Multi-objective optimization models for power load balancing in distributed energy systems
When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues...
Saved in:
Published in | Energy Informatics Vol. 8; no. 1; pp. 104 - 22 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better. |
---|---|
AbstractList | When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better. Abstract When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better. |
ArticleNumber | 104 |
Author | Wu, Wei Li, Zhun Cao, Lei Wang, Zhuo Luo, Yuchen |
Author_xml | – sequence: 1 givenname: Zhuo surname: Wang fullname: Wang, Zhuo organization: Operation Management of Changping Campus, National Institute of Metrology – sequence: 2 givenname: Yuchen surname: Luo fullname: Luo, Yuchen organization: Operation Management of Changping Campus, National Institute of Metrology – sequence: 3 givenname: Wei surname: Wu fullname: Wu, Wei organization: Operation Management of Changping Campus, National Institute of Metrology – sequence: 4 givenname: Lei surname: Cao fullname: Cao, Lei organization: Operation Management of Changping Campus, National Institute of Metrology – sequence: 5 givenname: Zhun surname: Li fullname: Li, Zhun email: ZhunLi28@outlook.com, NIM_jgb@163.com organization: Operation Management of Changping Campus, National Institute of Metrology |
BookMark | eNp9UUtLXDEUDsVCdeof6Crg-rZ5T7IUsSoobtpNNyE3ORky3EmmScYy_vpevaXtyrM5h8P3gu8MneSSAaFPlHymVKsvTTCq2ECYHAiRTA3iHTplkpFBG8FO_rs_oPPWtoQQpqWShp2iHw-HqaehjFvwPT0BLvuedunZ9VQy3pUAU8OxVLwvv6DiqbiARze57FPe4JRxSK3XNB46BAwZ6uaI27F12LWP6H10U4PzP3uFvn-9_nZ1O9w_3txdXd4Pnq-JGKgAKt3oaVRyHEGCFkyBCJSJtaaSK9Ce0KAiNz4QxnjQ0gUddTTRzcNX6G7RDcVt7b6mnatHW1yyr49SN9bVnvwEVmhvyMiM1yaKyLhZK28iddIQpcf1i9bForWv5ecBWrfbcqh5jm8544rP9nOkFWILytfSWoX415US-1KJXSqxcyX2tRIrZhJfSG0G5w3Uf9JvsH4DK1mQyA |
Cites_doi | 10.1109/JESTPE.2020.3012659 10.1016/j.enconman.2018.10.083 10.1109/ACPEE60788.2024.10532334 10.1109/ACCESS.2023.3243889 10.3390/pr12020395 10.3389/fenrg.2024.1506095 10.1109/ACCESS.2024.3491100 10.1088/1742-6596/2890/1/012028 10.3389/fenrg.2022.869844 10.1016/j.jobe.2024.109138 10.1051/e3sconf/202450503008 10.1016/j.est.2021.103005 10.3389/fenrg.2023.1332474 10.1109/ACCESS.2024.3375530 10.3390/en14020257 10.3390/su16229948 10.1016/j.apenergy.2022.118887 10.1016/j.applthermaleng.2016.02.027 10.1109/TPWRS.2023.3274751 10.1117/12.2680521 10.1109/CIEEC60922.2024.10583671 10.1016/j.apenergy.2021.116746 10.1007/s00521-023-08327-0 10.1109/ACCESS.2024.3392911 10.1115/ICONE31-135307 10.1016/j.enconman.2018.04.054 10.1109/ACCESS.2021.3100336 10.2139/ssrn.4408454 10.1016/j.enconman.2019.112081 10.1007/s42835-022-01289-8 10.3390/su15139970 10.1109/ACCESS.2024.3485885 10.1016/j.apenergy.2010.06.013 10.1109/ACCESS.2022.3149135 10.1016/j.prime.2025.100914 10.1109/CAC59555.2023.10451373 10.32985/ijeces.13.2.1 10.3390/en16104257 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD ABUWG AEUYN AFKRA AZQEC BENPR CCPQU DWQXO JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.1186/s42162-025-00526-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Computer and Information Systems Abstracts Professional ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2520-8942 |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_48c90b29c89f4f23976c9f1a59068b7a 10_1186_s42162_025_00526_4 |
GrantInformation_xml | – fundername: - Construction of Intelligent Energy Conservation Analysis System in Changping Campus grantid: AKYCX2304; AKYCX2304; AKYCX2304; AKYCX2304; AKYCX2304 |
GroupedDBID | 0R~ AAFWJ AAJSJ AAKKN AASML ABEEZ ACACY ACULB ADBBV ADMLS AEUYN AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMKLP ARCSS BCNDV BENPR C24 C6C CCPQU EBLON EBS GROUPED_DOAJ IAO ISR ITC OK1 PHGZM PHGZT PIMPY PROAC SOJ AAYXX CITATION 7SC 8FD ABUWG AZQEC DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c3704-14e15abc1f65bbe5e8426e4d124781536e8c01d6f39cd0223d85ad8f8f9faaaa3 |
IEDL.DBID | DOA |
ISSN | 2520-8942 |
IngestDate | Wed Aug 27 01:26:30 EDT 2025 Sat Aug 23 14:31:13 EDT 2025 Thu Aug 07 07:16:48 EDT 2025 Tue Aug 05 01:11:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Power load, distributed generation Multi-objective optimization Deep reinforcement model grid, energy sources |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3704-14e15abc1f65bbe5e8426e4d124781536e8c01d6f39cd0223d85ad8f8f9faaaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/48c90b29c89f4f23976c9f1a59068b7a |
PQID | 3236322315 |
PQPubID | 4406324 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48c90b29c89f4f23976c9f1a59068b7a proquest_journals_3236322315 crossref_primary_10_1186_s42162_025_00526_4 springer_journals_10_1186_s42162_025_00526_4 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Energy Informatics |
PublicationTitleAbbrev | Energy Inform |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | 526_CR11 526_CR33 526_CR5 526_CR10 526_CR8 JD Fonseca (526_CR12) 2021; 290 PA Gbadega (526_CR13) 2021; 9 526_CR30 S Feng (526_CR7) 2023; 576 526_CR18 526_CR14 526_CR36 B Ahmadi (526_CR40) 2021; 41 526_CR39 526_CR16 526_CR38 H Hu (526_CR34) 2024; 12 H Ren (526_CR41) 2010; 87 Y Yang (526_CR6) 2024; 39 S Momen (526_CR4) 2022; 18 PA Gbadega (526_CR9) 2024; 12 M Di Somma (526_CR15) 2016; 101 M Rezaeimozafar (526_CR31) 2020 526_CR22 526_CR21 M Rostamiyan (526_CR35) 2023; 11 526_CR24 526_CR23 A Ali (526_CR29) 2024; 12 526_CR20 J Zhou (526_CR32) 2023; 45 526_CR42 526_CR26 K Li (526_CR19) 2024; 996 526_CR25 526_CR28 E Mokaramian (526_CR37) 2021; 9 526_CR27 Y Al-Karawi (526_CR3) 2024; 12 MA Elseify (526_CR17) 2023; 35 HA Taha (526_CR2) 2022; 10 526_CR1 |
References_xml | – volume: 9 start-page: 7253 year: 2021 ident: 526_CR13 publication-title: IEEE J Emerg Sel Top Power Electron doi: 10.1109/JESTPE.2020.3012659 – ident: 526_CR39 doi: 10.1016/j.enconman.2018.10.083 – volume-title: A Bi-Layer Multi-Objective Techno-Economical optimization model for optimal integration year: 2020 ident: 526_CR31 – ident: 526_CR38 doi: 10.1109/ACPEE60788.2024.10532334 – volume: 11 start-page: 17603 year: 2023 ident: 526_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3243889 – volume: 996 start-page: 1001 year: 2024 ident: 526_CR19 publication-title: 2024 6th Asia Energy Electr Eng Symp (AEEES) – ident: 526_CR26 doi: 10.3390/pr12020395 – ident: 526_CR1 doi: 10.3389/fenrg.2024.1506095 – volume: 12 start-page: 163819 year: 2024 ident: 526_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3491100 – ident: 526_CR21 doi: 10.1088/1742-6596/2890/1/012028 – ident: 526_CR25 doi: 10.3389/fenrg.2022.869844 – ident: 526_CR10 doi: 10.1016/j.jobe.2024.109138 – ident: 526_CR23 doi: 10.1051/e3sconf/202450503008 – volume: 41 start-page: 103005 year: 2021 ident: 526_CR40 publication-title: J Energy Storage doi: 10.1016/j.est.2021.103005 – ident: 526_CR36 doi: 10.3389/fenrg.2023.1332474 – volume: 12 start-page: 37903 year: 2024 ident: 526_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3375530 – ident: 526_CR20 doi: 10.3390/en14020257 – ident: 526_CR28 doi: 10.3390/su16229948 – ident: 526_CR11 doi: 10.1016/j.apenergy.2022.118887 – volume: 101 start-page: 752 year: 2016 ident: 526_CR15 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.02.027 – volume: 39 start-page: 3211 year: 2024 ident: 526_CR6 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2023.3274751 – ident: 526_CR24 doi: 10.1117/12.2680521 – ident: 526_CR18 doi: 10.1109/CIEEC60922.2024.10583671 – volume: 290 start-page: 116746 year: 2021 ident: 526_CR12 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116746 – volume: 35 start-page: 11867 year: 2023 ident: 526_CR17 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08327-0 – volume: 12 start-page: 58972 year: 2024 ident: 526_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3392911 – ident: 526_CR30 doi: 10.1115/ICONE31-135307 – ident: 526_CR8 doi: 10.1016/j.enconman.2018.04.054 – volume: 9 start-page: 109447 year: 2021 ident: 526_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100336 – ident: 526_CR42 doi: 10.2139/ssrn.4408454 – ident: 526_CR14 doi: 10.1016/j.enconman.2019.112081 – volume: 18 start-page: 1539 year: 2022 ident: 526_CR4 publication-title: J Electr Eng Technol doi: 10.1007/s42835-022-01289-8 – ident: 526_CR22 doi: 10.3390/su15139970 – volume: 12 start-page: 168825 year: 2024 ident: 526_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3485885 – volume: 87 start-page: 3642 year: 2010 ident: 526_CR41 publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.06.013 – volume: 10 start-page: 16225 year: 2022 ident: 526_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3149135 – volume: 576 start-page: 581 year: 2023 ident: 526_CR7 publication-title: 2023 3rd Int Signal Process Commun Eng Manage Conf (ISPCEM) – volume: 45 start-page: 1204 year: 2023 ident: 526_CR32 publication-title: Energy Sour Part A Recover Utilization Environ Eff – ident: 526_CR16 doi: 10.1016/j.prime.2025.100914 – ident: 526_CR33 doi: 10.1109/CAC59555.2023.10451373 – ident: 526_CR27 doi: 10.32985/ijeces.13.2.1 – ident: 526_CR5 doi: 10.3390/en16104257 |
SSID | ssj0002856592 |
Score | 2.3106062 |
Snippet | When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing... Abstract When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 104 |
SubjectTerms | Alternative energy sources Artificial intelligence Climate change Computer Science Deep reinforcement model grid, energy sources Distributed generation Efficiency Electrical loads Electricity Electricity distribution Emissions Energy consumption Energy management Energy resources Energy storage Information Systems and Communication Service Investigations Multi-objective optimization Multiple objective analysis Operating costs Optimization Optimization models Photovoltaics Power load, distributed generation Power supply Probability density functions Renewable energy sources Renewable resources Solar energy Supply & demand Uncertainty Wind power |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSx0xFA72unFTLFq8VUsW7mpwJq85WYkWRYRKKQrSTchTLO2dq6P_3ySTUSzoLOfNyXnlJOf7ENqTPghlkiEZwTzhikliYuSk9UwGR5mEQtP540KeXfHza3FdC25D3VY5-cTiqH3vco38gKXnkvKxVhwu70hmjcqrq5VC4wNaTS4YYIZWj08ufv56rrJQEHndcOqWAXkwcNpKSjKLa8E6IfxVRCrA_a-yzf8WSEvcOV1HH2vCiI_GEf6EVsJiA_0ufbOkt39Gf4X7ZPn_akslLuw2A07pKF5mEjT8tzce27yJ0aVv4NsF9hkvN1NdBY9Daf_DI6bzsImuTk8uv5-RypJAHOsy6CAPrTDWtVEKa4MIkIJu4D4F7g6SP5MBXNN6GZlyPkVs5kEYDxGiiiYd7DOaLfpF2EKYSuiSjVMVacNdw23nmGWtlApCmheFOfo2SUovRzAMXSYRIPUoV53kqotcNZ-j4yzM5zszkHU50d_f6GoXmoNTjaXKgYo80pwdORVbI1QjwXZmjnamodDVugb9ogtztD8Nz8vlt3_py_tv20ZrNCtG2a2yg2YP949hN-UcD_ZrVawndfvUAw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uFy_u4riRgzctNmuTow7KIOjJAfESsoKiM-Lo__clbd3Qgz22KS3fy8t7Wd73IXQoQxTagiNZwULFNZOVTYlXJDAZPWVSFZnOq2s5GvPLW3Hb0eTkWpiv-_dEyZMZp0TSKouuFmqSis-jRUFYk2UahnL4sZ5Clcg7hH1dzK-vfos9haL_W175Yyu0RJiLVbTcpYb4tLXlGpqLk3W00ssu4M4LN9BdKZqtpu6hHazwFNz-qaunxEXaZoYhF8XPWQENP05twC6fYPTwWXw_wSGT5WadqxhwLLV_uCV0nm2i8cX5zXBUdRIJlQcIAFIeibDOkySFc1FEBRE38gBRu1EwmMmofE2CTEz7AOGaBSVsUEklnSxcbAstTKaTuI0wlaoBB6c60Zr7mrvGM8eIlFpFmBTFATrqwTPPLROGKTMIJU0LtQGoTYHa8AE6y_h-tMws1uUGGNd0TmG48rp2VHulE080p0ZeJ2KFrqVyjR2gvd46pnOtmWHQgWAUYkQM0HFvsc_Hf__Szv-a76IlmvtOObqyhxZeX97iPiQgr-6g9Lx3PXDRzA priority: 102 providerName: Springer Nature |
Title | Multi-objective optimization models for power load balancing in distributed energy systems |
URI | https://link.springer.com/article/10.1186/s42162-025-00526-4 https://www.proquest.com/docview/3236322315 https://doaj.org/article/48c90b29c89f4f23976c9f1a59068b7a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA5eXnwRRcV5GXnwTcva3Jo8zrExBg5RB8OX0NxA0U2c_n9P0k6dIL7YhxbaQsM5OflOmpzvQ-hMOM9VBYFUceoypqjIqhBYVjgqvCVUyCTTeTUWwwkbTfn0m9RX3BNW0wPXhuswaVVuiLJSBRZIhE-rQlFxlQtpypQaAeZ9m0w9pl9GPK4XLqtkpOgsGCkEyaJ6a-I4ydgKEiXC_pUs88fCaMKbwQ7abhJF3K0buIvW_GwP3ad62WxuHutxCs8h4p-bUkqcVG0WGNJQ_BLFz_DTvHLYxM2LFr6BH2bYRZ7cKHHlHfap7A_XXM6LfTQZ9O96w6xRR8gsLSPZIPMFr4wtguDGeO4lgK1nDgC7lDCOCS9tXjgRqLIOkJo6ySsngwwqVHDQA7Qxm8_8IcJEyBJim6hAcmZzZkpLDS2EUNLDfMi30PnSUvqlJsHQafIgha7tqsGuOtlVsxa6jMb8fDMSWKcb4FbduFX_5dYWOlm6QjdRtdAU-g4MQLTgLXSxdM_X49-bdPQfTTpGWyR2n7SX5QRtvL2--1PISN5MG212u6PbEVwv--PrmzZa7xEWz6LXTh3zAzx135I |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxUxFD7By0I3RqPGi4hd6EobZvqadmEIKOQicGMMJMRN7dNo9M6VwRD_lL_RtjMDwUR3zHIeneb0O48-zvkAngsfuDJJkQynHjNFBTYxMlx7KoIjVMhC03k0F7MT9u6Un67A7zEXJh-rHG1iMdS-dXmNfJOm7xL4aM23lj9wZo3Ku6sjhUYPi4Pw6yJN2brX-2_T-L4gZG_3-M0MD6wC2NEmF-ljoebGujoKbm3gQSYnFZhPjq6RSf9FkK6qvYhUOZ88HPWSGy-jjCqadNHU7i1YZVRUZAKrO7vz9x8uV3WI5HmfcszOkWKzY6QWBGfW2FJbBbNrHrAQBVyLbv_akC1-bu8e3B0CVLTdI-o-rITFA_hY8nRxa7_29hG1ydJ8H1I4UWHT6VAKf9Eyk66hb63xyOZDky79A31ZIJ_r82ZqreBRKOmGqK8h3T2EkxuR3yOYLNpFeAyICNkkm0JUJBVzFbONo5bWQigZ0jwsTOHlKCm97Itv6DJpkUL3ctVJrrrIVbMp7GRhXr6ZC2eXG-3ZZz3ooWbSqcoS5aSKLJIcjTkVa8NVJaRtzBTWx6HQgzZ3-gp7U3g1Ds_V4393ae3_rT2D27Pjo0N9uD8_eAJ3SAZJOSmzDpPzs5_haYp3zu3GADIEn24a138A470RSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRUJcyi4GCvgAJ4iaeIt94NBOGbUUKg5UqriYeEOtSjJqBiH-FT-RZycpKoIDh-aYWIn1_Na85QN4Ln0QukFBagTzBddMFk2MvKg8k8FRJlWG6Xx_KPeO-NtjcbwGP6demFztPqUkh56GNKWpXW0tfRxEXMmtntNK0iJBseaBJQUfyyoPwo_vGLT1r_d38YRfULp483G-V4y4AoVjdRrTx0MlGuuqKIW1QQSFZipwj6auVqgBZFCurLyMTDuPNo55JRqvooo6NngxfO81uI6RUZXCvbmcX_zVoUqkPOXUnfPXrV6ygBko4JJ3-0dCNtu5xW3YGB1Usj1w1B1YC-1duDWBP5BRF9yDT7l1t-js6aAySYfK5-vY1UkywE5P0CMmy4TDRs66xhOb6igdfpactMSnkb0JbSt4EnIHIhnGSvf34ehKCPoA1tuuDQ-BUKlqVDNUR1pyV3JbO2ZZJaVWAUOzMIOXE_HMcpjHYXIco6QZSG2Q1CaT2vAZ7CT6XqxMs7Tzje78ixlF03DldGmpdkpHHmly0JyOVSN0KZWtmxlsTqdjRgHvDUM2Rl3IKjGDV9OJ_X787y09-r_lz-DGh92Febd_ePAYbtLERrmWZhPWV-ffwhP0iFb2aWZCAp-vmut_AVnOF4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+models+for+power+load+balancing+in+distributed+energy+systems&rft.jtitle=Energy+Informatics&rft.au=Zhuo+Wang&rft.au=Yuchen+Luo&rft.au=Wei+Wu&rft.au=Lei+Cao&rft.date=2025-12-01&rft.pub=SpringerOpen&rft.eissn=2520-8942&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs42162-025-00526-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48c90b29c89f4f23976c9f1a59068b7a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8942&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8942&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8942&client=summon |