Hierarchical Bayesian Causality Network to Extract High-Level Semantic Information in Visual Cortex

Functional MRI (fMRI) is a brain signal with high spatial resolution, and visual cognitive processes and semantic information in the brain can be represented and obtained through fMRI. In this paper, we design single-graphic and matched/unmatched double-graphic visual stimulus experiments and collec...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of neural systems Vol. 34; no. 1; p. 2450002
Main Authors Ma, Yongqiang, Zhang, Wen, Du, Ming, Jing, Haodong, Zheng, Nanning
Format Journal Article
LanguageEnglish
Published Singapore 01.01.2024
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Functional MRI (fMRI) is a brain signal with high spatial resolution, and visual cognitive processes and semantic information in the brain can be represented and obtained through fMRI. In this paper, we design single-graphic and matched/unmatched double-graphic visual stimulus experiments and collect 12 subjects' fMRI data to explore the brain's visual perception processes. In the double-graphic stimulus experiment, we focus on the high-level semantic information as "matching", and remove tail-to-tail conjunction by designing a model to screen the matching-related voxels. Then, we perform Bayesian causal learning between fMRI voxels based on the transfer entropy, establish a hierarchical Bayesian causal network (HBcausalNet) of the visual cortex, and use the model for visual stimulus image reconstruction. HBcausalNet achieves an average accuracy of 70.57% and 53.70% in single- and double-graphic stimulus image reconstruction tasks, respectively, higher than HcorrNet and HcasaulNet. The results show that the matching-related voxel screening and causality analysis method in this paper can extract the "matching" information in fMRI, obtain a direct causal relationship between matching information and fMRI, and explore the causal inference process in the brain. It suggests that our model can effectively extract high-level semantic information in brain signals and model effective connections and visual perception processes in the visual cortex of the brain.
AbstractList Functional MRI (fMRI) is a brain signal with high spatial resolution, and visual cognitive processes and semantic information in the brain can be represented and obtained through fMRI. In this paper, we design single-graphic and matched/unmatched double-graphic visual stimulus experiments and collect 12 subjects' fMRI data to explore the brain's visual perception processes. In the double-graphic stimulus experiment, we focus on the high-level semantic information as "matching", and remove tail-to-tail conjunction by designing a model to screen the matching-related voxels. Then, we perform Bayesian causal learning between fMRI voxels based on the transfer entropy, establish a hierarchical Bayesian causal network (HBcausalNet) of the visual cortex, and use the model for visual stimulus image reconstruction. HBcausalNet achieves an average accuracy of 70.57% and 53.70% in single- and double-graphic stimulus image reconstruction tasks, respectively, higher than HcorrNet and HcasaulNet. The results show that the matching-related voxel screening and causality analysis method in this paper can extract the "matching" information in fMRI, obtain a direct causal relationship between matching information and fMRI, and explore the causal inference process in the brain. It suggests that our model can effectively extract high-level semantic information in brain signals and model effective connections and visual perception processes in the visual cortex of the brain.
Author Zheng, Nanning
Zhang, Wen
Jing, Haodong
Ma, Yongqiang
Du, Ming
Author_xml – sequence: 1
  givenname: Yongqiang
  orcidid: 0000-0002-6063-5601
  surname: Ma
  fullname: Ma, Yongqiang
  organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
– sequence: 2
  givenname: Wen
  surname: Zhang
  fullname: Zhang, Wen
  organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
– sequence: 3
  givenname: Ming
  surname: Du
  fullname: Du, Ming
  organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
– sequence: 4
  givenname: Haodong
  orcidid: 0000-0001-6643-7588
  surname: Jing
  fullname: Jing, Haodong
  organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
– sequence: 5
  givenname: Nanning
  orcidid: 0000-0003-1608-8257
  surname: Zheng
  fullname: Zheng, Nanning
  organization: National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38084473$$D View this record in MEDLINE/PubMed
BookMark eNo1z0FPgzAYgOHGaHROf4AX0z-AlraUclQyZQnRw9Tr8rV8uEYoSyk6_r0m6um9Pcl7To794JGQq5TdpKnktxuW8oKpLOcyY4xxcUQWaV6IREnFT8mZ0ExLmYsFsZXDAMHunIWO3sOMowNPS5hG6Fyc6RPGryF80DjQ1SEGsJFW7n2X1PiJHd1gDz46S9e-HUIP0Q2eOk_f3Dj9eOUQIh4uyEkL3YiXf12S14fVS1kl9fPjuryrEytyJhKDplVKt8wAIHLZMtRKKJU1RVY0PGuEMcxopXVuLKRCat1krS5srrmCRvEluf5195Ppsdnug-shzNv_W_4NIbVVYA
CitedBy_id crossref_primary_10_1142_S0129065725500091
ContentType Journal Article
DBID NPM
DOI 10.1142/S0129065724500023
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1793-6462
ExternalDocumentID 38084473
Genre Journal Article
GroupedDBID NPM
ID FETCH-LOGICAL-c3703-bebf668f0baaee24f0e863665d959d25d3bb0b86887bca13488d5f89c7826ad62
IngestDate Thu Apr 03 07:03:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hierarchical Bayesian causality network
fMRI
semantic information
Cognitive computing
Bayesian network
visual cognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3703-bebf668f0baaee24f0e863665d959d25d3bb0b86887bca13488d5f89c7826ad62
ORCID 0000-0001-6643-7588
0000-0003-1608-8257
0000-0002-6063-5601
PMID 38084473
ParticipantIDs pubmed_primary_38084473
PublicationCentury 2000
PublicationDate 2024-Jan
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of neural systems
PublicationTitleAlternate Int J Neural Syst
PublicationYear 2024
Score 2.3469894
Snippet Functional MRI (fMRI) is a brain signal with high spatial resolution, and visual cognitive processes and semantic information in the brain can be represented...
SourceID pubmed
SourceType Index Database
StartPage 2450002
Title Hierarchical Bayesian Causality Network to Extract High-Level Semantic Information in Visual Cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/38084473
Volume 34
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYClSouFagU2gLyoTfkdrNrO94jBFAUAeqB1w3ZXi-K1GwC2Uhpf0V_MuPHEgNBAi6rle19yPPt7Hg83wxCP6iRwnSEJnlHSUJ1mRNhNCNMJKatcy1KRxQ-OeW9c9q_Ylet1v8oamlaq5_630JeyXukCm0gV8uSfYNkH24KDXAO8oUjSBiOr5Jxb2Dpw66ayZ_dffnXOEZkV04n3ro-9THe1r48nNWWD-XiOsixjRQCNTGEaR3o3UBJasIeLwaTqXMp3NVmFhuvj72HUc4JmxTT8k6i7OfOye30-6i6uYXXunnmor6cs9AOpj6Efz6qH2qt9CSsm0NzcE6kNHJOGK9Q4fsnnD7WuMF9GSMrqE9q6zOki1U7Td3msnWccdYJQ7N4LEhnPHSyzkQiKO28ovdJtu2mawktwbrDFlL9fRI2w-EFfj17_Ar62FzyZGHiDJSzVfQprCzwnofJGmqZ6jPSMURwAxH8ABEcIILrEQ4QwXOI4AYiOIIIHlTYQwR7iKyj86PDs26PhLoaRGeg4IkyquRclImS0piUlokRPOOcFTnLi5QVmVKJEhz-P0rLdgY6vmClyDVYk1wWPP2ClqtRZTYRlnAB_O2zrFAabD2WK67baWKooUWiafEVbfg5uR775CnXzWx9e7HnO1qZQ2kLfSjhazXbYPrVasfJ4x4DV1yf
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Bayesian+Causality+Network+to+Extract+High-Level+Semantic+Information+in+Visual+Cortex&rft.jtitle=International+journal+of+neural+systems&rft.au=Ma%2C+Yongqiang&rft.au=Zhang%2C+Wen&rft.au=Du%2C+Ming&rft.au=Jing%2C+Haodong&rft.date=2024-01-01&rft.eissn=1793-6462&rft.volume=34&rft.issue=1&rft.spage=2450002&rft_id=info:doi/10.1142%2FS0129065724500023&rft_id=info%3Apmid%2F38084473&rft_id=info%3Apmid%2F38084473&rft.externalDocID=38084473