Multi-objective optimization models for power load balancing in distributed energy systems

When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues...

Full description

Saved in:
Bibliographic Details
Published inEnergy Informatics Vol. 8; no. 1; pp. 104 - 22
Main Authors Wang, Zhuo, Luo, Yuchen, Wu, Wei, Cao, Lei, Li, Zhun
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better.
AbstractList When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better.
Abstract When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing criteria on the demand and generation sides make multi-objective optimization difficult. Selecting a model capable of resolving scheduling issues related to loads and dispersed energy sources is, therefore, essential. This study details a concept for optimizing the SPG’s operating cost and pollutant emissions using renewable electricity. Renewable energy sources, such as solar photovoltaic and wind power, are inherently unpredictable and subject to change. Uncertainty around renewable energy is handled by the suggested approach via the use of a probability density function (PDF). In order to address a multi-objective optimization (MOCO) issue, the model that was built relies on a MOCO method. A benchmark model for energy management and control is used to verify the performance of the suggested model, which is a multi-objective deep reinforcement learning (DRL) method. According to the results, MOCO reduces operating costs by 15% and environmental emissions by 8%. The results show that compared to the comparison models, the proposed model achieves the aims better.
ArticleNumber 104
Author Wu, Wei
Li, Zhun
Cao, Lei
Wang, Zhuo
Luo, Yuchen
Author_xml – sequence: 1
  givenname: Zhuo
  surname: Wang
  fullname: Wang, Zhuo
  organization: Operation Management of Changping Campus, National Institute of Metrology
– sequence: 2
  givenname: Yuchen
  surname: Luo
  fullname: Luo, Yuchen
  organization: Operation Management of Changping Campus, National Institute of Metrology
– sequence: 3
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
  organization: Operation Management of Changping Campus, National Institute of Metrology
– sequence: 4
  givenname: Lei
  surname: Cao
  fullname: Cao, Lei
  organization: Operation Management of Changping Campus, National Institute of Metrology
– sequence: 5
  givenname: Zhun
  surname: Li
  fullname: Li, Zhun
  email: ZhunLi28@outlook.com, NIM_jgb@163.com
  organization: Operation Management of Changping Campus, National Institute of Metrology
BookMark eNp9UUtLXDEUDsVCdeof6Crg-rZ5T7IUsSoobtpNNyE3ORky3EmmScYy_vpevaXtyrM5h8P3gu8MneSSAaFPlHymVKsvTTCq2ECYHAiRTA3iHTplkpFBG8FO_rs_oPPWtoQQpqWShp2iHw-HqaehjFvwPT0BLvuedunZ9VQy3pUAU8OxVLwvv6DiqbiARze57FPe4JRxSK3XNB46BAwZ6uaI27F12LWP6H10U4PzP3uFvn-9_nZ1O9w_3txdXd4Pnq-JGKgAKt3oaVRyHEGCFkyBCJSJtaaSK9Ce0KAiNz4QxnjQ0gUddTTRzcNX6G7RDcVt7b6mnatHW1yyr49SN9bVnvwEVmhvyMiM1yaKyLhZK28iddIQpcf1i9bForWv5ecBWrfbcqh5jm8544rP9nOkFWILytfSWoX415US-1KJXSqxcyX2tRIrZhJfSG0G5w3Uf9JvsH4DK1mQyA
Cites_doi 10.1109/JESTPE.2020.3012659
10.1016/j.enconman.2018.10.083
10.1109/ACPEE60788.2024.10532334
10.1109/ACCESS.2023.3243889
10.3390/pr12020395
10.3389/fenrg.2024.1506095
10.1109/ACCESS.2024.3491100
10.1088/1742-6596/2890/1/012028
10.3389/fenrg.2022.869844
10.1016/j.jobe.2024.109138
10.1051/e3sconf/202450503008
10.1016/j.est.2021.103005
10.3389/fenrg.2023.1332474
10.1109/ACCESS.2024.3375530
10.3390/en14020257
10.3390/su16229948
10.1016/j.apenergy.2022.118887
10.1016/j.applthermaleng.2016.02.027
10.1109/TPWRS.2023.3274751
10.1117/12.2680521
10.1109/CIEEC60922.2024.10583671
10.1016/j.apenergy.2021.116746
10.1007/s00521-023-08327-0
10.1109/ACCESS.2024.3392911
10.1115/ICONE31-135307
10.1016/j.enconman.2018.04.054
10.1109/ACCESS.2021.3100336
10.2139/ssrn.4408454
10.1016/j.enconman.2019.112081
10.1007/s42835-022-01289-8
10.3390/su15139970
10.1109/ACCESS.2024.3485885
10.1016/j.apenergy.2010.06.013
10.1109/ACCESS.2022.3149135
10.1016/j.prime.2025.100914
10.1109/CAC59555.2023.10451373
10.32985/ijeces.13.2.1
10.3390/en16104257
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1186/s42162-025-00526-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2520-8942
EndPage 22
ExternalDocumentID oai_doaj_org_article_48c90b29c89f4f23976c9f1a59068b7a
10_1186_s42162_025_00526_4
GrantInformation_xml – fundername: - Construction of Intelligent Energy Conservation Analysis System in Changping Campus
  grantid: AKYCX2304; AKYCX2304; AKYCX2304; AKYCX2304; AKYCX2304
GroupedDBID 0R~
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ACACY
ACULB
ADBBV
ADMLS
AEUYN
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARCSS
BCNDV
BENPR
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
IAO
ISR
ITC
OK1
PHGZM
PHGZT
PIMPY
PROAC
SOJ
AAYXX
CITATION
7SC
8FD
ABUWG
AZQEC
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c3704-14e15abc1f65bbe5e8426e4d124781536e8c01d6f39cd0223d85ad8f8f9faaaa3
IEDL.DBID DOA
ISSN 2520-8942
IngestDate Wed Aug 27 01:26:30 EDT 2025
Sat Aug 23 14:31:13 EDT 2025
Thu Aug 07 07:16:48 EDT 2025
Tue Aug 05 01:11:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Power load, distributed generation
Multi-objective optimization
Deep reinforcement model grid, energy sources
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3704-14e15abc1f65bbe5e8426e4d124781536e8c01d6f39cd0223d85ad8f8f9faaaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/48c90b29c89f4f23976c9f1a59068b7a
PQID 3236322315
PQPubID 4406324
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_48c90b29c89f4f23976c9f1a59068b7a
proquest_journals_3236322315
crossref_primary_10_1186_s42162_025_00526_4
springer_journals_10_1186_s42162_025_00526_4
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Energy Informatics
PublicationTitleAbbrev Energy Inform
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References 526_CR11
526_CR33
526_CR5
526_CR10
526_CR8
JD Fonseca (526_CR12) 2021; 290
PA Gbadega (526_CR13) 2021; 9
526_CR30
S Feng (526_CR7) 2023; 576
526_CR18
526_CR14
526_CR36
B Ahmadi (526_CR40) 2021; 41
526_CR39
526_CR16
526_CR38
H Hu (526_CR34) 2024; 12
H Ren (526_CR41) 2010; 87
Y Yang (526_CR6) 2024; 39
S Momen (526_CR4) 2022; 18
PA Gbadega (526_CR9) 2024; 12
M Di Somma (526_CR15) 2016; 101
M Rezaeimozafar (526_CR31) 2020
526_CR22
526_CR21
M Rostamiyan (526_CR35) 2023; 11
526_CR24
526_CR23
A Ali (526_CR29) 2024; 12
526_CR20
J Zhou (526_CR32) 2023; 45
526_CR42
526_CR26
K Li (526_CR19) 2024; 996
526_CR25
526_CR28
E Mokaramian (526_CR37) 2021; 9
526_CR27
Y Al-Karawi (526_CR3) 2024; 12
MA Elseify (526_CR17) 2023; 35
HA Taha (526_CR2) 2022; 10
526_CR1
References_xml – volume: 9
  start-page: 7253
  year: 2021
  ident: 526_CR13
  publication-title: IEEE J Emerg Sel Top Power Electron
  doi: 10.1109/JESTPE.2020.3012659
– ident: 526_CR39
  doi: 10.1016/j.enconman.2018.10.083
– volume-title: A Bi-Layer Multi-Objective Techno-Economical optimization model for optimal integration
  year: 2020
  ident: 526_CR31
– ident: 526_CR38
  doi: 10.1109/ACPEE60788.2024.10532334
– volume: 11
  start-page: 17603
  year: 2023
  ident: 526_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3243889
– volume: 996
  start-page: 1001
  year: 2024
  ident: 526_CR19
  publication-title: 2024 6th Asia Energy Electr Eng Symp (AEEES)
– ident: 526_CR26
  doi: 10.3390/pr12020395
– ident: 526_CR1
  doi: 10.3389/fenrg.2024.1506095
– volume: 12
  start-page: 163819
  year: 2024
  ident: 526_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3491100
– ident: 526_CR21
  doi: 10.1088/1742-6596/2890/1/012028
– ident: 526_CR25
  doi: 10.3389/fenrg.2022.869844
– ident: 526_CR10
  doi: 10.1016/j.jobe.2024.109138
– ident: 526_CR23
  doi: 10.1051/e3sconf/202450503008
– volume: 41
  start-page: 103005
  year: 2021
  ident: 526_CR40
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103005
– ident: 526_CR36
  doi: 10.3389/fenrg.2023.1332474
– volume: 12
  start-page: 37903
  year: 2024
  ident: 526_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3375530
– ident: 526_CR20
  doi: 10.3390/en14020257
– ident: 526_CR28
  doi: 10.3390/su16229948
– ident: 526_CR11
  doi: 10.1016/j.apenergy.2022.118887
– volume: 101
  start-page: 752
  year: 2016
  ident: 526_CR15
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.02.027
– volume: 39
  start-page: 3211
  year: 2024
  ident: 526_CR6
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2023.3274751
– ident: 526_CR24
  doi: 10.1117/12.2680521
– ident: 526_CR18
  doi: 10.1109/CIEEC60922.2024.10583671
– volume: 290
  start-page: 116746
  year: 2021
  ident: 526_CR12
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116746
– volume: 35
  start-page: 11867
  year: 2023
  ident: 526_CR17
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08327-0
– volume: 12
  start-page: 58972
  year: 2024
  ident: 526_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3392911
– ident: 526_CR30
  doi: 10.1115/ICONE31-135307
– ident: 526_CR8
  doi: 10.1016/j.enconman.2018.04.054
– volume: 9
  start-page: 109447
  year: 2021
  ident: 526_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100336
– ident: 526_CR42
  doi: 10.2139/ssrn.4408454
– ident: 526_CR14
  doi: 10.1016/j.enconman.2019.112081
– volume: 18
  start-page: 1539
  year: 2022
  ident: 526_CR4
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-022-01289-8
– ident: 526_CR22
  doi: 10.3390/su15139970
– volume: 12
  start-page: 168825
  year: 2024
  ident: 526_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3485885
– volume: 87
  start-page: 3642
  year: 2010
  ident: 526_CR41
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.06.013
– volume: 10
  start-page: 16225
  year: 2022
  ident: 526_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3149135
– volume: 576
  start-page: 581
  year: 2023
  ident: 526_CR7
  publication-title: 2023 3rd Int Signal Process Commun Eng Manage Conf (ISPCEM)
– volume: 45
  start-page: 1204
  year: 2023
  ident: 526_CR32
  publication-title: Energy Sour Part A Recover Utilization Environ Eff
– ident: 526_CR16
  doi: 10.1016/j.prime.2025.100914
– ident: 526_CR33
  doi: 10.1109/CAC59555.2023.10451373
– ident: 526_CR27
  doi: 10.32985/ijeces.13.2.1
– ident: 526_CR5
  doi: 10.3390/en16104257
SSID ssj0002856592
Score 2.3106062
Snippet When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several competing...
Abstract When it comes to smart power grid (SPG) reliability and energy balancing, multi-objective energy optimization is a must. Uncertainty and several...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 104
SubjectTerms Alternative energy sources
Artificial intelligence
Climate change
Computer Science
Deep reinforcement model grid, energy sources
Distributed generation
Efficiency
Electrical loads
Electricity
Electricity distribution
Emissions
Energy consumption
Energy management
Energy resources
Energy storage
Information Systems and Communication Service
Investigations
Multi-objective optimization
Multiple objective analysis
Operating costs
Optimization
Optimization models
Photovoltaics
Power load, distributed generation
Power supply
Probability density functions
Renewable energy sources
Renewable resources
Solar energy
Supply & demand
Uncertainty
Wind power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSx0xFA72unFTLFq8VUsW7mpwJq85WYkWRYRKKQrSTchTLO2dq6P_3ySTUSzoLOfNyXnlJOf7ENqTPghlkiEZwTzhikliYuSk9UwGR5mEQtP540KeXfHza3FdC25D3VY5-cTiqH3vco38gKXnkvKxVhwu70hmjcqrq5VC4wNaTS4YYIZWj08ufv56rrJQEHndcOqWAXkwcNpKSjKLa8E6IfxVRCrA_a-yzf8WSEvcOV1HH2vCiI_GEf6EVsJiA_0ufbOkt39Gf4X7ZPn_akslLuw2A07pKF5mEjT8tzce27yJ0aVv4NsF9hkvN1NdBY9Daf_DI6bzsImuTk8uv5-RypJAHOsy6CAPrTDWtVEKa4MIkIJu4D4F7g6SP5MBXNN6GZlyPkVs5kEYDxGiiiYd7DOaLfpF2EKYSuiSjVMVacNdw23nmGWtlApCmheFOfo2SUovRzAMXSYRIPUoV53kqotcNZ-j4yzM5zszkHU50d_f6GoXmoNTjaXKgYo80pwdORVbI1QjwXZmjnamodDVugb9ogtztD8Nz8vlt3_py_tv20ZrNCtG2a2yg2YP949hN-UcD_ZrVawndfvUAw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uFy_u4riRgzctNmuTow7KIOjJAfESsoKiM-Lo__clbd3Qgz22KS3fy8t7Wd73IXQoQxTagiNZwULFNZOVTYlXJDAZPWVSFZnOq2s5GvPLW3Hb0eTkWpiv-_dEyZMZp0TSKouuFmqSis-jRUFYk2UahnL4sZ5Clcg7hH1dzK-vfos9haL_W175Yyu0RJiLVbTcpYb4tLXlGpqLk3W00ssu4M4LN9BdKZqtpu6hHazwFNz-qaunxEXaZoYhF8XPWQENP05twC6fYPTwWXw_wSGT5WadqxhwLLV_uCV0nm2i8cX5zXBUdRIJlQcIAFIeibDOkySFc1FEBRE38gBRu1EwmMmofE2CTEz7AOGaBSVsUEklnSxcbAstTKaTuI0wlaoBB6c60Zr7mrvGM8eIlFpFmBTFATrqwTPPLROGKTMIJU0LtQGoTYHa8AE6y_h-tMws1uUGGNd0TmG48rp2VHulE080p0ZeJ2KFrqVyjR2gvd46pnOtmWHQgWAUYkQM0HFvsc_Hf__Szv-a76IlmvtOObqyhxZeX97iPiQgr-6g9Lx3PXDRzA
  priority: 102
  providerName: Springer Nature
Title Multi-objective optimization models for power load balancing in distributed energy systems
URI https://link.springer.com/article/10.1186/s42162-025-00526-4
https://www.proquest.com/docview/3236322315
https://doaj.org/article/48c90b29c89f4f23976c9f1a59068b7a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA5eXnwRRcV5GXnwTcva3Jo8zrExBg5RB8OX0NxA0U2c_n9P0k6dIL7YhxbaQsM5OflOmpzvQ-hMOM9VBYFUceoypqjIqhBYVjgqvCVUyCTTeTUWwwkbTfn0m9RX3BNW0wPXhuswaVVuiLJSBRZIhE-rQlFxlQtpypQaAeZ9m0w9pl9GPK4XLqtkpOgsGCkEyaJ6a-I4ydgKEiXC_pUs88fCaMKbwQ7abhJF3K0buIvW_GwP3ad62WxuHutxCs8h4p-bUkqcVG0WGNJQ_BLFz_DTvHLYxM2LFr6BH2bYRZ7cKHHlHfap7A_XXM6LfTQZ9O96w6xRR8gsLSPZIPMFr4wtguDGeO4lgK1nDgC7lDCOCS9tXjgRqLIOkJo6ySsngwwqVHDQA7Qxm8_8IcJEyBJim6hAcmZzZkpLDS2EUNLDfMi30PnSUvqlJsHQafIgha7tqsGuOtlVsxa6jMb8fDMSWKcb4FbduFX_5dYWOlm6QjdRtdAU-g4MQLTgLXSxdM_X49-bdPQfTTpGWyR2n7SX5QRtvL2--1PISN5MG212u6PbEVwv--PrmzZa7xEWz6LXTh3zAzx135I
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxUxFD7By0I3RqPGi4hd6EobZvqadmEIKOQicGMMJMRN7dNo9M6VwRD_lL_RtjMDwUR3zHIeneb0O48-zvkAngsfuDJJkQynHjNFBTYxMlx7KoIjVMhC03k0F7MT9u6Un67A7zEXJh-rHG1iMdS-dXmNfJOm7xL4aM23lj9wZo3Ku6sjhUYPi4Pw6yJN2brX-2_T-L4gZG_3-M0MD6wC2NEmF-ljoebGujoKbm3gQSYnFZhPjq6RSf9FkK6qvYhUOZ88HPWSGy-jjCqadNHU7i1YZVRUZAKrO7vz9x8uV3WI5HmfcszOkWKzY6QWBGfW2FJbBbNrHrAQBVyLbv_akC1-bu8e3B0CVLTdI-o-rITFA_hY8nRxa7_29hG1ydJ8H1I4UWHT6VAKf9Eyk66hb63xyOZDky79A31ZIJ_r82ZqreBRKOmGqK8h3T2EkxuR3yOYLNpFeAyICNkkm0JUJBVzFbONo5bWQigZ0jwsTOHlKCm97Itv6DJpkUL3ctVJrrrIVbMp7GRhXr6ZC2eXG-3ZZz3ooWbSqcoS5aSKLJIcjTkVa8NVJaRtzBTWx6HQgzZ3-gp7U3g1Ds_V4393ae3_rT2D27Pjo0N9uD8_eAJ3SAZJOSmzDpPzs5_haYp3zu3GADIEn24a138A470RSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRUJcyi4GCvgAJ4iaeIt94NBOGbUUKg5UqriYeEOtSjJqBiH-FT-RZycpKoIDh-aYWIn1_Na85QN4Ln0QukFBagTzBddMFk2MvKg8k8FRJlWG6Xx_KPeO-NtjcbwGP6demFztPqUkh56GNKWpXW0tfRxEXMmtntNK0iJBseaBJQUfyyoPwo_vGLT1r_d38YRfULp483G-V4y4AoVjdRrTx0MlGuuqKIW1QQSFZipwj6auVqgBZFCurLyMTDuPNo55JRqvooo6NngxfO81uI6RUZXCvbmcX_zVoUqkPOXUnfPXrV6ygBko4JJ3-0dCNtu5xW3YGB1Usj1w1B1YC-1duDWBP5BRF9yDT7l1t-js6aAySYfK5-vY1UkywE5P0CMmy4TDRs66xhOb6igdfpactMSnkb0JbSt4EnIHIhnGSvf34ehKCPoA1tuuDQ-BUKlqVDNUR1pyV3JbO2ZZJaVWAUOzMIOXE_HMcpjHYXIco6QZSG2Q1CaT2vAZ7CT6XqxMs7Tzje78ixlF03DldGmpdkpHHmly0JyOVSN0KZWtmxlsTqdjRgHvDUM2Rl3IKjGDV9OJ_X787y09-r_lz-DGh92Febd_ePAYbtLERrmWZhPWV-ffwhP0iFb2aWZCAp-vmut_AVnOF4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+models+for+power+load+balancing+in+distributed+energy+systems&rft.jtitle=Energy+Informatics&rft.au=Zhuo+Wang&rft.au=Yuchen+Luo&rft.au=Wei+Wu&rft.au=Lei+Cao&rft.date=2025-12-01&rft.pub=SpringerOpen&rft.eissn=2520-8942&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs42162-025-00526-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48c90b29c89f4f23976c9f1a59068b7a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8942&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8942&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8942&client=summon