Equilibrium concepts for time‐inconsistent stopping problems in continuous time

A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and...

Full description

Saved in:
Bibliographic Details
Published inMathematical finance Vol. 31; no. 1; pp. 508 - 530
Main Authors Bayraktar, Erhan, Zhang, Jingjie, Zhou, Zhou
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.01.2021
Subjects
Online AccessGet full text
ISSN0960-1627
1467-9965
DOI10.1111/mafi.12293

Cover

Abstract A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics, 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization, 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium, respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence.
AbstractList A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics, 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization, 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium, respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence.
A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics, 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization, 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium, respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence.
A new notion of equilibrium, which we call strong equilibrium , is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics , 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization , 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium , respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence.
Author Zhou, Zhou
Bayraktar, Erhan
Zhang, Jingjie
Author_xml – sequence: 1
  givenname: Erhan
  orcidid: 0000-0002-1926-4570
  surname: Bayraktar
  fullname: Bayraktar, Erhan
  organization: University of Michigan
– sequence: 2
  givenname: Jingjie
  surname: Zhang
  fullname: Zhang, Jingjie
  organization: University of Michigan
– sequence: 3
  givenname: Zhou
  orcidid: 0000-0001-8092-4745
  surname: Zhou
  fullname: Zhou, Zhou
  email: zhou.zhou@sydney.edu.au
  organization: University of Sydney
BookMark eNp9kNFKwzAUhoNMcJve-AQF74TOJE2T9nKMTQcTEXYf0iyRjDbtkhTZnY_gM_okZqtXIp6bA4fvOyf5J2BkW6sAuEVwhmI9NEKbGcK4zC7AGBHK0rKk-QiMYUlhiihmV2Di_R5CSAhhY_C6PPSmNpUzfZPI1krVBZ_o1iXBNOrr49PYOPXGB2VD4kPbdca-JZ1rq1o1PjH2ZAVj-7b3Z-caXGpRe3Xz06dgu1puF0_p5uVxvZhvUpkxmKWMKUFyonNaSKJ3dIcQgTnGsqBMaF1gkWmBc5hVla4ErbDIi4JpqKuSyZ3KpuBuWBufcuiVD3zf9s7GixyTAqJIZzRS9wMlXeu9U5p3zjTCHTmC_JQYPyXGz4lFGP6CpQkimPg_J0z9t4IG5d3U6vjPcv48X60H5xuQIYL8
CitedBy_id crossref_primary_10_1111_mafi_12385
crossref_primary_10_2139_ssrn_4349938
crossref_primary_10_1007_s00186_023_00838_9
crossref_primary_10_1137_23M1625512
crossref_primary_10_2139_ssrn_4431616
crossref_primary_10_1111_mafi_12391
crossref_primary_10_2139_ssrn_4669019
crossref_primary_10_1007_s00780_021_00468_1
crossref_primary_10_1137_22M1496955
crossref_primary_10_1287_moor_2021_1142
crossref_primary_10_1137_22M1506651
crossref_primary_10_1137_22M1477659
crossref_primary_10_1137_22M1510005
crossref_primary_10_2139_ssrn_3084657
crossref_primary_10_1111_mafi_12428
crossref_primary_10_1137_23M1582539
crossref_primary_10_1007_s11579_025_00382_6
crossref_primary_10_1137_23M1594121
crossref_primary_10_1111_mafi_12312
crossref_primary_10_1137_20M1343774
crossref_primary_10_1137_20M1382106
crossref_primary_10_2139_ssrn_3308274
crossref_primary_10_1137_24M163668X
Cites_doi 10.1007/s00780-017-0350-6
10.1016/0165-1765(81)90067-7
10.1016/j.spa.2019.08.010
10.1111/j.0347-0520.2004.00375.x
10.2307/2296548
10.1137/18M1216432
10.1007/s00780-014-0234-y
10.1111/mafi.12224
10.1257/jep.3.4.181
10.1111/mafi.12229
10.1016/j.jfineco.2006.01.002
10.2307/2118482
10.1016/j.jet.2008.09.001
10.1287/moor.2020.1066
10.1137/17M1153029
10.1007/s00780-017-0327-5
10.2307/2295722
10.1137/17M1139187
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2021 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC
DBID AAYXX
CITATION
8BJ
FQK
JBE
JQ2
DOI 10.1111/mafi.12293
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Computer Science Collection
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Business
EISSN 1467-9965
EndPage 530
ExternalDocumentID 10_1111_mafi_12293
MAFI12293
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS‐1613170
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
1OL
29M
31~
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A04
AABCJ
AABNI
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPVW
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACHQT
ACIWK
ACPOU
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AHEFC
AHQJS
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BKOMP
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
DC6
DCZOG
DJZPD
DPXWK
DR2
DRFUL
DRSSH
DU5
EBA
EBE
EBO
EBR
EBS
EBU
EJD
EMK
EOH
F00
F01
FEDTE
FZ0
G-S
G.N
G50
GODZA
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
U5U
UB1
V8K
W8V
W99
WBKPD
WEBCB
WIH
WII
WOHZO
WQZ
WRC
WSUWO
WXSBR
XG1
ZL0
ZZTAW
~IA
~WP
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AMVHM
CITATION
8BJ
FQK
JBE
JQ2
ID FETCH-LOGICAL-c3703-77ea454f568c4fd6d1140522c867aff82a3fa2503bbfba6b2a5887f0fb97cde3
IEDL.DBID DR2
ISSN 0960-1627
IngestDate Fri Jul 25 10:58:32 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Tue Sep 09 00:16:19 EDT 2025
Wed Jan 22 16:30:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3703-77ea454f568c4fd6d1140522c867aff82a3fa2503bbfba6b2a5887f0fb97cde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8092-4745
0000-0002-1926-4570
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mafi.12293
PQID 2480158836
PQPubID 31855
PageCount 23
ParticipantIDs proquest_journals_2480158836
crossref_primary_10_1111_mafi_12293
crossref_citationtrail_10_1111_mafi_12293
wiley_primary_10_1111_mafi_12293_MAFI12293
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Mathematical finance
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1989; 3
1968; 35
2020; 130
2020; 30
2020
2017; 21
2017; 57
2019
2009; 144
2006
1981; 8
1992; 57
2014; 18
2007; 84
2018; 56
2018; 22
2004; 106
1955; 23
e_1_2_6_21_1
Ekeland I. (e_1_2_6_7_1) 2006
e_1_2_6_10_1
e_1_2_6_20_1
He X. D. (e_1_2_6_9_1) 2020
Huang Y.‐J. (e_1_2_6_12_1) 2019
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 106
  start-page: 511
  issue: 3
  year: 2004
  end-page: 532
  article-title: Decreasing impatience: A criterion for non‐stationary time preference and “hyperbolic” discounting
  publication-title: Scandinavian Journal of Economics
– volume: 144
  start-page: 869
  issue: 2
  year: 2009
  end-page: 875
  article-title: Decreasing impatience and the magnitude effect jointly contradict exponential discounting
  publication-title: Journal of Economics Theory
– volume: 30
  start-page: 310
  year: 2020
  end-page: 340
  article-title: General stopping behaviors of naïve and non‐committed sophisticated agents, with application to probability distortion
  publication-title: Mathematical Finance
– volume: 23
  start-page: 165
  issue: 3
  year: 1955
  end-page: 180
  article-title: Myopia and inconsistency in dynamic utility maximization
  publication-title: Review of Economic Studies
– volume: 56
  start-page: 4228
  issue: 6
  year: 2018
  end-page: 4255
  article-title: On finding equilibrium stopping times for time‐inconsistent markovian problems
  publication-title: SIAM Journal on Control and Optimization
– volume: 21
  start-page: 331
  issue: 2
  year: 2017
  end-page: 360
  article-title: On time‐inconsistent stochastic control in continuous time
  publication-title: Finance and Stochastics
– volume: 18
  start-page: 545
  issue: 3
  year: 2014
  end-page: 592
  article-title: A theory of markovian time‐inconsistent stochastic control in discrete time
  publication-title: Finance and Stochastics
– volume: 22
  start-page: 69
  issue: 1
  year: 2018
  end-page: 95
  article-title: Time‐consistent stopping under decreasing impatience
  publication-title: Finance and Stochastics
– volume: 35
  start-page: 201
  issue: 2
  year: 1968
  end-page: 208
  article-title: Consistent planning
  publication-title: Review of Economic Studies
– year: 2020
  article-title: Strong and weak equilibria for time‐inconsistent stochastic control in continuous time
  publication-title: Mathematics of Operations Research
– volume: 30
  start-page: 1103
  issue: 3
  year: 2020
  end-page: 1134
  article-title: Optimal equilibria for time‐inconsistent stopping problems in continuous time
  publication-title: Mathematical Finance
– volume: 84
  start-page: 2
  issue: 1
  year: 2007
  end-page: 39
  article-title: Investment under uncertainty and time‐inconsistent preferences
  publication-title: Journal of Financial Economics
– volume: 8
  start-page: 201
  year: 1981
  end-page: 207
  article-title: Some empirical evidence on dynamic inconsistency
  publication-title: Economics Letters
– year: 2006
– year: 2020
– volume: 57
  start-page: 590
  year: 2017
  end-page: 609
  article-title: The optimal equilibrium for time‐inconsistent stopping problems—The discrete‐time case
  publication-title: SIAM J. Control and Optimization
– volume: 3
  start-page: 181
  year: 1989
  end-page: 193
  article-title: Anomalies: Intertemporal choice
  publication-title: Journal of Economic Perspectives
– volume: 130
  start-page: 2886
  issue: 5
  year: 2020
  end-page: 2917
  article-title: On time‐inconsistent stopping problems and mixed strategy stopping times
  publication-title: Stochastic Processes and Their Applications
– year: 2019
– volume: 57
  start-page: 573
  year: 1992
  end-page: 598
  article-title: Anomalies in intertemporal choice: Evidence and an interpretation
  publication-title: Quarterly Journal of Economics
– ident: e_1_2_6_10_1
  doi: 10.1007/s00780-017-0350-6
– ident: e_1_2_6_22_1
  doi: 10.1016/0165-1765(81)90067-7
– ident: e_1_2_6_6_1
  doi: 10.1016/j.spa.2019.08.010
– volume-title: Being serious about non‐commitment: Subgame perfect equilibrium in continuous time
  year: 2006
  ident: e_1_2_6_7_1
– ident: e_1_2_6_20_1
  doi: 10.1111/j.0347-0520.2004.00375.x
– ident: e_1_2_6_19_1
  doi: 10.2307/2296548
– ident: e_1_2_6_2_1
  doi: 10.1137/18M1216432
– ident: e_1_2_6_4_1
  doi: 10.1007/s00780-014-0234-y
– ident: e_1_2_6_11_1
  doi: 10.1111/mafi.12224
– ident: e_1_2_6_17_1
  doi: 10.1257/jep.3.4.181
– ident: e_1_2_6_15_1
  doi: 10.1111/mafi.12229
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jfineco.2006.01.002
– volume-title: Optimal stopping under model ambiguity: A time‐consistent equilibrium approach
  year: 2019
  ident: e_1_2_6_12_1
– ident: e_1_2_6_16_1
  doi: 10.2307/2118482
– volume-title: On the equilibrium strategies for time‐inconsistent problems in continuous time
  year: 2020
  ident: e_1_2_6_9_1
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jet.2008.09.001
– ident: e_1_2_6_14_1
  doi: 10.1287/moor.2020.1066
– ident: e_1_2_6_5_1
  doi: 10.1137/17M1153029
– ident: e_1_2_6_3_1
  doi: 10.1007/s00780-017-0327-5
– ident: e_1_2_6_21_1
  doi: 10.2307/2295722
– ident: e_1_2_6_13_1
  doi: 10.1137/17M1139187
SSID ssj0004447
Score 2.39443
Snippet A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the...
A new notion of equilibrium, which we call strong equilibrium , is introduced for time‐inconsistent stopping problems in continuous time. Compared to the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 508
SubjectTerms Equilibrium
Finance
Game theory
Markov chains
mild equilibria
nonexponential discounting
optimal stopping
Optimization
strong equilibria
subgame perfect Nash equilibrium
time inconsistency
weak equilibria
Title Equilibrium concepts for time‐inconsistent stopping problems in continuous time
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmafi.12293
https://www.proquest.com/docview/2480158836
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcH8SB68C2uLwp6UeiybR7dghdRFxVWUBS8SEnSBBbd-mh78eRH8DP6Scyk7a6KCHrrISlpk5n8E2Z-A7BDY8SOa4ye0qFPOVe-UBHzjSKpUIxHUmO-c_-cn1zTsxt2MwH7TS5MxYcYXbihZTh_jQYuZP7JyIfCDNpBaLcr64ADwhGcf3Q5ZkdR6qqLoUT3Ax5GNZsUw3jGXb_uRmOJ-Vmoup2mNwe3zRirAJO7dlnItnr5hm_870fMw2wtQb2Das0swITOFmGqiYBfhJn-COWaL8HF8VM5cIkB5dBTVZJj7lmp62FZ-vfXN8Q7ZDmulqzwkFOAGVheXagm9wYZ9ioGWflQ5q7PMlz1jq8OT_y6DoOviHUIVoBrQRk1jHcVNSlP7RmqY3Wb6vJIGNMNBTHCSikipZGCy1Aw67pMx8g4UqkmKzCZPWR6FTzk_WnGpJCxoYGKZcdwETBNZBoTJWkLdpvpSFTNKMdSGfdJc1bBH5a4H9aC7VHbx4rM8WOrjWZWk9o68yREZo4dI-Et2HPT88sbkv5B79Q9rf2l8TpMhxj-4m5rNmCyeC71ptUvhdxy6_QDcHfurQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPXsDLg3dxOrWgLwodW5uk6-NQx7xMUCb4VpI0gaGrl7YvPvkR_Ix-EnPSblMRQd_6kJQ2Jyf5J5zzOwD7JETsuMLoKeW5hDHpchlQV0s_5pKyQCjMd-5ess4NObult2VsDubCFHyI0YUbeoZdr9HB8UL6k5cPuO7XGp7ZryZhmhilgWev4-sxPYoQW18MRbrbYF5Q0kkxkGfc9-t-NBaZn6Wq3Wvai0VB1dQiCjHE5K6WZ6ImX74BHP_9G0uwUKpQp1VMm2WYUMkKzAyD4FdgvjuiuaarcHXylPdtbkA-cGSR55g6Ru06WJn-_fUNCQ9JihMmyRxEFWASllPWqkmdfoK9sn6SP-Sp7bMGvfZJ76jjlqUYXOmbNcFocMUJJZqypiQ6ZrE5RtWNdJNNFnCtmx73NTdqyhdCC86Ex6lZvXRdizCQsfLXYSp5SNQGOIj8U5QKLkJNGjIUdc14gypfxKEvBanAwdAekSwx5Vgt4z4aHldwwCI7YBXYG7V9LOAcP7aqDs0alQ6aRh5ic8w3-qwCh9Y-v7wh6rbap_Zp8y-Nd2G20-teRBenl-dbMOdhNIy9vKnCVPacq20jZzKxYyftB1pO8sw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt7g-C3pR6LLbJukWvIi6-FpRUfAiJUkTWHTro-3Fkz_B3-gvMZO2uyoi6K2HSUgzj3wJM98AbJIQaccVZk8pzyWMSZfLgLpa-jGXlAVCYb1z54wdXpPjG3ozBDtVLUzBD9F_cEPPsPEaHfwx1p-cvMd1t970zHE1DKOEGSiBkOhyQB5FiG0vhhjdbTIvKMlJMY9nMPbrcTTAmJ-Rqj1q2lNwWy2yyDC5q-eZqMuXb_yN__2LaZgsMaizWxjNDAypZBbGqhT4WZjo9Llc0zm4OHjKu7YyIO85sqhyTB2DdR3sS__--ob8DkmK5pJkDhIVYAmWU3aqSZ1ugqOybpI_5KkdMw9X7YOrvUO3bMTgSt9EBIPAFSeUaMpakuiYxeYS1TDATbZYwLVuedzX3GApXwgtOBMepyZ26YYWYSBj5S_ASPKQqEVwkPBPUSq4CDVpylA0NONNqnwRh74UpAZblToiWZKUY6-M-6i6rOCGRXbDarDRl30sqDl-lFqptBqV7plGHpLmmDX6rAbbVj2_zBB1dttH9mvpL8LrMHa-345Oj85OlmHcw1QY-3KzAiPZc65WDZbJxJo12Q-aXfF7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equilibrium+concepts+for+time%E2%80%90inconsistent+stopping+problems+in+continuous+time&rft.jtitle=Mathematical+finance&rft.au=Bayraktar%2C+Erhan&rft.au=Zhang%2C+Jingjie&rft.au=Zhou%2C+Zhou&rft.date=2021-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-1627&rft.eissn=1467-9965&rft.volume=31&rft.issue=1&rft.spage=508&rft.epage=530&rft_id=info:doi/10.1111%2Fmafi.12293&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1627&client=summon