Optical Synaptic Devices with Multiple Encryption Features Based on SERS‐Revealed Charge‐Transfer Mechanism

2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic‐scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high‐performance optical synaptic device...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 37; no. 24; pp. e2503146 - n/a
Main Authors Zhao, Shaoguang, Hou, Xiangyu, Cheng, Yue, Zhang, Qiman, Zhao, Jingwen, Tao, Li
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2025
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202503146

Cover

Loading…
Abstract 2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic‐scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high‐performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface‐enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light‐induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self‐limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge‐transfer‐based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption‐based anti‐counterfeiting array and highlighting their value in on‐chip anti‐counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways. A hybrid R6G/InSe structure is designed, and the charge transfer mechanism within this structure is validated using SERS. This structure effectively emulates biological synapses, comprising a presynaptic membrane (R6G photosensitive layer), synaptic cleft (R6G/InSe interface), and postsynaptic membrane (InSe sensing layer). The charge transfer process in this structure closely mirrors the neurotransmitter transfer across the synaptic cleft. Surface treatment techniques are employed to regulate the charge transfer process, enabling multiple on‐chip encryption anti‐counterfeiting applications to be developed.
AbstractList 2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic‐scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high‐performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface‐enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light‐induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self‐limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge‐transfer‐based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption‐based anti‐counterfeiting array and highlighting their value in on‐chip anti‐counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways.
2D optical synaptic devices with atomic-scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic-scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high-performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface-enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light-induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self-limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge-transfer-based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption-based anti-counterfeiting array and highlighting their value in on-chip anti-counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways.2D optical synaptic devices with atomic-scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic-scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high-performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface-enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light-induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self-limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge-transfer-based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption-based anti-counterfeiting array and highlighting their value in on-chip anti-counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways.
2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic‐scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high‐performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface‐enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light‐induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self‐limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge‐transfer‐based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption‐based anti‐counterfeiting array and highlighting their value in on‐chip anti‐counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways. A hybrid R6G/InSe structure is designed, and the charge transfer mechanism within this structure is validated using SERS. This structure effectively emulates biological synapses, comprising a presynaptic membrane (R6G photosensitive layer), synaptic cleft (R6G/InSe interface), and postsynaptic membrane (InSe sensing layer). The charge transfer process in this structure closely mirrors the neurotransmitter transfer across the synaptic cleft. Surface treatment techniques are employed to regulate the charge transfer process, enabling multiple on‐chip encryption anti‐counterfeiting applications to be developed.
Author Zhao, Shaoguang
Tao, Li
Cheng, Yue
Zhao, Jingwen
Hou, Xiangyu
Zhang, Qiman
Author_xml – sequence: 1
  givenname: Shaoguang
  surname: Zhao
  fullname: Zhao, Shaoguang
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Xiangyu
  surname: Hou
  fullname: Hou, Xiangyu
  organization: National University of Singapore
– sequence: 3
  givenname: Yue
  surname: Cheng
  fullname: Cheng, Yue
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Qiman
  surname: Zhang
  fullname: Zhang, Qiman
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Jingwen
  surname: Zhao
  fullname: Zhao, Jingwen
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Li
  orcidid: 0000-0002-7757-1149
  surname: Tao
  fullname: Tao, Li
  email: litao@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40200710$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u00AQxleoiKaFK0dkiUsvDrN_vF4fQ5oCUqNKTTlb4_WYuLLXYddulRuPwDPyJGyUUiQunGb0ze8bjeY7YyducMTYWw5zDiA-YN3jXIDIQHKlX7AZzwRPFRTZCZtBIbO00MqcsrMQ7gGg0KBfsVMFAiDnMGPDzW5sLXbJZu_w0CaX9NBaCsljO26T9dSN7a6jZOWs38f54JIrwnHykfiIgeokKpvV7ebXj5-39EDYRWm5Rf-NonLn0YWGfLImu0XXhv41e9lgF-jNUz1nX69Wd8vP6fXNpy_LxXVqZQ46NZQprJGToIzrGgVWjSIlyAjSsq4qY1CqOtN5XTWNMRyRpLCFNEqDJZDn7OK4d-eH7xOFsezbYKnr0NEwhVJyY8CoQuURff8Pej9M3sXrSimEKXSRZzxS756oqeqpLne-7dHvyz-vjMD8CFg_hOCpeUY4lIesykNW5XNW0VAcDY9tR_v_0OXicr346_0NhwGZeA
Cites_doi 10.1016/j.xcrp.2021.100526
10.1021/acsami.9b11052
10.1021/jacs.8b02972
10.1007/s12274-014-0516-x
10.1002/inf2.12148
10.1021/nn405036u
10.1126/science.1254642
10.1021/nn502715h
10.1039/D1NR07126B
10.1002/anie.202313634
10.1002/adfm.202205150
10.1039/D0NH00625D
10.1002/advs.202106092
10.1038/s41467-020-19806-6
10.1016/j.ssc.2021.114417
10.1021/nl903414x
10.1063/5.0207435
10.1021/acs.nanolett.0c04152
10.12693/APhysPolA.119.143
10.1039/D3TC04206E
10.1038/s41699-021-00241-0
10.1002/adma.202406083
10.1016/j.trac.2020.115983
10.1038/ncomms8800
10.1002/adfm.201905687
10.1002/advs.202103494
10.1039/C7NR09486H
10.1021/acsnano.7b03531
10.1016/j.xcrp.2022.101037
10.1063/5.0173547
10.1016/j.mtphys.2021.100378
10.1021/acsphotonics.7b01030
10.1021/acsami.3c10654
10.1007/s12274-023-5611-4
10.1021/acsami.6b06968
10.1002/sstr.202000029
10.1002/adfm.202305589
10.1088/2053-1583/aaa721
10.1021/acs.nanolett.0c01722
10.1021/jp5020675
10.1002/smll.201704079
10.1088/0957-4484/24/38/382001
10.1088/1361-6641/aac3e6
10.1038/s42254-020-0171-y
10.1063/5.0061792
10.1002/advs.201903480
10.1038/s41699-019-0133-3
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202503146
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 40200710
10_1002_adma_202503146
ADMA202503146
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2023YFB3208002
– fundername: National Natural Science Foundation of China
  funderid: 62005051
– fundername: National Key Research and Development Program of China
  grantid: 2023YFB3208002
– fundername: National Natural Science Foundation of China
  grantid: 62005051
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
53G
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AFFNX
AGQPQ
AGXDD
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3706-8e54ada1e2e516da2abf4e42e82e63dbb88a34d567dbff881aae32c938460ce03
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 18:45:25 EDT 2025
Sat Jul 12 02:51:56 EDT 2025
Fri Jun 20 01:35:17 EDT 2025
Thu Jul 03 08:38:31 EDT 2025
Thu Jun 19 09:30:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords optical synapse
surface‐enhanced Raman spectroscopy
charge transfer
self‐limited oxide layer
indium selenide
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3706-8e54ada1e2e516da2abf4e42e82e63dbb88a34d567dbff881aae32c938460ce03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7757-1149
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202503146
PMID 40200710
PQID 3228969751
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_3188084947
proquest_journals_3228969751
pubmed_primary_40200710
crossref_primary_10_1002_adma_202503146
wiley_primary_10_1002_adma_202503146_ADMA202503146
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2010; 10
2021; 6
2021; 21
2015; 6
2021; 5
2019; 3
2011; 119
2023; 33
2021; 3
2018; 140
2021; 2
2017; 4
2020; 20
2013; 24
2023; 15
2019; 11
2023; 16
2024; 11
2020; 11
2024; 12
2024; 124
2024; 36
2020; 7
2020; 2
2018; 5
2020; 1
2022; 3
2020; 30
2020; 130
2021; 18
2017; 11
2021; 336
2022; 9
2021; 119
2024; 63
2022; 14
2022; 32
2018; 33
2014; 8
2014; 7
2018; 10
2014; 345
2016; 8
2018; 14
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
Cong S. (e_1_2_9_19_1) 2020; 1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 1556
  year: 2014
  publication-title: Nano Res.
– volume: 345
  start-page: 668
  year: 2014
  publication-title: Science
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2018
  publication-title: 2D Mater.
– volume: 18
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 2930
  year: 2017
  publication-title: ACS Photonics
– volume: 20
  start-page: 5359
  year: 2020
  publication-title: Nano Lett.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 5
  start-page: 60
  year: 2021
  publication-title: Npj 2D Mater. Appl.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 33
  year: 2018
  publication-title: Semicond. Sci. Technol.
– volume: 8
  start-page: 1263
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 7800
  year: 2015
  publication-title: Nat. Commun.
– volume: 119
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 21
  start-page: 1193
  year: 2021
  publication-title: Nano Lett.
– volume: 11
  start-page: 5934
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  year: 2020
  publication-title: Small Struct.
– volume: 130
  year: 2020
  publication-title: TrAC Trends Anal. Chem.
– volume: 8
  start-page: 8285
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 49
  year: 2019
  publication-title: Npj 2D Mater. Appl.
– volume: 11
  start-page: 7362
  year: 2017
  publication-title: ACS Nano
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 36
  year: 2021
  publication-title: InfoMat
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 1233
  year: 2024
  publication-title: J. Mater. Chem. C
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 553
  year: 2010
  publication-title: Nano Lett.
– volume: 1
  year: 2020
  publication-title: Innovation
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 143
  year: 2011
  publication-title: Acta Phys. Pol. A
– volume: 16
  year: 2023
  publication-title: Nano Res.
– volume: 3
  year: 2022
  publication-title: Cell Rep. Phys. Sci.
– volume: 24
  year: 2013
  publication-title: Nanotechnology
– volume: 2
  start-page: 253
  year: 2020
  publication-title: Nat. Rev. Phys.
– volume: 10
  start-page: 7991
  year: 2018
  publication-title: Nanoscale
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2024
  publication-title: Appl. Phys. Rev.
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 186
  year: 2021
  publication-title: Nanoscale Horiz.
– volume: 140
  start-page: 8696
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 4181
  year: 2022
  publication-title: Nanoscale
– volume: 124
  year: 2024
  publication-title: Appl. Phys. Lett.
– volume: 336
  year: 2021
  publication-title: Solid State Commun.
– ident: e_1_2_9_21_1
  doi: 10.1016/j.xcrp.2021.100526
– ident: e_1_2_9_41_1
  doi: 10.1021/acsami.9b11052
– ident: e_1_2_9_22_1
  doi: 10.1021/jacs.8b02972
– ident: e_1_2_9_25_1
  doi: 10.1007/s12274-014-0516-x
– ident: e_1_2_9_9_1
  doi: 10.1002/inf2.12148
– ident: e_1_2_9_27_1
  doi: 10.1021/nn405036u
– ident: e_1_2_9_6_1
  doi: 10.1126/science.1254642
– ident: e_1_2_9_35_1
  doi: 10.1021/nn502715h
– ident: e_1_2_9_38_1
  doi: 10.1039/D1NR07126B
– ident: e_1_2_9_3_1
  doi: 10.1002/anie.202313634
– ident: e_1_2_9_14_1
  doi: 10.1002/adfm.202205150
– ident: e_1_2_9_30_1
  doi: 10.1039/D0NH00625D
– ident: e_1_2_9_11_1
  doi: 10.1002/advs.202106092
– ident: e_1_2_9_12_1
  doi: 10.1038/s41467-020-19806-6
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ssc.2021.114417
– ident: e_1_2_9_29_1
  doi: 10.1021/nl903414x
– ident: e_1_2_9_45_1
  doi: 10.1063/5.0207435
– ident: e_1_2_9_16_1
  doi: 10.1021/acs.nanolett.0c04152
– ident: e_1_2_9_46_1
  doi: 10.12693/APhysPolA.119.143
– ident: e_1_2_9_13_1
  doi: 10.1039/D3TC04206E
– volume: 1
  year: 2020
  ident: e_1_2_9_19_1
  publication-title: Innovation
– ident: e_1_2_9_48_1
  doi: 10.1038/s41699-021-00241-0
– ident: e_1_2_9_15_1
  doi: 10.1002/adma.202406083
– ident: e_1_2_9_37_1
  doi: 10.1016/j.trac.2020.115983
– ident: e_1_2_9_28_1
  doi: 10.1038/ncomms8800
– ident: e_1_2_9_34_1
  doi: 10.1002/adfm.201905687
– ident: e_1_2_9_10_1
  doi: 10.1002/advs.202103494
– ident: e_1_2_9_31_1
  doi: 10.1039/C7NR09486H
– ident: e_1_2_9_42_1
  doi: 10.1021/acsnano.7b03531
– ident: e_1_2_9_1_1
  doi: 10.1016/j.xcrp.2022.101037
– ident: e_1_2_9_8_1
  doi: 10.1063/5.0173547
– ident: e_1_2_9_32_1
  doi: 10.1016/j.mtphys.2021.100378
– ident: e_1_2_9_44_1
  doi: 10.1021/acsphotonics.7b01030
– ident: e_1_2_9_17_1
  doi: 10.1021/acsami.3c10654
– ident: e_1_2_9_36_1
  doi: 10.1007/s12274-023-5611-4
– ident: e_1_2_9_47_1
  doi: 10.1021/acsami.6b06968
– ident: e_1_2_9_4_1
  doi: 10.1002/sstr.202000029
– ident: e_1_2_9_7_1
  doi: 10.1002/adfm.202305589
– ident: e_1_2_9_33_1
  doi: 10.1088/2053-1583/aaa721
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.nanolett.0c01722
– ident: e_1_2_9_23_1
  doi: 10.1021/jp5020675
– ident: e_1_2_9_39_1
  doi: 10.1002/smll.201704079
– ident: e_1_2_9_2_1
  doi: 10.1088/0957-4484/24/38/382001
– ident: e_1_2_9_26_1
  doi: 10.1088/1361-6641/aac3e6
– ident: e_1_2_9_20_1
  doi: 10.1038/s42254-020-0171-y
– ident: e_1_2_9_43_1
  doi: 10.1063/5.0061792
– ident: e_1_2_9_5_1
  doi: 10.1002/advs.201903480
– ident: e_1_2_9_40_1
  doi: 10.1038/s41699-019-0133-3
SSID ssj0009606
Score 2.4854846
Snippet 2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their...
2D optical synaptic devices with atomic-scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2503146
SubjectTerms Artificial neural networks
Biological activity
charge transfer
Counterfeiting
Devices
Electromagnetic absorption
Encryption
Hybrid structures
indium selenide
Neural networks
Nondestructive testing
optical synapse
Raman spectroscopy
Rhodamine 6G
self‐limited oxide layer
Surface treatment
surface‐enhanced Raman spectroscopy
Synapses
Thickness
Title Optical Synaptic Devices with Multiple Encryption Features Based on SERS‐Revealed Charge‐Transfer Mechanism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202503146
https://www.ncbi.nlm.nih.gov/pubmed/40200710
https://www.proquest.com/docview/3228969751
https://www.proquest.com/docview/3188084947
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp_bQZ9pu80CFQk5ObEmW5eO2uyEENoXdBnIzkjUOIdS77KOQnPIT8hv7Szoj7zrZ5hBIb7JsIVmjmflGj0-MfTVOeaeUiLzIy0jZ2Ea5cFmUxQg20OWoLNxDNjjVx2fq5Dw9f3CKv-GHaCfcSDOCvSYFt252eE8aan3gDUIXLlHb0QgnUhN5fm94zx9F8DyQ7ck0yrUyK9bGWByuF1_3So-g5jpyDa7n6DWzq0Y3O06uDhZzd1De_MPn-D9_9Ya9WuJS3m0G0lu2AfU79vIBW-F7Nv4xCRPffHRdW0ryHgQ7w2kylw-WWxN5vy6n18EScQKYCwzo-Td0lp5jzqg_HP25vRvCb0KontNy_wVgTnCaFUz5AOgw8uXs1xY7O-r__H4cLe9riEqZxToykCrrbQIC0kR7K6yrFCgBRoCW3jljrFQ-1Zl3VWVMYi1IUeYSMVBM95Z9YJv1uIZPjBsbe1AosaoChRATgyBhdOYcyBi8zzpsfyWvYtLQchQNAbMoqAuLtgs7bGclzmKpnrMCrZjJdZ6lSYd9aV-jYtFqia1hvMBviKnOqFxhZR-bYdBWRUE3YbMOE0GYT7Sh6PYG3fbp83MKbbMXlG42qe2wzfl0AbsIh-ZuLwz5vz_VAt0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_luWFjASEqe0WcdJnOPS3WqBpki7rcQtsuMJQhXZaruLVE48As_Ik3TG2aRdOCDBLXFixfF4PN-Mx58BXmurnFVKBk5mZaBMaIJM2jRIQwIbZHJU6s8hy4-S8Yl6_yluswl5L0zDD9EF3Fgz_HzNCs4B6b0r1lDjPHEQ2fCI1P0m3FKENtj_Gk6uGKQYoHu6vSgOskTplrcxlHvr9dft0h9gcx27euNzcB9s2-wm5-R0d7mwu-X33xgd_-u_HsC9FTQVg2YsPYQbWD-Cu9cICx_D7OOZj32L6UVt-FIM0U81guO5Il9lJ4pRXc4v_GQkGGMuyacXb8leOkEl09Fk-uvHzwl-Y5DqBK_4f0Yq8XazwrnIkfcjfzn_-gRODkbH--NgdWRDUEZpmAQaY2Wc6aPEuJ84I42tFCqJWmISOWu1NpFycZI6W1Va943BSJZZRDAo5KPLNmGjntX4FIQ2oUNFIqsqVIQyyQ-SOkmtxShE59IevGkFVpw1zBxFw8EsC-7CouvCHuy08ixWGnpe0ESmsyRL434PXnWPSbd4wcTUOFvSO0xWp1Wm6GNbzTjoPsV-N8OzHkgvzb-0oRgM80F39-xfKr2E2-Pj_LA4fHf0YRvucHmTs7YDG4v5Ep8TOlrYF378XwJzBgb8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkRAcyhsCBRYJiZNbZ71er4-BJCqPFJRQqTdr1ztGCOFEaVKpnPgJ_Mb-ks6sE7eBAxLc7LVX-5idmW_28S3AS-OUd0rJyMu8jJSNbZRLl0VZTGCDXI7Kwj1kowO9f6jeHaVHl07xN_wQ7YQba0aw16zgM1_tXZCGWh94g8iFJ6TtV-Ga0gQnGBaNLwikGJ8Htr0kjXKtzJq2MZZ7m_k33dIfWHMTugbfM7wFdl3rZsvJt93lwu2WP34jdPyfZt2G7RUwFb1mJN2BK1jfhZuX6ArvwfTjLMx8i8lpbflR9DEYGsGzuWK02psoBnU5Pw2mSDDCXFJEL16Tt_SCUiaD8eTs568xnjBE9YLX-78gpQSvWeFcjJBPI389_n4fDoeDz2_2o9WFDVGZZLGODKbKettFiWlXeyutqxQqiUaiTrxzxthE-VRn3lWVMV1rMZFlnhAIivnisgewVU9rfATC2NijIolVFSrCmBQFSaMz5zCJ0fusA6_W8ipmDS9H0TAwy4K7sGi7sAM7a3EWK_08LsiMmVznWdrtwIv2M2kWL5fYGqdL-oep6ozKFRX2sBkGbVEcdTM464AMwvxLHYpef9Rr3x7_S6bncP1Tf1h8eHvw_gnc4ORmw9oObC3mS3xK0GjhnoXRfw5ZPQWr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Synaptic+Devices+with+Multiple+Encryption+Features+Based+on+SERS-Revealed+Charge-Transfer+Mechanism&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Shaoguang&rft.au=Hou%2C+Xiangyu&rft.au=Cheng%2C+Yue&rft.au=Zhang%2C+Qiman&rft.date=2025-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.spage=e2503146&rft_id=info:doi/10.1002%2Fadma.202503146&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon