Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils
To achieve appropriate yield levels, inherent nitrogen (N) supply and biological N fixation are often complemented by fertilization. To avoid economic losses and negative environmental impacts due to over‐application of N fertilizer, estimation of the inherent N supply is critical. We aimed to ident...
Saved in:
Published in | European journal of soil science Vol. 72; no. 4; pp. 1497 - 1512 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.07.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To achieve appropriate yield levels, inherent nitrogen (N) supply and biological N fixation are often complemented by fertilization. To avoid economic losses and negative environmental impacts due to over‐application of N fertilizer, estimation of the inherent N supply is critical. We aimed to identify the roles of soil texture and organic matter in N mineralization and yield levels attained in cereal cultivation with or without N fertilization in boreal mineral soils. First, the net N mineralization and soil respiration were measured by laboratory incubation with soil samples varying in clay and organic carbon (C) contents. Secondly, to estimate the inherent soil N supply under field conditions, both unfertilized and fertilized cereal yields were measured in fields on clay soils (clay 30–78%) and coarse‐textured soils (clay 0–28%). In clay soils (C 2.5–9.0%), both the net N mineralization and the cereal yields (without and with fertilization) decreased with increasing clay/C ratio. Moreover, in soils with high clay/C ratio, the agronomic N use efficiency (additional yield per kg of fertilizer N) varied considerably, indicating the presence of growth limitations other than N. In coarse‐textured soils, the yield increase attained by fertilization increased with increasing organic C. Our results indicate that for clay soils in a cool and humid climate, the higher the clay content, the more organic C is needed to produce reasonable yields and to ensure efficient use of added nutrients without high N losses to the environment. For coarse soils having a rather high mean organic C of 2.3%, the organic C appeared to improve agronomic N use efficiency. For farmers, simple indicators such as the clay/C ratio or the use of non‐N‐fertilized control plots may be useful for site‐specific adjustment of the rates of N fertilization.
Highlights
We aimed to identify simple indicators of inherent soil N supply applicable at the farm level.
In clay soils, the net N mineralization was found to correlate negatively with the clay/C ratio.
In coarse‐textured soils, agronomic N use efficiency improved with increasing soil organic C.
Clay soils with high clay/C ratio are at risk of low yield levels. |
---|---|
AbstractList | To achieve appropriate yield levels, inherent nitrogen (N) supply and biological N fixation are often complemented by fertilization. To avoid economic losses and negative environmental impacts due to over‐application of N fertilizer, estimation of the inherent N supply is critical. We aimed to identify the roles of soil texture and organic matter in N mineralization and yield levels attained in cereal cultivation with or without N fertilization in boreal mineral soils. First, the net N mineralization and soil respiration were measured by laboratory incubation with soil samples varying in clay and organic carbon (C) contents. Secondly, to estimate the inherent soil N supply under field conditions, both unfertilized and fertilized cereal yields were measured in fields on clay soils (clay 30–78%) and coarse‐textured soils (clay 0–28%). In clay soils (C 2.5–9.0%), both the net N mineralization and the cereal yields (without and with fertilization) decreased with increasing clay/C ratio. Moreover, in soils with high clay/C ratio, the agronomic N use efficiency (additional yield per kg of fertilizer N) varied considerably, indicating the presence of growth limitations other than N. In coarse‐textured soils, the yield increase attained by fertilization increased with increasing organic C. Our results indicate that for clay soils in a cool and humid climate, the higher the clay content, the more organic C is needed to produce reasonable yields and to ensure efficient use of added nutrients without high N losses to the environment. For coarse soils having a rather high mean organic C of 2.3%, the organic C appeared to improve agronomic N use efficiency. For farmers, simple indicators such as the clay/C ratio or the use of non‐N‐fertilized control plots may be useful for site‐specific adjustment of the rates of N fertilization.HighlightsWe aimed to identify simple indicators of inherent soil N supply applicable at the farm level.In clay soils, the net N mineralization was found to correlate negatively with the clay/C ratio.In coarse‐textured soils, agronomic N use efficiency improved with increasing soil organic C.Clay soils with high clay/C ratio are at risk of low yield levels. To achieve appropriate yield levels, inherent nitrogen (N) supply and biological N fixation are often complemented by fertilization. To avoid economic losses and negative environmental impacts due to over‐application of N fertilizer, estimation of the inherent N supply is critical. We aimed to identify the roles of soil texture and organic matter in N mineralization and yield levels attained in cereal cultivation with or without N fertilization in boreal mineral soils. First, the net N mineralization and soil respiration were measured by laboratory incubation with soil samples varying in clay and organic carbon (C) contents. Secondly, to estimate the inherent soil N supply under field conditions, both unfertilized and fertilized cereal yields were measured in fields on clay soils (clay 30–78%) and coarse‐textured soils (clay 0–28%). In clay soils (C 2.5–9.0%), both the net N mineralization and the cereal yields (without and with fertilization) decreased with increasing clay/C ratio. Moreover, in soils with high clay/C ratio, the agronomic N use efficiency (additional yield per kg of fertilizer N) varied considerably, indicating the presence of growth limitations other than N. In coarse‐textured soils, the yield increase attained by fertilization increased with increasing organic C. Our results indicate that for clay soils in a cool and humid climate, the higher the clay content, the more organic C is needed to produce reasonable yields and to ensure efficient use of added nutrients without high N losses to the environment. For coarse soils having a rather high mean organic C of 2.3%, the organic C appeared to improve agronomic N use efficiency. For farmers, simple indicators such as the clay/C ratio or the use of non‐N‐fertilized control plots may be useful for site‐specific adjustment of the rates of N fertilization. HIGHLIGHTS: We aimed to identify simple indicators of inherent soil N supply applicable at the farm level. In clay soils, the net N mineralization was found to correlate negatively with the clay/C ratio. In coarse‐textured soils, agronomic N use efficiency improved with increasing soil organic C. Clay soils with high clay/C ratio are at risk of low yield levels. To achieve appropriate yield levels, inherent nitrogen (N) supply and biological N fixation are often complemented by fertilization. To avoid economic losses and negative environmental impacts due to over‐application of N fertilizer, estimation of the inherent N supply is critical. We aimed to identify the roles of soil texture and organic matter in N mineralization and yield levels attained in cereal cultivation with or without N fertilization in boreal mineral soils. First, the net N mineralization and soil respiration were measured by laboratory incubation with soil samples varying in clay and organic carbon (C) contents. Secondly, to estimate the inherent soil N supply under field conditions, both unfertilized and fertilized cereal yields were measured in fields on clay soils (clay 30–78%) and coarse‐textured soils (clay 0–28%). In clay soils (C 2.5–9.0%), both the net N mineralization and the cereal yields (without and with fertilization) decreased with increasing clay/C ratio. Moreover, in soils with high clay/C ratio, the agronomic N use efficiency (additional yield per kg of fertilizer N) varied considerably, indicating the presence of growth limitations other than N. In coarse‐textured soils, the yield increase attained by fertilization increased with increasing organic C. Our results indicate that for clay soils in a cool and humid climate, the higher the clay content, the more organic C is needed to produce reasonable yields and to ensure efficient use of added nutrients without high N losses to the environment. For coarse soils having a rather high mean organic C of 2.3%, the organic C appeared to improve agronomic N use efficiency. For farmers, simple indicators such as the clay/C ratio or the use of non‐N‐fertilized control plots may be useful for site‐specific adjustment of the rates of N fertilization. Highlights We aimed to identify simple indicators of inherent soil N supply applicable at the farm level. In clay soils, the net N mineralization was found to correlate negatively with the clay/C ratio. In coarse‐textured soils, agronomic N use efficiency improved with increasing soil organic C. Clay soils with high clay/C ratio are at risk of low yield levels. |
Author | Turtola, Eila Salo, Tapio Kanerva, Sanna Kaseva, Janne Keskinen, Riikka Räty, Mari Soinne, Helena Nuutinen, Visa Simojoki, Asko |
Author_xml | – sequence: 1 givenname: Helena orcidid: 0000-0002-7965-6496 surname: Soinne fullname: Soinne, Helena email: helena.soinne@luke.fi organization: Natural Resources Institute Finland – sequence: 2 givenname: Riikka surname: Keskinen fullname: Keskinen, Riikka organization: Natural Resources Institute Finland – sequence: 3 givenname: Mari surname: Räty fullname: Räty, Mari organization: Natural Resources Institute Finland – sequence: 4 givenname: Sanna surname: Kanerva fullname: Kanerva, Sanna organization: University of Helsinki – sequence: 5 givenname: Eila surname: Turtola fullname: Turtola, Eila organization: Natural Resources Institute Finland – sequence: 6 givenname: Janne surname: Kaseva fullname: Kaseva, Janne organization: Natural Resources Institute Finland – sequence: 7 givenname: Visa surname: Nuutinen fullname: Nuutinen, Visa organization: Natural Resources Institute Finland – sequence: 8 givenname: Asko surname: Simojoki fullname: Simojoki, Asko organization: University of Helsinki – sequence: 9 givenname: Tapio surname: Salo fullname: Salo, Tapio organization: Natural Resources Institute Finland |
BookMark | eNp9kU9rGzEQxUVIIImTSz6BIJdSWEez2j_eYzFpk2LIwclZzGpHRkaWUkmmOMd-8q7t5BJKddEgfu-NZt4lO_XBE2M3IKYwnjtapzQFKYQ8YRcgm7oo5aw73dc1FKKtq3N2mdJaCJDQdRfszzJYx0Ncobeaa4x98Bz9wLXDHdfBZ_KZY-IDaTtYv-IGdQ4xcRMi95S5tzmGFXm-sZ4iOvuG2X6YUCR0fGfJDYlbz_tweHhHeRqbpyt2ZtAlun6_J-zl-_3z_KFYPP14nH9bFFq2QhY0jtO2je4Qxsp0WGko5dAQdIit7o0pyx76RkCvGxIAFZnWHPBZpWUpJ-zL0fc1hl9bSlltbNLkHHoK26TKpgEhoZYworef0HXYRj_-TpV11UJX1rPZSH09UjqGlCIZ9RrtBuNOgVD7ONQ-DnWIY4TFJ1jbfNhUjmjdvyVwlPy2jnb_MVf3P5fLo-YvsDugsg |
CitedBy_id | crossref_primary_10_1080_00103624_2024_2439292 crossref_primary_10_1007_s00374_023_01755_z crossref_primary_10_1111_ejss_13099 crossref_primary_10_3389_fpls_2022_936596 crossref_primary_10_1016_j_ecolind_2022_109222 crossref_primary_10_1007_s11119_024_10178_1 crossref_primary_10_5194_bg_19_5041_2022 crossref_primary_10_1007_s10681_022_03094_w crossref_primary_10_3390_land12050989 crossref_primary_10_1002_agj2_21485 crossref_primary_10_1007_s42729_024_01798_7 crossref_primary_10_1007_s42729_023_01506_x crossref_primary_10_1007_s42729_024_02201_1 crossref_primary_10_1016_j_geoderma_2021_115483 crossref_primary_10_1016_j_jclepro_2024_144123 crossref_primary_10_1016_j_heliyon_2024_e24450 crossref_primary_10_1007_s11104_023_05971_2 crossref_primary_10_3389_fpls_2021_727021 crossref_primary_10_1139_cjss_2020_0108 crossref_primary_10_3389_fagro_2021_698968 crossref_primary_10_1016_j_pedsph_2024_10_005 crossref_primary_10_1016_j_scitotenv_2023_161881 crossref_primary_10_3390_nitrogen5010004 crossref_primary_10_1016_j_jenvman_2023_119945 crossref_primary_10_1111_ejss_13527 crossref_primary_10_1016_j_jenvman_2024_122493 crossref_primary_10_1029_2021GB007118 crossref_primary_10_1007_s12517_024_12122_z crossref_primary_10_1016_j_still_2024_106250 crossref_primary_10_1016_j_geoderma_2022_116084 crossref_primary_10_1016_j_catena_2022_106208 crossref_primary_10_1016_j_geoderma_2024_116963 crossref_primary_10_1016_j_geodrs_2023_e00678 crossref_primary_10_1016_j_still_2025_106533 crossref_primary_10_1017_S001447972400019X crossref_primary_10_3390_agronomy13010267 crossref_primary_10_1016_j_ecoinf_2023_102057 crossref_primary_10_1016_j_fcr_2024_109551 crossref_primary_10_1111_sum_13108 crossref_primary_10_1111_sum_12930 crossref_primary_10_1029_2022GB007487 crossref_primary_10_3390_agronomy15030633 crossref_primary_10_1016_j_foreco_2023_121067 crossref_primary_10_1016_j_pedsph_2024_03_003 crossref_primary_10_1111_sum_12658 |
Cites_doi | 10.1007/s10533-007-9103-5 10.5194/soil-5-15-2019 10.1016/S0038-0717(00)00017-1 10.1038/nature10386 10.1016/j.geoderma.2016.03.027 10.1016/S0065-2113(08)60915-3 10.1016/j.agee.2016.05.022 10.2134/agronmonogr22.c3 10.1016/j.gfs.2012.07.001 10.1016/j.still.2005.08.019 10.2136/sssaj1999.6361734x 10.1080/090647102321089819 10.1046/j.1365-2389.2003.00502.x 10.1016/bs.agron.2018.03.001 10.1016/S0065-2113(08)60925-6 10.1016/j.geoderma.2019.113974 10.1111/j.1365-2389.2010.01318.x 10.1016/j.agee.2012.09.010 10.1007/BF00336262 10.2134/jeq2007.0099 10.1111/j.1365-2486.2012.02665.x 10.1023/A:1021101423341 10.1111/j.1365-2389.1994.tb00530.x 10.1016/j.geoderma.2006.03.053 10.1289/ehp.112-a556 10.1002/jpln.200520526 10.1016/S0016-7061(02)00362-2 10.1007/s003740050335 10.2307/2261121 10.1016/j.soilbio.2011.10.015 10.1016/j.soilbio.2011.04.017 10.1007/BF00010288 10.1016/j.ejsobi.2011.07.015 10.1023/A:1004213929699 10.1016/j.mbs.2017.08.008 10.1007/s11104-016-3031-x 10.1579/0044-7447-31.2.132 10.3390/agronomy8040048 10.1007/BF01347713 10.1038/nature06592 10.2134/jeq2008.0527 10.2136/sssaj2003.1560 10.1016/j.geoderma.2017.04.021 10.1016/S0038-0717(02)00274-2 10.1088/1748-9326/9/10/105011 10.1038/nature01014 10.1111/gcb.12137 10.1016/j.gca.2012.01.046 10.2136/sssaj2006.0378 10.1007/s10021-011-9501-3 10.1016/S0038-0717(02)00248-1 10.1029/1999GB900015 10.2134/agronj2003.9940 10.2134/jeq2011.0064 10.1016/0038-0717(85)90128-2 10.1016/j.still.2015.10.014 |
ContentType | Journal Article |
Copyright | 2020 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QL 7SN 7ST 7T7 7UA 8FD C1K F1W FR3 H96 L.G P64 SOI 7S9 L.6 |
DOI | 10.1111/ejss.13003 |
DatabaseName | Wiley Online Library Open Access CrossRef Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Bacteriology Abstracts (Microbiology B) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Economics |
EISSN | 1365-2389 |
EndPage | 1512 |
ExternalDocumentID | 10_1111_ejss_13003 EJSS13003 |
Genre | article |
GrantInformation_xml | – fundername: The Strategic Research Council of the Academy of Finland funderid: 327236 – fundername: Ministry of Agriculture and Forestry of Finland |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XOL Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QL 7SN 7ST 7T7 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 L.G P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3703-e136776c9a1136f9a4c123d6e19aa7cbff22b1b601bc6e0114ef7fc9a1184c323 |
IEDL.DBID | DR2 |
ISSN | 1351-0754 |
IngestDate | Fri Jul 11 18:24:22 EDT 2025 Fri Jul 25 20:56:27 EDT 2025 Tue Jul 01 04:19:28 EDT 2025 Thu Apr 24 23:07:14 EDT 2025 Wed Jan 22 16:57:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3703-e136776c9a1136f9a4c123d6e19aa7cbff22b1b601bc6e0114ef7fc9a1184c323 |
Notes | Funding information Ministry of Agriculture and Forestry of Finland; The Strategic Research Council of the Academy of Finland, Grant/Award Number: 327236 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7965-6496 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.13003 |
PQID | 2547192588 |
PQPubID | 2045158 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2661031531 proquest_journals_2547192588 crossref_primary_10_1111_ejss_13003 crossref_citationtrail_10_1111_ejss_13003 wiley_primary_10_1111_ejss_13003_EJSS13003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | European journal of soil science |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2011; 478 2002; 52 2012; 18 1992; 14 2012; 15 2013; 164 2008; 72 2003; 95 2003; 113 1995; 171 2007; 36 2003; 54 2006; 136 2013; 19 1985; 17 2018; 8 1999; 13 1997; 191 2016; 158 2014; 9 2016; 274 2016; 230 2011b; 62 1998; 26 2006; 90 1990; 78 2019; 5 2018; 348 2002; 31 2011; 40 2003; 35 1994; 45 2017; 293 1999; 65 2005 1994 2002; 418 1999; 63 1996; 57 1955; 63 2017; 411 2004; 112 2018; 150 2012; 1 2002; 63 2005; 168 2000; 32 1994; 162 2011a; 43 2020; 357 2017 2012; 48 1996; 80 2007; 85 2008; 451 1992; 22 2012; 45 2017; 302 2009; 38 2012; 85 2003; 67 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 Oldfield E. E. (e_1_2_9_38_1) 2018; 348 e_1_2_9_58_1 e_1_2_9_18_1 Kachanoski R. G. (e_1_2_9_22_1) 1996; 80 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Vuorinen J. (e_1_2_9_63_1) 1955; 63 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Lindén B. (e_1_2_9_29_1) 1992; 22 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 |
References_xml | – volume: 52 start-page: 78 year: 2002 end-page: 85 article-title: Relations between net nitrogen mineralization and soil characteristics within an arable field publication-title: Acta Agriculturae Scandinavica, Section B ‐ Soil & Plant Science – volume: 150 start-page: 35 year: 2018 end-page: 78 article-title: The role of soil organic matter for maintaining crop yields: Evidence for a renewed conceptual basis publication-title: Advances in Agronomy – volume: 348 start-page: 1 year: 2018 end-page: 11 article-title: Direct effects of soil organic matter on productivity mirror those observed with organic amendments publication-title: Plant and Soil – volume: 8 start-page: 48 year: 2018 article-title: Are nitrogen fertilizers deleterious to soil health? publication-title: Agronomy – year: 2005 – volume: 67 start-page: 156 year: 2003 end-page: 165 article-title: Linking soil microbial activity to water‐ and air‐phase contents and diffusivities publication-title: Soil Science Society of America Journal – volume: 478 start-page: 49 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 63 start-page: 1734 year: 1999 end-page: 1740 article-title: Fate of fertilizer nitrogen applied to corn as estimated by the isotopic and difference methods publication-title: Soil Science Society of America Journal – volume: 230 start-page: 341 year: 2016 end-page: 352 article-title: Nitrogen fertilization of grass leys: Yield production and risk of N leaching publication-title: Agriculture, Ecosystems and Environment – volume: 63 start-page: 1 year: 1955 end-page: 44 article-title: The method of soil testing in use in Finland publication-title: Agrogeological Publications – year: 1994 – volume: 72 start-page: 775 year: 2008 end-page: 785 article-title: Organic amendments influence soil organic carbon pools and rice–wheat productivity publication-title: Soil Science Society of America Journal – volume: 1 start-page: 94 year: 2012 end-page: 98 article-title: Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics publication-title: Global Food Security – volume: 31 start-page: 132 year: 2002 end-page: 140 article-title: Agroecosystems, nitrogen‐use efficiency, and nitrogen management publication-title: Ambio – volume: 32 start-page: 1079 year: 2000 end-page: 1090 article-title: Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood publication-title: Soil Biology and Biochemistry – volume: 191 start-page: 77 year: 1997 end-page: 87 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant and Soil – volume: 168 start-page: 414 year: 2005 end-page: 431 article-title: Soil‐ and plant‐based nitrogen‐fertilizer recommendations in arable farming publication-title: Journal of Plant Nutrition and Soil Science – volume: 26 start-page: 1 year: 1998 end-page: 15 article-title: The chemistry of soil organic nitrogen: A review publication-title: Biology and Fertility of Soils – volume: 19 start-page: 1456 year: 2013 end-page: 1469 article-title: Declining trend of carbon in Finnish cropland soils in 1974–2009 publication-title: Global Change Biology – volume: 90 start-page: 63 year: 2006 end-page: 68 article-title: Barley yield response to soil organic matter and texture in the pampas of Argentina publication-title: Soil and Tillage Research – volume: 57 start-page: 187 year: 1996 end-page: 235 article-title: Nitrogen mineralization in temperate agricultural soils: Processes and measurement publication-title: Advances in Agronomy – volume: 35 start-page: 273 year: 2003 end-page: 284 article-title: Relationships of soil respiration to microbial biomass, substrate availability and clay content publication-title: Soil Biology and Biochemistry – volume: 171 start-page: 323 year: 1995 end-page: 332 article-title: Rates of net nitrogen mineralization in disturbed and undisturbed soils publication-title: Plant and Soil – volume: 293 start-page: 29 year: 2017 end-page: 37 article-title: Reconciling the Mitscherlich's law of diminishing returns with Liebig's law of the minimum. Some results on crop modeling publication-title: Mathematical Biosciences – volume: 158 start-page: 1 year: 2016 end-page: 9 article-title: Relative importance of organic carbon, land use and moisture conditions for the aggregate stability of post‐glacial clay soils publication-title: Soil and Tillage Research – volume: 274 start-page: 68 year: 2016 end-page: 78 article-title: Soil heterotrophic respiration is insensitive to changes in soil water content but related to microbial access to organic matter publication-title: Geoderma – volume: 85 start-page: 1 year: 2012 end-page: 18 article-title: Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo–mineral associations publication-title: Geochimica et Cosmochimica Acta – volume: 418 start-page: 671 year: 2002 end-page: 677 article-title: Agricultural sustainability and intensive production practices publication-title: Nature – volume: 162 start-page: 259 year: 1994 end-page: 271 article-title: A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input publication-title: Plant and Soil – volume: 43 start-page: 1714 year: 2011a end-page: 1722 article-title: Predicting soil N mineralization: Relevance of organic matter fractions and soil properties publication-title: Soil Biology and Biochemistry – volume: 113 start-page: 211 year: 2003 end-page: 235 article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils publication-title: Geoderma – volume: 9 year: 2014 article-title: 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland publication-title: Environmental Research Letters – volume: 5 start-page: 15 year: 2019 end-page: 32 article-title: Global meta‐analysis of the relationship between soil organic matter and crop yields publication-title: The Soil – volume: 45 start-page: 449 year: 1994 end-page: 458 article-title: Land‐use effects on the composition of organic matter in particle‐size separates of soil: I. Lignin and carbohydrate signature publication-title: European Journal of Soil Science – volume: 411 start-page: 293 year: 2017 end-page: 303 article-title: Do organic inputs matter – A meta‐analysis of additional yield effects for arable crops in Europe publication-title: Plant and Soil – volume: 451 start-page: 293 year: 2008 end-page: 296 article-title: An earth‐system perspective of the global nitrogen cycle publication-title: Nature – volume: 40 start-page: 1756 year: 2011 end-page: 1766 article-title: Role of nitrogen fertilization in sustaining organic matter in cultivated soils publication-title: Journal of Environmental Quality – volume: 17 start-page: 747 year: 1985 end-page: 756 article-title: Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with ( C(U))glucose and ( N)(NH ) SO under different moisture regimes publication-title: Soil Biology and Biochemistry – volume: 357 year: 2020 article-title: Soil organic matter is stabilized by organo‐mineral associations through two key processes: The role of the carbon to nitrogen ratio publication-title: Geoderma – volume: 62 start-page: 162 year: 2011b end-page: 173 article-title: Nitrogen mineralization: A review and meta‐analysis of the predictive value of soil tests publication-title: European Journal of Soil Science – volume: 15 start-page: 175 year: 2012 end-page: 187 article-title: Linking carbon saturation concepts to nitrogen saturation and retention publication-title: Ecosystems – volume: 22 start-page: 3 year: 1992 end-page: 12 article-title: Nitrogen mineralization during the growing season. 1. Contribution to the nitrogen supply of spring barley publication-title: Swedish Journal of Agricultural Research – volume: 35 start-page: 143 year: 2003 end-page: 154 article-title: Gross nitrogen mineralization‐, immobilization‐, and nitrification rates as a function of soil C/N ratio and microbial activity publication-title: Soil Biology and Biochemistry – volume: 36 start-page: 1821 year: 2007 end-page: 1832 article-title: The myth of nitrogen fertilization for soil carbon sequestration publication-title: Journal of Environmental Quality – volume: 63 start-page: 101 year: 2002 end-page: 116 article-title: Environmental challenges associated with needed increases in global nitrogen fixation publication-title: Nutrient Cycling in Agroecosystems – volume: 45 start-page: 132 year: 2012 end-page: 135 article-title: Predicting soil N mineralization using organic matter fractions and soil properties: A re‐analysis of literature data publication-title: Soil Biology and Biochemistry – volume: 164 start-page: 1 year: 2013 end-page: 13 article-title: Nitrogen balances and yields of spring cereals as affected by nitrogen fertilization in northern conditions: A meta‐analysis publication-title: Agriculture, Ecosystems and Environment – volume: 80 start-page: 20 year: 1996 end-page: 23 article-title: Delta yield: Mapping fertilizer nitrogen requirement for crops publication-title: Better Crops – volume: 38 start-page: 2295 year: 2009 end-page: 2314 article-title: Synthetic nitrogen fertilizers deplete soil nitrogen: A global dilemma for sustainable cereal production publication-title: Journal of Environmental Quality – volume: 112 start-page: A557 year: 2004 end-page: A563 article-title: Global nitrogen cycling out of control publication-title: Environmental Health Perspectives – volume: 95 start-page: 994 year: 2003 end-page: 999 article-title: Yield goal versus delta yield for predicting fertilizer nitrogen need in corn publication-title: Agronomy Journal – volume: 18 start-page: 1781 year: 2012 end-page: 1796 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Global Change Biology – volume: 48 start-page: 73 year: 2012 end-page: 80 article-title: Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study publication-title: European Journal of Soil Biology – volume: 85 start-page: 9 year: 2007 end-page: 24 article-title: A conceptual model of organo‐mineral interactions in soils: Self‐assembly of organic molecular fragments into zonal structures on mineral surfaces publication-title: Biogeochemistry – volume: 78 start-page: 413 year: 1990 end-page: 427 article-title: Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems publication-title: Journal of Ecology – volume: 136 start-page: 289 year: 2006 end-page: 299 article-title: Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture publication-title: Geoderma – volume: 65 start-page: 267 year: 1999 end-page: 311 article-title: The effects of cultivation on soil nitrogen mineralization publication-title: Advances in Agronomy – volume: 54 start-page: 39 year: 2003 end-page: 47 article-title: Defining the relation between soil water content and net nitrogen mineralization publication-title: European Journal of Soil Science – volume: 14 start-page: 126 year: 1992 end-page: 134 article-title: Effects of soil texture and structure on C and N mineralization in grassland soils publication-title: Biology and Fertility of Soils – year: 2017 – volume: 13 start-page: 647 year: 1999 end-page: 662 article-title: Nitrogen in crop production: An account of global flows publication-title: Global Biogeochemical Cycles – volume: 302 start-page: 14 year: 2017 end-page: 21 article-title: Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? publication-title: Geoderma – ident: e_1_2_9_42_1 – ident: e_1_2_9_24_1 doi: 10.1007/s10533-007-9103-5 – ident: e_1_2_9_39_1 doi: 10.5194/soil-5-15-2019 – ident: e_1_2_9_7_1 doi: 10.1016/S0038-0717(00)00017-1 – ident: e_1_2_9_50_1 doi: 10.1038/nature10386 – ident: e_1_2_9_35_1 doi: 10.1016/j.geoderma.2016.03.027 – ident: e_1_2_9_52_1 doi: 10.1016/S0065-2113(08)60915-3 – ident: e_1_2_9_62_1 doi: 10.1016/j.agee.2016.05.022 – ident: e_1_2_9_58_1 doi: 10.2134/agronmonogr22.c3 – volume: 348 start-page: 1 year: 2018 ident: e_1_2_9_38_1 article-title: Direct effects of soil organic matter on productivity mirror those observed with organic amendments publication-title: Plant and Soil – ident: e_1_2_9_53_1 doi: 10.1016/j.gfs.2012.07.001 – ident: e_1_2_9_43_1 doi: 10.1016/j.still.2005.08.019 – volume: 22 start-page: 3 year: 1992 ident: e_1_2_9_29_1 article-title: Nitrogen mineralization during the growing season. 1. Contribution to the nitrogen supply of spring barley publication-title: Swedish Journal of Agricultural Research – ident: e_1_2_9_47_1 doi: 10.2136/sssaj1999.6361734x – volume: 63 start-page: 1 year: 1955 ident: e_1_2_9_63_1 article-title: The method of soil testing in use in Finland publication-title: Agrogeological Publications – ident: e_1_2_9_8_1 doi: 10.1080/090647102321089819 – ident: e_1_2_9_41_1 doi: 10.1046/j.1365-2389.2003.00502.x – ident: e_1_2_9_4_1 – ident: e_1_2_9_48_1 doi: 10.1016/bs.agron.2018.03.001 – ident: e_1_2_9_20_1 doi: 10.1016/S0065-2113(08)60925-6 – volume: 80 start-page: 20 year: 1996 ident: e_1_2_9_22_1 article-title: Delta yield: Mapping fertilizer nitrogen requirement for crops publication-title: Better Crops – ident: e_1_2_9_25_1 doi: 10.1016/j.geoderma.2019.113974 – ident: e_1_2_9_46_1 doi: 10.1111/j.1365-2389.2010.01318.x – ident: e_1_2_9_61_1 doi: 10.1016/j.agee.2012.09.010 – ident: e_1_2_9_16_1 doi: 10.1007/BF00336262 – ident: e_1_2_9_23_1 doi: 10.2134/jeq2007.0099 – ident: e_1_2_9_9_1 doi: 10.1111/j.1365-2486.2012.02665.x – ident: e_1_2_9_36_1 doi: 10.1023/A:1021101423341 – ident: e_1_2_9_14_1 doi: 10.1111/j.1365-2389.1994.tb00530.x – ident: e_1_2_9_34_1 doi: 10.1016/j.geoderma.2006.03.053 – ident: e_1_2_9_12_1 doi: 10.1289/ehp.112-a556 – ident: e_1_2_9_40_1 doi: 10.1002/jpln.200520526 – ident: e_1_2_9_32_1 doi: 10.1016/S0016-7061(02)00362-2 – ident: e_1_2_9_51_1 doi: 10.1007/s003740050335 – ident: e_1_2_9_3_1 doi: 10.2307/2261121 – ident: e_1_2_9_44_1 doi: 10.1016/j.soilbio.2011.10.015 – ident: e_1_2_9_45_1 doi: 10.1016/j.soilbio.2011.04.017 – ident: e_1_2_9_57_1 doi: 10.1007/BF00010288 – ident: e_1_2_9_15_1 doi: 10.1016/j.ejsobi.2011.07.015 – ident: e_1_2_9_17_1 doi: 10.1023/A:1004213929699 – ident: e_1_2_9_11_1 doi: 10.1016/j.mbs.2017.08.008 – ident: e_1_2_9_28_1 – ident: e_1_2_9_19_1 doi: 10.1007/s11104-016-3031-x – ident: e_1_2_9_5_1 doi: 10.1579/0044-7447-31.2.132 – ident: e_1_2_9_54_1 doi: 10.3390/agronomy8040048 – ident: e_1_2_9_33_1 doi: 10.1007/BF01347713 – ident: e_1_2_9_13_1 doi: 10.1038/nature06592 – ident: e_1_2_9_37_1 doi: 10.2134/jeq2008.0527 – ident: e_1_2_9_49_1 doi: 10.2136/sssaj2003.1560 – ident: e_1_2_9_21_1 doi: 10.1016/j.geoderma.2017.04.021 – ident: e_1_2_9_64_1 doi: 10.1016/S0038-0717(02)00274-2 – ident: e_1_2_9_27_1 doi: 10.1088/1748-9326/9/10/105011 – ident: e_1_2_9_59_1 doi: 10.1038/nature01014 – ident: e_1_2_9_18_1 doi: 10.1111/gcb.12137 – ident: e_1_2_9_10_1 doi: 10.1016/j.gca.2012.01.046 – ident: e_1_2_9_31_1 doi: 10.2136/sssaj2006.0378 – ident: e_1_2_9_6_1 doi: 10.1007/s10021-011-9501-3 – ident: e_1_2_9_2_1 doi: 10.1016/S0038-0717(02)00248-1 – ident: e_1_2_9_55_1 doi: 10.1029/1999GB900015 – ident: e_1_2_9_30_1 doi: 10.2134/agronj2003.9940 – ident: e_1_2_9_26_1 doi: 10.2134/jeq2011.0064 – ident: e_1_2_9_60_1 doi: 10.1016/0038-0717(85)90128-2 – ident: e_1_2_9_56_1 doi: 10.1016/j.still.2015.10.014 |
SSID | ssj0013199 |
Score | 2.522656 |
Snippet | To achieve appropriate yield levels, inherent nitrogen (N) supply and biological N fixation are often complemented by fertilization. To avoid economic losses... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1497 |
SubjectTerms | agricultural soil Agronomy Biological fertilization Clay clay fraction Clay minerals Clay soils Cultivation Economic impact Economics Efficiency Environmental impact Farms Fertilization Fertilizers Grain cultivation Humid climates humid zones Incubation period Indicators Mineralization N mineralization Nitrogen nitrogen fertilizers nitrogen fixation nutrient use efficiency Nutrients Organic carbon Organic matter risk Sediment yield Soil soil carbon mineralization soil fertility soil organic carbon Soil properties soil respiration Soil texture Soils Texture yield response yields |
Title | Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.13003 https://www.proquest.com/docview/2547192588 https://www.proquest.com/docview/2661031531 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_Up_bBfll61coU-1IhQjabL-iLlDtEaCleBV8k7G425fRM5HL3oI_9yzuz2dxpEUHfQjL53J2d32Rnfz-AL0qkJrVaBsLGJpBSx4EqU8p58iqhJo_C0FVV_viZHJ3K47P4bA2-9WthOn6I5Q839gw3XrODK93ecXJ70bZOy5ipPrlYixHRiVhNIXTikaxAF1BclJ6blMt4Vqfej0YriHkXqLpIM3oF5_0zdgUmlweLuT4wt__RNz73JV7DpoegeNj1mTewZuu38PLwz8zTcNh38HfcTKbYKT4ZNGqmmxpVXaKZqhvk8naKVahaLK2ZcPRDr9uDhIGxtnOkkWLWUOfEq4njtfbLPbuLWEKqU7zh4rkWJzVSP-Qd3hRbunm7Baej4e_vR4FXawhMRMNGYJn8LU1MrlgmpsqVNBQVy8SGuVKp0VUlhA41JYDaJJbzMFullTPPpIlE9B426qa2HwBlGUWxScIs1RUN5CIjszLO45yiBJmqAXztW60wnsqcFTWmRZ_S8Hd1M3XRAPaWttcdgceDVjt94xfeiduCcueUAHCcZQP4vDxM7sdzKqq2zYJsCN-wUEYUDmDftfQjdymGx-Ox2_r4FONteCG4ksYVCe_Axny2sJ8ICs31LqwL-WvXdfx_UJkHpg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLaAHgoHKH2IpTxclUsrBSmZPI-oAi3PAwsSt2hmMkFblgRtdg9w5JdjT2Z3AaFK5RYlTqLE9tie8XwfwI4MEp0YFXqBibQXhiryZJFQzZOVMalc-L7tqjw9i7uX4dFVdOV6c3gvTIsPMZ1wY8-w4zU7OE9IP_Ny87dpLJmxmIcPTOltK6rzYLaI0NJHMgedR5ExdOik3Mgzu_dlPJolmc9TVRtrDlZaQtXGQhRyi8nN7nikdvXDKwDHd3_GJ1h2WSjutWazCnOm-gxLe9dDh8RhvsBjr-4PsCV90qjlUNUVyqpAPZD3yB3uFK5QNlgY3ecAiI66BykNxsqMkAaLYU32ibd9C23tdny2DzGUrA7wnvvnGuxXSKbIJ5woNvTy5itcHuxf_Ol6jrDB04JGDs8w_lsS60wyU0yZyVBTYCxi42dSJlqVZRAoX1ENqHRsuBQzZVJa8TTUIhDfYKGqK7MGGBZCRDr200SVNJYHKYkVURZlFChIVHbg10RtuXZo5kyqMcgnVQ3_V7tYJzrwcyp712J4vCm1MdF-7vy4yal8TigHjtK0Az-ml8kDeVlFVqYekwylOMyVIfwO_Laq_sdb8v2jXs8erf-P8DZ87F6cnuQnh2fH32Ex4MYa2zO8AQuj4dhsUmY0UlvW_p8AfXYK6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qBbEPrZ_0aqsj-qKQYrKbL-hLaXvUqkU8C32RsLvZlKtnUi53D_XRv9yZzeauigj6FpLJ58zszGRnfz-AlypKTWq1DCIbm0BKHQeqTKnmyauEVC7C0HVVfjhNjs_kyXl8vgJ7_VqYDh9i8cONPcON1-zgV2V1w8ntZds6LmNxC27L5E3GNn34KVrOIXTskUxBF1BglB6clPt4luf-Go6WOebNTNWFmuEGfOkfsusw-bo7n-ld8_03_Mb_fYt7sO5zUNzvjOY-rNj6AaztX0w9Dod9CD9GzXiCHeWTQaOmuqlR1SWaibpG7m-nYIWqxdKaMYc_9MQ9SEkw1naGNFRMG7JO_DZ2wNZ-vWd3EUup6gSvuXuuxXGNZIi8w4tiSzdvH8HZ8OjzwXHg6RoCI2jcCCyjv6WJyRXzxFS5kobCYpnYMFcqNbqqokiHmipAbRLLhZit0sqJZ9KISDyG1bqp7SagLIWITRJmqa5oJI8yEivjPM4pTJCoGsCrXmuF8VjmTKkxKfqahr-rm6oTA3ixkL3qEDz-KLXdK7_wXtwWVDynlAHHWTaA54vD5H88qaJq28xJhhIcZsoQ4QBeO03_5S7F0clo5La2_kX4Gdz5eDgs3r89ffcE7kbcVeMahrdhdTad2x1Ki2b6qbP-n3nzCaI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+carbon+and+clay+content+as+deciding+factors+for+net+nitrogen+mineralization+and+cereal+yields+in+boreal+mineral+soils&rft.jtitle=European+journal+of+soil+science&rft.au=Soinne%2C+Helena&rft.au=Keskinen%2C+Riikka&rft.au=R%C3%A4ty%2C+Mari&rft.au=Kanerva%2C+Sanna&rft.date=2021-07-01&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=72&rft.issue=4&rft.spage=1497&rft.epage=1512&rft_id=info:doi/10.1111%2Fejss.13003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ejss_13003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon |