Equilibrium concepts for time‐inconsistent stopping problems in continuous time
A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and...
Saved in:
Published in | Mathematical finance Vol. 31; no. 1; pp. 508 - 530 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-1627 1467-9965 |
DOI | 10.1111/mafi.12293 |
Cover
Abstract | A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics, 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization, 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium, respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence. |
---|---|
AbstractList | A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics, 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization, 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium, respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence. A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics, 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization, 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium, respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence. A new notion of equilibrium, which we call strong equilibrium , is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics , 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization , 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium , respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence. |
Author | Zhou, Zhou Bayraktar, Erhan Zhang, Jingjie |
Author_xml | – sequence: 1 givenname: Erhan orcidid: 0000-0002-1926-4570 surname: Bayraktar fullname: Bayraktar, Erhan organization: University of Michigan – sequence: 2 givenname: Jingjie surname: Zhang fullname: Zhang, Jingjie organization: University of Michigan – sequence: 3 givenname: Zhou orcidid: 0000-0001-8092-4745 surname: Zhou fullname: Zhou, Zhou email: zhou.zhou@sydney.edu.au organization: University of Sydney |
BookMark | eNp9kNFKwzAUhoNMcJve-AQF74TOJE2T9nKMTQcTEXYf0iyRjDbtkhTZnY_gM_okZqtXIp6bA4fvOyf5J2BkW6sAuEVwhmI9NEKbGcK4zC7AGBHK0rKk-QiMYUlhiihmV2Di_R5CSAhhY_C6PPSmNpUzfZPI1krVBZ_o1iXBNOrr49PYOPXGB2VD4kPbdca-JZ1rq1o1PjH2ZAVj-7b3Z-caXGpRe3Xz06dgu1puF0_p5uVxvZhvUpkxmKWMKUFyonNaSKJ3dIcQgTnGsqBMaF1gkWmBc5hVla4ErbDIi4JpqKuSyZ3KpuBuWBufcuiVD3zf9s7GixyTAqJIZzRS9wMlXeu9U5p3zjTCHTmC_JQYPyXGz4lFGP6CpQkimPg_J0z9t4IG5d3U6vjPcv48X60H5xuQIYL8 |
CitedBy_id | crossref_primary_10_1111_mafi_12385 crossref_primary_10_2139_ssrn_4349938 crossref_primary_10_1007_s00186_023_00838_9 crossref_primary_10_1137_23M1625512 crossref_primary_10_2139_ssrn_4431616 crossref_primary_10_1111_mafi_12391 crossref_primary_10_2139_ssrn_4669019 crossref_primary_10_1007_s00780_021_00468_1 crossref_primary_10_1137_22M1496955 crossref_primary_10_1287_moor_2021_1142 crossref_primary_10_1137_22M1506651 crossref_primary_10_1137_22M1477659 crossref_primary_10_1137_22M1510005 crossref_primary_10_2139_ssrn_3084657 crossref_primary_10_1111_mafi_12428 crossref_primary_10_1137_23M1582539 crossref_primary_10_1007_s11579_025_00382_6 crossref_primary_10_1137_23M1594121 crossref_primary_10_1111_mafi_12312 crossref_primary_10_1137_20M1343774 crossref_primary_10_1137_20M1382106 crossref_primary_10_2139_ssrn_3308274 crossref_primary_10_1137_24M163668X |
Cites_doi | 10.1007/s00780-017-0350-6 10.1016/0165-1765(81)90067-7 10.1016/j.spa.2019.08.010 10.1111/j.0347-0520.2004.00375.x 10.2307/2296548 10.1137/18M1216432 10.1007/s00780-014-0234-y 10.1111/mafi.12224 10.1257/jep.3.4.181 10.1111/mafi.12229 10.1016/j.jfineco.2006.01.002 10.2307/2118482 10.1016/j.jet.2008.09.001 10.1287/moor.2020.1066 10.1137/17M1153029 10.1007/s00780-017-0327-5 10.2307/2295722 10.1137/17M1139187 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC 2021 Wiley Periodicals LLC |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC |
DBID | AAYXX CITATION 8BJ FQK JBE JQ2 |
DOI | 10.1111/mafi.12293 |
DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Computer Science Collection |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Business |
EISSN | 1467-9965 |
EndPage | 530 |
ExternalDocumentID | 10_1111_mafi_12293 MAFI12293 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMS‐1613170 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 1OL 29M 31~ 33P 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A04 AABCJ AABNI AAESR AAHHS AAHQN AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABPVW ABSOO ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACGFO ACGFS ACHQT ACIWK ACPOU ACRPL ACSCC ACXQS ACYXJ ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFKFF AFPWT AFWVQ AFYRF AFZJQ AHBTC AHEFC AHQJS AIAGR AIFKG AIURR AIWBW AJBDE AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BKOMP BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-C D-D DC6 DCZOG DJZPD DPXWK DR2 DRFUL DRSSH DU5 EBA EBE EBO EBR EBS EBU EJD EMK EOH F00 F01 FEDTE FZ0 G-S G.N G50 GODZA HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ O66 O9- OIG P2P P2W P2Y P4C PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 U5U UB1 V8K W8V W99 WBKPD WEBCB WIH WII WOHZO WQZ WRC WSUWO WXSBR XG1 ZL0 ZZTAW ~IA ~WP AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AIDQK AIDYY AMVHM CITATION 8BJ FQK JBE JQ2 |
ID | FETCH-LOGICAL-c3703-77ea454f568c4fd6d1140522c867aff82a3fa2503bbfba6b2a5887f0fb97cde3 |
IEDL.DBID | DR2 |
ISSN | 0960-1627 |
IngestDate | Fri Jul 25 10:58:32 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Tue Sep 09 00:16:19 EDT 2025 Wed Jan 22 16:30:27 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3703-77ea454f568c4fd6d1140522c867aff82a3fa2503bbfba6b2a5887f0fb97cde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8092-4745 0000-0002-1926-4570 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mafi.12293 |
PQID | 2480158836 |
PQPubID | 31855 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2480158836 crossref_primary_10_1111_mafi_12293 crossref_citationtrail_10_1111_mafi_12293 wiley_primary_10_1111_mafi_12293_MAFI12293 |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Mathematical finance |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1989; 3 1968; 35 2020; 130 2020; 30 2020 2017; 21 2017; 57 2019 2009; 144 2006 1981; 8 1992; 57 2014; 18 2007; 84 2018; 56 2018; 22 2004; 106 1955; 23 e_1_2_6_21_1 Ekeland I. (e_1_2_6_7_1) 2006 e_1_2_6_10_1 e_1_2_6_20_1 He X. D. (e_1_2_6_9_1) 2020 Huang Y.‐J. (e_1_2_6_12_1) 2019 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 106 start-page: 511 issue: 3 year: 2004 end-page: 532 article-title: Decreasing impatience: A criterion for non‐stationary time preference and “hyperbolic” discounting publication-title: Scandinavian Journal of Economics – volume: 144 start-page: 869 issue: 2 year: 2009 end-page: 875 article-title: Decreasing impatience and the magnitude effect jointly contradict exponential discounting publication-title: Journal of Economics Theory – volume: 30 start-page: 310 year: 2020 end-page: 340 article-title: General stopping behaviors of naïve and non‐committed sophisticated agents, with application to probability distortion publication-title: Mathematical Finance – volume: 23 start-page: 165 issue: 3 year: 1955 end-page: 180 article-title: Myopia and inconsistency in dynamic utility maximization publication-title: Review of Economic Studies – volume: 56 start-page: 4228 issue: 6 year: 2018 end-page: 4255 article-title: On finding equilibrium stopping times for time‐inconsistent markovian problems publication-title: SIAM Journal on Control and Optimization – volume: 21 start-page: 331 issue: 2 year: 2017 end-page: 360 article-title: On time‐inconsistent stochastic control in continuous time publication-title: Finance and Stochastics – volume: 18 start-page: 545 issue: 3 year: 2014 end-page: 592 article-title: A theory of markovian time‐inconsistent stochastic control in discrete time publication-title: Finance and Stochastics – volume: 22 start-page: 69 issue: 1 year: 2018 end-page: 95 article-title: Time‐consistent stopping under decreasing impatience publication-title: Finance and Stochastics – volume: 35 start-page: 201 issue: 2 year: 1968 end-page: 208 article-title: Consistent planning publication-title: Review of Economic Studies – year: 2020 article-title: Strong and weak equilibria for time‐inconsistent stochastic control in continuous time publication-title: Mathematics of Operations Research – volume: 30 start-page: 1103 issue: 3 year: 2020 end-page: 1134 article-title: Optimal equilibria for time‐inconsistent stopping problems in continuous time publication-title: Mathematical Finance – volume: 84 start-page: 2 issue: 1 year: 2007 end-page: 39 article-title: Investment under uncertainty and time‐inconsistent preferences publication-title: Journal of Financial Economics – volume: 8 start-page: 201 year: 1981 end-page: 207 article-title: Some empirical evidence on dynamic inconsistency publication-title: Economics Letters – year: 2006 – year: 2020 – volume: 57 start-page: 590 year: 2017 end-page: 609 article-title: The optimal equilibrium for time‐inconsistent stopping problems—The discrete‐time case publication-title: SIAM J. Control and Optimization – volume: 3 start-page: 181 year: 1989 end-page: 193 article-title: Anomalies: Intertemporal choice publication-title: Journal of Economic Perspectives – volume: 130 start-page: 2886 issue: 5 year: 2020 end-page: 2917 article-title: On time‐inconsistent stopping problems and mixed strategy stopping times publication-title: Stochastic Processes and Their Applications – year: 2019 – volume: 57 start-page: 573 year: 1992 end-page: 598 article-title: Anomalies in intertemporal choice: Evidence and an interpretation publication-title: Quarterly Journal of Economics – ident: e_1_2_6_10_1 doi: 10.1007/s00780-017-0350-6 – ident: e_1_2_6_22_1 doi: 10.1016/0165-1765(81)90067-7 – ident: e_1_2_6_6_1 doi: 10.1016/j.spa.2019.08.010 – volume-title: Being serious about non‐commitment: Subgame perfect equilibrium in continuous time year: 2006 ident: e_1_2_6_7_1 – ident: e_1_2_6_20_1 doi: 10.1111/j.0347-0520.2004.00375.x – ident: e_1_2_6_19_1 doi: 10.2307/2296548 – ident: e_1_2_6_2_1 doi: 10.1137/18M1216432 – ident: e_1_2_6_4_1 doi: 10.1007/s00780-014-0234-y – ident: e_1_2_6_11_1 doi: 10.1111/mafi.12224 – ident: e_1_2_6_17_1 doi: 10.1257/jep.3.4.181 – ident: e_1_2_6_15_1 doi: 10.1111/mafi.12229 – ident: e_1_2_6_8_1 doi: 10.1016/j.jfineco.2006.01.002 – volume-title: Optimal stopping under model ambiguity: A time‐consistent equilibrium approach year: 2019 ident: e_1_2_6_12_1 – ident: e_1_2_6_16_1 doi: 10.2307/2118482 – volume-title: On the equilibrium strategies for time‐inconsistent problems in continuous time year: 2020 ident: e_1_2_6_9_1 – ident: e_1_2_6_18_1 doi: 10.1016/j.jet.2008.09.001 – ident: e_1_2_6_14_1 doi: 10.1287/moor.2020.1066 – ident: e_1_2_6_5_1 doi: 10.1137/17M1153029 – ident: e_1_2_6_3_1 doi: 10.1007/s00780-017-0327-5 – ident: e_1_2_6_21_1 doi: 10.2307/2295722 – ident: e_1_2_6_13_1 doi: 10.1137/17M1139187 |
SSID | ssj0004447 |
Score | 2.39443 |
Snippet | A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the... A new notion of equilibrium, which we call strong equilibrium , is introduced for time‐inconsistent stopping problems in continuous time. Compared to the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 508 |
SubjectTerms | Equilibrium Finance Game theory Markov chains mild equilibria nonexponential discounting optimal stopping Optimization strong equilibria subgame perfect Nash equilibrium time inconsistency weak equilibria |
Title | Equilibrium concepts for time‐inconsistent stopping problems in continuous time |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmafi.12293 https://www.proquest.com/docview/2480158836 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcH8SB68C2uLwp6UeiybR7dghdRFxVWUBS8SEnSBBbd-mh78eRH8DP6Scyk7a6KCHrrISlpk5n8E2Z-A7BDY8SOa4ye0qFPOVe-UBHzjSKpUIxHUmO-c_-cn1zTsxt2MwH7TS5MxYcYXbihZTh_jQYuZP7JyIfCDNpBaLcr64ADwhGcf3Q5ZkdR6qqLoUT3Ax5GNZsUw3jGXb_uRmOJ-Vmoup2mNwe3zRirAJO7dlnItnr5hm_870fMw2wtQb2Das0swITOFmGqiYBfhJn-COWaL8HF8VM5cIkB5dBTVZJj7lmp62FZ-vfXN8Q7ZDmulqzwkFOAGVheXagm9wYZ9ioGWflQ5q7PMlz1jq8OT_y6DoOviHUIVoBrQRk1jHcVNSlP7RmqY3Wb6vJIGNMNBTHCSikipZGCy1Aw67pMx8g4UqkmKzCZPWR6FTzk_WnGpJCxoYGKZcdwETBNZBoTJWkLdpvpSFTNKMdSGfdJc1bBH5a4H9aC7VHbx4rM8WOrjWZWk9o68yREZo4dI-Et2HPT88sbkv5B79Q9rf2l8TpMhxj-4m5rNmCyeC71ptUvhdxy6_QDcHfurQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPXsDLg3dxOrWgLwodW5uk6-NQx7xMUCb4VpI0gaGrl7YvPvkR_Ix-EnPSblMRQd_6kJQ2Jyf5J5zzOwD7JETsuMLoKeW5hDHpchlQV0s_5pKyQCjMd-5ess4NObult2VsDubCFHyI0YUbeoZdr9HB8UL6k5cPuO7XGp7ZryZhmhilgWev4-sxPYoQW18MRbrbYF5Q0kkxkGfc9-t-NBaZn6Wq3Wvai0VB1dQiCjHE5K6WZ6ImX74BHP_9G0uwUKpQp1VMm2WYUMkKzAyD4FdgvjuiuaarcHXylPdtbkA-cGSR55g6Ru06WJn-_fUNCQ9JihMmyRxEFWASllPWqkmdfoK9sn6SP-Sp7bMGvfZJ76jjlqUYXOmbNcFocMUJJZqypiQ6ZrE5RtWNdJNNFnCtmx73NTdqyhdCC86Ex6lZvXRdizCQsfLXYSp5SNQGOIj8U5QKLkJNGjIUdc14gypfxKEvBanAwdAekSwx5Vgt4z4aHldwwCI7YBXYG7V9LOAcP7aqDs0alQ6aRh5ic8w3-qwCh9Y-v7wh6rbap_Zp8y-Nd2G20-teRBenl-dbMOdhNIy9vKnCVPacq20jZzKxYyftB1pO8sw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt7g-C3pR6LLbJukWvIi6-FpRUfAiJUkTWHTro-3Fkz_B3-gvMZO2uyoi6K2HSUgzj3wJM98AbJIQaccVZk8pzyWMSZfLgLpa-jGXlAVCYb1z54wdXpPjG3ozBDtVLUzBD9F_cEPPsPEaHfwx1p-cvMd1t970zHE1DKOEGSiBkOhyQB5FiG0vhhjdbTIvKMlJMY9nMPbrcTTAmJ-Rqj1q2lNwWy2yyDC5q-eZqMuXb_yN__2LaZgsMaizWxjNDAypZBbGqhT4WZjo9Llc0zm4OHjKu7YyIO85sqhyTB2DdR3sS__--ob8DkmK5pJkDhIVYAmWU3aqSZ1ugqOybpI_5KkdMw9X7YOrvUO3bMTgSt9EBIPAFSeUaMpakuiYxeYS1TDATbZYwLVuedzX3GApXwgtOBMepyZ26YYWYSBj5S_ASPKQqEVwkPBPUSq4CDVpylA0NONNqnwRh74UpAZblToiWZKUY6-M-6i6rOCGRXbDarDRl30sqDl-lFqptBqV7plGHpLmmDX6rAbbVj2_zBB1dttH9mvpL8LrMHa-345Oj85OlmHcw1QY-3KzAiPZc65WDZbJxJo12Q-aXfF7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equilibrium+concepts+for+time%E2%80%90inconsistent+stopping+problems+in+continuous+time&rft.jtitle=Mathematical+finance&rft.au=Bayraktar%2C+Erhan&rft.au=Zhang%2C+Jingjie&rft.au=Zhou%2C+Zhou&rft.date=2021-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-1627&rft.eissn=1467-9965&rft.volume=31&rft.issue=1&rft.spage=508&rft.epage=530&rft_id=info:doi/10.1111%2Fmafi.12293&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1627&client=summon |