Tri‐Coordinated Boron Species in Confined Boron Oxide Catalysts for Enhanced Low‐Temperature Oxidative Dehydrogenation of Propane

Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spat...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 28; pp. e202507525 - n/a
Main Authors Zheng, Yuenan, Chen, Weixi, Liu, Zhankai, Lu, Wen‐Duo, Li, Wen‐Cui, Wang, Dongqi, Lu, An‐Hui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 07.07.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low‐temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell and subsequent oxidization steps. The in situ generated boron–oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri‐coordinated B─OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BOx species increased significantly in molten state, favoring the dispersion of BOx species and formation of B─OH groups, which drove the uprush of propane conversion. The confined BOx@SiO2 with highly dispersed BOx species was synthesized by the in situ transformation of BN@SiO2, which showed a remarkable activity of a unique C3H8 conversion uprush increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for oxidative dehydrogenation of propane. The key for the efficient C3H8 activation was the increased amount of tri‐coordinated B─OH derived from the dispersion of molten BOx species within spatially confined SiO2.
AbstractList Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low‐temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell and subsequent oxidization steps. The in situ generated boron–oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri‐coordinated B─OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BOx species increased significantly in molten state, favoring the dispersion of BOx species and formation of B─OH groups, which drove the uprush of propane conversion.
Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low‐temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell and subsequent oxidization steps. The in situ generated boron–oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri‐coordinated B─OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BOx species increased significantly in molten state, favoring the dispersion of BOx species and formation of B─OH groups, which drove the uprush of propane conversion. The confined BOx@SiO2 with highly dispersed BOx species was synthesized by the in situ transformation of BN@SiO2, which showed a remarkable activity of a unique C3H8 conversion uprush increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for oxidative dehydrogenation of propane. The key for the efficient C3H8 activation was the increased amount of tri‐coordinated B─OH derived from the dispersion of molten BOx species within spatially confined SiO2.
Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron-based catalysts commonly using H BO is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BO @SiO catalyst showing an impressive low-temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO shell and subsequent oxidization steps. The in situ generated boron-oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BO @SiO exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri-coordinated B─OH (B[3] and B[3] ) active sites from the dispersion of molten BO species in confined SiO . Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BO species increased significantly in molten state, favoring the dispersion of BO species and formation of B─OH groups, which drove the uprush of propane conversion.
Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward systhesis of confined boron-based catalyst commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low-temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell, and subsequent oxidization steps. The in situ generated boron-oxygen species were anchored to silica shells via B-O-Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri-coordinated B-OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angle of O-B-O and B-O-B and system disorder of BOx species increased significantly on molten state, favoring the dispersion of BOx species and formation of B-OH groups, which drove the uprush of propane conversion.Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward systhesis of confined boron-based catalyst commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low-temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell, and subsequent oxidization steps. The in situ generated boron-oxygen species were anchored to silica shells via B-O-Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri-coordinated B-OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angle of O-B-O and B-O-B and system disorder of BOx species increased significantly on molten state, favoring the dispersion of BOx species and formation of B-OH groups, which drove the uprush of propane conversion.
Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H 3 BO 3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BO x @SiO 2 catalyst showing an impressive low‐temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO 2 shell and subsequent oxidization steps. The in situ generated boron–oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BO x @SiO 2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri‐coordinated B─OH (B[3] a and B[3] b ) active sites from the dispersion of molten BO x species in confined SiO 2 . Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BO x species increased significantly in molten state, favoring the dispersion of BO x species and formation of B─OH groups, which drove the uprush of propane conversion.
Author Li, Wen‐Cui
Wang, Dongqi
Chen, Weixi
Lu, Wen‐Duo
Lu, An‐Hui
Liu, Zhankai
Zheng, Yuenan
Author_xml – sequence: 1
  givenname: Yuenan
  surname: Zheng
  fullname: Zheng, Yuenan
  organization: Dalian University of Technology
– sequence: 2
  givenname: Weixi
  surname: Chen
  fullname: Chen, Weixi
  organization: Dalian University of Technology
– sequence: 3
  givenname: Zhankai
  surname: Liu
  fullname: Liu, Zhankai
  organization: Dalian University of Technology
– sequence: 4
  givenname: Wen‐Duo
  surname: Lu
  fullname: Lu, Wen‐Duo
  organization: Dalian University of Technology
– sequence: 5
  givenname: Wen‐Cui
  surname: Li
  fullname: Li, Wen‐Cui
  organization: Dalian University of Technology
– sequence: 6
  givenname: Dongqi
  surname: Wang
  fullname: Wang, Dongqi
  organization: Dalian University of Technology
– sequence: 7
  givenname: An‐Hui
  surname: Lu
  fullname: Lu, An‐Hui
  email: anhuilu@dlut.edu.cn
  organization: Dalian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40325351$$D View this record in MEDLINE/PubMed
BookMark eNqF0T1v1DAYB3ALFdEXWBmRJRaWHH6JE3ss4YBKpxaJY44c-wl1lbODnbTcxsLOZ-wnqcuVq8TCZFv-_R8_8nOMDnzwgNBLShaUEPZWewcLRpggtWDiCTqigtGC1zU_yPuS86KWgh6i45SuspeSVM_QYUk4E1zQI_RrHd3tz99NCNE6ryew-F2IweMvIxgHCTuPm-B75_c3Fz-cBdzoSQ_bNCXch4iX_lJ7k8kq3ORya9iMEPU0R_jD9eSuAb-Hy62N4Rvkd1wuFHr8OYZRe3iOnvZ6SPDiYT1BXz8s182nYnXx8aw5XRWG10QUpTKVMMSymnZCKMsrYLQzqoT8AbWhsgQBSvZ9ZzpJJa-IpFrYjuejtLznJ-jNru4Yw_cZ0tRuXDIwDLmHMKeWM5IjlVQi09f_0KswR5-7y4opwmilVFavHtTcbcC2Y3QbHbft3w_OYLEDJoaUIvR7Qkl7P8H2foLtfoI5oHaBGzfA9j-6PT0_Wz5m7wBHGKFg
Cites_doi 10.1016/j.jcat.2014.05.017
10.1016/j.checat.2024.101028
10.1016/j.jcat.2020.03.021
10.1002/anie.202307470
10.1080/01614940600631413
10.1016/j.jcat.2022.02.017
10.1002/cctc.201700725
10.1002/cctc.201700004
10.1021/acs.chemmater.0c00104
10.1021/acs.accounts.7b00475
10.1126/science.285.5428.712
10.1021/acscatal.9b02284
10.1016/S1872-2067(18)63060-8
10.1016/S0730-725X(96)00180-4
10.1021/acscatal.9b02922
10.1080/01614940.2022.2113084
10.1039/D0CS01174F
10.1021/acscatal.2c01622
10.1080/14786435.2017.1296201
10.1039/D4SC05399K
10.1016/j.micromeso.2011.07.021
10.1021/acscatal.3c01759
10.1039/f19898500837
10.1021/acs.jpclett.4c02144
10.1016/S1872-2067(20)63654-3
10.1016/0021-9517(89)90070-5
10.1002/anie.201914696
10.1002/sia.740140503
10.1021/jacs.1c13563
10.1126/science.abe7935
10.1021/acs.jpcc.9b07429
10.1002/anie.202106713
10.1126/sciadv.aav8063
10.1021/acs.jpcc.1c07690
10.1021/jacs.3c04613
10.1021/acscatal.0c03762
10.1016/j.micromeso.2004.10.035
10.1016/j.jcat.2019.11.028
10.1016/j.jcat.2018.11.014
10.1021/cr5002436
10.1021/acscatal.3c02057
10.1021/j100255a005
10.1016/j.jcat.2023.05.017
10.1021/jacs.8b08165
10.1016/j.cattod.2023.114048
10.1016/j.jcat.2018.05.023
10.1126/science.aaf7885
10.1016/j.jcat.2022.11.031
10.1016/j.jece.2021.105673
10.1038/s41467-023-37261-x
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202507525
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 40325351
10_1002_anie_202507525
ANIE202507525
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22302030; 12241203
– fundername: State Key Program of the National Natural Science Foundation of China
  funderid: 21733002
– fundername: National Natural Science Foundation of China
  grantid: 22302030
– fundername: National Natural Science Foundation of China
  grantid: 12241203
– fundername: State Key Program of the National Natural Science Foundation of China
  grantid: 21733002
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3705-49c65c0d271b559d36e21bc94e0257c184e5e98ffbcb81836081a5db3cb88d3f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 18:23:50 EDT 2025
Mon Aug 18 02:42:36 EDT 2025
Sat Jul 12 03:49:49 EDT 2025
Thu Aug 21 00:07:33 EDT 2025
Tue Jul 08 09:30:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords Confined structure
Heterogeneous catalysis
Boron oxide
Oxidative dehydrogenation
Propane
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3705-49c65c0d271b559d36e21bc94e0257c184e5e98ffbcb81836081a5db3cb88d3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202507525
PMID 40325351
PQID 3229021699
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_3200816895
proquest_journals_3229021699
pubmed_primary_40325351
crossref_primary_10_1002_anie_202507525
wiley_primary_10_1002_anie_202507525_ANIE202507525
PublicationCentury 2000
PublicationDate July 7, 2025
PublicationDateYYYYMMDD 2025-07-07
PublicationDate_xml – month: 07
  year: 2025
  text: July 7, 2025
  day: 07
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2014; 316
1989; 85
2019; 9
2023; 13
1989; 116
2023; 14
2019; 5
2020; 41
2020; 385
2021; 125
2018; 365
2023; 420
2023; 145
2020; 381
1999; 285
2019; 369
2023; 424
2020; 59
2020; 10
2020; 32
2021; 50
1996; 14
2019; 141
2012; 148
1985; 89
2024; 15
2014; 114
2017; 9
2019; 123
2022; 144
2023; 62
2017; 97
2018; 39
2006; 48
2022; 12
2016; 354
2024; 66
2023; 417
2021; 372
2018; 51
2024; 4
2022; 408
2021; 60
1989; 14
2005; 79
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 14
  start-page: 1478
  year: 2023
  publication-title: Nat. Commun.
– volume: 85
  start-page: 837
  year: 1989
  publication-title: J. Chem. Soc. Faraday Trans. 1
– volume: 9
  year: 2021
  publication-title: J. Environ. Chem. Eng.
– volume: 424
  start-page: 121
  year: 2023
  end-page: 129
  publication-title: J. Catal.
– volume: 116
  start-page: 1
  year: 1989
  end-page: 10
  publication-title: J. Catal.
– volume: 59
  start-page: 6546
  year: 2020
  end-page: 6550
  publication-title: Angew. Chem. Int. Ed.
– volume: 369
  start-page: 296
  year: 2019
  end-page: 301
  publication-title: J. Catal.
– volume: 48
  start-page: 199
  year: 2006
  end-page: 268
  publication-title: Catal. Rev. Sci. Eng.
– volume: 9
  start-page: 8592
  year: 2019
  end-page: 8621
  publication-title: ACS Catal.
– volume: 381
  start-page: 599
  year: 2020
  end-page: 607
  publication-title: J. Catal.
– volume: 144
  start-page: 5930
  year: 2022
  end-page: 5936
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2024
  publication-title: Chem. Catal.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1788
  year: 2017
  end-page: 1793
  publication-title: ChemCatChem
– volume: 39
  start-page: 908
  year: 2018
  end-page: 913
  publication-title: Chin. J. Catal.
– volume: 385
  start-page: 176
  year: 2020
  end-page: 182
  publication-title: J. Catal.
– volume: 60
  start-page: 19691
  year: 2021
  end-page: 19695
  publication-title: Angew. Chem. Int. Ed.
– volume: 123
  start-page: 27000
  year: 2019
  end-page: 27011
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 8263
  year: 2019
  end-page: 8270
  publication-title: ACS Catal.
– volume: 13
  start-page: 8219
  year: 2023
  end-page: 8236
  publication-title: ACS Catal.
– volume: 14
  start-page: 224
  year: 1989
  end-page: 232
  publication-title: Surf. Interface Anal.
– volume: 97
  start-page: 1334
  year: 2017
  end-page: 1345
  publication-title: Philos. Mag.
– volume: 125
  start-page: 24930
  year: 2021
  end-page: 24944
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 3293
  year: 2017
  end-page: 3297
  publication-title: ChemCatChem
– volume: 417
  start-page: 14
  year: 2023
  end-page: 21
  publication-title: J. Catal.
– volume: 285
  start-page: 712
  year: 1999
  end-page: 715
  publication-title: Science
– volume: 14
  start-page: 911
  year: 1996
  end-page: 913
  publication-title: J. Magn. Reson. Imaging
– volume: 51
  start-page: 640
  year: 2018
  end-page: 648
  publication-title: Acc. Chem. Res.
– volume: 145
  start-page: 17265
  year: 2023
  end-page: 17273
  publication-title: J. Am. Chem. Soc.
– volume: 354
  start-page: 1570
  year: 2016
  end-page: 1573
  publication-title: Science
– volume: 41
  start-page: 1837
  year: 2020
  end-page: 1845
  publication-title: Chinese J. Catal.
– volume: 13
  start-page: 9201
  year: 2023
  end-page: 9212
  publication-title: ACS Catal.
– volume: 148
  start-page: 80
  year: 2012
  end-page: 87
  publication-title: Micropor. Mesopor. Mater.
– volume: 89
  start-page: 1569
  year: 1985
  end-page: 1571
  publication-title: J. Phys. Chem.
– volume: 50
  start-page: 1438
  year: 2021
  end-page: 1468
  publication-title: Chem. Soc. Rev.
– volume: 420
  year: 2023
  publication-title: Catal. Today
– volume: 79
  start-page: 215
  year: 2005
  end-page: 224
  publication-title: Micropor. Mesopor. Mater.
– volume: 32
  start-page: 3109
  year: 2020
  end-page: 3121
  publication-title: Chem. Mater.
– volume: 316
  start-page: 240
  year: 2014
  end-page: 250
  publication-title: J. Catal.
– volume: 365
  start-page: 14
  year: 2018
  end-page: 23
  publication-title: J. Catal.
– volume: 114
  start-page: 10613
  year: 2014
  end-page: 10653
  publication-title: Chem. Rev.
– volume: 15
  start-page: 18303
  year: 2024
  end-page: 18309
  publication-title: Chem. Sci.
– volume: 408
  start-page: 133
  year: 2022
  end-page: 141
  publication-title: J. Catal.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 12
  start-page: 7368
  year: 2022
  end-page: 7376
  publication-title: ACS Catal.
– volume: 15
  start-page: 8984
  year: 2024
  end-page: 8989
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 13852
  year: 2020
  end-page: 13866
  publication-title: ACS Catal.
– volume: 141
  start-page: 182
  year: 2019
  end-page: 190
  publication-title: J. Am. Chem. Soc.
– volume: 66
  start-page: 1208
  year: 2024
  end-page: 1287
  publication-title: Catal. Rev.
– volume: 372
  start-page: 76
  year: 2021
  end-page: 80
  publication-title: Science
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jcat.2014.05.017
– ident: e_1_2_7_18_1
  doi: 10.1016/j.checat.2024.101028
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jcat.2020.03.021
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202307470
– ident: e_1_2_7_5_1
  doi: 10.1080/01614940600631413
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jcat.2022.02.017
– ident: e_1_2_7_10_1
  doi: 10.1002/cctc.201700725
– ident: e_1_2_7_8_1
  doi: 10.1002/cctc.201700004
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.chemmater.0c00104
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.accounts.7b00475
– ident: e_1_2_7_4_1
  doi: 10.1126/science.285.5428.712
– ident: e_1_2_7_15_1
  doi: 10.1021/acscatal.9b02284
– ident: e_1_2_7_11_1
  doi: 10.1016/S1872-2067(18)63060-8
– ident: e_1_2_7_41_1
  doi: 10.1016/S0730-725X(96)00180-4
– ident: e_1_2_7_2_1
  doi: 10.1021/acscatal.9b02922
– ident: e_1_2_7_7_1
  doi: 10.1080/01614940.2022.2113084
– ident: e_1_2_7_6_1
  doi: 10.1039/D0CS01174F
– ident: e_1_2_7_35_1
  doi: 10.1021/acscatal.2c01622
– ident: e_1_2_7_47_1
  doi: 10.1080/14786435.2017.1296201
– ident: e_1_2_7_49_1
  doi: 10.1039/D4SC05399K
– ident: e_1_2_7_40_1
  doi: 10.1016/j.micromeso.2011.07.021
– ident: e_1_2_7_17_1
  doi: 10.1021/acscatal.3c01759
– ident: e_1_2_7_43_1
  doi: 10.1039/f19898500837
– ident: e_1_2_7_50_1
  doi: 10.1021/acs.jpclett.4c02144
– ident: e_1_2_7_26_1
  doi: 10.1016/S1872-2067(20)63654-3
– ident: e_1_2_7_42_1
  doi: 10.1016/0021-9517(89)90070-5
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201914696
– ident: e_1_2_7_36_1
  doi: 10.1002/sia.740140503
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.1c13563
– ident: e_1_2_7_24_1
  doi: 10.1126/science.abe7935
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.jpcc.9b07429
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.202106713
– ident: e_1_2_7_14_1
  doi: 10.1126/sciadv.aav8063
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.jpcc.1c07690
– ident: e_1_2_7_48_1
  doi: 10.1021/jacs.3c04613
– ident: e_1_2_7_34_1
  doi: 10.1021/acscatal.0c03762
– ident: e_1_2_7_38_1
  doi: 10.1016/j.micromeso.2004.10.035
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jcat.2019.11.028
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jcat.2018.11.014
– ident: e_1_2_7_1_1
  doi: 10.1021/cr5002436
– ident: e_1_2_7_33_1
  doi: 10.1021/acscatal.3c02057
– ident: e_1_2_7_44_1
  doi: 10.1021/j100255a005
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jcat.2023.05.017
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.8b08165
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cattod.2023.114048
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jcat.2018.05.023
– ident: e_1_2_7_9_1
  doi: 10.1126/science.aaf7885
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jcat.2022.11.031
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jece.2021.105673
– ident: e_1_2_7_29_1
  doi: 10.1038/s41467-023-37261-x
SSID ssj0028806
Score 2.4876144
Snippet Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined...
Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined...
Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward systhesis of confined...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202507525
SubjectTerms Alkenes
Boron
Boron oxide
Boron oxides
Catalysts
Catalytic converters
Chemical synthesis
Confined structure
Dehydrogenation
Heterogeneous catalysis
Hydrogen bonding
Hydroxyl groups
Molecular dynamics
Oxidative dehydrogenation
Propane
Silica
Silicon dioxide
Species
Title Tri‐Coordinated Boron Species in Confined Boron Oxide Catalysts for Enhanced Low‐Temperature Oxidative Dehydrogenation of Propane
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202507525
https://www.ncbi.nlm.nih.gov/pubmed/40325351
https://www.proquest.com/docview/3229021699
https://www.proquest.com/docview/3200816895
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLvTCqzyWbpErIXEK-BHHyXHZLqJVCwgtErcodmyxQkrQZldAT1y49zf2lzB2NmkXDkhwi-VH_JiJv3E83yC0m3BtBMDWgClDglBZGmSU6CDJdGwjyW3uzyF_nUTHF-GPS3H5nxd_zQ_RHrg5zfDfa6fgmaoO_pGGOg9ssO9gC5eCOS9zd2HLoaLzlj-KgXDW7kWcBy4KfcPaSNjBfPX5XekF1JxHrn7rOVpGWdPp-sbJ9f50ovb172d8ju8Z1QpamuFS3KsFaRV9MMUaWuw34eA-ocfhePT34U-_BGt1VABCzfGhYz_APoK9qfCowM59EHrQ5JzejXKD--6A6L6aVBjwMR4UV_7OAf5Z3kJzQwOwvaZ19sU9DTn-Zq7u83EJsu3lBpcWn43Bui_MOro4Ggz7x8EshkOguSQiCBMdCU1yJqkC4yXnkWFU6SQ0MEapwb40wiSxtUorwA48AoiSiVxxSMY5t3wDLRRlYbYQllZaShWXOjQhl3FGYhVrmlnNRBwR20F7zRqmNzVVR1qTMrPUTWvaTmsHdZslTmcqW6XcMd8zGiVJB31ts2GS3R8UGGA5dWWID1SSQBObtWi0rwoJZ4IL2kHML_ArfUh7J98HbWr7LZU-o4_u2V8ell20MBlPzReASBO149XgCb4TCyM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41xmFc-P7oGGAkEKdsiR3HyYHDaDu1rCsIOmm3EDu2Vk1KpqbVKCcu3Pkr_BV-Ar-E104TVDggIe3A0bHj-OP9dPw-L8CzhCnN0Wz1qNS-F0oTeFngKy_JVGwiwUzuziGPxtHgOHx9wk824FsTC1PjQ7QHbpYznLy2DG4PpPd-oYbaEGx08FCHC06be5WHenmBXlv1ctjDLX5O6UF_0h14q8QCnmLC516YqIgrP6cikGhR5yzSNJAqCTX2JhQ6PZrrJDZGKokKjUWoNzOeS4bFOGeGYb9X4KpNI27h-nvvWsQqiuxQBzQx5tm89w1OpE_31se7rgf_MG7XbWWn7A5uwPdmmeo7Lme7i7ncVZ9-Q5D8r9bxJlxfmd5kv-aVW7Chi9uw1W0y3t2BL5PZ9Mfnr90ShzQt0AjPySsL8EDen2sUgRWZFsRGSOKUm5o3H6e5Jl17Bras5hVBF4D0i1N3rYKMygvsbqLRM6mRq11zh7ROevp0mc9KZF_HGqQ05O2sRNGs78LxpazCPdgsykI_ACKMMEEgmVChDpmIMz-WsQoyoyiPI9904EVDNOl5jUaS1rjTNLXbmLbb2IGdhqbSlVSqUmbB_WkQJUkHnrbVuMj2JxFOsFzYNr7LxZJgF_drWmw_FfqMcsaDDlBHUX8ZQ7o_Hvbb0va_vPQEtgaTo1E6Go4PH8I1-9zdlRY7sDmfLfQjtAjn8rHjQQIfLptYfwKMKmiE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8WSjESiFNax07i5MCh7I-6tCwVbKXeQuzY6gopWW12VZYTF-48Cq_CK_AkjJ1NqoUDElIPHB07jj2e8cw4428AniVc6RDNVo9JTb1AGt_LfKq8JFOxiQQ3uTuHfDOK9o-D1yfhyQZ8b-7C1PgQ7YGblQy3X1sBn-Zm9xw01N7ARv8OVbgIWRNWeaCXZ-i0VS-HPVzh54wN-uPuvrfKK-ApLmjoBYmKQkVzJnyJBnXOI818qZJAY29Coc-jQ53ExkglUZ_xCNVmFuaSYzHOueHY7yW4HEQ0sckieu9awCqG0lDfZ-Lcs2nvG5hIynbXx7uuBv-wbddNZafrBjfgR0OlOsTl485iLnfU598AJP8nMt6E6yvDm-zVknILNnRxG652m3x3d-DreDb5-eVbt8QhTQo0wXPyysI7kPdTjRtgRSYFsfcjccZNzdtPk1yTrj0BW1bziqADQPrFqQuqIIflGXY31uiX1LjVrrnDWSc9fbrMZyUKrxMMUhpyNCtxY9Z34fhCqHAPNouy0A-ACCOM70suVKADLuKMxjJWfmYUC-OImg68aHgmndZYJGmNOs1Su4xpu4wd2GpYKl3tSVXKLbQ_86Mk6cDTthqJbH8R4QTLhW1DXSaWBLu4X7Ni-6mAchby0O8Acwz1lzGke6Nhvy09_JeXnsCVo94gPRyODh7BNfvYBUqLLdiczxb6MZqDc7ntJJDAh4vm1V_Rwmcz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tri-Coordinated+Boron+Species+in+Confined+Boron+Oxide+Catalysts+for+Enhanced+Low-Temperature+Oxidative+Dehydrogenation+of+Propane&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zheng%2C+Yuenan&rft.au=Chen%2C+Weixi&rft.au=Liu%2C+Zhankai&rft.au=Lu%2C+Wen-Duo&rft.date=2025-07-07&rft.eissn=1521-3773&rft.volume=64&rft.issue=28&rft.spage=e202507525&rft_id=info:doi/10.1002%2Fanie.202507525&rft_id=info%3Apmid%2F40325351&rft.externalDocID=40325351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon