Tri‐Coordinated Boron Species in Confined Boron Oxide Catalysts for Enhanced Low‐Temperature Oxidative Dehydrogenation of Propane
Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spat...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 28; pp. e202507525 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
07.07.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low‐temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell and subsequent oxidization steps. The in situ generated boron–oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri‐coordinated B─OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BOx species increased significantly in molten state, favoring the dispersion of BOx species and formation of B─OH groups, which drove the uprush of propane conversion.
The confined BOx@SiO2 with highly dispersed BOx species was synthesized by the in situ transformation of BN@SiO2, which showed a remarkable activity of a unique C3H8 conversion uprush increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for oxidative dehydrogenation of propane. The key for the efficient C3H8 activation was the increased amount of tri‐coordinated B─OH derived from the dispersion of molten BOx species within spatially confined SiO2. |
---|---|
AbstractList | Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low‐temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell and subsequent oxidization steps. The in situ generated boron–oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri‐coordinated B─OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BOx species increased significantly in molten state, favoring the dispersion of BOx species and formation of B─OH groups, which drove the uprush of propane conversion. Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low‐temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell and subsequent oxidization steps. The in situ generated boron–oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri‐coordinated B─OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BOx species increased significantly in molten state, favoring the dispersion of BOx species and formation of B─OH groups, which drove the uprush of propane conversion. The confined BOx@SiO2 with highly dispersed BOx species was synthesized by the in situ transformation of BN@SiO2, which showed a remarkable activity of a unique C3H8 conversion uprush increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for oxidative dehydrogenation of propane. The key for the efficient C3H8 activation was the increased amount of tri‐coordinated B─OH derived from the dispersion of molten BOx species within spatially confined SiO2. Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron-based catalysts commonly using H BO is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BO @SiO catalyst showing an impressive low-temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO shell and subsequent oxidization steps. The in situ generated boron-oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BO @SiO exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri-coordinated B─OH (B[3] and B[3] ) active sites from the dispersion of molten BO species in confined SiO . Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BO species increased significantly in molten state, favoring the dispersion of BO species and formation of B─OH groups, which drove the uprush of propane conversion. Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward systhesis of confined boron-based catalyst commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low-temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell, and subsequent oxidization steps. The in situ generated boron-oxygen species were anchored to silica shells via B-O-Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri-coordinated B-OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angle of O-B-O and B-O-B and system disorder of BOx species increased significantly on molten state, favoring the dispersion of BOx species and formation of B-OH groups, which drove the uprush of propane conversion.Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward systhesis of confined boron-based catalyst commonly using H3BO3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BOx@SiO2 catalyst showing an impressive low-temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO2 shell, and subsequent oxidization steps. The in situ generated boron-oxygen species were anchored to silica shells via B-O-Si and hydrogen bonds. BOx@SiO2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri-coordinated B-OH (B[3]a and B[3]b) active sites from the dispersion of molten BOx species in confined SiO2. Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angle of O-B-O and B-O-B and system disorder of BOx species increased significantly on molten state, favoring the dispersion of BOx species and formation of B-OH groups, which drove the uprush of propane conversion. Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined boron‐based catalysts commonly using H 3 BO 3 is intractable because of its abundant hydroxyl groups easily interacting with the supports in a spatially nonselective manner. Herein, we managed to construct a confined BO x @SiO 2 catalyst showing an impressive low‐temperature (400 °C) activity. This catalyst was prepared via the encapsulation of BN nanosheets by SiO 2 shell and subsequent oxidization steps. The in situ generated boron–oxygen species were anchored to silica shells via B─O─Si and hydrogen bonds. BO x @SiO 2 exhibited a unique catalytic behavior of propane conversion uprush, increasing from 5.3% at 410 °C to 28.4% at 424.6 °C for ODHP reaction. That was attributed to the efficient activation of propane triggered by the newly formed tri‐coordinated B─OH (B[3] a and B[3] b ) active sites from the dispersion of molten BO x species in confined SiO 2 . Ab initio molecular dynamics (AIMD) simulations revealed that in the confined structure, the bond angles of O─B─O and B─O─B and system disorder of BO x species increased significantly in molten state, favoring the dispersion of BO x species and formation of B─OH groups, which drove the uprush of propane conversion. |
Author | Li, Wen‐Cui Wang, Dongqi Chen, Weixi Lu, Wen‐Duo Lu, An‐Hui Liu, Zhankai Zheng, Yuenan |
Author_xml | – sequence: 1 givenname: Yuenan surname: Zheng fullname: Zheng, Yuenan organization: Dalian University of Technology – sequence: 2 givenname: Weixi surname: Chen fullname: Chen, Weixi organization: Dalian University of Technology – sequence: 3 givenname: Zhankai surname: Liu fullname: Liu, Zhankai organization: Dalian University of Technology – sequence: 4 givenname: Wen‐Duo surname: Lu fullname: Lu, Wen‐Duo organization: Dalian University of Technology – sequence: 5 givenname: Wen‐Cui surname: Li fullname: Li, Wen‐Cui organization: Dalian University of Technology – sequence: 6 givenname: Dongqi surname: Wang fullname: Wang, Dongqi organization: Dalian University of Technology – sequence: 7 givenname: An‐Hui surname: Lu fullname: Lu, An‐Hui email: anhuilu@dlut.edu.cn organization: Dalian University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40325351$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0T1v1DAYB3ALFdEXWBmRJRaWHH6JE3ss4YBKpxaJY44c-wl1lbODnbTcxsLOZ-wnqcuVq8TCZFv-_R8_8nOMDnzwgNBLShaUEPZWewcLRpggtWDiCTqigtGC1zU_yPuS86KWgh6i45SuspeSVM_QYUk4E1zQI_RrHd3tz99NCNE6ryew-F2IweMvIxgHCTuPm-B75_c3Fz-cBdzoSQ_bNCXch4iX_lJ7k8kq3ORya9iMEPU0R_jD9eSuAb-Hy62N4Rvkd1wuFHr8OYZRe3iOnvZ6SPDiYT1BXz8s182nYnXx8aw5XRWG10QUpTKVMMSymnZCKMsrYLQzqoT8AbWhsgQBSvZ9ZzpJJa-IpFrYjuejtLznJ-jNru4Yw_cZ0tRuXDIwDLmHMKeWM5IjlVQi09f_0KswR5-7y4opwmilVFavHtTcbcC2Y3QbHbft3w_OYLEDJoaUIvR7Qkl7P8H2foLtfoI5oHaBGzfA9j-6PT0_Wz5m7wBHGKFg |
Cites_doi | 10.1016/j.jcat.2014.05.017 10.1016/j.checat.2024.101028 10.1016/j.jcat.2020.03.021 10.1002/anie.202307470 10.1080/01614940600631413 10.1016/j.jcat.2022.02.017 10.1002/cctc.201700725 10.1002/cctc.201700004 10.1021/acs.chemmater.0c00104 10.1021/acs.accounts.7b00475 10.1126/science.285.5428.712 10.1021/acscatal.9b02284 10.1016/S1872-2067(18)63060-8 10.1016/S0730-725X(96)00180-4 10.1021/acscatal.9b02922 10.1080/01614940.2022.2113084 10.1039/D0CS01174F 10.1021/acscatal.2c01622 10.1080/14786435.2017.1296201 10.1039/D4SC05399K 10.1016/j.micromeso.2011.07.021 10.1021/acscatal.3c01759 10.1039/f19898500837 10.1021/acs.jpclett.4c02144 10.1016/S1872-2067(20)63654-3 10.1016/0021-9517(89)90070-5 10.1002/anie.201914696 10.1002/sia.740140503 10.1021/jacs.1c13563 10.1126/science.abe7935 10.1021/acs.jpcc.9b07429 10.1002/anie.202106713 10.1126/sciadv.aav8063 10.1021/acs.jpcc.1c07690 10.1021/jacs.3c04613 10.1021/acscatal.0c03762 10.1016/j.micromeso.2004.10.035 10.1016/j.jcat.2019.11.028 10.1016/j.jcat.2018.11.014 10.1021/cr5002436 10.1021/acscatal.3c02057 10.1021/j100255a005 10.1016/j.jcat.2023.05.017 10.1021/jacs.8b08165 10.1016/j.cattod.2023.114048 10.1016/j.jcat.2018.05.023 10.1126/science.aaf7885 10.1016/j.jcat.2022.11.031 10.1016/j.jece.2021.105673 10.1038/s41467-023-37261-x |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202507525 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 40325351 10_1002_anie_202507525 ANIE202507525 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22302030; 12241203 – fundername: State Key Program of the National Natural Science Foundation of China funderid: 21733002 – fundername: National Natural Science Foundation of China grantid: 22302030 – fundername: National Natural Science Foundation of China grantid: 12241203 – fundername: State Key Program of the National Natural Science Foundation of China grantid: 21733002 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3705-49c65c0d271b559d36e21bc94e0257c184e5e98ffbcb81836081a5db3cb88d3f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 18:23:50 EDT 2025 Mon Aug 18 02:42:36 EDT 2025 Sat Jul 12 03:49:49 EDT 2025 Thu Aug 21 00:07:33 EDT 2025 Tue Jul 08 09:30:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | Confined structure Heterogeneous catalysis Boron oxide Oxidative dehydrogenation Propane |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3705-49c65c0d271b559d36e21bc94e0257c184e5e98ffbcb81836081a5db3cb88d3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202507525 |
PMID | 40325351 |
PQID | 3229021699 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3200816895 proquest_journals_3229021699 pubmed_primary_40325351 crossref_primary_10_1002_anie_202507525 wiley_primary_10_1002_anie_202507525_ANIE202507525 |
PublicationCentury | 2000 |
PublicationDate | July 7, 2025 |
PublicationDateYYYYMMDD | 2025-07-07 |
PublicationDate_xml | – month: 07 year: 2025 text: July 7, 2025 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2014; 316 1989; 85 2019; 9 2023; 13 1989; 116 2023; 14 2019; 5 2020; 41 2020; 385 2021; 125 2018; 365 2023; 420 2023; 145 2020; 381 1999; 285 2019; 369 2023; 424 2020; 59 2020; 10 2020; 32 2021; 50 1996; 14 2019; 141 2012; 148 1985; 89 2024; 15 2014; 114 2017; 9 2019; 123 2022; 144 2023; 62 2017; 97 2018; 39 2006; 48 2022; 12 2016; 354 2024; 66 2023; 417 2021; 372 2018; 51 2024; 4 2022; 408 2021; 60 1989; 14 2005; 79 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 14 start-page: 1478 year: 2023 publication-title: Nat. Commun. – volume: 85 start-page: 837 year: 1989 publication-title: J. Chem. Soc. Faraday Trans. 1 – volume: 9 year: 2021 publication-title: J. Environ. Chem. Eng. – volume: 424 start-page: 121 year: 2023 end-page: 129 publication-title: J. Catal. – volume: 116 start-page: 1 year: 1989 end-page: 10 publication-title: J. Catal. – volume: 59 start-page: 6546 year: 2020 end-page: 6550 publication-title: Angew. Chem. Int. Ed. – volume: 369 start-page: 296 year: 2019 end-page: 301 publication-title: J. Catal. – volume: 48 start-page: 199 year: 2006 end-page: 268 publication-title: Catal. Rev. Sci. Eng. – volume: 9 start-page: 8592 year: 2019 end-page: 8621 publication-title: ACS Catal. – volume: 381 start-page: 599 year: 2020 end-page: 607 publication-title: J. Catal. – volume: 144 start-page: 5930 year: 2022 end-page: 5936 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2024 publication-title: Chem. Catal. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 1788 year: 2017 end-page: 1793 publication-title: ChemCatChem – volume: 39 start-page: 908 year: 2018 end-page: 913 publication-title: Chin. J. Catal. – volume: 385 start-page: 176 year: 2020 end-page: 182 publication-title: J. Catal. – volume: 60 start-page: 19691 year: 2021 end-page: 19695 publication-title: Angew. Chem. Int. Ed. – volume: 123 start-page: 27000 year: 2019 end-page: 27011 publication-title: J. Phys. Chem. C – volume: 9 start-page: 8263 year: 2019 end-page: 8270 publication-title: ACS Catal. – volume: 13 start-page: 8219 year: 2023 end-page: 8236 publication-title: ACS Catal. – volume: 14 start-page: 224 year: 1989 end-page: 232 publication-title: Surf. Interface Anal. – volume: 97 start-page: 1334 year: 2017 end-page: 1345 publication-title: Philos. Mag. – volume: 125 start-page: 24930 year: 2021 end-page: 24944 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 3293 year: 2017 end-page: 3297 publication-title: ChemCatChem – volume: 417 start-page: 14 year: 2023 end-page: 21 publication-title: J. Catal. – volume: 285 start-page: 712 year: 1999 end-page: 715 publication-title: Science – volume: 14 start-page: 911 year: 1996 end-page: 913 publication-title: J. Magn. Reson. Imaging – volume: 51 start-page: 640 year: 2018 end-page: 648 publication-title: Acc. Chem. Res. – volume: 145 start-page: 17265 year: 2023 end-page: 17273 publication-title: J. Am. Chem. Soc. – volume: 354 start-page: 1570 year: 2016 end-page: 1573 publication-title: Science – volume: 41 start-page: 1837 year: 2020 end-page: 1845 publication-title: Chinese J. Catal. – volume: 13 start-page: 9201 year: 2023 end-page: 9212 publication-title: ACS Catal. – volume: 148 start-page: 80 year: 2012 end-page: 87 publication-title: Micropor. Mesopor. Mater. – volume: 89 start-page: 1569 year: 1985 end-page: 1571 publication-title: J. Phys. Chem. – volume: 50 start-page: 1438 year: 2021 end-page: 1468 publication-title: Chem. Soc. Rev. – volume: 420 year: 2023 publication-title: Catal. Today – volume: 79 start-page: 215 year: 2005 end-page: 224 publication-title: Micropor. Mesopor. Mater. – volume: 32 start-page: 3109 year: 2020 end-page: 3121 publication-title: Chem. Mater. – volume: 316 start-page: 240 year: 2014 end-page: 250 publication-title: J. Catal. – volume: 365 start-page: 14 year: 2018 end-page: 23 publication-title: J. Catal. – volume: 114 start-page: 10613 year: 2014 end-page: 10653 publication-title: Chem. Rev. – volume: 15 start-page: 18303 year: 2024 end-page: 18309 publication-title: Chem. Sci. – volume: 408 start-page: 133 year: 2022 end-page: 141 publication-title: J. Catal. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 12 start-page: 7368 year: 2022 end-page: 7376 publication-title: ACS Catal. – volume: 15 start-page: 8984 year: 2024 end-page: 8989 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 13852 year: 2020 end-page: 13866 publication-title: ACS Catal. – volume: 141 start-page: 182 year: 2019 end-page: 190 publication-title: J. Am. Chem. Soc. – volume: 66 start-page: 1208 year: 2024 end-page: 1287 publication-title: Catal. Rev. – volume: 372 start-page: 76 year: 2021 end-page: 80 publication-title: Science – ident: e_1_2_7_39_1 doi: 10.1016/j.jcat.2014.05.017 – ident: e_1_2_7_18_1 doi: 10.1016/j.checat.2024.101028 – ident: e_1_2_7_20_1 doi: 10.1016/j.jcat.2020.03.021 – ident: e_1_2_7_25_1 doi: 10.1002/anie.202307470 – ident: e_1_2_7_5_1 doi: 10.1080/01614940600631413 – ident: e_1_2_7_22_1 doi: 10.1016/j.jcat.2022.02.017 – ident: e_1_2_7_10_1 doi: 10.1002/cctc.201700725 – ident: e_1_2_7_8_1 doi: 10.1002/cctc.201700004 – ident: e_1_2_7_45_1 doi: 10.1021/acs.chemmater.0c00104 – ident: e_1_2_7_30_1 doi: 10.1021/acs.accounts.7b00475 – ident: e_1_2_7_4_1 doi: 10.1126/science.285.5428.712 – ident: e_1_2_7_15_1 doi: 10.1021/acscatal.9b02284 – ident: e_1_2_7_11_1 doi: 10.1016/S1872-2067(18)63060-8 – ident: e_1_2_7_41_1 doi: 10.1016/S0730-725X(96)00180-4 – ident: e_1_2_7_2_1 doi: 10.1021/acscatal.9b02922 – ident: e_1_2_7_7_1 doi: 10.1080/01614940.2022.2113084 – ident: e_1_2_7_6_1 doi: 10.1039/D0CS01174F – ident: e_1_2_7_35_1 doi: 10.1021/acscatal.2c01622 – ident: e_1_2_7_47_1 doi: 10.1080/14786435.2017.1296201 – ident: e_1_2_7_49_1 doi: 10.1039/D4SC05399K – ident: e_1_2_7_40_1 doi: 10.1016/j.micromeso.2011.07.021 – ident: e_1_2_7_17_1 doi: 10.1021/acscatal.3c01759 – ident: e_1_2_7_43_1 doi: 10.1039/f19898500837 – ident: e_1_2_7_50_1 doi: 10.1021/acs.jpclett.4c02144 – ident: e_1_2_7_26_1 doi: 10.1016/S1872-2067(20)63654-3 – ident: e_1_2_7_42_1 doi: 10.1016/0021-9517(89)90070-5 – ident: e_1_2_7_21_1 doi: 10.1002/anie.201914696 – ident: e_1_2_7_36_1 doi: 10.1002/sia.740140503 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.1c13563 – ident: e_1_2_7_24_1 doi: 10.1126/science.abe7935 – ident: e_1_2_7_16_1 doi: 10.1021/acs.jpcc.9b07429 – ident: e_1_2_7_32_1 doi: 10.1002/anie.202106713 – ident: e_1_2_7_14_1 doi: 10.1126/sciadv.aav8063 – ident: e_1_2_7_46_1 doi: 10.1021/acs.jpcc.1c07690 – ident: e_1_2_7_48_1 doi: 10.1021/jacs.3c04613 – ident: e_1_2_7_34_1 doi: 10.1021/acscatal.0c03762 – ident: e_1_2_7_38_1 doi: 10.1016/j.micromeso.2004.10.035 – ident: e_1_2_7_27_1 doi: 10.1016/j.jcat.2019.11.028 – ident: e_1_2_7_28_1 doi: 10.1016/j.jcat.2018.11.014 – ident: e_1_2_7_1_1 doi: 10.1021/cr5002436 – ident: e_1_2_7_33_1 doi: 10.1021/acscatal.3c02057 – ident: e_1_2_7_44_1 doi: 10.1021/j100255a005 – ident: e_1_2_7_37_1 doi: 10.1016/j.jcat.2023.05.017 – ident: e_1_2_7_31_1 doi: 10.1021/jacs.8b08165 – ident: e_1_2_7_19_1 doi: 10.1016/j.cattod.2023.114048 – ident: e_1_2_7_12_1 doi: 10.1016/j.jcat.2018.05.023 – ident: e_1_2_7_9_1 doi: 10.1126/science.aaf7885 – ident: e_1_2_7_23_1 doi: 10.1016/j.jcat.2022.11.031 – ident: e_1_2_7_3_1 doi: 10.1016/j.jece.2021.105673 – ident: e_1_2_7_29_1 doi: 10.1038/s41467-023-37261-x |
SSID | ssj0028806 |
Score | 2.4876144 |
Snippet | Boron‐based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined... Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward synthesis of confined... Boron-based catalysts exhibit great potential for oxidative dehydrogenation of propane (ODHP) to produce olefins. The straightforward systhesis of confined... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202507525 |
SubjectTerms | Alkenes Boron Boron oxide Boron oxides Catalysts Catalytic converters Chemical synthesis Confined structure Dehydrogenation Heterogeneous catalysis Hydrogen bonding Hydroxyl groups Molecular dynamics Oxidative dehydrogenation Propane Silica Silicon dioxide Species |
Title | Tri‐Coordinated Boron Species in Confined Boron Oxide Catalysts for Enhanced Low‐Temperature Oxidative Dehydrogenation of Propane |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202507525 https://www.ncbi.nlm.nih.gov/pubmed/40325351 https://www.proquest.com/docview/3229021699 https://www.proquest.com/docview/3200816895 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLvTCqzyWbpErIXEK-BHHyXHZLqJVCwgtErcodmyxQkrQZldAT1y49zf2lzB2NmkXDkhwi-VH_JiJv3E83yC0m3BtBMDWgClDglBZGmSU6CDJdGwjyW3uzyF_nUTHF-GPS3H5nxd_zQ_RHrg5zfDfa6fgmaoO_pGGOg9ssO9gC5eCOS9zd2HLoaLzlj-KgXDW7kWcBy4KfcPaSNjBfPX5XekF1JxHrn7rOVpGWdPp-sbJ9f50ovb172d8ju8Z1QpamuFS3KsFaRV9MMUaWuw34eA-ocfhePT34U-_BGt1VABCzfGhYz_APoK9qfCowM59EHrQ5JzejXKD--6A6L6aVBjwMR4UV_7OAf5Z3kJzQwOwvaZ19sU9DTn-Zq7u83EJsu3lBpcWn43Bui_MOro4Ggz7x8EshkOguSQiCBMdCU1yJqkC4yXnkWFU6SQ0MEapwb40wiSxtUorwA48AoiSiVxxSMY5t3wDLRRlYbYQllZaShWXOjQhl3FGYhVrmlnNRBwR20F7zRqmNzVVR1qTMrPUTWvaTmsHdZslTmcqW6XcMd8zGiVJB31ts2GS3R8UGGA5dWWID1SSQBObtWi0rwoJZ4IL2kHML_ArfUh7J98HbWr7LZU-o4_u2V8ell20MBlPzReASBO149XgCb4TCyM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41xmFc-P7oGGAkEKdsiR3HyYHDaDu1rCsIOmm3EDu2Vk1KpqbVKCcu3Pkr_BV-Ar-E104TVDggIe3A0bHj-OP9dPw-L8CzhCnN0Wz1qNS-F0oTeFngKy_JVGwiwUzuziGPxtHgOHx9wk824FsTC1PjQ7QHbpYznLy2DG4PpPd-oYbaEGx08FCHC06be5WHenmBXlv1ctjDLX5O6UF_0h14q8QCnmLC516YqIgrP6cikGhR5yzSNJAqCTX2JhQ6PZrrJDZGKokKjUWoNzOeS4bFOGeGYb9X4KpNI27h-nvvWsQqiuxQBzQx5tm89w1OpE_31se7rgf_MG7XbWWn7A5uwPdmmeo7Lme7i7ncVZ9-Q5D8r9bxJlxfmd5kv-aVW7Chi9uw1W0y3t2BL5PZ9Mfnr90ShzQt0AjPySsL8EDen2sUgRWZFsRGSOKUm5o3H6e5Jl17Bras5hVBF4D0i1N3rYKMygvsbqLRM6mRq11zh7ROevp0mc9KZF_HGqQ05O2sRNGs78LxpazCPdgsykI_ACKMMEEgmVChDpmIMz-WsQoyoyiPI9904EVDNOl5jUaS1rjTNLXbmLbb2IGdhqbSlVSqUmbB_WkQJUkHnrbVuMj2JxFOsFzYNr7LxZJgF_drWmw_FfqMcsaDDlBHUX8ZQ7o_Hvbb0va_vPQEtgaTo1E6Go4PH8I1-9zdlRY7sDmfLfQjtAjn8rHjQQIfLptYfwKMKmiE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8WSjESiFNax07i5MCh7I-6tCwVbKXeQuzY6gopWW12VZYTF-48Cq_CK_AkjJ1NqoUDElIPHB07jj2e8cw4428AniVc6RDNVo9JTb1AGt_LfKq8JFOxiQQ3uTuHfDOK9o-D1yfhyQZ8b-7C1PgQ7YGblQy3X1sBn-Zm9xw01N7ARv8OVbgIWRNWeaCXZ-i0VS-HPVzh54wN-uPuvrfKK-ApLmjoBYmKQkVzJnyJBnXOI818qZJAY29Coc-jQ53ExkglUZ_xCNVmFuaSYzHOueHY7yW4HEQ0sckieu9awCqG0lDfZ-Lcs2nvG5hIynbXx7uuBv-wbddNZafrBjfgR0OlOsTl485iLnfU598AJP8nMt6E6yvDm-zVknILNnRxG652m3x3d-DreDb5-eVbt8QhTQo0wXPyysI7kPdTjRtgRSYFsfcjccZNzdtPk1yTrj0BW1bziqADQPrFqQuqIIflGXY31uiX1LjVrrnDWSc9fbrMZyUKrxMMUhpyNCtxY9Z34fhCqHAPNouy0A-ACCOM70suVKADLuKMxjJWfmYUC-OImg68aHgmndZYJGmNOs1Su4xpu4wd2GpYKl3tSVXKLbQ_86Mk6cDTthqJbH8R4QTLhW1DXSaWBLu4X7Ni-6mAchby0O8Acwz1lzGke6Nhvy09_JeXnsCVo94gPRyODh7BNfvYBUqLLdiczxb6MZqDc7ntJJDAh4vm1V_Rwmcz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tri-Coordinated+Boron+Species+in+Confined+Boron+Oxide+Catalysts+for+Enhanced+Low-Temperature+Oxidative+Dehydrogenation+of+Propane&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zheng%2C+Yuenan&rft.au=Chen%2C+Weixi&rft.au=Liu%2C+Zhankai&rft.au=Lu%2C+Wen-Duo&rft.date=2025-07-07&rft.eissn=1521-3773&rft.volume=64&rft.issue=28&rft.spage=e202507525&rft_id=info:doi/10.1002%2Fanie.202507525&rft_id=info%3Apmid%2F40325351&rft.externalDocID=40325351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |