Optical Synaptic Devices with Multiple Encryption Features Based on SERS‐Revealed Charge‐Transfer Mechanism
2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic‐scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high‐performance optical synaptic device...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 37; no. 24; pp. e2503146 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202503146 |
Cover
Loading…
Abstract | 2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic‐scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high‐performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface‐enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light‐induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self‐limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge‐transfer‐based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption‐based anti‐counterfeiting array and highlighting their value in on‐chip anti‐counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways.
A hybrid R6G/InSe structure is designed, and the charge transfer mechanism within this structure is validated using SERS. This structure effectively emulates biological synapses, comprising a presynaptic membrane (R6G photosensitive layer), synaptic cleft (R6G/InSe interface), and postsynaptic membrane (InSe sensing layer). The charge transfer process in this structure closely mirrors the neurotransmitter transfer across the synaptic cleft. Surface treatment techniques are employed to regulate the charge transfer process, enabling multiple on‐chip encryption anti‐counterfeiting applications to be developed. |
---|---|
AbstractList | 2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic‐scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high‐performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface‐enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light‐induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self‐limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge‐transfer‐based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption‐based anti‐counterfeiting array and highlighting their value in on‐chip anti‐counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways. 2D optical synaptic devices with atomic-scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic-scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high-performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface-enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light-induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self-limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge-transfer-based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption-based anti-counterfeiting array and highlighting their value in on-chip anti-counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways.2D optical synaptic devices with atomic-scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic-scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high-performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface-enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light-induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self-limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge-transfer-based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption-based anti-counterfeiting array and highlighting their value in on-chip anti-counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways. 2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic‐scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high‐performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface‐enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light‐induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self‐limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge‐transfer‐based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption‐based anti‐counterfeiting array and highlighting their value in on‐chip anti‐counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways. A hybrid R6G/InSe structure is designed, and the charge transfer mechanism within this structure is validated using SERS. This structure effectively emulates biological synapses, comprising a presynaptic membrane (R6G photosensitive layer), synaptic cleft (R6G/InSe interface), and postsynaptic membrane (InSe sensing layer). The charge transfer process in this structure closely mirrors the neurotransmitter transfer across the synaptic cleft. Surface treatment techniques are employed to regulate the charge transfer process, enabling multiple on‐chip encryption anti‐counterfeiting applications to be developed. |
Author | Zhao, Shaoguang Tao, Li Cheng, Yue Zhao, Jingwen Hou, Xiangyu Zhang, Qiman |
Author_xml | – sequence: 1 givenname: Shaoguang surname: Zhao fullname: Zhao, Shaoguang organization: Beijing Institute of Technology – sequence: 2 givenname: Xiangyu surname: Hou fullname: Hou, Xiangyu organization: National University of Singapore – sequence: 3 givenname: Yue surname: Cheng fullname: Cheng, Yue organization: Beijing Institute of Technology – sequence: 4 givenname: Qiman surname: Zhang fullname: Zhang, Qiman organization: Beijing Institute of Technology – sequence: 5 givenname: Jingwen surname: Zhao fullname: Zhao, Jingwen organization: Beijing Institute of Technology – sequence: 6 givenname: Li orcidid: 0000-0002-7757-1149 surname: Tao fullname: Tao, Li email: litao@bit.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40200710$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u00AQxleoiKaFK0dkiUsvDrN_vF4fQ5oCUqNKTTlb4_WYuLLXYddulRuPwDPyJGyUUiQunGb0ze8bjeY7YyducMTYWw5zDiA-YN3jXIDIQHKlX7AZzwRPFRTZCZtBIbO00MqcsrMQ7gGg0KBfsVMFAiDnMGPDzW5sLXbJZu_w0CaX9NBaCsljO26T9dSN7a6jZOWs38f54JIrwnHykfiIgeokKpvV7ebXj5-39EDYRWm5Rf-NonLn0YWGfLImu0XXhv41e9lgF-jNUz1nX69Wd8vP6fXNpy_LxXVqZQ46NZQprJGToIzrGgVWjSIlyAjSsq4qY1CqOtN5XTWNMRyRpLCFNEqDJZDn7OK4d-eH7xOFsezbYKnr0NEwhVJyY8CoQuURff8Pej9M3sXrSimEKXSRZzxS756oqeqpLne-7dHvyz-vjMD8CFg_hOCpeUY4lIesykNW5XNW0VAcDY9tR_v_0OXicr346_0NhwGZeA |
Cites_doi | 10.1016/j.xcrp.2021.100526 10.1021/acsami.9b11052 10.1021/jacs.8b02972 10.1007/s12274-014-0516-x 10.1002/inf2.12148 10.1021/nn405036u 10.1126/science.1254642 10.1021/nn502715h 10.1039/D1NR07126B 10.1002/anie.202313634 10.1002/adfm.202205150 10.1039/D0NH00625D 10.1002/advs.202106092 10.1038/s41467-020-19806-6 10.1016/j.ssc.2021.114417 10.1021/nl903414x 10.1063/5.0207435 10.1021/acs.nanolett.0c04152 10.12693/APhysPolA.119.143 10.1039/D3TC04206E 10.1038/s41699-021-00241-0 10.1002/adma.202406083 10.1016/j.trac.2020.115983 10.1038/ncomms8800 10.1002/adfm.201905687 10.1002/advs.202103494 10.1039/C7NR09486H 10.1021/acsnano.7b03531 10.1016/j.xcrp.2022.101037 10.1063/5.0173547 10.1016/j.mtphys.2021.100378 10.1021/acsphotonics.7b01030 10.1021/acsami.3c10654 10.1007/s12274-023-5611-4 10.1021/acsami.6b06968 10.1002/sstr.202000029 10.1002/adfm.202305589 10.1088/2053-1583/aaa721 10.1021/acs.nanolett.0c01722 10.1021/jp5020675 10.1002/smll.201704079 10.1088/0957-4484/24/38/382001 10.1088/1361-6641/aac3e6 10.1038/s42254-020-0171-y 10.1063/5.0061792 10.1002/advs.201903480 10.1038/s41699-019-0133-3 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202503146 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 40200710 10_1002_adma_202503146 ADMA202503146 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2023YFB3208002 – fundername: National Natural Science Foundation of China funderid: 62005051 – fundername: National Key Research and Development Program of China grantid: 2023YFB3208002 – fundername: National Natural Science Foundation of China grantid: 62005051 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 53G 6TJ 8WZ A6W AAMMB AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AFFNX AGQPQ AGXDD AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3706-8e54ada1e2e516da2abf4e42e82e63dbb88a34d567dbff881aae32c938460ce03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 18:45:25 EDT 2025 Sat Jul 12 02:51:56 EDT 2025 Fri Jun 20 01:35:17 EDT 2025 Thu Jul 03 08:38:31 EDT 2025 Thu Jun 19 09:30:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | optical synapse surface‐enhanced Raman spectroscopy charge transfer self‐limited oxide layer indium selenide |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3706-8e54ada1e2e516da2abf4e42e82e63dbb88a34d567dbff881aae32c938460ce03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7757-1149 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202503146 |
PMID | 40200710 |
PQID | 3228969751 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3188084947 proquest_journals_3228969751 pubmed_primary_40200710 crossref_primary_10_1002_adma_202503146 wiley_primary_10_1002_adma_202503146_ADMA202503146 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2010; 10 2021; 6 2021; 21 2015; 6 2021; 5 2019; 3 2011; 119 2023; 33 2021; 3 2018; 140 2021; 2 2017; 4 2020; 20 2013; 24 2023; 15 2019; 11 2023; 16 2024; 11 2020; 11 2024; 12 2024; 124 2024; 36 2020; 7 2020; 2 2018; 5 2020; 1 2022; 3 2020; 30 2020; 130 2021; 18 2017; 11 2021; 336 2022; 9 2021; 119 2024; 63 2022; 14 2022; 32 2018; 33 2014; 8 2014; 7 2018; 10 2014; 345 2016; 8 2018; 14 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 Cong S. (e_1_2_9_19_1) 2020; 1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 7 start-page: 1556 year: 2014 publication-title: Nano Res. – volume: 345 start-page: 668 year: 2014 publication-title: Science – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2018 publication-title: 2D Mater. – volume: 18 year: 2021 publication-title: Mater. Today Phys. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 2930 year: 2017 publication-title: ACS Photonics – volume: 20 start-page: 5359 year: 2020 publication-title: Nano Lett. – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 5 start-page: 60 year: 2021 publication-title: Npj 2D Mater. Appl. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 33 year: 2018 publication-title: Semicond. Sci. Technol. – volume: 8 start-page: 1263 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 7800 year: 2015 publication-title: Nat. Commun. – volume: 119 year: 2021 publication-title: Appl. Phys. Lett. – volume: 14 year: 2018 publication-title: Small – volume: 21 start-page: 1193 year: 2021 publication-title: Nano Lett. – volume: 11 start-page: 5934 year: 2020 publication-title: Nat. Commun. – volume: 1 year: 2020 publication-title: Small Struct. – volume: 130 year: 2020 publication-title: TrAC Trends Anal. Chem. – volume: 8 start-page: 8285 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 49 year: 2019 publication-title: Npj 2D Mater. Appl. – volume: 11 start-page: 7362 year: 2017 publication-title: ACS Nano – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 36 year: 2021 publication-title: InfoMat – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 1233 year: 2024 publication-title: J. Mater. Chem. C – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 553 year: 2010 publication-title: Nano Lett. – volume: 1 year: 2020 publication-title: Innovation – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 143 year: 2011 publication-title: Acta Phys. Pol. A – volume: 16 year: 2023 publication-title: Nano Res. – volume: 3 year: 2022 publication-title: Cell Rep. Phys. Sci. – volume: 24 year: 2013 publication-title: Nanotechnology – volume: 2 start-page: 253 year: 2020 publication-title: Nat. Rev. Phys. – volume: 10 start-page: 7991 year: 2018 publication-title: Nanoscale – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2024 publication-title: Appl. Phys. Rev. – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 6 start-page: 186 year: 2021 publication-title: Nanoscale Horiz. – volume: 140 start-page: 8696 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 4181 year: 2022 publication-title: Nanoscale – volume: 124 year: 2024 publication-title: Appl. Phys. Lett. – volume: 336 year: 2021 publication-title: Solid State Commun. – ident: e_1_2_9_21_1 doi: 10.1016/j.xcrp.2021.100526 – ident: e_1_2_9_41_1 doi: 10.1021/acsami.9b11052 – ident: e_1_2_9_22_1 doi: 10.1021/jacs.8b02972 – ident: e_1_2_9_25_1 doi: 10.1007/s12274-014-0516-x – ident: e_1_2_9_9_1 doi: 10.1002/inf2.12148 – ident: e_1_2_9_27_1 doi: 10.1021/nn405036u – ident: e_1_2_9_6_1 doi: 10.1126/science.1254642 – ident: e_1_2_9_35_1 doi: 10.1021/nn502715h – ident: e_1_2_9_38_1 doi: 10.1039/D1NR07126B – ident: e_1_2_9_3_1 doi: 10.1002/anie.202313634 – ident: e_1_2_9_14_1 doi: 10.1002/adfm.202205150 – ident: e_1_2_9_30_1 doi: 10.1039/D0NH00625D – ident: e_1_2_9_11_1 doi: 10.1002/advs.202106092 – ident: e_1_2_9_12_1 doi: 10.1038/s41467-020-19806-6 – ident: e_1_2_9_24_1 doi: 10.1016/j.ssc.2021.114417 – ident: e_1_2_9_29_1 doi: 10.1021/nl903414x – ident: e_1_2_9_45_1 doi: 10.1063/5.0207435 – ident: e_1_2_9_16_1 doi: 10.1021/acs.nanolett.0c04152 – ident: e_1_2_9_46_1 doi: 10.12693/APhysPolA.119.143 – ident: e_1_2_9_13_1 doi: 10.1039/D3TC04206E – volume: 1 year: 2020 ident: e_1_2_9_19_1 publication-title: Innovation – ident: e_1_2_9_48_1 doi: 10.1038/s41699-021-00241-0 – ident: e_1_2_9_15_1 doi: 10.1002/adma.202406083 – ident: e_1_2_9_37_1 doi: 10.1016/j.trac.2020.115983 – ident: e_1_2_9_28_1 doi: 10.1038/ncomms8800 – ident: e_1_2_9_34_1 doi: 10.1002/adfm.201905687 – ident: e_1_2_9_10_1 doi: 10.1002/advs.202103494 – ident: e_1_2_9_31_1 doi: 10.1039/C7NR09486H – ident: e_1_2_9_42_1 doi: 10.1021/acsnano.7b03531 – ident: e_1_2_9_1_1 doi: 10.1016/j.xcrp.2022.101037 – ident: e_1_2_9_8_1 doi: 10.1063/5.0173547 – ident: e_1_2_9_32_1 doi: 10.1016/j.mtphys.2021.100378 – ident: e_1_2_9_44_1 doi: 10.1021/acsphotonics.7b01030 – ident: e_1_2_9_17_1 doi: 10.1021/acsami.3c10654 – ident: e_1_2_9_36_1 doi: 10.1007/s12274-023-5611-4 – ident: e_1_2_9_47_1 doi: 10.1021/acsami.6b06968 – ident: e_1_2_9_4_1 doi: 10.1002/sstr.202000029 – ident: e_1_2_9_7_1 doi: 10.1002/adfm.202305589 – ident: e_1_2_9_33_1 doi: 10.1088/2053-1583/aaa721 – ident: e_1_2_9_18_1 doi: 10.1021/acs.nanolett.0c01722 – ident: e_1_2_9_23_1 doi: 10.1021/jp5020675 – ident: e_1_2_9_39_1 doi: 10.1002/smll.201704079 – ident: e_1_2_9_2_1 doi: 10.1088/0957-4484/24/38/382001 – ident: e_1_2_9_26_1 doi: 10.1088/1361-6641/aac3e6 – ident: e_1_2_9_20_1 doi: 10.1038/s42254-020-0171-y – ident: e_1_2_9_43_1 doi: 10.1063/5.0061792 – ident: e_1_2_9_5_1 doi: 10.1002/advs.201903480 – ident: e_1_2_9_40_1 doi: 10.1038/s41699-019-0133-3 |
SSID | ssj0009606 |
Score | 2.4854846 |
Snippet | 2D optical synaptic devices with atomic‐scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their... 2D optical synaptic devices with atomic-scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2503146 |
SubjectTerms | Artificial neural networks Biological activity charge transfer Counterfeiting Devices Electromagnetic absorption Encryption Hybrid structures indium selenide Neural networks Nondestructive testing optical synapse Raman spectroscopy Rhodamine 6G self‐limited oxide layer Surface treatment surface‐enhanced Raman spectroscopy Synapses Thickness |
Title | Optical Synaptic Devices with Multiple Encryption Features Based on SERS‐Revealed Charge‐Transfer Mechanism |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202503146 https://www.ncbi.nlm.nih.gov/pubmed/40200710 https://www.proquest.com/docview/3228969751 https://www.proquest.com/docview/3188084947 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp_bQZ9pu80CFQk5ObEmW5eO2uyEENoXdBnIzkjUOIdS77KOQnPIT8hv7Szoj7zrZ5hBIb7JsIVmjmflGj0-MfTVOeaeUiLzIy0jZ2Ea5cFmUxQg20OWoLNxDNjjVx2fq5Dw9f3CKv-GHaCfcSDOCvSYFt252eE8aan3gDUIXLlHb0QgnUhN5fm94zx9F8DyQ7ck0yrUyK9bGWByuF1_3So-g5jpyDa7n6DWzq0Y3O06uDhZzd1De_MPn-D9_9Ya9WuJS3m0G0lu2AfU79vIBW-F7Nv4xCRPffHRdW0ryHgQ7w2kylw-WWxN5vy6n18EScQKYCwzo-Td0lp5jzqg_HP25vRvCb0KontNy_wVgTnCaFUz5AOgw8uXs1xY7O-r__H4cLe9riEqZxToykCrrbQIC0kR7K6yrFCgBRoCW3jljrFQ-1Zl3VWVMYi1IUeYSMVBM95Z9YJv1uIZPjBsbe1AosaoChRATgyBhdOYcyBi8zzpsfyWvYtLQchQNAbMoqAuLtgs7bGclzmKpnrMCrZjJdZ6lSYd9aV-jYtFqia1hvMBviKnOqFxhZR-bYdBWRUE3YbMOE0GYT7Sh6PYG3fbp83MKbbMXlG42qe2wzfl0AbsIh-ZuLwz5vz_VAt0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_luWFjASEqe0WcdJnOPS3WqBpki7rcQtsuMJQhXZaruLVE48As_Ik3TG2aRdOCDBLXFixfF4PN-Mx58BXmurnFVKBk5mZaBMaIJM2jRIQwIbZHJU6s8hy4-S8Yl6_yluswl5L0zDD9EF3Fgz_HzNCs4B6b0r1lDjPHEQ2fCI1P0m3FKENtj_Gk6uGKQYoHu6vSgOskTplrcxlHvr9dft0h9gcx27euNzcB9s2-wm5-R0d7mwu-X33xgd_-u_HsC9FTQVg2YsPYQbWD-Cu9cICx_D7OOZj32L6UVt-FIM0U81guO5Il9lJ4pRXc4v_GQkGGMuyacXb8leOkEl09Fk-uvHzwl-Y5DqBK_4f0Yq8XazwrnIkfcjfzn_-gRODkbH--NgdWRDUEZpmAQaY2Wc6aPEuJ84I42tFCqJWmISOWu1NpFycZI6W1Va943BSJZZRDAo5KPLNmGjntX4FIQ2oUNFIqsqVIQyyQ-SOkmtxShE59IevGkFVpw1zBxFw8EsC-7CouvCHuy08ixWGnpe0ESmsyRL434PXnWPSbd4wcTUOFvSO0xWp1Wm6GNbzTjoPsV-N8OzHkgvzb-0oRgM80F39-xfKr2E2-Pj_LA4fHf0YRvucHmTs7YDG4v5Ep8TOlrYF378XwJzBgb8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkRAcyhsCBRYJiZNbZ71er4-BJCqPFJRQqTdr1ztGCOFEaVKpnPgJ_Mb-ks6sE7eBAxLc7LVX-5idmW_28S3AS-OUd0rJyMu8jJSNbZRLl0VZTGCDXI7Kwj1kowO9f6jeHaVHl07xN_wQ7YQba0aw16zgM1_tXZCGWh94g8iFJ6TtV-Ga0gQnGBaNLwikGJ8Htr0kjXKtzJq2MZZ7m_k33dIfWHMTugbfM7wFdl3rZsvJt93lwu2WP34jdPyfZt2G7RUwFb1mJN2BK1jfhZuX6ArvwfTjLMx8i8lpbflR9DEYGsGzuWK02psoBnU5Pw2mSDDCXFJEL16Tt_SCUiaD8eTs568xnjBE9YLX-78gpQSvWeFcjJBPI389_n4fDoeDz2_2o9WFDVGZZLGODKbKettFiWlXeyutqxQqiUaiTrxzxthE-VRn3lWVMV1rMZFlnhAIivnisgewVU9rfATC2NijIolVFSrCmBQFSaMz5zCJ0fusA6_W8ipmDS9H0TAwy4K7sGi7sAM7a3EWK_08LsiMmVznWdrtwIv2M2kWL5fYGqdL-oep6ozKFRX2sBkGbVEcdTM464AMwvxLHYpef9Rr3x7_S6bncP1Tf1h8eHvw_gnc4ORmw9oObC3mS3xK0GjhnoXRfw5ZPQWr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Synaptic+Devices+with+Multiple+Encryption+Features+Based+on+SERS-Revealed+Charge-Transfer+Mechanism&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Shaoguang&rft.au=Hou%2C+Xiangyu&rft.au=Cheng%2C+Yue&rft.au=Zhang%2C+Qiman&rft.date=2025-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.spage=e2503146&rft_id=info:doi/10.1002%2Fadma.202503146&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |