoal, D.M. Rasteiro, and J.L. Santos, The optimal path problem, Invest Oper 19 (1999), 43-60.
N. Deo and C. Pang, Shortest path algorithms: Taxonomy and annotation, Networks 14 (1984), 275-323.
J. Brumbaugh-Smith and D. Shier, An empirical investigation of some bicriterion shortest path algorithms, Eur J Oper Res 43 (1989), 216-224.
J.R. Current, C.S. ReVelle, and J.L. Cohon, The median shortest path problem: A multiobjective approach to analyze cost vs. accessibility in the design of transportation networks, Transport Sci 21 (1987), 188-197.
E.Q. Martins, On a multicriteria shortest path problem, Eur J Oper Res 16 (1984), 236-245.
E.Q. Martins and J.L. Santos, An algorithm for the quickest path problem, Oper Res Lett 20 (1997), 195-198.
R.E. Bellman, On a routing problem, Q Appl Math 16 (1958), 87-90.
J.N. Clímaco and E.Q. Martins, A bicriterion shortest path algorithm, Eur J Oper Res 11 (1982), 399-404.
J. Current and M. Marsh, Multiple transportation network design and routing problems: taxonomy and annotation, Eur J Oper Res 65 (1993), 4-19.
M.I. Henig, The shortest path problem with two objective functions, Eur J Oper Res 25 (1986), 281-291.
2001; 111
1974; 16
1987; 35
1987; 21
1994; 158
1989; 43
1984; 14
1990; 17
1984; 16
1999; 19
1997; 20
1958; 16
1993; 65
1999; 26
1986; 25
1982; 11
1962
1999; 10
1959
1977; 7
1980; 177
Moore E.F. (e_1_2_1_19_2) 1959
e_1_2_1_6_2
e_1_2_1_7_2
Martins E.Q. (e_1_2_1_16_2) 1999; 19
Vincke P. (e_1_2_1_21_2) 1974; 16
e_1_2_1_4_2
e_1_2_1_5_2
Vainshtein A.D. (e_1_2_1_20_2) 1994; 158
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_22_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 19
  start-page: 43
  year: 1999
  end-page: 60
  article-title: The optimal path problem
  publication-title: Invest Oper
– volume: 7
  start-page: 149
  year: 1977
  end-page: 183
  article-title: Deterministic network optimization: A bibliography
  publication-title: Networks
– volume: 177
  start-page: 109
  year: 1980
  end-page: 127
– year: 1962
– volume: 35
  start-page: 70
  year: 1987
  end-page: 79
  article-title: Approximation of Pareto optima in multiple‐objective shortest path problems
  publication-title: Oper Res
– volume: 16
  start-page: 236
  year: 1984
  end-page: 245
  article-title: On a multicriteria shortest path problem
  publication-title: Eur J Oper Res
– volume: 21
  start-page: 188
  year: 1987
  end-page: 197
  article-title: The median shortest path problem: A multiobjective approach to analyze cost vs. accessibility in the design of transportation networks
  publication-title: Transport Sci
– volume: 17
  start-page: 187
  year: 1990
  end-page: 198
  article-title: An interactive approach to identify the best compromise solution for the two objective shortest path problems
  publication-title: Comput Oper Res
– volume: 158
  start-page: 207
  year: 1994
  end-page: 215
  article-title: The vector shortest path problem in the ℓ ‐norm
  publication-title: Am Math Soc Translat
– volume: 25
  start-page: 281
  year: 1986
  end-page: 291
  article-title: The shortest path problem with two objective functions
  publication-title: Eur J Oper Res
– volume: 14
  start-page: 275
  year: 1984
  end-page: 323
  article-title: Shortest path algorithms: Taxonomy and annotation
  publication-title: Networks
– volume: 43
  start-page: 216
  year: 1989
  end-page: 224
  article-title: An empirical investigation of some bicriterion shortest path algorithms
  publication-title: Eur J Oper Res
– volume: 65
  start-page: 4
  year: 1993
  end-page: 19
  article-title: Multiple transportation network design and routing problems: taxonomy and annotation
  publication-title: Eur J Oper Res
– volume: 20
  start-page: 195
  year: 1997
  end-page: 198
  article-title: An algorithm for the quickest path problem
  publication-title: Oper Res Lett
– volume: 16
  start-page: 425
  year: 1974
  end-page: 439
  article-title: Problèmes multicritères
  publication-title: Cah Centre Etudes Rech Oper
– volume: 111
  start-page: 589
  year: 2001
  end-page: 613
  article-title: Label correcting methods to solve multicriteria shortest path problems
  publication-title: J Optimiz Theory App
– volume: 16
  start-page: 87
  year: 1958
  end-page: 90
  article-title: On a routing problem
  publication-title: Q Appl Math
– volume: 10
  start-page: 247
  year: 1999
  end-page: 261
  article-title: Deviation algorithms for ranking shortest paths
  publication-title: Int J Found Comput Sci
– volume: 11
  start-page: 399
  year: 1982
  end-page: 404
  article-title: A bicriterion shortest path algorithm
  publication-title: Eur J Oper Res
– volume: 26
  start-page: 789
  year: 1999
  end-page: 798
  article-title: An interactive biobjective shortest‐path approach: Searching for unsupported nondominated solutions
  publication-title: Comput Oper Res
– start-page: 285
  year: 1959
  end-page: 292
– ident: e_1_2_1_10_2
  doi: 10.1002/net.3230140208
– ident: e_1_2_1_12_2
  doi: 10.1023/A:1012602011914
– ident: e_1_2_1_22_2
  doi: 10.1287/opre.35.1.70
– ident: e_1_2_1_6_2
  doi: 10.1016/S0305-0548(98)00094-X
– ident: e_1_2_1_7_2
  doi: 10.1016/0377-2217(93)90140-I
– ident: e_1_2_1_15_2
  doi: 10.1016/0377-2217(84)90077-8
– ident: e_1_2_1_4_2
  doi: 10.1016/0377-2217(89)90215-4
– ident: e_1_2_1_13_2
  doi: 10.1007/978-3-642-48782-8_9
– ident: e_1_2_1_18_2
  doi: 10.1016/S0167-6377(97)00008-4
– ident: e_1_2_1_9_2
  doi: 10.1016/0305-0548(90)90042-6
– ident: e_1_2_1_11_2
  doi: 10.1002/net.3230070204
– ident: e_1_2_1_17_2
  doi: 10.1142/S0129054199000186
– volume: 19
  start-page: 43
  year: 1999
  ident: e_1_2_1_16_2
  article-title: The optimal path problem
  publication-title: Invest Oper
  contributor:
    fullname: Martins E.Q.
– ident: e_1_2_1_5_2
  doi: 10.1016/0377-2217(82)90205-3
– volume: 16
  start-page: 425
  year: 1974
  ident: e_1_2_1_21_2
  article-title: Problèmes multicritères
  publication-title: Cah Centre Etudes Rech Oper
  contributor:
    fullname: Vincke P.
– start-page: 285
  volume-title: The shortest path through a maze
  year: 1959
  ident: e_1_2_1_19_2
  contributor:
    fullname: Moore E.F.
– volume: 158
  start-page: 207
  year: 1994
  ident: e_1_2_1_20_2
  article-title: The vector shortest path problem in the ℓ∞‐norm
  publication-title: Am Math Soc Translat
  doi: 10.1090/trans2/158/18
  contributor:
    fullname: Vainshtein A.D.
– ident: e_1_2_1_14_2
  doi: 10.1016/0377-2217(86)90092-5
– ident: e_1_2_1_3_2
  doi: 10.1515/9781400874651
– ident: e_1_2_1_8_2
  doi: 10.1287/trsc.21.3.188
– ident: e_1_2_1_2_2
  doi: 10.1090/qam/102435
SSID ssj0011518
Score 1.7116283
Snippet The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different...
Abstract The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1...
SourceID crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 184
SubjectTerms Applied sciences
dominance relation
Exact sciences and technology
Flows in networks. Combinatorial problems
multiobjective shortest path
Operational research and scientific management
Operational research. Management science
ranking paths
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Valuation and optimization of characteristics. Simulation
Title The determination of the path with minimum-cost norm value
URI https://api.istex.fr/ark:/67375/WNG-3ZFV21FJ-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnet.10077
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NS8MwGMcfhl704Ls4X0YQES_d2iRtWvQiujkG20E2HSKUJksuY5tsHYgnP4Kf0U9ikq5zEwTx1kP69iRp_s3zzy8AZ65UktOAOr4ezRzKWeREJAodHoSexAILYbkFzVZQ79BG1-8W4DJfC5PxIeYTbqZn2O-16eAJn1QWoKEytSl-s5LcI8zYuW7v5-goLXS8MCcwm2xgThVycWV-5tJYtGrC-mq8kclEh0dl-1osa1Y76NQ24Tl_3Mxr0i9PU14Wbz9Ijv98ny3YmIlRdJ21nm0oyOEOrC8gCnfhSrcj1Ms9M6YW0UghrRqR2csYmWlcZPAkg-ng8_1DjCYpGmoZjAxEXO5Bp1Zt39Sd2Y4LjiDMZQ7mgvf0DxJxpVYSISZcMsyVooRxDwvmB1JETAQmm0r1jx0jJCG852KhfBZJRfZhZTgaygNAUtGQhop6Wn_QgKgQSxVEnmAJwUS6pAineezjlwysEWcIZRzrUFiWMivCua2VeYlk3DdONObHj627mDzVHrBXa8TNIpSWqu37kjQyuc-oCBc2-L_fK25V2_bg8O9Fj2DNmvusffcYVtLxVJ5okZLykm2NXyrx4RQ
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPuj2oD97FeZlBRHypa5O0aWEvoptzuj3IvCBIabLkRdxk60B88iP4Gf0kJqmdThDEtz6kt5Oc5p9zTn8B2HOlkpwG1PH1bOZQziInIlHo8CD0JBZYCMstaLWDxhVt3vq3U1DN_4XJ-BDjgJvxDPu9Ng5uAtKVb9RQmdocP5uGonZ3Ytzy5HIMj9JSxwtzBrPJB-ZcIRdXxqdOzEZFY9hnUx2ZDLWBVLazxaRqtdNOfQHu8wfOqk0eDkcpPxQvP1iO_32jRZj_1KPoKBtASzAle8sw941SuAJVPZRQNy-bMR2J-gpp4YjMdsbIRHKRIZQ8jh7fX99Ef5iinlbCyHDE5Spc1Wud44bzuemCIwhzmYO54F29RiKu1GIixIRLhrlSlDDuYcH8QIqIicAkVKle2zFCEsK7LhbKZ5FUZA0KvX5PrgOSioY0VNTTEoQGRIVYqiDyBEsIJtIlJdjNjR8_ZWyNOKMo41ibwuKUWQn2bbeMWySDB1OMxvz4pn0ak7v6NfbqzbhVgvJEv31dkkYm_RmV4MBa__d7xe1axx5s_L3pDsw0Oq2L-OKsfb4Js7bWz1bzbkEhHYzkttYsKS_bofkBPS3lLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPuoHog3dxXmYQEV862yRtWvRF1HofIk5FhNJkyYu4ja0D8cmP4Gf0k5ikdjpBEN_6kN7OOWn-yTn9BWDDlUpyGlDH16OZQzmLnIhEocOD0JNYYCEst-CiHhw36OmdfzcCO8W_MDkfYrDgZnqG_V6bDt5pqu1v0FCZ2RQ_G4UyDXSoGkV0NWBHaaXjhQWC2aQDC6yQi7cHpw4NRmVj12dTHJn2tH1UvrHFsGi1o048BQ_F8-bFJo-1fsZr4uUHyvGfLzQNk59qFO3l4TMDI7I1CxPfGIVzsKsDCTWLohnjRtRWSMtGZDYzRmYdFxk-yVP_6f31TbR7GWppHYwMRVzOQyM-vN4_dj63XHAEYS5zMBe8qWdIxJVaSoSYcMkwV4oSxj0smB9IETERmHQq1TM7RkhKeNPFQvkskoosQKnVbslFQFLRkIaKelqAaP-oEEsVRJ5gKcFEuqQC64Xtk05O1khyhjJOtCksTJlVYNN6ZdAi7T6aUjTmJ7f1o4TcxzfYi0-TiwpUh9z2dUkameRnVIEta_zf75XUD6_twdLfm67B2OVBnJyf1M-WYdwW-tlS3hUoZd2-XNWCJeNVG5gfp57j3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+determination+of+the+path+with+minimum%E2%80%90cost+norm+value&rft.jtitle=Networks&rft.au=Paix%C3%A3o%2C+Jos%C3%A9+M.+P.&rft.au=de+Queir%C3%B3s+Vieira+Martins%2C+Ernesto&rft.au=Rosa%2C+M%C3%A1rio+S.&rft.au=Santos%2C+Jos%C3%A9+Luis+E.&rft.date=2003-07-01&rft.issn=0028-3045&rft.eissn=1097-0037&rft.volume=41&rft.issue=4&rft.spage=184&rft.epage=196&rft_id=info:doi/10.1002%2Fnet.10077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_net_10077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3045&client=summon