A Neural Dynamic Model of the Perceptual Grounding of Spatial and Movement Relations
How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relationa...
Saved in:
Published in | Cognitive science Vol. 45; no. 10; pp. e13045 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time‐ and state‐continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition. |
---|---|
AbstractList | How does the human brain link relational concepts to perceptual experience? For example, a speaker may say "the cup to the left of the computer" to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time- and state-continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition.How does the human brain link relational concepts to perceptual experience? For example, a speaker may say "the cup to the left of the computer" to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time- and state-continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition. How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time‐ and state‐continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition. How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time‐ and state‐continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition. |
Author | Richter, Mathis Schöner, Gregor Lins, Jonas |
Author_xml | – sequence: 1 givenname: Mathis orcidid: 0000-0002-5421-9126 surname: Richter fullname: Richter, Mathis email: mathis.richter@ini.rub.de organization: Ruhr‐Universität Bochum – sequence: 2 givenname: Jonas surname: Lins fullname: Lins, Jonas organization: Ruhr‐Universität Bochum – sequence: 3 givenname: Gregor surname: Schöner fullname: Schöner, Gregor organization: Ruhr‐Universität Bochum |
BookMark | eNp9kEFPAjEQhRuDiYBe_AWbeDEmi-223bJHgoomKEbwvOm2Ay5ZWmx3Nfx7u-CJGOcyybzvTWZeD3WMNYDQJcEDEupW2ZUfEIoZP0FdwjmJU4GzDupimrIYJ4SeoZ73a4xxmtKsixaj6AUaJ6vobmfkplTRs9VQRXYZ1R8QvYJTsK2boE-cbYwuzarV5ltZl2EojQ6GL9iAqaM3qMLUGn-OTpey8nDx2_vo_eF-MX6Mp7PJ03g0jRUVmMdEc64ZHlLBlgWhUBRcY8ak0DrhTGUpsEQzkQHmRSAyIZjAoEmhKAfBU9pH14e9W2c_G_B1vim9gqqSBmzj84QPE0LCqyygV0fo2jbOhOtaig5DGmm7EB8o5az3Dpa5Kuv9T7WTZZUTnLcx523M-T7mYLk5smxduZFu9zdMDvB3WcHuHzIfzybzg-cHB02ONA |
CitedBy_id | crossref_primary_10_3758_s13428_024_02594_y crossref_primary_10_1016_j_dr_2024_101182 crossref_primary_10_1111_cogs_13491 crossref_primary_10_1007_s11571_023_10007_7 crossref_primary_10_1159_000541024 crossref_primary_10_1111_cogs_13442 |
Cites_doi | 10.1017/CBO9780511620850 10.1109/CVPR42600.2020.00950 10.1515/cogl.1995.6.1.63 10.1177/107385840100700512 10.1017/S0140525X99002149 10.1177/0023830916651097 10.1037/a0022643 10.1037/0033-295X.99.3.480 10.1515/cogl.1995.6.4.347 10.1038/nrn1706 10.3389/fnbot.2019.00095 10.1523/JNEUROSCI.19-20-09016.1999 10.1613/jair.1327 10.1098/rstb.2011.0123 10.1017/S0140525X00029733 10.1162/0899766053630332 10.1162/jocn.1997.9.2.222 10.1109/IROS.2012.6386153 10.1007/BF00337259 10.1523/JNEUROSCI.5179-08.2009 10.1111/j.1467-8721.2006.00437.x 10.1037/0033-295X.115.1.1 10.1017/S0140525X00005756 10.1109/TPAMI.2007.56 10.1111/1467-7687.00295 10.1126/science.1225266 10.1111/cogs.12369 10.1016/j.tics.2010.06.002 10.1073/pnas.1303547110 10.1109/72.377968 10.7551/mitpress/9629.001.0001 10.1146/annurev-vision-082114-035447 10.1126/science.1127242 10.3389/fnbot.2017.00023 10.3389/neuro.10.001.2009 10.1111/j.1467-9280.2009.02329.x 10.1017/S0140525X12001495 10.1523/JNEUROSCI.4307-10.2011 10.1016/S0165-0270(99)00125-9 10.1207/s15516709cog1001_1 10.1111/j.1551-6709.2010.01114.x 10.1007/s00422-012-0484-8 10.1146/annurev.neuro.051508.135550 10.1109/TCDS.2020.3013768 10.1093/oxfordhb/9780199734689.013.0005 10.1016/j.neunet.2010.07.012 10.1017/S0034670500028953 10.1080/09540091.2017.1405382 10.1002/bbpc.19850890625 10.4279/pip.050006 10.7551/mitpress/4107.003.0015 10.3389/fpsyg.2018.01287 10.1007/978-3-319-09903-3_9 10.1007/978-1-4613-0003-8 10.1016/j.tics.2015.01.002 10.1007/978-3-642-33269-2_73 10.1016/0010-0285(80)90005-5 10.1371/journal.pone.0115758 10.3758/s13414-019-01898-y 10.1038/14819 10.1038/35058500 10.1093/acprof:oso/9780195324259.001.0001 10.1038/81460 10.1093/acprof:oso/9780199217274.003.0011 10.1109/ROMAN.2012.6343746 10.1016/j.tics.2005.06.013 10.1016/S1364-6613(99)01361-3 10.3389/fnbot.2016.00014 10.1016/j.visres.2010.02.008 10.1146/annurev.neuro.27.070203.144152 10.1007/978-1-4471-1546-5_22 10.1016/j.cognition.2011.11.002 10.3758/BF03196322 10.1016/j.tics.2008.01.006 10.3758/s13414-019-01847-9 10.1075/cilt.50.08tal 10.1016/0004-3702(90)90007-M 10.1016/j.artint.2005.06.007 10.1017/S0140525X97001611 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). |
DBID | 24P AAYXX CITATION 7TK AHOVV 7X8 |
DOI | 10.1111/cogs.13045 |
DatabaseName | Wiley Online Library Open Access CrossRef Neurosciences Abstracts Education Research Index MEDLINE - Academic |
DatabaseTitle | CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Psychology |
EISSN | 1551-6709 |
EndPage | n/a |
ExternalDocumentID | 10_1111_cogs_13045 COGS13045 |
Genre | article |
GrantInformation_xml | – fundername: DFG funderid: SCHO 336/12‐1 |
GroupedDBID | --- --K --Z -DZ -W8 -~X .3N .DC .GA .GO .Y3 05W 0R~ 10A 1B1 1OC 1RT 1~5 24P 29F 31~ 33P 3EH 3R3 3WU 4.4 4G. 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 53G 5GY 5HH 5LA 5VS 66C 6J9 6TJ 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 9M8 A04 AABNI AACTN AAEDT AAESR AAHHS AAHQN AAHSB AALRI AAMNL AAONW AAOUF AAQFI AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIVO ABLJU ABMAC ABPVW ABSOO ABWVN ABZLS ACAHQ ACBKW ACCFJ ACCZN ACFBH ACGFO ACGFS ACHQT ACIUM ACNCT ACPOU ACPRK ACRPL ACSCC ACXQS ADBBV ADEMA ADEOM ADIYS ADIZJ ADJOM ADKYN ADMGS ADMHG ADMUD ADNMO ADVLN ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKFF AFPWT AFWVQ AFYRF AHBTC AHHHB AIAGR AIFKG AITUG AIURR AIWBW AJBDE AJWEG ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASTYK AZBYB AZVAB BAFTC BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 C1A CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRSSH DU5 EBD EBS EDJ EJD EMOBN F00 F01 F5P FDB FEDTE FGOYB FIRID FRP G-2 G-S G.N G50 GODZA HF~ HGLYW HHY HLZ HMQ HMW HVGLF HZ~ H~9 IHE IX1 J0M LATKE LC2 LC4 LEEKS LG9 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2V M3V M41 MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MS~ MVM MXFUL MXSSH N04 N06 N9A NF~ NQ- O66 O9- OIG OK1 OVD P2P P2W P2Y P4C PQQKQ Q.N Q11 QB0 QRW R.K R2- RIG ROL RPZ RWI RWL RX1 RXW SBC SEW SNS SPS SSZ SUPJJ SV3 TAE TAF TEORI TN5 TWZ U5U UB1 UQL VAE W8V W99 WBKPD WH7 WHDPE WHG WIH WII WIN WOHZO WQZ WRC WSUWO WUQ WXSBR XG1 XJT XPP XV2 YYP ZCG ZMT ZZTAW ~IA ~WP AAFWJ AAYWO AAYXX ACVFH ADCNI ADXHL AETEA AEUPX AEYWJ AFPUW AGHNM AGQPQ AIGII CITATION 7TK AAMMB AEFGJ AGXDD AHOVV AIDQK AIDYY 7X8 |
ID | FETCH-LOGICAL-c3705-1d55d408374fb13ebb5d044a7dd254c96e42d479e05b4fb977470ed1bc35e7563 |
IEDL.DBID | DR2 |
ISSN | 0364-0213 1551-6709 |
IngestDate | Fri Jul 11 03:45:09 EDT 2025 Fri Aug 29 02:49:13 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Tue Jul 01 04:19:46 EDT 2025 Wed Jan 22 16:27:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3705-1d55d408374fb13ebb5d044a7dd254c96e42d479e05b4fb977470ed1bc35e7563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5421-9126 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcogs.13045 |
PQID | 2583866366 |
PQPubID | 30149 |
PageCount | 40 |
ParticipantIDs | proquest_miscellaneous_2582110064 proquest_journals_2583866366 crossref_citationtrail_10_1111_cogs_13045 crossref_primary_10_1111_cogs_13045 wiley_primary_10_1111_cogs_13045_COGS13045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Cognitive science |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 21 2017; 41 2012; 122 2010; 14 2004; 27 1973; 13 1977; 27 2000; 3 2019; 13 2012; 367 1992; 99 2013; 5 1997; 9 2010; 23 2007; 29 2018; 9 1990; 46 2001 2000 1999; 19 2003; 6 2018; 30 2008; 115 2013; 110 1999; 94 2014; 7 2012; 338 1988 2010; 34 2015; 1 2015; 19 2017; 60 2009; 20 2012 2002; 9 1997; 20 1986; 10 2020; 82 2015; 10 2006; 15 2016; 10 2011; 31 1997 2008 2007 2008; 12 1999; 22 1996 1995 1999; 3 2012; 38 1999; 2 2006; 314 1985; 89 2012; 106 1995; 6 2009; 29 1999 2019; 81 2013; 36 2009; 32 1993; 16 2001; 7 2005; 167 2020 2017; 11 2005; 9 1980; 12 2010; 773 1980; 3 2019 2018 2005; 6 2017 2016 2001; 2 2015 2014 2009; 3 2005; 17 2010; 50 e_1_2_10_21_1 e_1_2_10_44_1 Talmy L. (e_1_2_10_88_1) 2017 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_51_1 Samuelson L. K. (e_1_2_10_71_1) 2016 Logan G. D. (e_1_2_10_45_1) 1996 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_22_1 e_1_2_10_41_1 Schöner G. (e_1_2_10_81_1) 2016 Schneegans S. (e_1_2_10_79_1) 2016 e_1_2_10_90_1 Tomasello M. (e_1_2_10_92_1) 1995 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Wilson H. R. (e_1_2_10_96_1) 1973; 13 e_1_2_10_60_1 Jackendoff R. (e_1_2_10_32_1) 2012 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 Sandamirskaya Y. (e_1_2_10_73_1) 2014; 7 Schöner G. (e_1_2_10_80_1) 2019 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 Schneegans S. (e_1_2_10_77_1) 2016 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_36_1 e_1_2_10_12_1 Martin A. E. (e_1_2_10_50_1) 2020 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 Knips G. (e_1_2_10_35_1) 2017; 11 Rutishauser U. (e_1_2_10_68_1) 2010; 773 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 11 issue: 9 year: 2017 article-title: A neural dynamics architecture for grasping that integrates perception and movement generation and enables on‐line updating publication-title: Frontiers in Neurorobotics – start-page: 1 year: 2020 end-page: 20 article-title: A compositional neural architecture for language publication-title: Journal of Cognitive Neuroscience – start-page: 121 year: 2016 end-page: 149 – year: 2020 article-title: Grounding spatial language in perception by combining concepts in a neural dynamic architecture – volume: 338 start-page: 1202 issue: 6111 year: 2012 end-page: 1205 article-title: A large‐scale model of the functioning brain publication-title: Science – volume: 2 start-page: 194 issue: 3 year: 2001 end-page: 203 article-title: Computational modelling of visual attention publication-title: Nature Reviews Neuroscience – start-page: 493 year: 1996 end-page: 529 – volume: 106 start-page: 89 issue: 2 year: 2012 end-page: 109 article-title: A neural mechanism for coordinate transformation predicts pre‐saccadic remapping publication-title: Biological Cybernetics – volume: 3 start-page: 417 issue: 3 year: 1980 end-page: 457 article-title: Minds, brains, and programs publication-title: Behavioral and Brain Sciences – volume: 3 start-page: 1 year: 2009 end-page: 28 article-title: A constructive mean‐field analysis of multi‐population neural networks with random synaptic weights and stochastic inputs publication-title: Frontiers in Computational Neuroscience – volume: 11 start-page: 1 year: 2017 end-page: 17 article-title: A neural‐dynamic architecture for concurrent estimation of object pose and identity publication-title: Frontiers in Neurorobotics – year: 2014 – volume: 314 start-page: 91 year: 2006 end-page: 94 article-title: Models of high‐level cognition publication-title: Science – volume: 6 start-page: 63 issue: 1 year: 1995 end-page: 88 article-title: A model of the human capacity for categorizing spatial relations publication-title: Cognitive Linguistics – volume: 23 start-page: 1164 issue: 10 year: 2010 end-page: 1179 article-title: An embodied account of serial order: How instabilities drive sequence generation publication-title: Neural Networks – volume: 60 start-page: 318 issue: 2 year: 2017 end-page: 329 article-title: Communicative success in spatial dialogue: The impact of functional features and dialogue strategies publication-title: Language and Speech – volume: 29 start-page: 6635 issue: 20 year: 2009 end-page: 6648 article-title: Estimates of the contribution of single neurons to perception depend on timescale and noise correlation publication-title: Journal of Neuroscience – year: 2018 article-title: A neural dynamic architecture that autonomously builds mental models – volume: 30 start-page: 53 issue: 1 year: 2018 end-page: 80 article-title: How infants' reaches reveal principles of sensorimotor decision making publication-title: Connection Science – volume: 82 start-page: 775 year: 2020 end-page: 798 article-title: Scene memory and spatial inhibition in visual search—A neural dynamic process model and new experimental evidence publication-title: Attention, Perception, & Psychophysics – volume: 9 start-page: 1 year: 2018 end-page: 14 article-title: Cued by what we see and hear: Spatial reference frame use in language publication-title: Frontiers in Psychology – year: 2008 – volume: 41 start-page: 52 year: 2017 end-page: 72 article-title: Moving word learning to a novel space: A dynamic systems view of referent selection and retention publication-title: Cognitive Science – volume: 19 start-page: 9016 issue: 20 year: 1999 end-page: 9028 article-title: Parametric population representation of retinal location: Neuronal interaction dynamics in cat primary visual cortex publication-title: Journal of Neuroscience – volume: 99 start-page: 480 issue: 3 year: 1992 end-page: 517 article-title: Dynamic binding in a neural network for shape recognition publication-title: Psychological Review – start-page: 103 year: 1995 end-page: 130 – volume: 10 start-page: 1 year: 2016 end-page: 18 article-title: Developing dynamic field theory architectures for embodied cognitive systems with cedar publication-title: Frontiers in Neurorobotics – year: 2008 article-title: Vector symbolic architectures: A new building material for artificial general intelligence – volume: 16 start-page: 217 year: 1993 end-page: 265 article-title: What and where in spatial language and spatial cognition publication-title: Behavioral and Brain Sciences – volume: 10 start-page: 1 issue: 1 year: 2015 end-page: 21 article-title: Visual attention during spatial language comprehension publication-title: PLoS One – start-page: 1 year: 2019 end-page: 15 article-title: The dynamics of neural populations capture the laws of the mind publication-title: Topics in Cognitive Science – start-page: 175 year: 2015 end-page: 200 – year: 2012 article-title: A neural‐dynamic architecture for flexible spatial language: Intrinsic frames, the term “between,”, and autonomy – year: 2007 – volume: 6 start-page: 623 issue: 3 year: 1995 end-page: 641 article-title: Holographic reduced representations publication-title: IEEE Transactions on Neural Networks – volume: 12 start-page: 97 year: 1980 end-page: 136 article-title: A feature‐integration theory of attention publication-title: Cognitive Psychology – volume: 6 start-page: 576 year: 2005 end-page: 582 article-title: Brain mechanisms linking language and action publication-title: Nature Reviews Neuroscience – volume: 38 start-page: 1490 issue: 6 year: 2012 end-page: 1511 article-title: A neurobehavioral model of flexible spatial language behaviors publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition – year: 2016 – volume: 36 start-page: 329 issue: 4 year: 2013 end-page: 347 article-title: An integrated theory of language production and comprehension publication-title: Behavioral and Brain Sciences – volume: 34 start-page: 752 issue: 5 year: 2010 end-page: 775 article-title: Bootstrapping the mind: Analogical processes and symbol systems publication-title: Cognitive Science – volume: 46 start-page: 159 issue: 1‐2 year: 1990 end-page: 216 article-title: Tensor product variable binding and the representation of symbolic structures in connectionist systems publication-title: Artificial Intelligence – volume: 9 start-page: 389 issue: 8 year: 2005 end-page: 396 article-title: Grounding words in perception and action: Computational insights publication-title: Trends in Cognitive Sciences – year: 2014 article-title: Autonomous neural dynamics to test hypotheses in a model of spatial language – volume: 7 start-page: 1 issue: 276 year: 2014 end-page: 13 article-title: Dynamic neural fields as a step toward cognitive neuromorphic architectures publication-title: Frontiers in Neuroscience – volume: 2 start-page: 1019 issue: 11 year: 1999 end-page: 1025 article-title: Hierarchical models of object recognition in cortex publication-title: Nature Neuroscience – volume: 115 start-page: 1 issue: 1 year: 2008 end-page: 43 article-title: A theory of the discovery and predication of relational concepts publication-title: Psychological Review – volume: 17 start-page: 1276 year: 2005 end-page: 1314 article-title: A unified approach to building and controlling spiking attractor networks publication-title: Neural Computation – volume: 27 start-page: 77 issue: 2 year: 1977 end-page: 87 article-title: Dynamics of pattern formation in lateral‐inhibition type neural fields publication-title: Biological Cybernetics – start-page: 283 year: 1997 end-page: 300 article-title: Representations of serial order – volume: 1 start-page: 417 year: 2015 end-page: 446 article-title: Deep neural networks: A new framework for modeling biological vision and brain information processing publication-title: Annual Review of Vision Science – volume: 29 start-page: 411 issue: 3 year: 2007 end-page: 426 article-title: Robust object recognition with cortex‐like mechanisms publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 3 start-page: 1184 year: 2000 end-page: 1191 article-title: Neurocomputational models of working memory publication-title: Nature Neuroscience – volume: 110 start-page: 16390 issue: 41 year: 2013 end-page: 16395 article-title: Indirection and symbol‐like processing in the prefrontal cortex and basal ganglia publication-title: Proceedings of the National Academy of Sciences – year: 2001 – volume: 19 start-page: 162 issue: 3 year: 2015 end-page: 172 article-title: Neural population coding: Combining insights from microscopic and mass signals publication-title: Trends in Cognitive Sciences – volume: 6 start-page: 347 issue: 4 year: 1995 end-page: 378 article-title: The cognitive psychological reality of image schemas and their transformations publication-title: Cognitive Linguistics – volume: 3 start-page: 345 issue: 9 year: 1999 end-page: 351 article-title: An embodied cognitive science? publication-title: Trends in Cognitive Sciences – year: 2018 – volume: 32 start-page: 185 issue: 1 year: 2009 end-page: 208 article-title: Representation of number in the brain publication-title: Annual Review of Neuroscience – volume: 13 year: 2019 article-title: Autonomous sequence generation for a neural dynamic robot: Scene perception, serial order, and object‐oriented movement publication-title: Frontiers in Neurorobotics – volume: 9 start-page: 625 issue: 4 year: 2002 end-page: 636 article-title: Six views of embodied cognition publication-title: Psychonomic Bulletin & Review – volume: 20 start-page: 568 issue: 5 year: 2009 end-page: 577 article-title: A dynamic neural field model of visual working memory and change detection publication-title: Psychological Science – volume: 81 start-page: 2424 issue: 7 year: 2019 end-page: 2460 article-title: Computer mouse tracking reveals motor signatures in a cognitive task of spatial language grounding publication-title: Attention, Perception, & Psychophysics – volume: 122 start-page: 210 issue: 2 year: 2012 end-page: 227 article-title: Flexible visual processing of spatial relationships publication-title: Cognition – volume: 94 start-page: 53 issue: 1 year: 1999 end-page: 66 – year: 2012 article-title: A robotic architecture for action selection and behavioral organization inspired by human cognition – start-page: 52 year: 2012 end-page: 66 – volume: 10 start-page: 1 year: 1986 end-page: 40 article-title: An introduction to cognitive grammar publication-title: Cognitive Science – volume: 13 start-page: 55 issue: 2 year: 1973 end-page: 80 article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue publication-title: Biological Cybernetics – start-page: 1 year: 2020 end-page: 12 article-title: A neural dynamic network drives an intentional agent that autonomously learns beliefs in continuous time publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 31 start-page: 12767 issue: 36 year: 2011 end-page: 12777 article-title: Dynamics of population response to changes of motion direction in primary visual cortex publication-title: Journal of Neuroscience – volume: 14 start-page: 348 issue: 8 year: 2010 end-page: 356 article-title: Letting structure emerge: Connectionist and dynamical systems approaches to cognition publication-title: Trends in Cognitive Sciences – year: 2016 article-title: Visual relationship detection with language priors – volume: 22 start-page: 577 issue: 4 year: 1999 end-page: 609 article-title: Perceptual symbol systems publication-title: Behavioral and Brain Sciences – volume: 12 start-page: 136 year: 2008 end-page: 143 article-title: A central circuit of the mind publication-title: Trends in Cognitive Sciences – volume: 50 start-page: 999 issue: 11 year: 2010 end-page: 1013 article-title: Attentional landscapes in reaching and grasping publication-title: Vision Research – volume: 21 start-page: 429 year: 2004 end-page: 470 article-title: Grounded semantic composition for visual scenes publication-title: Journal of Artificial Intelligence Research – year: 2000 – volume: 27 start-page: 419 year: 2004 end-page: 451 article-title: Neural circuits of the neocortex publication-title: Annual Review of Neuroscience – volume: 367 start-page: 103 issue: 1585 year: 2012 end-page: 117 article-title: The minimalist grammar of action publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – start-page: 4967 year: 2017 end-page: 4976 article-title: A simple neural network module for relational reasoning – year: 2020 article-title: Towards robust image classification using sequential attention models – year: 2012 – volume: 167 start-page: 31 issue: 1–2 year: 2005 end-page: 61 article-title: Learning to talk about events from narrated video in a construction grammar framework publication-title: Artificial Intelligence – volume: 20 start-page: 723 issue: 4 year: 1997 end-page: 767 article-title: Deictic codes for the embodiment of cognition publication-title: Behavioral and Brain Sciences – volume: 9 start-page: 222 issue: 2 year: 1997 end-page: 237 article-title: Spatial transformations in the parietal cortex using basis functions publication-title: Journal of Cognitive Neuroscience – start-page: 197 year: 2016 end-page: 226 – volume: 5 start-page: 1 year: 2013 end-page: 14 article-title: A neuronal device for the control of multi‐step computations publication-title: Papers in Physics – volume: 15 start-page: 207 issue: 5 year: 2006 end-page: 211 article-title: Continuous dynamics in real‐time cognition publication-title: Current Directions in Psychological Science – volume: 89 start-page: 703 issue: 6 year: 1985 end-page: 710 article-title: Nervous structures with dynamical links publication-title: Berichte der Bunsengesellschaft/Physical Chemistry Chemical Physics – year: 1988 – year: 2017 – volume: 7 start-page: 430 issue: 5 year: 2001 end-page: 440 article-title: Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet publication-title: Neuroscientist – volume: 773 start-page: 735 year: 2010 end-page: 773 article-title: Collective stability of networks of winner‐take‐all circuits publication-title: Neural Computation – volume: 6 start-page: 392 issue: 4 year: 2003 end-page: 412 article-title: Bridging the representational gap in the dynamic systems approach to development publication-title: Developmental Science – start-page: 579 year: 2012 end-page: 586 article-title: The counter‐change model of motion perception: An account based on dynamic field theory – year: 1999 – ident: e_1_2_10_49_1 doi: 10.1017/CBO9780511620850 – ident: e_1_2_10_99_1 doi: 10.1109/CVPR42600.2020.00950 – ident: e_1_2_10_61_1 doi: 10.1515/cogl.1995.6.1.63 – volume: 13 start-page: 55 issue: 2 year: 1973 ident: e_1_2_10_96_1 article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue publication-title: Biological Cybernetics – ident: e_1_2_10_70_1 doi: 10.1177/107385840100700512 – ident: e_1_2_10_7_1 doi: 10.1017/S0140525X99002149 – ident: e_1_2_10_91_1 doi: 10.1177/0023830916651097 – ident: e_1_2_10_44_1 doi: 10.1037/a0022643 – ident: e_1_2_10_30_1 doi: 10.1037/0033-295X.99.3.480 – start-page: 103 volume-title: Joint attention: Its origins and role in development year: 1995 ident: e_1_2_10_92_1 – ident: e_1_2_10_26_1 doi: 10.1515/cogl.1995.6.4.347 – ident: e_1_2_10_60_1 doi: 10.1038/nrn1706 – ident: e_1_2_10_89_1 doi: 10.3389/fnbot.2019.00095 – ident: e_1_2_10_33_1 doi: 10.1523/JNEUROSCI.19-20-09016.1999 – ident: e_1_2_10_27_1 doi: 10.1613/jair.1327 – ident: e_1_2_10_55_1 doi: 10.1098/rstb.2011.0123 – ident: e_1_2_10_40_1 doi: 10.1017/S0140525X00029733 – ident: e_1_2_10_19_1 doi: 10.1162/0899766053630332 – ident: e_1_2_10_59_1 doi: 10.1162/jocn.1997.9.2.222 – volume: 7 start-page: 1 issue: 276 year: 2014 ident: e_1_2_10_73_1 article-title: Dynamic neural fields as a step toward cognitive neuromorphic architectures publication-title: Frontiers in Neuroscience – ident: e_1_2_10_64_1 doi: 10.1109/IROS.2012.6386153 – volume-title: A user's guide to thought and meaning year: 2012 ident: e_1_2_10_32_1 – volume: 773 start-page: 735 year: 2010 ident: e_1_2_10_68_1 article-title: Collective stability of networks of winner‐take‐all circuits publication-title: Neural Computation – ident: e_1_2_10_2_1 doi: 10.1007/BF00337259 – ident: e_1_2_10_42_1 – ident: e_1_2_10_11_1 doi: 10.1523/JNEUROSCI.5179-08.2009 – ident: e_1_2_10_86_1 doi: 10.1111/j.1467-8721.2006.00437.x – start-page: 1 year: 2019 ident: e_1_2_10_80_1 article-title: The dynamics of neural populations capture the laws of the mind publication-title: Topics in Cognitive Science – ident: e_1_2_10_17_1 doi: 10.1037/0033-295X.115.1.1 – ident: e_1_2_10_82_1 doi: 10.1017/S0140525X00005756 – ident: e_1_2_10_83_1 doi: 10.1109/TPAMI.2007.56 – ident: e_1_2_10_85_1 doi: 10.1111/1467-7687.00295 – ident: e_1_2_10_20_1 doi: 10.1126/science.1225266 – ident: e_1_2_10_72_1 doi: 10.1111/cogs.12369 – start-page: 197 volume-title: Dynamic thinking: A primer on dynamic field theory year: 2016 ident: e_1_2_10_79_1 – ident: e_1_2_10_51_1 doi: 10.1016/j.tics.2010.06.002 – ident: e_1_2_10_38_1 doi: 10.1073/pnas.1303547110 – ident: e_1_2_10_58_1 doi: 10.1109/72.377968 – ident: e_1_2_10_24_1 doi: 10.7551/mitpress/9629.001.0001 – ident: e_1_2_10_37_1 doi: 10.1146/annurev-vision-082114-035447 – ident: e_1_2_10_53_1 doi: 10.1126/science.1127242 – ident: e_1_2_10_46_1 doi: 10.3389/fnbot.2017.00023 – ident: e_1_2_10_22_1 doi: 10.3389/neuro.10.001.2009 – ident: e_1_2_10_34_1 doi: 10.1111/j.1467-9280.2009.02329.x – ident: e_1_2_10_57_1 doi: 10.1017/S0140525X12001495 – ident: e_1_2_10_98_1 doi: 10.1523/JNEUROSCI.4307-10.2011 – ident: e_1_2_10_21_1 doi: 10.1016/S0165-0270(99)00125-9 – volume: 11 issue: 9 year: 2017 ident: e_1_2_10_35_1 article-title: A neural dynamics architecture for grasping that integrates perception and movement generation and enables on‐line updating publication-title: Frontiers in Neurorobotics – ident: e_1_2_10_41_1 doi: 10.1207/s15516709cog1001_1 – ident: e_1_2_10_62_1 – volume-title: The targeting system of language year: 2017 ident: e_1_2_10_88_1 – ident: e_1_2_10_25_1 doi: 10.1111/j.1551-6709.2010.01114.x – ident: e_1_2_10_78_1 doi: 10.1007/s00422-012-0484-8 – ident: e_1_2_10_52_1 doi: 10.1146/annurev.neuro.051508.135550 – ident: e_1_2_10_90_1 doi: 10.1109/TCDS.2020.3013768 – ident: e_1_2_10_16_1 doi: 10.1093/oxfordhb/9780199734689.013.0005 – ident: e_1_2_10_74_1 doi: 10.1016/j.neunet.2010.07.012 – ident: e_1_2_10_39_1 doi: 10.1017/S0034670500028953 – ident: e_1_2_10_13_1 doi: 10.1080/09540091.2017.1405382 – ident: e_1_2_10_95_1 doi: 10.1002/bbpc.19850890625 – start-page: 1 year: 2020 ident: e_1_2_10_50_1 article-title: A compositional neural architecture for language publication-title: Journal of Cognitive Neuroscience – ident: e_1_2_10_100_1 doi: 10.4279/pip.050006 – start-page: 493 volume-title: Language and space year: 1996 ident: e_1_2_10_45_1 doi: 10.7551/mitpress/4107.003.0015 – ident: e_1_2_10_36_1 – ident: e_1_2_10_12_1 doi: 10.3389/fpsyg.2018.01287 – ident: e_1_2_10_75_1 doi: 10.1007/978-3-319-09903-3_9 – ident: e_1_2_10_56_1 doi: 10.1007/978-1-4613-0003-8 – volume-title: Dynamic thinking: A primer on dynamic field theory year: 2016 ident: e_1_2_10_81_1 – ident: e_1_2_10_54_1 doi: 10.1016/j.tics.2015.01.002 – ident: e_1_2_10_8_1 doi: 10.1007/978-3-642-33269-2_73 – ident: e_1_2_10_93_1 doi: 10.1016/0010-0285(80)90005-5 – ident: e_1_2_10_9_1 doi: 10.1371/journal.pone.0115758 – ident: e_1_2_10_28_1 doi: 10.3758/s13414-019-01898-y – ident: e_1_2_10_65_1 doi: 10.1038/14819 – ident: e_1_2_10_31_1 doi: 10.1038/35058500 – ident: e_1_2_10_3_1 doi: 10.1093/acprof:oso/9780195324259.001.0001 – ident: e_1_2_10_18_1 doi: 10.1038/81460 – ident: e_1_2_10_67_1 doi: 10.1093/acprof:oso/9780199217274.003.0011 – ident: e_1_2_10_48_1 – ident: e_1_2_10_94_1 doi: 10.1109/ROMAN.2012.6343746 – ident: e_1_2_10_66_1 doi: 10.1016/j.tics.2005.06.013 – ident: e_1_2_10_10_1 doi: 10.1016/S1364-6613(99)01361-3 – ident: e_1_2_10_47_1 doi: 10.3389/fnbot.2016.00014 – ident: e_1_2_10_63_1 – ident: e_1_2_10_5_1 doi: 10.1016/j.visres.2010.02.008 – ident: e_1_2_10_15_1 doi: 10.1146/annurev.neuro.27.070203.144152 – ident: e_1_2_10_69_1 – start-page: 121 volume-title: Dynamic thinking: A primer on dynamic field theory year: 2016 ident: e_1_2_10_77_1 – ident: e_1_2_10_29_1 doi: 10.1007/978-1-4471-1546-5_22 – ident: e_1_2_10_23_1 doi: 10.1016/j.cognition.2011.11.002 – ident: e_1_2_10_97_1 doi: 10.3758/BF03196322 – ident: e_1_2_10_4_1 doi: 10.1016/j.tics.2008.01.006 – ident: e_1_2_10_76_1 – ident: e_1_2_10_43_1 doi: 10.3758/s13414-019-01847-9 – ident: e_1_2_10_87_1 doi: 10.1075/cilt.50.08tal – volume-title: Dynamic thinking: A primer on dynamic field theory year: 2016 ident: e_1_2_10_71_1 – ident: e_1_2_10_84_1 doi: 10.1016/0004-3702(90)90007-M – ident: e_1_2_10_14_1 doi: 10.1016/j.artint.2005.06.007 – ident: e_1_2_10_6_1 doi: 10.1017/S0140525X97001611 |
SSID | ssj0006639 |
Score | 2.3868291 |
Snippet | How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the... How does the human brain link relational concepts to perceptual experience? For example, a speaker may say "the cup to the left of the computer" to direct the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e13045 |
SubjectTerms | Brain Cognition Description generation Dynamic field theory Higher cognition Hypotheses Information processing Movement relations Neural dynamics Neural networks Perceptual grounding Spatial relations |
Title | A Neural Dynamic Model of the Perceptual Grounding of Spatial and Movement Relations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcogs.13045 https://www.proquest.com/docview/2583866366 https://www.proquest.com/docview/2582110064 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB7UJ1886lWPElEEhZVuk2xa8KXUo0g98ABfZGk2WR8sW3HbB_31zmSPqoigbwuZsLvJTOZLMvMNwK6NfHTLVnhcCosbFKE9jY7eixA8GIUYoxlTgvPFZdC9F-cP8mEKjopcmIwfojxwI8tw6zUZeF-nn4w8Gj6lVMtYUIY5BWsRIrqZcEehK21lF5XCQ0fGc25SCuOZdP3qjSYQ8zNQdZ7mdB4ei2_MAkyeD8cjfRi9f6Nv_O9PLMBcDkFZO9OZRZiySQVWe_nBZcr2WK_kWk4rMFuukW9LcNdmROeB3Y-zUvaMiqkN2DBmiCTZdRYmM8Z2OtRyGTPURoWPUdFZPzHYwVGUj1gZh7cM96cnd52ulxdm8CKuiLnUSGkEgjclYu1zq7U0dSH6yhjcb0YtnPuGEapl61KjBEFMVbfG1xGXVsmAr8BMMkzsGjBpOA-4QI8hlWj69VbTqpg6ColA1o-rsF9MUBjlrOVUPGMQFrsXGsLQDWEVdkrZl4yr40epzWKew9xe07BBt8eoMUFQhe2yGS2Nrk_6iR2OnQztlhHDVeHATeovbwk7V2e37mn9L8IbMNugoBkXLbgJM6PXsd1C1DPSNZhuiOua0_EP5VX8cw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gHuQCigiLKG0UE0iG7Ex3T-8ePBBWXGRBI0vCbdh-DCHALHF2Y9b_5F_xN1nV81gwxsQDB2-TdPW8uqrr6-rqrwDeOBOiW3Yi4FI4XKAIHWh09IFB8GAVYoxWSgecD4_i7on4eCpPZ-BHdRam4IeoA25kGX6-JgOngPQtKzfD85yKGYsqp_LATb7hii1_t9_B4d2Ior33_d1uUBYVCAxXxLpppbQCgYcSqQ6501raphADZS2ulUwb3zuyQrVdU2qUIHikms6G2nDplIw53vcBPKQS4kTV3_kyZatC590utkZFgK6Tl2yolDg0fde7_m8Kam9DY-_b9hbgZ_VXipSWy-3xSG-b778RRv43v-0xzJcom-0UZvEEZly2CMu9Mjabs7esV9NJ54swV7uByVPo7zBiLMHunUk2uL4wjOrFXbFhyhAss89FJtAY2ylu5w8FURvVdkZbZoPMYgfPwj5idarhEpzcy_c-g9lsmLkVYNJyHnOBTlEq0Qqb7ZZTKXUUErF6mDZgs9KIxJTE7FQf5CqpFmg0ZIkfsga8rmVvCjqSP0qtVYqVlFNSnkS0QY4qGscNeFU342RCO0SDzA3HXoYCAghTG7DltegvT0l2P3049ler_yK8Do-6_cNe0ts_OngOcxHlCPnkyDWYHX0duxcI8kb6pTctBmf3rZS_AI2gWGc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58gHgRra_6XPEBCoEmu5ttDx6ktVattaCCt9hkN14kFdMi_id_pDObhwoiePAW2NkkzM7sfLMzOwOwZyIXzbIRDpfCoIMiQidEQ-9ECB60QoxRj-mC81XP79yJi3t5PwHvxV2YrD5EeeBGmmH3a1LwZx1_UfJo-JhSL2NRpFRemrdXdNjS4_MWru6-57VPb5sdJ-8p4ERcUdFNLaUWiDuUiEOXmzCUuibEQGmNrlLUwN_2tFANU5MhUhA6UjWj3TDi0ijpc3zvJExTdJESyDzRL_d9tN2NLDIqHLScPC-GSnlDn__63fx9YtqvyNiatvY8zOWYlJ1kQrQAEyapwEo3P8lM2QHrlsWX0wrMlpvm2yLcnjCq74HTW1lve0bd1Z7YMGYILVk_y5sZ4zidctkrNDRGnZBR8tkg0TjB1iwfsTIxbwnu_oWryzCVDBOzCkxqzn0u0IRIJepurVE3KqaJQiKydeMqHBYMDKK8jDl103gKCneGmB1YZldht6R9zop3_Ei1UaxDkCtwGngUTsYV9f0q7JTDqHoUTxkkZji2NOQ-I6irwpFdv1--EjSvz27s09pfiLdhpt9qB93z3uU6zHqUUGMzCTdgavQyNpuIiEbhlhVEBg__LfkfZhwW3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neural+Dynamic+Model+of+the+Perceptual+Grounding+of+Spatial+and+Movement+Relations&rft.jtitle=Cognitive+science&rft.au=Richter%2C+Mathis&rft.au=Lins%2C+Jonas&rft.au=Sch%C3%B6ner%2C+Gregor&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-0213&rft.eissn=1551-6709&rft.volume=45&rft.issue=10&rft_id=info:doi/10.1111%2Fcogs.13045&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-0213&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-0213&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-0213&client=summon |