A Neural Dynamic Model of the Perceptual Grounding of Spatial and Movement Relations

How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relationa...

Full description

Saved in:
Bibliographic Details
Published inCognitive science Vol. 45; no. 10; pp. e13045 - n/a
Main Authors Richter, Mathis, Lins, Jonas, Schöner, Gregor
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time‐ and state‐continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition.
AbstractList How does the human brain link relational concepts to perceptual experience? For example, a speaker may say "the cup to the left of the computer" to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time- and state-continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition.How does the human brain link relational concepts to perceptual experience? For example, a speaker may say "the cup to the left of the computer" to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time- and state-continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition.
How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time‐ and state‐continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition.
How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the listener's attention to one of two cups on a desk. We provide a neural dynamic account for both perceptual grounding, in which relational concepts enable the attentional selection of objects in the visual array, and for the generation of descriptions of the visual array using relational concepts. In the model, activation in neural populations evolves dynamically under the influence of both inputs and strong interaction as formalized in dynamic field theory. Relational concepts are modeled as patterns of connectivity to perceptual representations. These generalize across the visual array through active coordinate transforms that center the representation of target objects in potential reference objects. How the model perceptually grounds or generates relational descriptions is probed in 104 simulations that systematically vary the spatial and movement relations employed, the number of feature dimensions used, and the number of matching and nonmatching objects. We explain how sequences of decisions emerge from the time‐ and state‐continuous neural dynamics, how relational hypotheses are generated and either accepted or rejected, followed by the selection of new objects or the generation of new relational hypotheses. Its neural realism distinguishes the model from information processing accounts, its capacity to autonomously generate sequences of processing steps distinguishes it from deep neural network accounts. The model points toward a neural dynamic theory of higher cognition.
Author Richter, Mathis
Schöner, Gregor
Lins, Jonas
Author_xml – sequence: 1
  givenname: Mathis
  orcidid: 0000-0002-5421-9126
  surname: Richter
  fullname: Richter, Mathis
  email: mathis.richter@ini.rub.de
  organization: Ruhr‐Universität Bochum
– sequence: 2
  givenname: Jonas
  surname: Lins
  fullname: Lins, Jonas
  organization: Ruhr‐Universität Bochum
– sequence: 3
  givenname: Gregor
  surname: Schöner
  fullname: Schöner, Gregor
  organization: Ruhr‐Universität Bochum
BookMark eNp9kEFPAjEQhRuDiYBe_AWbeDEmi-223bJHgoomKEbwvOm2Ay5ZWmx3Nfx7u-CJGOcyybzvTWZeD3WMNYDQJcEDEupW2ZUfEIoZP0FdwjmJU4GzDupimrIYJ4SeoZ73a4xxmtKsixaj6AUaJ6vobmfkplTRs9VQRXYZ1R8QvYJTsK2boE-cbYwuzarV5ltZl2EojQ6GL9iAqaM3qMLUGn-OTpey8nDx2_vo_eF-MX6Mp7PJ03g0jRUVmMdEc64ZHlLBlgWhUBRcY8ak0DrhTGUpsEQzkQHmRSAyIZjAoEmhKAfBU9pH14e9W2c_G_B1vim9gqqSBmzj84QPE0LCqyygV0fo2jbOhOtaig5DGmm7EB8o5az3Dpa5Kuv9T7WTZZUTnLcx523M-T7mYLk5smxduZFu9zdMDvB3WcHuHzIfzybzg-cHB02ONA
CitedBy_id crossref_primary_10_3758_s13428_024_02594_y
crossref_primary_10_1016_j_dr_2024_101182
crossref_primary_10_1111_cogs_13491
crossref_primary_10_1007_s11571_023_10007_7
crossref_primary_10_1159_000541024
crossref_primary_10_1111_cogs_13442
Cites_doi 10.1017/CBO9780511620850
10.1109/CVPR42600.2020.00950
10.1515/cogl.1995.6.1.63
10.1177/107385840100700512
10.1017/S0140525X99002149
10.1177/0023830916651097
10.1037/a0022643
10.1037/0033-295X.99.3.480
10.1515/cogl.1995.6.4.347
10.1038/nrn1706
10.3389/fnbot.2019.00095
10.1523/JNEUROSCI.19-20-09016.1999
10.1613/jair.1327
10.1098/rstb.2011.0123
10.1017/S0140525X00029733
10.1162/0899766053630332
10.1162/jocn.1997.9.2.222
10.1109/IROS.2012.6386153
10.1007/BF00337259
10.1523/JNEUROSCI.5179-08.2009
10.1111/j.1467-8721.2006.00437.x
10.1037/0033-295X.115.1.1
10.1017/S0140525X00005756
10.1109/TPAMI.2007.56
10.1111/1467-7687.00295
10.1126/science.1225266
10.1111/cogs.12369
10.1016/j.tics.2010.06.002
10.1073/pnas.1303547110
10.1109/72.377968
10.7551/mitpress/9629.001.0001
10.1146/annurev-vision-082114-035447
10.1126/science.1127242
10.3389/fnbot.2017.00023
10.3389/neuro.10.001.2009
10.1111/j.1467-9280.2009.02329.x
10.1017/S0140525X12001495
10.1523/JNEUROSCI.4307-10.2011
10.1016/S0165-0270(99)00125-9
10.1207/s15516709cog1001_1
10.1111/j.1551-6709.2010.01114.x
10.1007/s00422-012-0484-8
10.1146/annurev.neuro.051508.135550
10.1109/TCDS.2020.3013768
10.1093/oxfordhb/9780199734689.013.0005
10.1016/j.neunet.2010.07.012
10.1017/S0034670500028953
10.1080/09540091.2017.1405382
10.1002/bbpc.19850890625
10.4279/pip.050006
10.7551/mitpress/4107.003.0015
10.3389/fpsyg.2018.01287
10.1007/978-3-319-09903-3_9
10.1007/978-1-4613-0003-8
10.1016/j.tics.2015.01.002
10.1007/978-3-642-33269-2_73
10.1016/0010-0285(80)90005-5
10.1371/journal.pone.0115758
10.3758/s13414-019-01898-y
10.1038/14819
10.1038/35058500
10.1093/acprof:oso/9780195324259.001.0001
10.1038/81460
10.1093/acprof:oso/9780199217274.003.0011
10.1109/ROMAN.2012.6343746
10.1016/j.tics.2005.06.013
10.1016/S1364-6613(99)01361-3
10.3389/fnbot.2016.00014
10.1016/j.visres.2010.02.008
10.1146/annurev.neuro.27.070203.144152
10.1007/978-1-4471-1546-5_22
10.1016/j.cognition.2011.11.002
10.3758/BF03196322
10.1016/j.tics.2008.01.006
10.3758/s13414-019-01847-9
10.1075/cilt.50.08tal
10.1016/0004-3702(90)90007-M
10.1016/j.artint.2005.06.007
10.1017/S0140525X97001611
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS).
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS).
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS).
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS).
DBID 24P
AAYXX
CITATION
7TK
AHOVV
7X8
DOI 10.1111/cogs.13045
DatabaseName Wiley Online Library Open Access
CrossRef
Neurosciences Abstracts
Education Research Index
MEDLINE - Academic
DatabaseTitle CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Psychology
EISSN 1551-6709
EndPage n/a
ExternalDocumentID 10_1111_cogs_13045
COGS13045
Genre article
GrantInformation_xml – fundername: DFG
  funderid: SCHO 336/12‐1
GroupedDBID ---
--K
--Z
-DZ
-W8
-~X
.3N
.DC
.GA
.GO
.Y3
05W
0R~
10A
1B1
1OC
1RT
1~5
24P
29F
31~
33P
3EH
3R3
3WU
4.4
4G.
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
53G
5GY
5HH
5LA
5VS
66C
6J9
6TJ
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
9M8
A04
AABNI
AACTN
AAEDT
AAESR
AAHHS
AAHQN
AAHSB
AALRI
AAMNL
AAONW
AAOUF
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIVO
ABLJU
ABMAC
ABPVW
ABSOO
ABWVN
ABZLS
ACAHQ
ACBKW
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACHQT
ACIUM
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ADBBV
ADEMA
ADEOM
ADIYS
ADIZJ
ADJOM
ADKYN
ADMGS
ADMHG
ADMUD
ADNMO
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFYRF
AHBTC
AHHHB
AIAGR
AIFKG
AITUG
AIURR
AIWBW
AJBDE
AJWEG
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASTYK
AZBYB
AZVAB
BAFTC
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
C1A
CAG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EBD
EBS
EDJ
EJD
EMOBN
F00
F01
F5P
FDB
FEDTE
FGOYB
FIRID
FRP
G-2
G-S
G.N
G50
GODZA
HF~
HGLYW
HHY
HLZ
HMQ
HMW
HVGLF
HZ~
H~9
IHE
IX1
J0M
LATKE
LC2
LC4
LEEKS
LG9
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2V
M3V
M41
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MS~
MVM
MXFUL
MXSSH
N04
N06
N9A
NF~
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2Y
P4C
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RIG
ROL
RPZ
RWI
RWL
RX1
RXW
SBC
SEW
SNS
SPS
SSZ
SUPJJ
SV3
TAE
TAF
TEORI
TN5
TWZ
U5U
UB1
UQL
VAE
W8V
W99
WBKPD
WH7
WHDPE
WHG
WIH
WII
WIN
WOHZO
WQZ
WRC
WSUWO
WUQ
WXSBR
XG1
XJT
XPP
XV2
YYP
ZCG
ZMT
ZZTAW
~IA
~WP
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AETEA
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AIGII
CITATION
7TK
AAMMB
AEFGJ
AGXDD
AHOVV
AIDQK
AIDYY
7X8
ID FETCH-LOGICAL-c3705-1d55d408374fb13ebb5d044a7dd254c96e42d479e05b4fb977470ed1bc35e7563
IEDL.DBID DR2
ISSN 0364-0213
1551-6709
IngestDate Fri Jul 11 03:45:09 EDT 2025
Fri Aug 29 02:49:13 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Tue Jul 01 04:19:46 EDT 2025
Wed Jan 22 16:27:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3705-1d55d408374fb13ebb5d044a7dd254c96e42d479e05b4fb977470ed1bc35e7563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5421-9126
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcogs.13045
PQID 2583866366
PQPubID 30149
PageCount 40
ParticipantIDs proquest_miscellaneous_2582110064
proquest_journals_2583866366
crossref_citationtrail_10_1111_cogs_13045
crossref_primary_10_1111_cogs_13045
wiley_primary_10_1111_cogs_13045_COGS13045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Cognitive science
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 21
2017; 41
2012; 122
2010; 14
2004; 27
1973; 13
1977; 27
2000; 3
2019; 13
2012; 367
1992; 99
2013; 5
1997; 9
2010; 23
2007; 29
2018; 9
1990; 46
2001
2000
1999; 19
2003; 6
2018; 30
2008; 115
2013; 110
1999; 94
2014; 7
2012; 338
1988
2010; 34
2015; 1
2015; 19
2017; 60
2009; 20
2012
2002; 9
1997; 20
1986; 10
2020; 82
2015; 10
2006; 15
2016; 10
2011; 31
1997
2008
2007
2008; 12
1999; 22
1996
1995
1999; 3
2012; 38
1999; 2
2006; 314
1985; 89
2012; 106
1995; 6
2009; 29
1999
2019; 81
2013; 36
2009; 32
1993; 16
2001; 7
2005; 167
2020
2017; 11
2005; 9
1980; 12
2010; 773
1980; 3
2019
2018
2005; 6
2017
2016
2001; 2
2015
2014
2009; 3
2005; 17
2010; 50
e_1_2_10_21_1
e_1_2_10_44_1
Talmy L. (e_1_2_10_88_1) 2017
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_51_1
Samuelson L. K. (e_1_2_10_71_1) 2016
Logan G. D. (e_1_2_10_45_1) 1996
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_22_1
e_1_2_10_41_1
Schöner G. (e_1_2_10_81_1) 2016
Schneegans S. (e_1_2_10_79_1) 2016
e_1_2_10_90_1
Tomasello M. (e_1_2_10_92_1) 1995
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Wilson H. R. (e_1_2_10_96_1) 1973; 13
e_1_2_10_60_1
Jackendoff R. (e_1_2_10_32_1) 2012
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
Sandamirskaya Y. (e_1_2_10_73_1) 2014; 7
Schöner G. (e_1_2_10_80_1) 2019
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
Schneegans S. (e_1_2_10_77_1) 2016
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_36_1
e_1_2_10_12_1
Martin A. E. (e_1_2_10_50_1) 2020
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
Knips G. (e_1_2_10_35_1) 2017; 11
Rutishauser U. (e_1_2_10_68_1) 2010; 773
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 11
  issue: 9
  year: 2017
  article-title: A neural dynamics architecture for grasping that integrates perception and movement generation and enables on‐line updating
  publication-title: Frontiers in Neurorobotics
– start-page: 1
  year: 2020
  end-page: 20
  article-title: A compositional neural architecture for language
  publication-title: Journal of Cognitive Neuroscience
– start-page: 121
  year: 2016
  end-page: 149
– year: 2020
  article-title: Grounding spatial language in perception by combining concepts in a neural dynamic architecture
– volume: 338
  start-page: 1202
  issue: 6111
  year: 2012
  end-page: 1205
  article-title: A large‐scale model of the functioning brain
  publication-title: Science
– volume: 2
  start-page: 194
  issue: 3
  year: 2001
  end-page: 203
  article-title: Computational modelling of visual attention
  publication-title: Nature Reviews Neuroscience
– start-page: 493
  year: 1996
  end-page: 529
– volume: 106
  start-page: 89
  issue: 2
  year: 2012
  end-page: 109
  article-title: A neural mechanism for coordinate transformation predicts pre‐saccadic remapping
  publication-title: Biological Cybernetics
– volume: 3
  start-page: 417
  issue: 3
  year: 1980
  end-page: 457
  article-title: Minds, brains, and programs
  publication-title: Behavioral and Brain Sciences
– volume: 3
  start-page: 1
  year: 2009
  end-page: 28
  article-title: A constructive mean‐field analysis of multi‐population neural networks with random synaptic weights and stochastic inputs
  publication-title: Frontiers in Computational Neuroscience
– volume: 11
  start-page: 1
  year: 2017
  end-page: 17
  article-title: A neural‐dynamic architecture for concurrent estimation of object pose and identity
  publication-title: Frontiers in Neurorobotics
– year: 2014
– volume: 314
  start-page: 91
  year: 2006
  end-page: 94
  article-title: Models of high‐level cognition
  publication-title: Science
– volume: 6
  start-page: 63
  issue: 1
  year: 1995
  end-page: 88
  article-title: A model of the human capacity for categorizing spatial relations
  publication-title: Cognitive Linguistics
– volume: 23
  start-page: 1164
  issue: 10
  year: 2010
  end-page: 1179
  article-title: An embodied account of serial order: How instabilities drive sequence generation
  publication-title: Neural Networks
– volume: 60
  start-page: 318
  issue: 2
  year: 2017
  end-page: 329
  article-title: Communicative success in spatial dialogue: The impact of functional features and dialogue strategies
  publication-title: Language and Speech
– volume: 29
  start-page: 6635
  issue: 20
  year: 2009
  end-page: 6648
  article-title: Estimates of the contribution of single neurons to perception depend on timescale and noise correlation
  publication-title: Journal of Neuroscience
– year: 2018
  article-title: A neural dynamic architecture that autonomously builds mental models
– volume: 30
  start-page: 53
  issue: 1
  year: 2018
  end-page: 80
  article-title: How infants' reaches reveal principles of sensorimotor decision making
  publication-title: Connection Science
– volume: 82
  start-page: 775
  year: 2020
  end-page: 798
  article-title: Scene memory and spatial inhibition in visual search—A neural dynamic process model and new experimental evidence
  publication-title: Attention, Perception, & Psychophysics
– volume: 9
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Cued by what we see and hear: Spatial reference frame use in language
  publication-title: Frontiers in Psychology
– year: 2008
– volume: 41
  start-page: 52
  year: 2017
  end-page: 72
  article-title: Moving word learning to a novel space: A dynamic systems view of referent selection and retention
  publication-title: Cognitive Science
– volume: 19
  start-page: 9016
  issue: 20
  year: 1999
  end-page: 9028
  article-title: Parametric population representation of retinal location: Neuronal interaction dynamics in cat primary visual cortex
  publication-title: Journal of Neuroscience
– volume: 99
  start-page: 480
  issue: 3
  year: 1992
  end-page: 517
  article-title: Dynamic binding in a neural network for shape recognition
  publication-title: Psychological Review
– start-page: 103
  year: 1995
  end-page: 130
– volume: 10
  start-page: 1
  year: 2016
  end-page: 18
  article-title: Developing dynamic field theory architectures for embodied cognitive systems with cedar
  publication-title: Frontiers in Neurorobotics
– year: 2008
  article-title: Vector symbolic architectures: A new building material for artificial general intelligence
– volume: 16
  start-page: 217
  year: 1993
  end-page: 265
  article-title: What and where in spatial language and spatial cognition
  publication-title: Behavioral and Brain Sciences
– volume: 10
  start-page: 1
  issue: 1
  year: 2015
  end-page: 21
  article-title: Visual attention during spatial language comprehension
  publication-title: PLoS One
– start-page: 1
  year: 2019
  end-page: 15
  article-title: The dynamics of neural populations capture the laws of the mind
  publication-title: Topics in Cognitive Science
– start-page: 175
  year: 2015
  end-page: 200
– year: 2012
  article-title: A neural‐dynamic architecture for flexible spatial language: Intrinsic frames, the term “between,”, and autonomy
– year: 2007
– volume: 6
  start-page: 623
  issue: 3
  year: 1995
  end-page: 641
  article-title: Holographic reduced representations
  publication-title: IEEE Transactions on Neural Networks
– volume: 12
  start-page: 97
  year: 1980
  end-page: 136
  article-title: A feature‐integration theory of attention
  publication-title: Cognitive Psychology
– volume: 6
  start-page: 576
  year: 2005
  end-page: 582
  article-title: Brain mechanisms linking language and action
  publication-title: Nature Reviews Neuroscience
– volume: 38
  start-page: 1490
  issue: 6
  year: 2012
  end-page: 1511
  article-title: A neurobehavioral model of flexible spatial language behaviors
  publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition
– year: 2016
– volume: 36
  start-page: 329
  issue: 4
  year: 2013
  end-page: 347
  article-title: An integrated theory of language production and comprehension
  publication-title: Behavioral and Brain Sciences
– volume: 34
  start-page: 752
  issue: 5
  year: 2010
  end-page: 775
  article-title: Bootstrapping the mind: Analogical processes and symbol systems
  publication-title: Cognitive Science
– volume: 46
  start-page: 159
  issue: 1‐2
  year: 1990
  end-page: 216
  article-title: Tensor product variable binding and the representation of symbolic structures in connectionist systems
  publication-title: Artificial Intelligence
– volume: 9
  start-page: 389
  issue: 8
  year: 2005
  end-page: 396
  article-title: Grounding words in perception and action: Computational insights
  publication-title: Trends in Cognitive Sciences
– year: 2014
  article-title: Autonomous neural dynamics to test hypotheses in a model of spatial language
– volume: 7
  start-page: 1
  issue: 276
  year: 2014
  end-page: 13
  article-title: Dynamic neural fields as a step toward cognitive neuromorphic architectures
  publication-title: Frontiers in Neuroscience
– volume: 2
  start-page: 1019
  issue: 11
  year: 1999
  end-page: 1025
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nature Neuroscience
– volume: 115
  start-page: 1
  issue: 1
  year: 2008
  end-page: 43
  article-title: A theory of the discovery and predication of relational concepts
  publication-title: Psychological Review
– volume: 17
  start-page: 1276
  year: 2005
  end-page: 1314
  article-title: A unified approach to building and controlling spiking attractor networks
  publication-title: Neural Computation
– volume: 27
  start-page: 77
  issue: 2
  year: 1977
  end-page: 87
  article-title: Dynamics of pattern formation in lateral‐inhibition type neural fields
  publication-title: Biological Cybernetics
– start-page: 283
  year: 1997
  end-page: 300
  article-title: Representations of serial order
– volume: 1
  start-page: 417
  year: 2015
  end-page: 446
  article-title: Deep neural networks: A new framework for modeling biological vision and brain information processing
  publication-title: Annual Review of Vision Science
– volume: 29
  start-page: 411
  issue: 3
  year: 2007
  end-page: 426
  article-title: Robust object recognition with cortex‐like mechanisms
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 3
  start-page: 1184
  year: 2000
  end-page: 1191
  article-title: Neurocomputational models of working memory
  publication-title: Nature Neuroscience
– volume: 110
  start-page: 16390
  issue: 41
  year: 2013
  end-page: 16395
  article-title: Indirection and symbol‐like processing in the prefrontal cortex and basal ganglia
  publication-title: Proceedings of the National Academy of Sciences
– year: 2001
– volume: 19
  start-page: 162
  issue: 3
  year: 2015
  end-page: 172
  article-title: Neural population coding: Combining insights from microscopic and mass signals
  publication-title: Trends in Cognitive Sciences
– volume: 6
  start-page: 347
  issue: 4
  year: 1995
  end-page: 378
  article-title: The cognitive psychological reality of image schemas and their transformations
  publication-title: Cognitive Linguistics
– volume: 3
  start-page: 345
  issue: 9
  year: 1999
  end-page: 351
  article-title: An embodied cognitive science?
  publication-title: Trends in Cognitive Sciences
– year: 2018
– volume: 32
  start-page: 185
  issue: 1
  year: 2009
  end-page: 208
  article-title: Representation of number in the brain
  publication-title: Annual Review of Neuroscience
– volume: 13
  year: 2019
  article-title: Autonomous sequence generation for a neural dynamic robot: Scene perception, serial order, and object‐oriented movement
  publication-title: Frontiers in Neurorobotics
– volume: 9
  start-page: 625
  issue: 4
  year: 2002
  end-page: 636
  article-title: Six views of embodied cognition
  publication-title: Psychonomic Bulletin & Review
– volume: 20
  start-page: 568
  issue: 5
  year: 2009
  end-page: 577
  article-title: A dynamic neural field model of visual working memory and change detection
  publication-title: Psychological Science
– volume: 81
  start-page: 2424
  issue: 7
  year: 2019
  end-page: 2460
  article-title: Computer mouse tracking reveals motor signatures in a cognitive task of spatial language grounding
  publication-title: Attention, Perception, & Psychophysics
– volume: 122
  start-page: 210
  issue: 2
  year: 2012
  end-page: 227
  article-title: Flexible visual processing of spatial relationships
  publication-title: Cognition
– volume: 94
  start-page: 53
  issue: 1
  year: 1999
  end-page: 66
– year: 2012
  article-title: A robotic architecture for action selection and behavioral organization inspired by human cognition
– start-page: 52
  year: 2012
  end-page: 66
– volume: 10
  start-page: 1
  year: 1986
  end-page: 40
  article-title: An introduction to cognitive grammar
  publication-title: Cognitive Science
– volume: 13
  start-page: 55
  issue: 2
  year: 1973
  end-page: 80
  article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
  publication-title: Biological Cybernetics
– start-page: 1
  year: 2020
  end-page: 12
  article-title: A neural dynamic network drives an intentional agent that autonomously learns beliefs in continuous time
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 31
  start-page: 12767
  issue: 36
  year: 2011
  end-page: 12777
  article-title: Dynamics of population response to changes of motion direction in primary visual cortex
  publication-title: Journal of Neuroscience
– volume: 14
  start-page: 348
  issue: 8
  year: 2010
  end-page: 356
  article-title: Letting structure emerge: Connectionist and dynamical systems approaches to cognition
  publication-title: Trends in Cognitive Sciences
– year: 2016
  article-title: Visual relationship detection with language priors
– volume: 22
  start-page: 577
  issue: 4
  year: 1999
  end-page: 609
  article-title: Perceptual symbol systems
  publication-title: Behavioral and Brain Sciences
– volume: 12
  start-page: 136
  year: 2008
  end-page: 143
  article-title: A central circuit of the mind
  publication-title: Trends in Cognitive Sciences
– volume: 50
  start-page: 999
  issue: 11
  year: 2010
  end-page: 1013
  article-title: Attentional landscapes in reaching and grasping
  publication-title: Vision Research
– volume: 21
  start-page: 429
  year: 2004
  end-page: 470
  article-title: Grounded semantic composition for visual scenes
  publication-title: Journal of Artificial Intelligence Research
– year: 2000
– volume: 27
  start-page: 419
  year: 2004
  end-page: 451
  article-title: Neural circuits of the neocortex
  publication-title: Annual Review of Neuroscience
– volume: 367
  start-page: 103
  issue: 1585
  year: 2012
  end-page: 117
  article-title: The minimalist grammar of action
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– start-page: 4967
  year: 2017
  end-page: 4976
  article-title: A simple neural network module for relational reasoning
– year: 2020
  article-title: Towards robust image classification using sequential attention models
– year: 2012
– volume: 167
  start-page: 31
  issue: 1–2
  year: 2005
  end-page: 61
  article-title: Learning to talk about events from narrated video in a construction grammar framework
  publication-title: Artificial Intelligence
– volume: 20
  start-page: 723
  issue: 4
  year: 1997
  end-page: 767
  article-title: Deictic codes for the embodiment of cognition
  publication-title: Behavioral and Brain Sciences
– volume: 9
  start-page: 222
  issue: 2
  year: 1997
  end-page: 237
  article-title: Spatial transformations in the parietal cortex using basis functions
  publication-title: Journal of Cognitive Neuroscience
– start-page: 197
  year: 2016
  end-page: 226
– volume: 5
  start-page: 1
  year: 2013
  end-page: 14
  article-title: A neuronal device for the control of multi‐step computations
  publication-title: Papers in Physics
– volume: 15
  start-page: 207
  issue: 5
  year: 2006
  end-page: 211
  article-title: Continuous dynamics in real‐time cognition
  publication-title: Current Directions in Psychological Science
– volume: 89
  start-page: 703
  issue: 6
  year: 1985
  end-page: 710
  article-title: Nervous structures with dynamical links
  publication-title: Berichte der Bunsengesellschaft/Physical Chemistry Chemical Physics
– year: 1988
– year: 2017
– volume: 7
  start-page: 430
  issue: 5
  year: 2001
  end-page: 440
  article-title: Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet
  publication-title: Neuroscientist
– volume: 773
  start-page: 735
  year: 2010
  end-page: 773
  article-title: Collective stability of networks of winner‐take‐all circuits
  publication-title: Neural Computation
– volume: 6
  start-page: 392
  issue: 4
  year: 2003
  end-page: 412
  article-title: Bridging the representational gap in the dynamic systems approach to development
  publication-title: Developmental Science
– start-page: 579
  year: 2012
  end-page: 586
  article-title: The counter‐change model of motion perception: An account based on dynamic field theory
– year: 1999
– ident: e_1_2_10_49_1
  doi: 10.1017/CBO9780511620850
– ident: e_1_2_10_99_1
  doi: 10.1109/CVPR42600.2020.00950
– ident: e_1_2_10_61_1
  doi: 10.1515/cogl.1995.6.1.63
– volume: 13
  start-page: 55
  issue: 2
  year: 1973
  ident: e_1_2_10_96_1
  article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
  publication-title: Biological Cybernetics
– ident: e_1_2_10_70_1
  doi: 10.1177/107385840100700512
– ident: e_1_2_10_7_1
  doi: 10.1017/S0140525X99002149
– ident: e_1_2_10_91_1
  doi: 10.1177/0023830916651097
– ident: e_1_2_10_44_1
  doi: 10.1037/a0022643
– ident: e_1_2_10_30_1
  doi: 10.1037/0033-295X.99.3.480
– start-page: 103
  volume-title: Joint attention: Its origins and role in development
  year: 1995
  ident: e_1_2_10_92_1
– ident: e_1_2_10_26_1
  doi: 10.1515/cogl.1995.6.4.347
– ident: e_1_2_10_60_1
  doi: 10.1038/nrn1706
– ident: e_1_2_10_89_1
  doi: 10.3389/fnbot.2019.00095
– ident: e_1_2_10_33_1
  doi: 10.1523/JNEUROSCI.19-20-09016.1999
– ident: e_1_2_10_27_1
  doi: 10.1613/jair.1327
– ident: e_1_2_10_55_1
  doi: 10.1098/rstb.2011.0123
– ident: e_1_2_10_40_1
  doi: 10.1017/S0140525X00029733
– ident: e_1_2_10_19_1
  doi: 10.1162/0899766053630332
– ident: e_1_2_10_59_1
  doi: 10.1162/jocn.1997.9.2.222
– volume: 7
  start-page: 1
  issue: 276
  year: 2014
  ident: e_1_2_10_73_1
  article-title: Dynamic neural fields as a step toward cognitive neuromorphic architectures
  publication-title: Frontiers in Neuroscience
– ident: e_1_2_10_64_1
  doi: 10.1109/IROS.2012.6386153
– volume-title: A user's guide to thought and meaning
  year: 2012
  ident: e_1_2_10_32_1
– volume: 773
  start-page: 735
  year: 2010
  ident: e_1_2_10_68_1
  article-title: Collective stability of networks of winner‐take‐all circuits
  publication-title: Neural Computation
– ident: e_1_2_10_2_1
  doi: 10.1007/BF00337259
– ident: e_1_2_10_42_1
– ident: e_1_2_10_11_1
  doi: 10.1523/JNEUROSCI.5179-08.2009
– ident: e_1_2_10_86_1
  doi: 10.1111/j.1467-8721.2006.00437.x
– start-page: 1
  year: 2019
  ident: e_1_2_10_80_1
  article-title: The dynamics of neural populations capture the laws of the mind
  publication-title: Topics in Cognitive Science
– ident: e_1_2_10_17_1
  doi: 10.1037/0033-295X.115.1.1
– ident: e_1_2_10_82_1
  doi: 10.1017/S0140525X00005756
– ident: e_1_2_10_83_1
  doi: 10.1109/TPAMI.2007.56
– ident: e_1_2_10_85_1
  doi: 10.1111/1467-7687.00295
– ident: e_1_2_10_20_1
  doi: 10.1126/science.1225266
– ident: e_1_2_10_72_1
  doi: 10.1111/cogs.12369
– start-page: 197
  volume-title: Dynamic thinking: A primer on dynamic field theory
  year: 2016
  ident: e_1_2_10_79_1
– ident: e_1_2_10_51_1
  doi: 10.1016/j.tics.2010.06.002
– ident: e_1_2_10_38_1
  doi: 10.1073/pnas.1303547110
– ident: e_1_2_10_58_1
  doi: 10.1109/72.377968
– ident: e_1_2_10_24_1
  doi: 10.7551/mitpress/9629.001.0001
– ident: e_1_2_10_37_1
  doi: 10.1146/annurev-vision-082114-035447
– ident: e_1_2_10_53_1
  doi: 10.1126/science.1127242
– ident: e_1_2_10_46_1
  doi: 10.3389/fnbot.2017.00023
– ident: e_1_2_10_22_1
  doi: 10.3389/neuro.10.001.2009
– ident: e_1_2_10_34_1
  doi: 10.1111/j.1467-9280.2009.02329.x
– ident: e_1_2_10_57_1
  doi: 10.1017/S0140525X12001495
– ident: e_1_2_10_98_1
  doi: 10.1523/JNEUROSCI.4307-10.2011
– ident: e_1_2_10_21_1
  doi: 10.1016/S0165-0270(99)00125-9
– volume: 11
  issue: 9
  year: 2017
  ident: e_1_2_10_35_1
  article-title: A neural dynamics architecture for grasping that integrates perception and movement generation and enables on‐line updating
  publication-title: Frontiers in Neurorobotics
– ident: e_1_2_10_41_1
  doi: 10.1207/s15516709cog1001_1
– ident: e_1_2_10_62_1
– volume-title: The targeting system of language
  year: 2017
  ident: e_1_2_10_88_1
– ident: e_1_2_10_25_1
  doi: 10.1111/j.1551-6709.2010.01114.x
– ident: e_1_2_10_78_1
  doi: 10.1007/s00422-012-0484-8
– ident: e_1_2_10_52_1
  doi: 10.1146/annurev.neuro.051508.135550
– ident: e_1_2_10_90_1
  doi: 10.1109/TCDS.2020.3013768
– ident: e_1_2_10_16_1
  doi: 10.1093/oxfordhb/9780199734689.013.0005
– ident: e_1_2_10_74_1
  doi: 10.1016/j.neunet.2010.07.012
– ident: e_1_2_10_39_1
  doi: 10.1017/S0034670500028953
– ident: e_1_2_10_13_1
  doi: 10.1080/09540091.2017.1405382
– ident: e_1_2_10_95_1
  doi: 10.1002/bbpc.19850890625
– start-page: 1
  year: 2020
  ident: e_1_2_10_50_1
  article-title: A compositional neural architecture for language
  publication-title: Journal of Cognitive Neuroscience
– ident: e_1_2_10_100_1
  doi: 10.4279/pip.050006
– start-page: 493
  volume-title: Language and space
  year: 1996
  ident: e_1_2_10_45_1
  doi: 10.7551/mitpress/4107.003.0015
– ident: e_1_2_10_36_1
– ident: e_1_2_10_12_1
  doi: 10.3389/fpsyg.2018.01287
– ident: e_1_2_10_75_1
  doi: 10.1007/978-3-319-09903-3_9
– ident: e_1_2_10_56_1
  doi: 10.1007/978-1-4613-0003-8
– volume-title: Dynamic thinking: A primer on dynamic field theory
  year: 2016
  ident: e_1_2_10_81_1
– ident: e_1_2_10_54_1
  doi: 10.1016/j.tics.2015.01.002
– ident: e_1_2_10_8_1
  doi: 10.1007/978-3-642-33269-2_73
– ident: e_1_2_10_93_1
  doi: 10.1016/0010-0285(80)90005-5
– ident: e_1_2_10_9_1
  doi: 10.1371/journal.pone.0115758
– ident: e_1_2_10_28_1
  doi: 10.3758/s13414-019-01898-y
– ident: e_1_2_10_65_1
  doi: 10.1038/14819
– ident: e_1_2_10_31_1
  doi: 10.1038/35058500
– ident: e_1_2_10_3_1
  doi: 10.1093/acprof:oso/9780195324259.001.0001
– ident: e_1_2_10_18_1
  doi: 10.1038/81460
– ident: e_1_2_10_67_1
  doi: 10.1093/acprof:oso/9780199217274.003.0011
– ident: e_1_2_10_48_1
– ident: e_1_2_10_94_1
  doi: 10.1109/ROMAN.2012.6343746
– ident: e_1_2_10_66_1
  doi: 10.1016/j.tics.2005.06.013
– ident: e_1_2_10_10_1
  doi: 10.1016/S1364-6613(99)01361-3
– ident: e_1_2_10_47_1
  doi: 10.3389/fnbot.2016.00014
– ident: e_1_2_10_63_1
– ident: e_1_2_10_5_1
  doi: 10.1016/j.visres.2010.02.008
– ident: e_1_2_10_15_1
  doi: 10.1146/annurev.neuro.27.070203.144152
– ident: e_1_2_10_69_1
– start-page: 121
  volume-title: Dynamic thinking: A primer on dynamic field theory
  year: 2016
  ident: e_1_2_10_77_1
– ident: e_1_2_10_29_1
  doi: 10.1007/978-1-4471-1546-5_22
– ident: e_1_2_10_23_1
  doi: 10.1016/j.cognition.2011.11.002
– ident: e_1_2_10_97_1
  doi: 10.3758/BF03196322
– ident: e_1_2_10_4_1
  doi: 10.1016/j.tics.2008.01.006
– ident: e_1_2_10_76_1
– ident: e_1_2_10_43_1
  doi: 10.3758/s13414-019-01847-9
– ident: e_1_2_10_87_1
  doi: 10.1075/cilt.50.08tal
– volume-title: Dynamic thinking: A primer on dynamic field theory
  year: 2016
  ident: e_1_2_10_71_1
– ident: e_1_2_10_84_1
  doi: 10.1016/0004-3702(90)90007-M
– ident: e_1_2_10_14_1
  doi: 10.1016/j.artint.2005.06.007
– ident: e_1_2_10_6_1
  doi: 10.1017/S0140525X97001611
SSID ssj0006639
Score 2.3868291
Snippet How does the human brain link relational concepts to perceptual experience? For example, a speaker may say “the cup to the left of the computer” to direct the...
How does the human brain link relational concepts to perceptual experience? For example, a speaker may say "the cup to the left of the computer" to direct the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e13045
SubjectTerms Brain
Cognition
Description generation
Dynamic field theory
Higher cognition
Hypotheses
Information processing
Movement relations
Neural dynamics
Neural networks
Perceptual grounding
Spatial relations
Title A Neural Dynamic Model of the Perceptual Grounding of Spatial and Movement Relations
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcogs.13045
https://www.proquest.com/docview/2583866366
https://www.proquest.com/docview/2582110064
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB7UJ1886lWPElEEhZVuk2xa8KXUo0g98ABfZGk2WR8sW3HbB_31zmSPqoigbwuZsLvJTOZLMvMNwK6NfHTLVnhcCosbFKE9jY7eixA8GIUYoxlTgvPFZdC9F-cP8mEKjopcmIwfojxwI8tw6zUZeF-nn4w8Gj6lVMtYUIY5BWsRIrqZcEehK21lF5XCQ0fGc25SCuOZdP3qjSYQ8zNQdZ7mdB4ei2_MAkyeD8cjfRi9f6Nv_O9PLMBcDkFZO9OZRZiySQVWe_nBZcr2WK_kWk4rMFuukW9LcNdmROeB3Y-zUvaMiqkN2DBmiCTZdRYmM8Z2OtRyGTPURoWPUdFZPzHYwVGUj1gZh7cM96cnd52ulxdm8CKuiLnUSGkEgjclYu1zq7U0dSH6yhjcb0YtnPuGEapl61KjBEFMVbfG1xGXVsmAr8BMMkzsGjBpOA-4QI8hlWj69VbTqpg6ColA1o-rsF9MUBjlrOVUPGMQFrsXGsLQDWEVdkrZl4yr40epzWKew9xe07BBt8eoMUFQhe2yGS2Nrk_6iR2OnQztlhHDVeHATeovbwk7V2e37mn9L8IbMNugoBkXLbgJM6PXsd1C1DPSNZhuiOua0_EP5VX8cw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gHuQCigiLKG0UE0iG7Ex3T-8ePBBWXGRBI0vCbdh-DCHALHF2Y9b_5F_xN1nV81gwxsQDB2-TdPW8uqrr6-rqrwDeOBOiW3Yi4FI4XKAIHWh09IFB8GAVYoxWSgecD4_i7on4eCpPZ-BHdRam4IeoA25kGX6-JgOngPQtKzfD85yKGYsqp_LATb7hii1_t9_B4d2Ior33_d1uUBYVCAxXxLpppbQCgYcSqQ6501raphADZS2ulUwb3zuyQrVdU2qUIHikms6G2nDplIw53vcBPKQS4kTV3_kyZatC590utkZFgK6Tl2yolDg0fde7_m8Kam9DY-_b9hbgZ_VXipSWy-3xSG-b778RRv43v-0xzJcom-0UZvEEZly2CMu9Mjabs7esV9NJ54swV7uByVPo7zBiLMHunUk2uL4wjOrFXbFhyhAss89FJtAY2ylu5w8FURvVdkZbZoPMYgfPwj5idarhEpzcy_c-g9lsmLkVYNJyHnOBTlEq0Qqb7ZZTKXUUErF6mDZgs9KIxJTE7FQf5CqpFmg0ZIkfsga8rmVvCjqSP0qtVYqVlFNSnkS0QY4qGscNeFU342RCO0SDzA3HXoYCAghTG7DltegvT0l2P3049ler_yK8Do-6_cNe0ts_OngOcxHlCPnkyDWYHX0duxcI8kb6pTctBmf3rZS_AI2gWGc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58gHgRra_6XPEBCoEmu5ttDx6ktVattaCCt9hkN14kFdMi_id_pDObhwoiePAW2NkkzM7sfLMzOwOwZyIXzbIRDpfCoIMiQidEQ-9ECB60QoxRj-mC81XP79yJi3t5PwHvxV2YrD5EeeBGmmH3a1LwZx1_UfJo-JhSL2NRpFRemrdXdNjS4_MWru6-57VPb5sdJ-8p4ERcUdFNLaUWiDuUiEOXmzCUuibEQGmNrlLUwN_2tFANU5MhUhA6UjWj3TDi0ijpc3zvJExTdJESyDzRL_d9tN2NLDIqHLScPC-GSnlDn__63fx9YtqvyNiatvY8zOWYlJ1kQrQAEyapwEo3P8lM2QHrlsWX0wrMlpvm2yLcnjCq74HTW1lve0bd1Z7YMGYILVk_y5sZ4zidctkrNDRGnZBR8tkg0TjB1iwfsTIxbwnu_oWryzCVDBOzCkxqzn0u0IRIJepurVE3KqaJQiKydeMqHBYMDKK8jDl103gKCneGmB1YZldht6R9zop3_Ei1UaxDkCtwGngUTsYV9f0q7JTDqHoUTxkkZji2NOQ-I6irwpFdv1--EjSvz27s09pfiLdhpt9qB93z3uU6zHqUUGMzCTdgavQyNpuIiEbhlhVEBg__LfkfZhwW3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neural+Dynamic+Model+of+the+Perceptual+Grounding+of+Spatial+and+Movement+Relations&rft.jtitle=Cognitive+science&rft.au=Richter%2C+Mathis&rft.au=Lins%2C+Jonas&rft.au=Sch%C3%B6ner%2C+Gregor&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-0213&rft.eissn=1551-6709&rft.volume=45&rft.issue=10&rft_id=info:doi/10.1111%2Fcogs.13045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-0213&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-0213&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-0213&client=summon