The determination of the path with minimum-cost norm value
The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different criteria are considered for the arc costs. Solving the MSPP implies determining all the nondominated paths; there may be many such paths, m...
Saved in:
Published in | Networks Vol. 41; no. 4; pp. 184 - 196 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2003
John Wiley & Sons |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different criteria are considered for the arc costs. Solving the MSPP implies determining all the nondominated paths; there may be many such paths, making the selection process a very hard task to accomplish. A traditional way of dealing with such a difficulty is using a utility function where the parameters are aggregated with different weights. In this work, an alternative utility function based on the norm value associated with each path is considered. Two algorithms for solving the minimum‐cost norm path problem are then proposed and some computational results are presented. © 2003 Wiley Periodicals, Inc. |
---|---|
AbstractList | The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different criteria are considered for the arc costs. Solving the MSPP implies determining all the nondominated paths; there may be many such paths, making the selection process a very hard task to accomplish. A traditional way of dealing with such a difficulty is using a utility function where the parameters are aggregated with different weights. In this work, an alternative utility function based on the norm value associated with each path is considered. Two algorithms for solving the minimum‐cost norm path problem are then proposed and some computational results are presented. © 2003 Wiley Periodicals, Inc. Abstract The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different criteria are considered for the arc costs. Solving the MSPP implies determining all the nondominated paths; there may be many such paths, making the selection process a very hard task to accomplish. A traditional way of dealing with such a difficulty is using a utility function where the parameters are aggregated with different weights. In this work, an alternative utility function based on the norm value associated with each path is considered. Two algorithms for solving the minimum‐cost norm path problem are then proposed and some computational results are presented. © 2003 Wiley Periodicals, Inc. |
Author | Paixão, José M. P. Rosa, Mário S. de Queirós Vieira Martins, Ernesto Santos, José Luis E. |
Author_xml | – sequence: 1 givenname: José M. P. surname: Paixão fullname: Paixão, José M. P. organization: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal – sequence: 2 givenname: Ernesto surname: de Queirós Vieira Martins fullname: de Queirós Vieira Martins, Ernesto organization: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal – sequence: 3 givenname: Mário S. surname: Rosa fullname: Rosa, Mário S. organization: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal – sequence: 4 givenname: José Luis E. surname: Santos fullname: Santos, José Luis E. email: zeluis@mat.uc.pt organization: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14903859$$DView record in Pascal Francis |
BookMark | eNp1j01PAjEQhhuDiYAe_Ad78eBhZbrdZXa9GQKoQbygJl6abmlDdT9Iu4D8e4vrx8lkMjOZed43eXukU9WVIuScwhUFiAaVag4L4hHpUsgwBGDYIV3_S0MGcXJCes69AVCa0LRLrhcrFSxVo2xpKtGYugpqHTT-uBbNKtgZ3_zHlJsylLVrgqq2ZbAVxUadkmMtCqfOvmefPE3Gi9FtOHuc3o1uZqFkCBhGucyXNE4ZKEwgjViuMMq1jhnmNJKYDJXMUA4h9hXHKTImWL6ESOoEM6VZn1y2vtLWzlml-dqaUtg9p8APobkPzb9Ce_aiZdfCSVFoKypp3J8gzoClSea5QcvtTKH2_xvy-Xjx4xy2CuMa9fGrEPadD5Fhwl_mU85eJ88RndzzB_YJIzh1fA |
CODEN | NTWKAA |
CitedBy_id | crossref_primary_10_3141_2196_09 crossref_primary_10_3390_a17060222 crossref_primary_10_1007_s12652_017_0601_6 crossref_primary_10_1080_15472450_2017_1358624 crossref_primary_10_1016_j_cor_2014_03_016 crossref_primary_10_1016_j_ejor_2007_06_048 crossref_primary_10_3182_20060522_3_FR_2904_00021 crossref_primary_10_1016_j_ejor_2009_10_015 crossref_primary_10_1111_j_1475_3995_2011_00815_x |
Cites_doi | 10.1002/net.3230140208 10.1023/A:1012602011914 10.1287/opre.35.1.70 10.1016/S0305-0548(98)00094-X 10.1016/0377-2217(93)90140-I 10.1016/0377-2217(84)90077-8 10.1016/0377-2217(89)90215-4 10.1007/978-3-642-48782-8_9 10.1016/S0167-6377(97)00008-4 10.1016/0305-0548(90)90042-6 10.1002/net.3230070204 10.1142/S0129054199000186 10.1016/0377-2217(82)90205-3 10.1090/trans2/158/18 10.1016/0377-2217(86)90092-5 10.1515/9781400874651 10.1287/trsc.21.3.188 10.1090/qam/102435 |
ContentType | Journal Article |
Copyright | Copyright © 2003 Wiley Periodicals, Inc. 2003 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2003 Wiley Periodicals, Inc. – notice: 2003 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION |
DOI | 10.1002/net.10077 |
DatabaseName | Istex Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1097-0037 |
EndPage | 196 |
ExternalDocumentID | 10_1002_net_10077 14903859 NET10077 ark_67375_WNG_3ZFV21FJ_M |
Genre | article |
GrantInformation_xml | – fundername: CMUC (Centro de Matemática da Universidade de Coimbra) – fundername: CISUC (Centro de Informática e Sistemas da Universidade de Coimbra) – fundername: CIO/UL (Centro de Investigação Operacional da Universidade de Lisboa) |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 6TU 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RXW SAMSI SUPJJ TAE TN5 TUS TWZ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 ZCA ZY4 ZZTAW ~IA ~WT G8K ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IQODW AAYXX CITATION |
ID | FETCH-LOGICAL-c3707-2bcbd14830e750823be72bff437b12c756ec97c604604448733a3bd02cf579ef3 |
IEDL.DBID | DR2 |
ISSN | 0028-3045 |
IngestDate | Fri Aug 23 01:35:02 EDT 2024 Sun Oct 22 16:08:46 EDT 2023 Sat Aug 24 00:51:14 EDT 2024 Wed Oct 30 09:55:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Cost minimization Value function multiobjective shortest path ranking paths Utility function dominance relation Process selection Shortest path Problem solving Dominance |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3707-2bcbd14830e750823be72bff437b12c756ec97c604604448733a3bd02cf579ef3 |
Notes | ArticleID:NET10077 Dedication: The paper is dedicated to Professor Ernesto Martins. His main work on multiobjective and ranking shortest paths problems constitute an important foundation for the results reported in the paper and still is a precious inspiration for our research. ark:/67375/WNG-3ZFV21FJ-M CISUC (Centro de Informática e Sistemas da Universidade de Coimbra) istex:4DB66DD459270AB6BF9608F666954686940558F5 CMUC (Centro de Matemática da Universidade de Coimbra) CIO/UL (Centro de Investigação Operacional da Universidade de Lisboa) Deceased on November 8, 2000 Dedication The paper is dedicated to Professor Ernesto Martins. His main work on multiobjective and ranking shortest paths problems constitute an important foundation for the results reported in the paper and still is a precious inspiration for our research. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/net.10077 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1002_net_10077 pascalfrancis_primary_14903859 wiley_primary_10_1002_net_10077_NET10077 istex_primary_ark_67375_WNG_3ZFV21FJ_M |
PublicationCentury | 2000 |
PublicationDate | July 2003 |
PublicationDateYYYYMMDD | 2003-07-01 |
PublicationDate_xml | – month: 07 year: 2003 text: July 2003 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY |
PublicationTitle | Networks |
PublicationTitleAlternate | Networks |
PublicationYear | 2003 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company John Wiley & Sons |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: John Wiley & Sons |
References | A. Warburton, Approximation of Pareto optima in multiple-objective shortest path problems, Oper Res 35 (1987), 70-79. E.Q. Martins, M.M. Pascoal, and J.L. Santos, Deviation algorithms for ranking shortest paths, Int J Found Comput Sci 10 (1999), 247-261. B. Golden and T. Magnanti, Deterministic network optimization: A bibliography, Networks 7 (1977), 149-183. J.R. Current, C.S. ReVelle, and J.L. Cohon, An interactive approach to identify the best compromise solution for the two objective shortest path problems, Comput Oper Res 17 (1990), 187-198. A.D. Vainshtein, The vector shortest path problem in the ℓ∞-norm, Am Math Soc Translat 158 (1994), 207-215. J.M. Coutinho-Rodrigues, J.N. Clímaco, and J.R. Current, An interactive biobjective shortest-path approach: Searching for unsupported nondominated solutions, Comput Oper Res 26 (1999), 789-798. E.F. Moore, The shortest path through a maze, Proc Int Symp Theory of Switching, Harvard University Press, Cambridge, MA, 1959, pp. 285-292. R.E. Bellman and S.E. Dreyfus, Applied dynamic programming, Princeton University Press, Princeton, NJ, 1962. F. Guerriero and R. Musmanno, Label correcting methods to solve multicriteria shortest path problems, J Optimiz Theory App 111 (2001), 589-613. P. Vincke, Problèmes multicritères, Cah Centre Etudes Rech Oper 16 (1974), 425-439. E.Q. Martins, M.M. Pascoal, D.M. Rasteiro, and J.L. Santos, The optimal path problem, Invest Oper 19 (1999), 43-60. N. Deo and C. Pang, Shortest path algorithms: Taxonomy and annotation, Networks 14 (1984), 275-323. J. Brumbaugh-Smith and D. Shier, An empirical investigation of some bicriterion shortest path algorithms, Eur J Oper Res 43 (1989), 216-224. J.R. Current, C.S. ReVelle, and J.L. Cohon, The median shortest path problem: A multiobjective approach to analyze cost vs. accessibility in the design of transportation networks, Transport Sci 21 (1987), 188-197. E.Q. Martins, On a multicriteria shortest path problem, Eur J Oper Res 16 (1984), 236-245. E.Q. Martins and J.L. Santos, An algorithm for the quickest path problem, Oper Res Lett 20 (1997), 195-198. R.E. Bellman, On a routing problem, Q Appl Math 16 (1958), 87-90. J.N. Clímaco and E.Q. Martins, A bicriterion shortest path algorithm, Eur J Oper Res 11 (1982), 399-404. J. Current and M. Marsh, Multiple transportation network design and routing problems: taxonomy and annotation, Eur J Oper Res 65 (1993), 4-19. M.I. Henig, The shortest path problem with two objective functions, Eur J Oper Res 25 (1986), 281-291. 2001; 111 1974; 16 1987; 35 1987; 21 1994; 158 1989; 43 1984; 14 1990; 17 1984; 16 1999; 19 1997; 20 1958; 16 1993; 65 1999; 26 1986; 25 1982; 11 1962 1999; 10 1959 1977; 7 1980; 177 Moore E.F. (e_1_2_1_19_2) 1959 e_1_2_1_6_2 e_1_2_1_7_2 Martins E.Q. (e_1_2_1_16_2) 1999; 19 Vincke P. (e_1_2_1_21_2) 1974; 16 e_1_2_1_4_2 e_1_2_1_5_2 Vainshtein A.D. (e_1_2_1_20_2) 1994; 158 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_22_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_10_2 e_1_2_1_15_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – volume: 19 start-page: 43 year: 1999 end-page: 60 article-title: The optimal path problem publication-title: Invest Oper – volume: 7 start-page: 149 year: 1977 end-page: 183 article-title: Deterministic network optimization: A bibliography publication-title: Networks – volume: 177 start-page: 109 year: 1980 end-page: 127 – year: 1962 – volume: 35 start-page: 70 year: 1987 end-page: 79 article-title: Approximation of Pareto optima in multiple‐objective shortest path problems publication-title: Oper Res – volume: 16 start-page: 236 year: 1984 end-page: 245 article-title: On a multicriteria shortest path problem publication-title: Eur J Oper Res – volume: 21 start-page: 188 year: 1987 end-page: 197 article-title: The median shortest path problem: A multiobjective approach to analyze cost vs. accessibility in the design of transportation networks publication-title: Transport Sci – volume: 17 start-page: 187 year: 1990 end-page: 198 article-title: An interactive approach to identify the best compromise solution for the two objective shortest path problems publication-title: Comput Oper Res – volume: 158 start-page: 207 year: 1994 end-page: 215 article-title: The vector shortest path problem in the ℓ ‐norm publication-title: Am Math Soc Translat – volume: 25 start-page: 281 year: 1986 end-page: 291 article-title: The shortest path problem with two objective functions publication-title: Eur J Oper Res – volume: 14 start-page: 275 year: 1984 end-page: 323 article-title: Shortest path algorithms: Taxonomy and annotation publication-title: Networks – volume: 43 start-page: 216 year: 1989 end-page: 224 article-title: An empirical investigation of some bicriterion shortest path algorithms publication-title: Eur J Oper Res – volume: 65 start-page: 4 year: 1993 end-page: 19 article-title: Multiple transportation network design and routing problems: taxonomy and annotation publication-title: Eur J Oper Res – volume: 20 start-page: 195 year: 1997 end-page: 198 article-title: An algorithm for the quickest path problem publication-title: Oper Res Lett – volume: 16 start-page: 425 year: 1974 end-page: 439 article-title: Problèmes multicritères publication-title: Cah Centre Etudes Rech Oper – volume: 111 start-page: 589 year: 2001 end-page: 613 article-title: Label correcting methods to solve multicriteria shortest path problems publication-title: J Optimiz Theory App – volume: 16 start-page: 87 year: 1958 end-page: 90 article-title: On a routing problem publication-title: Q Appl Math – volume: 10 start-page: 247 year: 1999 end-page: 261 article-title: Deviation algorithms for ranking shortest paths publication-title: Int J Found Comput Sci – volume: 11 start-page: 399 year: 1982 end-page: 404 article-title: A bicriterion shortest path algorithm publication-title: Eur J Oper Res – volume: 26 start-page: 789 year: 1999 end-page: 798 article-title: An interactive biobjective shortest‐path approach: Searching for unsupported nondominated solutions publication-title: Comput Oper Res – start-page: 285 year: 1959 end-page: 292 – ident: e_1_2_1_10_2 doi: 10.1002/net.3230140208 – ident: e_1_2_1_12_2 doi: 10.1023/A:1012602011914 – ident: e_1_2_1_22_2 doi: 10.1287/opre.35.1.70 – ident: e_1_2_1_6_2 doi: 10.1016/S0305-0548(98)00094-X – ident: e_1_2_1_7_2 doi: 10.1016/0377-2217(93)90140-I – ident: e_1_2_1_15_2 doi: 10.1016/0377-2217(84)90077-8 – ident: e_1_2_1_4_2 doi: 10.1016/0377-2217(89)90215-4 – ident: e_1_2_1_13_2 doi: 10.1007/978-3-642-48782-8_9 – ident: e_1_2_1_18_2 doi: 10.1016/S0167-6377(97)00008-4 – ident: e_1_2_1_9_2 doi: 10.1016/0305-0548(90)90042-6 – ident: e_1_2_1_11_2 doi: 10.1002/net.3230070204 – ident: e_1_2_1_17_2 doi: 10.1142/S0129054199000186 – volume: 19 start-page: 43 year: 1999 ident: e_1_2_1_16_2 article-title: The optimal path problem publication-title: Invest Oper contributor: fullname: Martins E.Q. – ident: e_1_2_1_5_2 doi: 10.1016/0377-2217(82)90205-3 – volume: 16 start-page: 425 year: 1974 ident: e_1_2_1_21_2 article-title: Problèmes multicritères publication-title: Cah Centre Etudes Rech Oper contributor: fullname: Vincke P. – start-page: 285 volume-title: The shortest path through a maze year: 1959 ident: e_1_2_1_19_2 contributor: fullname: Moore E.F. – volume: 158 start-page: 207 year: 1994 ident: e_1_2_1_20_2 article-title: The vector shortest path problem in the ℓ∞‐norm publication-title: Am Math Soc Translat doi: 10.1090/trans2/158/18 contributor: fullname: Vainshtein A.D. – ident: e_1_2_1_14_2 doi: 10.1016/0377-2217(86)90092-5 – ident: e_1_2_1_3_2 doi: 10.1515/9781400874651 – ident: e_1_2_1_8_2 doi: 10.1287/trsc.21.3.188 – ident: e_1_2_1_2_2 doi: 10.1090/qam/102435 |
SSID | ssj0011518 |
Score | 1.7116283 |
Snippet | The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1 different... Abstract The multiobjective shortest path problem (MSPP) consists of finding the best nondominated path linking two specified nodes in a network where k > 1... |
SourceID | crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 184 |
SubjectTerms | Applied sciences dominance relation Exact sciences and technology Flows in networks. Combinatorial problems multiobjective shortest path Operational research and scientific management Operational research. Management science ranking paths Telecommunications Telecommunications and information theory Teleprocessing networks. Isdn Valuation and optimization of characteristics. Simulation |
Title | The determination of the path with minimum-cost norm value |
URI | https://api.istex.fr/ark:/67375/WNG-3ZFV21FJ-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnet.10077 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NS8MwGMcfhl704Ls4X0YQES_d2iRtWvQiujkG20E2HSKUJksuY5tsHYgnP4Kf0U9ikq5zEwTx1kP69iRp_s3zzy8AZ65UktOAOr4ezRzKWeREJAodHoSexAILYbkFzVZQ79BG1-8W4DJfC5PxIeYTbqZn2O-16eAJn1QWoKEytSl-s5LcI8zYuW7v5-goLXS8MCcwm2xgThVycWV-5tJYtGrC-mq8kclEh0dl-1osa1Y76NQ24Tl_3Mxr0i9PU14Wbz9Ijv98ny3YmIlRdJ21nm0oyOEOrC8gCnfhSrcj1Ms9M6YW0UghrRqR2csYmWlcZPAkg-ng8_1DjCYpGmoZjAxEXO5Bp1Zt39Sd2Y4LjiDMZQ7mgvf0DxJxpVYSISZcMsyVooRxDwvmB1JETAQmm0r1jx0jJCG852KhfBZJRfZhZTgaygNAUtGQhop6Wn_QgKgQSxVEnmAJwUS6pAineezjlwysEWcIZRzrUFiWMivCua2VeYlk3DdONObHj627mDzVHrBXa8TNIpSWqu37kjQyuc-oCBc2-L_fK25V2_bg8O9Fj2DNmvusffcYVtLxVJ5okZLykm2NXyrx4RQ |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPuj2oD97FeZlBRHypa5O0aWEvoptzuj3IvCBIabLkRdxk60B88iP4Gf0kJqmdThDEtz6kt5Oc5p9zTn8B2HOlkpwG1PH1bOZQziInIlHo8CD0JBZYCMstaLWDxhVt3vq3U1DN_4XJ-BDjgJvxDPu9Ng5uAtKVb9RQmdocP5uGonZ3Ytzy5HIMj9JSxwtzBrPJB-ZcIRdXxqdOzEZFY9hnUx2ZDLWBVLazxaRqtdNOfQHu8wfOqk0eDkcpPxQvP1iO_32jRZj_1KPoKBtASzAle8sw941SuAJVPZRQNy-bMR2J-gpp4YjMdsbIRHKRIZQ8jh7fX99Ef5iinlbCyHDE5Spc1Wud44bzuemCIwhzmYO54F29RiKu1GIixIRLhrlSlDDuYcH8QIqIicAkVKle2zFCEsK7LhbKZ5FUZA0KvX5PrgOSioY0VNTTEoQGRIVYqiDyBEsIJtIlJdjNjR8_ZWyNOKMo41ibwuKUWQn2bbeMWySDB1OMxvz4pn0ak7v6NfbqzbhVgvJEv31dkkYm_RmV4MBa__d7xe1axx5s_L3pDsw0Oq2L-OKsfb4Js7bWz1bzbkEhHYzkttYsKS_bofkBPS3lLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPuoHog3dxXmYQEV862yRtWvRF1HofIk5FhNJkyYu4ja0D8cmP4Gf0k5ikdjpBEN_6kN7OOWn-yTn9BWDDlUpyGlDH16OZQzmLnIhEocOD0JNYYCEst-CiHhw36OmdfzcCO8W_MDkfYrDgZnqG_V6bDt5pqu1v0FCZ2RQ_G4UyDXSoGkV0NWBHaaXjhQWC2aQDC6yQi7cHpw4NRmVj12dTHJn2tH1UvrHFsGi1o048BQ_F8-bFJo-1fsZr4uUHyvGfLzQNk59qFO3l4TMDI7I1CxPfGIVzsKsDCTWLohnjRtRWSMtGZDYzRmYdFxk-yVP_6f31TbR7GWppHYwMRVzOQyM-vN4_dj63XHAEYS5zMBe8qWdIxJVaSoSYcMkwV4oSxj0smB9IETERmHQq1TM7RkhKeNPFQvkskoosQKnVbslFQFLRkIaKelqAaP-oEEsVRJ5gKcFEuqQC64Xtk05O1khyhjJOtCksTJlVYNN6ZdAi7T6aUjTmJ7f1o4TcxzfYi0-TiwpUh9z2dUkameRnVIEta_zf75XUD6_twdLfm67B2OVBnJyf1M-WYdwW-tlS3hUoZd2-XNWCJeNVG5gfp57j3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+determination+of+the+path+with+minimum%E2%80%90cost+norm+value&rft.jtitle=Networks&rft.au=Paix%C3%A3o%2C+Jos%C3%A9+M.+P.&rft.au=de+Queir%C3%B3s+Vieira+Martins%2C+Ernesto&rft.au=Rosa%2C+M%C3%A1rio+S.&rft.au=Santos%2C+Jos%C3%A9+Luis+E.&rft.date=2003-07-01&rft.issn=0028-3045&rft.eissn=1097-0037&rft.volume=41&rft.issue=4&rft.spage=184&rft.epage=196&rft_id=info:doi/10.1002%2Fnet.10077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_net_10077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3045&client=summon |