The Moran effect revisited: spatial population synchrony under global warming
The world is spatially autocorrelated. Both abiotic and biotic properties are more similar among neighboring than distant locations, and their temporal co‐fluctuations also decrease with distance. P. A. P. Moran realized the ecological importance of such ‘spatial synchrony’ when he predicted that is...
Saved in:
Published in | Ecography (Copenhagen) Vol. 43; no. 11; pp. 1591 - 1602 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.11.2020
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The world is spatially autocorrelated. Both abiotic and biotic properties are more similar among neighboring than distant locations, and their temporal co‐fluctuations also decrease with distance. P. A. P. Moran realized the ecological importance of such ‘spatial synchrony’ when he predicted that isolated populations subject to identical log‐linear density‐dependent processes should have the same correlation in fluctuations of abundance as the correlation in environmental noise. The contribution from correlated weather to synchrony of populations has later been coined the ‘Moran effect’. Here, we investigate the potential role of the Moran effect in large‐scale ecological outcomes of global warming. Although difficult to disentangle from dispersal and species interaction effects, there is compelling evidence from across taxa and ecosystems that spatial environmental synchrony causes population synchrony. Given this, and the accelerating number of studies reporting climate change effects on local population dynamics, surprisingly little attention has been paid to the implications of global warming for spatial population synchrony. However, a handful of studies of insects, birds, plants, mammals and marine plankton indicate decadal‐scale changes in population synchrony due to trends in environmental synchrony. We combine a literature review with modeling to outline potential pathways for how global warming, through changes in the mean, variability and spatial autocorrelation of weather, can impact population synchrony over time. This is particularly likely under a ‘generalized Moran effect’, i.e. when relaxing Moran's strict assumption of identical log‐linear density‐dependence, which is highly unrealistic in the wild. Furthermore, climate change can influence spatial population synchrony indirectly, through its effects on dispersal and species interactions. Because changes in population synchrony may cascade through food‐webs, we argue that the (generalized) Moran effect is key to understanding and predicting impacts of global warming on large‐scale ecological dynamics, with implications for extinctions, conservation and management. |
---|---|
AbstractList | The world is spatially autocorrelated. Both abiotic and biotic properties are more similar among neighboring than distant locations, and their temporal co‐fluctuations also decrease with distance. P. A. P. Moran realized the ecological importance of such ‘spatial synchrony’ when he predicted that isolated populations subject to identical log‐linear density‐dependent processes should have the same correlation in fluctuations of abundance as the correlation in environmental noise. The contribution from correlated weather to synchrony of populations has later been coined the ‘Moran effect’. Here, we investigate the potential role of the Moran effect in large‐scale ecological outcomes of global warming. Although difficult to disentangle from dispersal and species interaction effects, there is compelling evidence from across taxa and ecosystems that spatial environmental synchrony causes population synchrony. Given this, and the accelerating number of studies reporting climate change effects on local population dynamics, surprisingly little attention has been paid to the implications of global warming for spatial population synchrony. However, a handful of studies of insects, birds, plants, mammals and marine plankton indicate decadal‐scale changes in population synchrony due to trends in environmental synchrony. We combine a literature review with modeling to outline potential pathways for how global warming, through changes in the mean, variability and spatial autocorrelation of weather, can impact population synchrony over time. This is particularly likely under a ‘generalized Moran effect’, i.e. when relaxing Moran's strict assumption of identical log‐linear density‐dependence, which is highly unrealistic in the wild. Furthermore, climate change can influence spatial population synchrony indirectly, through its effects on dispersal and species interactions. Because changes in population synchrony may cascade through food‐webs, we argue that the (generalized) Moran effect is key to understanding and predicting impacts of global warming on large‐scale ecological dynamics, with implications for extinctions, conservation and management. |
Author | Grøtan, Vidar Hansen, Brage B. Lee, Aline M. Herfindal, Ivar |
Author_xml | – sequence: 1 givenname: Brage B. orcidid: 0000-0001-8763-4361 surname: Hansen fullname: Hansen, Brage B. organization: Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology – sequence: 2 givenname: Vidar orcidid: 0000-0003-1222-0724 surname: Grøtan fullname: Grøtan, Vidar organization: Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology – sequence: 3 givenname: Ivar orcidid: 0000-0002-5860-9252 surname: Herfindal fullname: Herfindal, Ivar organization: Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology – sequence: 4 givenname: Aline M. orcidid: 0000-0001-9272-4249 surname: Lee fullname: Lee, Aline M. email: lee@alumni.ntnu.no organization: Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology |
BookMark | eNp9kE1LxDAQhoOs4K568RcUvIjQdZI2SetNFr9gxYueS5pO1izdpCatsv_e6npaxLnMHJ73ZXhmZOK8Q0LOKMzpOFeo_WoOeSnYAZlSAZACL-SETKEEkUpewhGZxbgGoKwUxZQ8vbxh8uSDcgkag7pPAn7YaHtsrpPYqd6qNul8N7Tj6V0St06_Be-2yeAaDMmq9fVIfKqwsW51Qg6NaiOe_u5j8np3-7J4SJfP94-Lm2WqMwk0NblCw5kURheFqDMBBWV12SgKiFALiVzIGrUqwEAjeMFM1pQ5540GVmQ8OyYXu94u-PcBY19tbNTYtsqhH2LFcilFTjljI3q-h679ENz43UhxWUIOLB-pyx2lg48xoKm6YDcqbCsK1bfZ6tts9WN2hGEP1rb_0dMHZdu_I3QX-bQtbv8pr24Xz_eUcU6zL7eUjRU |
CitedBy_id | crossref_primary_10_1007_s10668_023_04191_z crossref_primary_10_3390_rs15082182 crossref_primary_10_1038_s41559_020_01326_7 crossref_primary_10_1111_aec_13241 crossref_primary_10_1007_s13744_021_00848_4 crossref_primary_10_1111_oik_10241 crossref_primary_10_1002_ecy_3523 crossref_primary_10_1038_s41559_023_02070_4 crossref_primary_10_1016_j_scitotenv_2021_145161 crossref_primary_10_1073_pnas_2210144119 crossref_primary_10_3354_cr01641 crossref_primary_10_1111_gcb_15600 crossref_primary_10_1002_ecs2_4615 crossref_primary_10_1111_1365_2656_13192 crossref_primary_10_1007_s10021_021_00700_1 crossref_primary_10_1016_j_seppur_2021_118793 crossref_primary_10_1111_gcb_17029 crossref_primary_10_1111_ddi_13422 crossref_primary_10_31857_S102634702301002X crossref_primary_10_24011_barofd_1387342 crossref_primary_10_1111_ecog_06933 crossref_primary_10_1111_ele_70079 crossref_primary_10_1016_j_jag_2021_102620 crossref_primary_10_3354_cr01682 crossref_primary_10_1111_1365_2656_14008 crossref_primary_10_1002_ecy_3973 crossref_primary_10_1002_ecy_4305 crossref_primary_10_1007_s10453_022_09742_x crossref_primary_10_1111_fwb_13886 crossref_primary_10_1002_ecy_3908 crossref_primary_10_3354_cr01656 crossref_primary_10_4081_jlimnol_2023_2134 crossref_primary_10_1098_rstb_2023_0321 crossref_primary_10_1111_ele_14066 crossref_primary_10_1111_ele_13650 crossref_primary_10_3354_meps14159 crossref_primary_10_1002_ajb2_16446 crossref_primary_10_3389_fevo_2023_1106197 crossref_primary_10_1016_j_eneco_2024_107463 crossref_primary_10_1016_j_envpol_2025_125838 crossref_primary_10_1111_gcb_17017 crossref_primary_10_1002_ecy_3384 crossref_primary_10_1016_j_scitotenv_2021_150313 crossref_primary_10_1086_733896 crossref_primary_10_1111_oik_07653 crossref_primary_10_3389_fevo_2022_784111 crossref_primary_10_1073_pnas_2404155121 crossref_primary_10_1016_j_cois_2022_100990 crossref_primary_10_3354_meps13809 crossref_primary_10_1038_s42003_021_02969_3 crossref_primary_10_1016_j_cois_2022_100959 crossref_primary_10_1111_ele_14152 crossref_primary_10_1111_1365_2656_13575 crossref_primary_10_1111_ecog_06795 crossref_primary_10_1139_cjfas_2021_0017 crossref_primary_10_1002_ecy_4246 crossref_primary_10_1111_oik_10843 crossref_primary_10_1086_732876 crossref_primary_10_1016_j_cois_2023_101020 crossref_primary_10_1016_j_tree_2024_08_003 |
Cites_doi | 10.1016/j.mbs.2017.12.003 10.1890/04-0770 10.1034/j.1600-0706.2003.11912.x 10.1071/ZO9530291 10.1111/1365-2656.12959 10.1098/rspb.2009.1148 10.1038/srep39084 10.1525/bio.2009.59.6.7 10.2307/2265790 10.1890/04-1502 10.1007/s10144-005-0248-6 10.1242/jeb.2.1.119 10.1186/s40462-019-0171-7 10.1038/nclimate2100 10.1038/nclimate2881 10.1073/pnas.1618082114 10.1111/oik.05069 10.1111/j.1365-2656.2005.00942.x 10.1073/pnas.1320890111 10.1098/rspb.2016.0413 10.2307/5386 10.1007/s00300-017-2248-3 10.1038/nature01064 10.1111/1365-2656.12451 10.1038/35096558 10.1890/08-1709.1 10.1111/ecog.00662 10.1016/j.tpb.2018.05.001 10.1098/rspb.1995.0184 10.1038/nature01286 10.1111/geb.12630 10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2 10.1111/ecog.01283 10.1002/ece3.4098 10.1038/nclimate1539 10.1098/rspb.2015.0173 10.1086/491690 10.1111/gcb.12344 10.1146/annurev.ecolsys.37.091305.110100 10.3354/meps09616 10.1098/rspb.2003.2415 10.1016/1054-3139(95)80019-0 10.1126/science.289.5487.2068 10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2 10.1126/science.1173113 10.1111/j.1365-294X.2007.03507.x 10.1126/science.287.5454.854 10.1098/rspb.1997.0191 10.1111/oik.04705 10.1098/rspb.2004.2794 10.1890/0012-9658(1998)079[1111:SIOOFL]2.0.CO;2 10.1034/j.1600-0706.2000.890119.x 10.1002/ecy.2901 10.1038/24293 10.1007/s00338-008-0461-9 10.1111/gcb.14128 10.1890/14-1497.1 10.1086/340612 10.1016/0040-5809(77)90042-9 10.1038/35041562 10.1126/science.1226766 10.1038/nature08227 10.1073/pnas.1514717113 10.1111/ele.12095 10.1890/12-0940.1 10.1126/science.1235225 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2 10.1093/acprof:oso/9780199608898.003.0027 10.1111/j.0021-8790.2004.00843.x 10.1038/ngeo352 10.1016/S0169-5347(96)10068-9 10.1146/annurev.ecolsys.34.011802.132516 10.1111/gcb.13229 10.1098/rspb.2017.1666 10.1111/j.1523-1739.2008.00951.x 10.1111/geb.12595 10.1086/303240 10.1371/journal.pcbi.1006744 10.1016/S0169-5347(98)01498-0 10.1111/brv.12216 10.1111/ele.13155 10.1111/j.1365-2656.2006.01195.x 10.1073/pnas.0305029101 10.1002/ece3.733 10.1007/978-94-011-2916-9 10.1098/rspb.1997.0069 10.1016/j.quaint.2006.01.016 10.1046/j.1461-0248.1999.22060.x 10.1111/mec.12310 10.1111/j.2006.0030-1299.14686.x 10.1038/29291 10.1126/science.1206432 10.1007/s10531-010-9960-4 10.1371/journal.pone.0079527 10.1086/303350 10.1046/j.1461-0248.2001.00225.x 10.1111/gcb.14761 10.1016/0169-5347(90)90218-3 10.1038/nclimate2933 10.1016/S0169-5347(99)01677-8 10.1098/rsbl.2016.0235 10.1111/gcb.14280 10.1016/S0169-5347(98)01533-X 10.1111/gcb.12195 10.1890/10-2206.1 10.1073/pnas.0606291103 10.1038/s41467-019-09332-5 10.1038/416389a 10.1098/rspb.2010.1295 10.1016/S0065-2504(04)35009-9 10.1890/12-0268.1 10.1126/science.1071281 10.1034/j.1600-0587.2002.250304.x 10.1111/j.1365-2656.2006.01034.x |
ContentType | Journal Article |
Copyright | 2020 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos Copyright Wiley Subscription Services, Inc. Nov 2020 |
Copyright_xml | – notice: 2020 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos – notice: Copyright Wiley Subscription Services, Inc. Nov 2020 |
DBID | 24P AAYXX CITATION 7SN 7SS C1K 7S9 L.6 |
DOI | 10.1111/ecog.04962 |
DatabaseName | Wiley Online Library Open Access CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1600-0587 |
EndPage | 1602 |
ExternalDocumentID | 10_1111_ecog_04962 ECOG12551 |
Genre | technicalNote |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 2AX 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AANHP AAONW AAXTN AAZKR ABBHK ABCQN ABCUV ABEML ABPLY ABPVW ABTAH ABTLG ABXSQ ACBWZ ACCFJ ACCMX ACFBH ACGFS ACHIC ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADULT ADXAS ADZOD AEEJZ AEEZP AEGXH AEIMD AENEX AEQDE AEUPB AEUQT AEUYN AFAZZ AFBPY AFEBI AFGKR AFKRA AFPWT AFRAH AFZJQ AHXOZ AICQM AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AQVQM ASPBG AS~ ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD CCPQU COF CS3 D-E D-F DATOO DCZOG DOOOF DPXWK DR2 DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ GTFYD H.T H.X HCIFZ HF~ HGD HTVGU HVGLF HZI HZ~ IAO IEP IHE IPSME ITC IX1 J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2W P2X P4D PATMY PIMPY PYCSY Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX AGQPQ AGUYK CITATION PHGZM PHGZT 7SN 7SS AAMMB AEFGJ AGXDD AIDQK AIDYY C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c3701-f4aef5276fc886b360812b9da10ee0b67e567beca80f0d6582f3d9455dc028353 |
IEDL.DBID | DR2 |
ISSN | 0906-7590 |
IngestDate | Fri Jul 11 18:33:05 EDT 2025 Fri Jul 25 08:07:16 EDT 2025 Thu Apr 24 23:05:52 EDT 2025 Tue Jul 01 00:51:20 EDT 2025 Wed Jan 22 16:32:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3701-f4aef5276fc886b360812b9da10ee0b67e567beca80f0d6582f3d9455dc028353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1222-0724 0000-0002-5860-9252 0000-0001-9272-4249 0000-0001-8763-4361 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fecog.04962 |
PQID | 2457904024 |
PQPubID | 1006513 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2477641522 proquest_journals_2457904024 crossref_primary_10_1111_ecog_04962 crossref_citationtrail_10_1111_ecog_04962 wiley_primary_10_1111_ecog_04962_ECOG12551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Copenhagen |
PublicationTitle | Ecography (Copenhagen) |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | 2013; 3 2000; 89 2019b; 10 2019; 15 2006; 37 1974 2003; 270 2018; 41 2013; 8 1998; 396 2007; 76 1998; 394 1996; 77 2000; 408 2018; 8 2002; 83 1997; 264 2009; 90 2004; 35 2002; 420 2005; 74 2005; 75 2008; 22 2017; 284 2001; 413 2019; 7 1995; 52 2005; 86 2009a; 59 2013; 341 1992 2002; 416 2006; 115 2018; 21 2019a; 25 2016; 12 2016; 283 1953; 1 2018; 24 2007; 16 2016; 6 2013; 339 2004; 271 2006; 48 2014; 37 2000; 81 1977; 12 2009; 461 1995; 262 2003; 100 2006; 103 1990; 5 2016; 22 1998; 79 2011; 278 2009b; 325 2006; 75 2015; 38 1993; 62 2013; 22 2018; 127 2009; 276 2008; 1 2017; 114 2013; 19 2014; 4 2004; 73 2012; 454 2013; 16 2000; 289 2013; 94 1999; 14 1997; 12 2011; 20 2016; 113 2016; 85 2011; 21 2018a; 296 2000; 287 2004; 101 2015; 282 2011; 333 2017; 26 2012 2002; 297 2015; 96 1924; 2 2006; 151 2005; 42 2006 2006; 4 2020; 101 2000; 155 1999; 2 2014; 111 2009; 28 2002; 25 2002; 160 2012; 2 2017; 92 2005; 166 2019; 88 2001; 4 2019 1999; 154 2013 2003; 421 2018b; 123 e_1_2_5_27_1 e_1_2_5_120_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_101_1 e_1_2_5_65_1 e_1_2_5_88_1 e_1_2_5_105_1 e_1_2_5_69_1 e_1_2_5_109_1 e_1_2_5_80_1 e_1_2_5_61_1 e_1_2_5_84_1 e_1_2_5_42_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_113_1 e_1_2_5_7_1 e_1_2_5_76_1 e_1_2_5_99_1 e_1_2_5_117_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_91_1 e_1_2_5_72_1 e_1_2_5_95_1 Ranta E. (e_1_2_5_98_1) 2006 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_45_1 e_1_2_5_100_1 e_1_2_5_22_1 e_1_2_5_87_1 Liebhold A. M. (e_1_2_5_70_1) 2012 e_1_2_5_104_1 e_1_2_5_68_1 e_1_2_5_108_1 e_1_2_5_60_1 e_1_2_5_83_1 e_1_2_5_64_1 e_1_2_5_14_1 e_1_2_5_37_1 Post E. (e_1_2_5_90_1) 2013 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_56_1 e_1_2_5_33_1 e_1_2_5_112_1 e_1_2_5_4_1 e_1_2_5_79_1 e_1_2_5_116_1 e_1_2_5_18_1 e_1_2_5_71_1 e_1_2_5_94_1 e_1_2_5_52_1 e_1_2_5_25_1 e_1_2_5_48_1 Maynard Smith J. (e_1_2_5_75_1) 1974 e_1_2_5_103_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_122_1 e_1_2_5_107_1 e_1_2_5_67_1 e_1_2_5_29_1 e_1_2_5_82_1 e_1_2_5_63_1 e_1_2_5_86_1 e_1_2_5_40_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_111_1 e_1_2_5_5_1 e_1_2_5_78_1 e_1_2_5_115_1 e_1_2_5_119_1 e_1_2_5_93_1 e_1_2_5_74_1 e_1_2_5_97_1 e_1_2_5_51_1 e_1_2_5_121_1 e_1_2_5_28_1 e_1_2_5_47_1 e_1_2_5_102_1 e_1_2_5_24_1 e_1_2_5_43_1 e_1_2_5_106_1 e_1_2_5_66_1 e_1_2_5_89_1 e_1_2_5_81_1 e_1_2_5_62_1 e_1_2_5_85_1 e_1_2_5_20_1 Hanski I. (e_1_2_5_41_1) 2005; 42 e_1_2_5_39_1 e_1_2_5_110_1 e_1_2_5_16_1 e_1_2_5_58_1 e_1_2_5_35_1 e_1_2_5_114_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_54_1 e_1_2_5_77_1 e_1_2_5_118_1 e_1_2_5_2_1 e_1_2_5_92_1 e_1_2_5_73_1 e_1_2_5_96_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – volume: 96 start-page: 2935 year: 2015 end-page: 2946 article-title: Temporal variation in the synchrony of weather and its consequences for spatiotemporal population dynamics publication-title: Ecology – volume: 83 start-page: 3120 year: 2002 end-page: 3129 article-title: Spatial synchrony in forest insect outbreaks: roles of regional stochasticity and dispersal publication-title: Ecology – volume: 37 start-page: 960 year: 2014 end-page: 968 article-title: Spatial synchrony in stream fish populations: influence of species traits publication-title: Ecography – volume: 278 start-page: 1823 year: 2011 end-page: 1830 article-title: Global analysis of thermal tolerance and latitude in ectotherms publication-title: Proc. R. Soc. B – volume: 1 start-page: 844 year: 2008 end-page: 848 article-title: Increased multidecadal variability of the North Atlantic Oscillation since 1781 publication-title: Nat. Geosci. – volume: 101 start-page: 9286 year: 2004 end-page: 9290 article-title: Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend publication-title: Proc. Natl Acad. Sci. USA – volume: 325 start-page: 1355 year: 2009b end-page: 1358 article-title: Ecological dynamics across the Arctic associated with recent climate change publication-title: Science – year: 2013 publication-title: Climate change 2014: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change – volume: 103 year: 2006 article-title: Global temperature change publication-title: Proc. Natl Acad. Sci. USA – volume: 94 start-page: 499 year: 2013 end-page: 509 article-title: Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls publication-title: Ecology – start-page: 734 year: 2012 end-page: 738 article-title: Synchrony, spatial publication-title: Encyclopedia of theoretical ecology – volume: 4 start-page: 236 year: 2001 end-page: 243 article-title: Population synchrony and environmental variation: an experimental demonstration publication-title: Ecol. Lett. – volume: 408 start-page: 194 year: 2000 end-page: 196 article-title: Spatial synchronization of vole population dynamics by predatory birds publication-title: Nature – volume: 73 start-page: 693 year: 2004 end-page: 705 article-title: Spatial synchrony in population dynamics of west African fishes: a demonstration of an intraspecific and interspecific Moran effect publication-title: J. Anim. Ecol. – volume: 154 start-page: 271 year: 1999 end-page: 281 article-title: Spatial scale of population synchrony: environmental correlation versus dispersal and density regulation publication-title: Am. Nat. – volume: 19 start-page: 3740 year: 2013 end-page: 3748 article-title: Will climate change promote future invasions? publication-title: Global Change Biol. – volume: 394 start-page: 674 year: 1998 end-page: 677 article-title: Noise and determinism in synchronized sheep dynamics publication-title: Nature – volume: 283 year: 2016 article-title: Weather explains high annual variation in butterfly dispersal publication-title: Proc. R. Soc. B – volume: 12 year: 2016 article-title: Loss of connectivity among island‐dwelling Peary caribou following sea ice decline publication-title: Biol. Lett. – volume: 19 start-page: 2036 year: 2013 end-page: 2057 article-title: Impacts of climate change on avian populations publication-title: Global Change Biol. – volume: 75 start-page: 277 year: 2005 end-page: 293 article-title: Moran effect on nonlinear population processes publication-title: Ecol. Monogr. – volume: 35 start-page: 467 year: 2004 end-page: 490 article-title: Spatial synchrony in population dynamics publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 8 start-page: 5688 year: 2018 end-page: 5700 article-title: Insights from modeling studies on how climate change affects invasive alien species geography publication-title: Ecol. Evol. – volume: 2 start-page: 119 year: 1924 end-page: 163 article-title: Periodic fluctuations in the numbers of animals: their causes and effects publication-title: J. Exp. Biol. – volume: 151 start-page: 99 year: 2006 end-page: 105 article-title: Spatially synchronous population dynamics: an indicator of Pleistocene faunal response to large‐scale environmental change in the Holocene publication-title: Quat. Int. – volume: 38 start-page: 822 year: 2015 end-page: 831 article-title: Ranking the ecological causes of dispersal in a butterfly publication-title: Ecography – volume: 341 start-page: 519 year: 2013 end-page: 524 article-title: Ecological consequences of sea‐ice decline publication-title: Science – volume: 14 start-page: 427 year: 1999 end-page: 432 article-title: Spatial population dynamics: analyzing patterns and processes of population synchrony publication-title: Trends Ecol. Evol. – volume: 333 start-page: 1024 year: 2011 end-page: 1026 article-title: Rapid range shifts of species associated with high levels of climate warming publication-title: Science – volume: 4 start-page: 111 year: 2014 article-title: Increasing frequency of extreme El Niño events due to greenhouse warming publication-title: Nat. Clim. Change – volume: 8 year: 2013 article-title: Nonlinear effect of dispersal rate on spatial synchrony of predator–prey cycles publication-title: PLoS One – volume: 7 start-page: 24 year: 2019 article-title: Integrating the influence of weather into mechanistic models of butterfly movement publication-title: Movem. Ecol. – volume: 16 start-page: 799 year: 2013 end-page: 806 article-title: Means and extremes: building variability into community‐level climate change experiments publication-title: Ecol. Lett. – volume: 420 start-page: 168 year: 2002 end-page: 171 article-title: Synchronization of animal population dynamics by large‐scale climate publication-title: Nature – volume: 270 start-page: 2087 year: 2003 end-page: 2096 article-title: Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino, Southern Oscillation and beyond publication-title: Proc. R. Soc. B – year: 2013 publication-title: Ecology of climate change: the importance of biotic interactions – volume: 25 start-page: 3656 year: 2019a end-page: 3668 article-title: Spatial heterogeneity in climate change effects decouples the long‐term dynamics of wild reindeer populations in the high Arctic publication-title: Global Change Biol. – volume: 264 start-page: 481 year: 1997 end-page: 486 article-title: Synchronous dynamics and rates of extinction in spatially structured populations publication-title: Proc. R. Soc. B – start-page: 349 year: 2012 end-page: 356 article-title: Influence of temperature on dispersal in two bird species publication-title: Dispersal ecology and evolution – volume: 4 start-page: 87 year: 2006 end-page: 95 article-title: Extreme climatic events shape arid and semiarid ecosystems publication-title: Front. Ecol. Environ. – volume: 25 start-page: 283 year: 2002 end-page: 288 article-title: Global patterns of environmental synchrony and the Moran effect publication-title: Ecography – volume: 262 start-page: 113 year: 1995 end-page: 118 article-title: Synchrony in population dynamics publication-title: Proc. R. Soc. B – volume: 89 start-page: 175 year: 2000 end-page: 187 article-title: Analysing the Moran effect and dispersal: their significance and interaction in synchronous population dynamics publication-title: Oikos – volume: 6 start-page: 614 year: 2016 article-title: Temporally increasing spatial synchrony of North American temperature and bird populations publication-title: Nat. Clim. Change – volume: 421 start-page: 37 year: 2003 end-page: 42 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature – year: 1974 publication-title: Models in ecology – volume: 127 start-page: 403 year: 2018 end-page: 414 article-title: Using geography to infer the importance of dispersal for the synchrony of freshwater plankton publication-title: Oikos – volume: 81 start-page: 443 year: 2000 end-page: 450 article-title: Impacts of extreme weather and climate on terrestrial biota publication-title: Bull. Am. Meteorol. Soc. – volume: 289 start-page: 2068 year: 2000 end-page: 2074 article-title: Climate extremes: observations, modeling and impacts publication-title: Science – volume: 5 start-page: 135 year: 1990 end-page: 140 article-title: The ecology and evolution of reproductive synchrony publication-title: Trends Ecol. Evol. – year: 2019 publication-title: AMAP climate change update 2019: an update to key findings of snow, water, ice and permafrost in the Arctic (SWIPA) 2017 – volume: 282 year: 2015 article-title: Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly publication-title: Proc. R. Soc. B – volume: 111 year: 2014 article-title: Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams publication-title: Proc. Natl Acad. Sci. USA – volume: 20 start-page: 483 year: 2011 end-page: 503 article-title: Effect of local weather on butterfly flight behaviour, movement and colonization: significance for dispersal under climate change publication-title: Biodivers. Conserv. – volume: 41 start-page: 855 year: 2018 end-page: 864 article-title: Climate influences body condition and synchrony of barren‐ground caribou abundance in northern Canada publication-title: Polar Biol. – volume: 113 start-page: 662 year: 2016 end-page: 667 article-title: Forests synchronize their growth in contrasting Eurasian regions in response to climate warming publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: 197 year: 1977 end-page: 229 article-title: Predation, apparent competition and the structure of prey communities publication-title: Theor. Popul. Biol. – volume: 48 start-page: 131 year: 2006 end-page: 138 article-title: Geographic variation in density‐dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity publication-title: Popul. Ecol. – volume: 86 start-page: 1472 year: 2005 end-page: 1482 article-title: Climate causes large‐scale spatial synchrony in population fluctuations of a temperate herbivore publication-title: Ecology – volume: 26 start-page: 878 year: 2017 end-page: 888 article-title: A global geography of synchrony for terrestrial vegetation publication-title: Global Ecol. Biogeogr. – volume: 52 start-page: 103 year: 1995 end-page: 110 article-title: Synchrony of recruitment across the North Atlantic: an update. (Or, ‘now you see it, now you don't!’.) publication-title: ICES J. Mar. Sci. – volume: 101 year: 2020 article-title: Spatial covariation of competing species in a fluctuating environment publication-title: Ecology – volume: 264 start-page: 1375 year: 1997 end-page: 1381 article-title: The effects of large‐ and small‐scale random events on the synchrony of metapopulation dynamics: a theoretical analysis publication-title: Proc. R. Soc. B – volume: 297 start-page: 1292 year: 2002 end-page: 1296 article-title: Ecological effects of climate fluctuations publication-title: Science – volume: 454 start-page: 285 year: 2012 end-page: 307 article-title: Effects of climate change and fisheries bycatch on Southern Ocean seabirds: a review publication-title: Mar. Ecol. Prog. Ser. – volume: 296 start-page: 36 year: 2018a end-page: 44 article-title: Spatial distribution and optimal harvesting of an age‐structured population in a fluctuating environment publication-title: Math. Biosci. – volume: 75 start-page: 221 year: 2006 end-page: 227 article-title: Distribution‐wide effects of climate on population densities of a declining migratory landbird publication-title: J. Anim. Ecol. – volume: 92 start-page: 22 year: 2017 end-page: 42 article-title: Ecological and evolutionary impacts of changing climatic variability publication-title: Biol. Rev. – volume: 166 start-page: 603 year: 2005 end-page: 612 article-title: Generalizations of the Moran effect explaining spatial synchrony in population fluctuations publication-title: Am. Nat. – volume: 14 start-page: 22 year: 1999 end-page: 26 article-title: Spatial autocorrelation of ecological phenomena publication-title: Trends Ecol. Evol. – volume: 160 start-page: 60 year: 2002 end-page: 73 article-title: Analyzing spatial structure of communities using the two‐dimensional poisson lognormal species abundance model publication-title: Am. Nat. – volume: 271 start-page: 1985 year: 2004 end-page: 1993 article-title: Modelling non‐additive and nonlinear signals from climatic noise in ecological time series: soay sheep as an example publication-title: Proc. R. Soc. B – volume: 26 start-page: 1201 year: 2017 end-page: 1210 article-title: The spatial scale of time‐lagged population synchrony increases with species dispersal distance publication-title: Global Ecol. Biogeogr. – volume: 79 start-page: 1111 year: 1998 end-page: 1117 article-title: Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect publication-title: Ecology – volume: 62 start-page: 656 year: 1993 end-page: 668 article-title: Spatial synchrony in the dynamics of moth and aphid populations publication-title: J. Anim. Ecol. – volume: 76 start-page: 315 year: 2007 end-page: 325 article-title: The extended Moran effect and large‐scale synchronous fluctuations in the size of the great tit and blue tit populations publication-title: J. Anim. Ecol. – volume: 94 start-page: 83 year: 2013 end-page: 93 article-title: Large‐scale spatial synchrony and cross‐synchrony in acorn production by two California oaks publication-title: Ecology – volume: 461 start-page: 53 year: 2009 end-page: 59 article-title: Early‐warning signals for critical transitions publication-title: Nature – volume: 24 start-page: 4316 year: 2018 end-page: 4329 article-title: Metapopulation dynamics in a changing climate: increasing spatial synchrony in weather conditions drives metapopulation synchrony of a butterfly inhabiting a fragmented landscape publication-title: Global Change Biol. – volume: 2 start-page: 686 year: 2012 end-page: 690 article-title: Thermal tolerance and the global redistribution of animals publication-title: Nat. Clim. Change – volume: 3 start-page: 3713 year: 2013 end-page: 3737 article-title: Long‐term metapopulation study of the Glanville fritillary butterfly ( ): survey methods, data management and long‐term population trends publication-title: Ecol. Evol. – volume: 339 start-page: 313 year: 2013 end-page: 315 article-title: Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic publication-title: Science – volume: 42 start-page: 379 year: 2005 end-page: 395 article-title: Large‐scale dynamics of the Glanville fritillary butterfly: landscape structure, population processes and weather publication-title: Ann. Zool. Fenn. – volume: 59 start-page: 489 year: 2009a end-page: 497 article-title: Global population dynamics and hot spots of response to climate change publication-title: BioScience – volume: 6 year: 2016 article-title: The December 2015 North Pole warming event and the increasing occurrence of such events publication-title: Sci. Rep. – volume: 2 start-page: 114 year: 1999 end-page: 120 article-title: Dispersal and spatial scale affect synchrony in spatial population dynamics publication-title: Ecol. Lett. – volume: 24 start-page: 2305 year: 2018 end-page: 2314 article-title: Rising synchrony controls western North American ecosystems publication-title: Global Change Biol. – volume: 21 start-page: 1800 year: 2018 end-page: 1811 article-title: Temporal scale of environmental correlations affects ecological synchrony publication-title: Ecol. Lett. – volume: 90 start-page: 2974 year: 2009 end-page: 2983 article-title: Spatial synchrony propagates through a forest food web via consumer–resource interactions publication-title: Ecology – volume: 114 start-page: 4881 year: 2017 end-page: 4886 article-title: Quantifying the influence of global warming on unprecedented extreme climate events publication-title: Proc. Natl Acad. Sci. USA – volume: 16 start-page: 4241 year: 2007 end-page: 4255 article-title: Sea ice occurrence predicts genetic isolation in the Arctic fox publication-title: Mol. Ecol. – volume: 123 start-page: 28 year: 2018b end-page: 34 article-title: The effect of harvesting on the spatial synchrony of population fluctuations publication-title: Theor. Popul. Biol. – volume: 416 start-page: 389 year: 2002 article-title: Ecological responses to recent climate change publication-title: Nature – volume: 10 start-page: 1616 year: 2019b article-title: More frequent extreme climate events stabilize reindeer population dynamics publication-title: Nat. Comm. – volume: 155 start-page: 628 year: 2000 end-page: 636 article-title: Dispersal, environmental correlation and spatial synchrony in population dynamics publication-title: Am. Nat. – volume: 22 start-page: 534 year: 2008 end-page: 543 article-title: Five potential consequences of climate change for invasive species publication-title: Conserv. Biol. – volume: 22 start-page: 3261 year: 2013 end-page: 3278 article-title: Tracking climate change in a dispersal‐limited species: reduced spatial and genetic connectivity in a montane salamander publication-title: Mol. Ecol. – volume: 88 start-page: 1134 year: 2019 end-page: 1145 article-title: Spatial synchrony in sub‐arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages publication-title: J. Anim. Ecol. – volume: 100 start-page: 43 year: 2003 end-page: 54 article-title: Synchrony in brown trout, , population dynamics: a ‘Moran effect’ on early‐life stages publication-title: Oikos – volume: 22 start-page: 2069 year: 2016 end-page: 2080 article-title: Climate change‐related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea publication-title: Global Change Biol. – volume: 284 year: 2017 article-title: Inter‐annual variation in seed production has increased over time (1900–2014) publication-title: Proc. R. Soc. B – volume: 1 start-page: 291 year: 1953 end-page: 298 article-title: The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology publication-title: Aust. J. Zool. – volume: 85 start-page: 85 year: 2016 end-page: 96 article-title: Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events publication-title: J. Anim. Ecol. – volume: 35 start-page: 185 year: 2004 end-page: 209 article-title: Climate influences on population dynamics publication-title: Adv. Ecol. Res. – year: 2006 publication-title: Ecology of populations – volume: 15 year: 2019 article-title: Synchrony is more than its top–down and climatic parts: interacting Moran effects on phytoplankton in British seas publication-title: PLoS Comput. Biol. – volume: 276 start-page: 4119 year: 2009 end-page: 4128 article-title: Phase‐dependent outbreak dynamics of geometrid moth linked to host plant phenology publication-title: Proc. R. Soc. B – volume: 74 start-page: 601 year: 2005 end-page: 611 article-title: Estimating the pattern of synchrony in fluctuating populations publication-title: J. Anim. Ecol. – volume: 396 start-page: 225 year: 1998 end-page: 226 article-title: Scale of mast‐seeding and tree‐ring growth publication-title: Nature – year: 1992 publication-title: Analytical population dynamics – volume: 115 start-page: 3 year: 2006 end-page: 14 article-title: Spatial synchrony in population fluctuations: extending the Moran theorem to cope with spatially heterogeneous dynamics publication-title: Oikos – volume: 21 start-page: 2882 year: 2011 end-page: 2897 article-title: Climate change predicted to shift wolverine distributions, connectivity and dispersal corridors publication-title: Ecol. Appl. – volume: 413 start-page: 417 year: 2001 end-page: 420 article-title: Lagged effects of ocean climate change on fulmar population dynamics publication-title: Nature – volume: 287 start-page: 854 year: 2000 end-page: 856 article-title: Population dynamical consequences of climate change for a small temperate songbird publication-title: Science – volume: 12 start-page: 143 year: 1997 end-page: 149 article-title: Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms publication-title: Trends Ecol. Evol. – volume: 37 start-page: 637 year: 2006 end-page: 669 article-title: Ecological and evolutionary responses to recent climate change publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 127 start-page: 1459 year: 2018 end-page: 1470 article-title: Spatial scales of population synchrony of two competing species: effects of harvesting and strength of competition publication-title: Oikos – volume: 6 start-page: 610 year: 2016 article-title: Changes in large‐scale climate alter spatial synchrony of aphid pests publication-title: Nat. Clim. Change – volume: 28 start-page: 379 year: 2009 end-page: 395 article-title: Climate change and coral reef connectivity publication-title: Coral Reefs – volume: 77 start-page: 1867 year: 1996 end-page: 1879 article-title: Persistence of an extinction‐prone predator–prey interaction through metapopulation dynamics publication-title: Ecology – volume: 14 start-page: 1 year: 1999 end-page: 2 article-title: The Moran effect: a cause of population synchrony publication-title: Trends Ecol. Evol. – ident: e_1_2_5_28_1 doi: 10.1016/j.mbs.2017.12.003 – ident: e_1_2_5_101_1 doi: 10.1890/04-0770 – ident: e_1_2_5_14_1 doi: 10.1034/j.1600-0706.2003.11912.x – ident: e_1_2_5_78_1 doi: 10.1071/ZO9530291 – ident: e_1_2_5_121_1 doi: 10.1111/1365-2656.12959 – ident: e_1_2_5_58_1 doi: 10.1098/rspb.2009.1148 – ident: e_1_2_5_77_1 doi: 10.1038/srep39084 – ident: e_1_2_5_94_1 doi: 10.1525/bio.2009.59.6.7 – ident: e_1_2_5_48_1 doi: 10.2307/2265790 – ident: e_1_2_5_35_1 doi: 10.1890/04-1502 – ident: e_1_2_5_72_1 doi: 10.1007/s10144-005-0248-6 – year: 1974 ident: e_1_2_5_75_1 publication-title: Models in ecology – ident: e_1_2_5_24_1 doi: 10.1242/jeb.2.1.119 – ident: e_1_2_5_30_1 doi: 10.1186/s40462-019-0171-7 – ident: e_1_2_5_13_1 doi: 10.1038/nclimate2100 – ident: e_1_2_5_107_1 doi: 10.1038/nclimate2881 – ident: e_1_2_5_22_1 doi: 10.1073/pnas.1618082114 – ident: e_1_2_5_55_1 doi: 10.1111/oik.05069 – ident: e_1_2_5_27_1 doi: 10.1111/j.1365-2656.2005.00942.x – ident: e_1_2_5_54_1 doi: 10.1073/pnas.1320890111 – ident: e_1_2_5_66_1 doi: 10.1098/rspb.2016.0413 – ident: e_1_2_5_40_1 doi: 10.2307/5386 – ident: e_1_2_5_73_1 doi: 10.1007/s00300-017-2248-3 – ident: e_1_2_5_91_1 doi: 10.1038/nature01064 – ident: e_1_2_5_6_1 doi: 10.1111/1365-2656.12451 – ident: e_1_2_5_117_1 doi: 10.1038/35096558 – ident: e_1_2_5_43_1 doi: 10.1890/08-1709.1 – ident: e_1_2_5_17_1 doi: 10.1111/ecog.00662 – year: 2006 ident: e_1_2_5_98_1 publication-title: Ecology of populations – ident: e_1_2_5_29_1 doi: 10.1016/j.tpb.2018.05.001 – ident: e_1_2_5_97_1 doi: 10.1098/rspb.1995.0184 – ident: e_1_2_5_85_1 doi: 10.1038/nature01286 – ident: e_1_2_5_74_1 doi: 10.1111/geb.12630 – ident: e_1_2_5_46_1 doi: 10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2 – ident: e_1_2_5_69_1 doi: 10.1111/ecog.01283 – ident: e_1_2_5_9_1 doi: 10.1002/ece3.4098 – volume: 42 start-page: 379 year: 2005 ident: e_1_2_5_41_1 article-title: Large‐scale dynamics of the Glanville fritillary butterfly: landscape structure, population processes and weather publication-title: Ann. Zool. Fenn. – ident: e_1_2_5_114_1 doi: 10.1038/nclimate1539 – ident: e_1_2_5_115_1 doi: 10.1098/rspb.2015.0173 – ident: e_1_2_5_25_1 doi: 10.1086/491690 – ident: e_1_2_5_8_1 doi: 10.1111/gcb.12344 – ident: e_1_2_5_84_1 doi: 10.1146/annurev.ecolsys.37.091305.110100 – ident: e_1_2_5_7_1 doi: 10.3354/meps09616 – ident: e_1_2_5_53_1 – ident: e_1_2_5_111_1 doi: 10.1098/rspb.2003.2415 – ident: e_1_2_5_81_1 doi: 10.1016/1054-3139(95)80019-0 – ident: e_1_2_5_23_1 doi: 10.1126/science.289.5487.2068 – ident: e_1_2_5_89_1 doi: 10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2 – ident: e_1_2_5_95_1 doi: 10.1126/science.1173113 – ident: e_1_2_5_32_1 doi: 10.1111/j.1365-294X.2007.03507.x – ident: e_1_2_5_103_1 doi: 10.1126/science.287.5454.854 – ident: e_1_2_5_42_1 doi: 10.1098/rspb.1997.0191 – ident: e_1_2_5_5_1 doi: 10.1111/oik.04705 – ident: e_1_2_5_112_1 doi: 10.1098/rspb.2004.2794 – ident: e_1_2_5_80_1 doi: 10.1890/0012-9658(1998)079[1111:SIOOFL]2.0.CO;2 – ident: e_1_2_5_99_1 doi: 10.1034/j.1600-0706.2000.890119.x – ident: e_1_2_5_68_1 doi: 10.1002/ecy.2901 – ident: e_1_2_5_63_1 doi: 10.1038/24293 – ident: e_1_2_5_79_1 doi: 10.1007/s00338-008-0461-9 – ident: e_1_2_5_12_1 doi: 10.1111/gcb.14128 – ident: e_1_2_5_2_1 doi: 10.1890/14-1497.1 – ident: e_1_2_5_26_1 doi: 10.1086/340612 – ident: e_1_2_5_47_1 doi: 10.1016/0040-5809(77)90042-9 – ident: e_1_2_5_52_1 doi: 10.1038/35041562 – ident: e_1_2_5_36_1 doi: 10.1126/science.1226766 – ident: e_1_2_5_106_1 doi: 10.1038/nature08227 – ident: e_1_2_5_109_1 doi: 10.1073/pnas.1514717113 – ident: e_1_2_5_118_1 doi: 10.1111/ele.12095 – start-page: 734 year: 2012 ident: e_1_2_5_70_1 article-title: Synchrony, spatial publication-title: Encyclopedia of theoretical ecology – ident: e_1_2_5_64_1 doi: 10.1890/12-0940.1 – ident: e_1_2_5_96_1 doi: 10.1126/science.1235225 – ident: e_1_2_5_86_1 doi: 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2 – ident: e_1_2_5_87_1 doi: 10.1093/acprof:oso/9780199608898.003.0027 – ident: e_1_2_5_116_1 doi: 10.1111/j.0021-8790.2004.00843.x – ident: e_1_2_5_33_1 doi: 10.1038/ngeo352 – ident: e_1_2_5_102_1 doi: 10.1016/S0169-5347(96)10068-9 – ident: e_1_2_5_71_1 doi: 10.1146/annurev.ecolsys.34.011802.132516 – ident: e_1_2_5_20_1 doi: 10.1111/gcb.13229 – ident: e_1_2_5_88_1 doi: 10.1098/rspb.2017.1666 – ident: e_1_2_5_45_1 doi: 10.1111/j.1523-1739.2008.00951.x – ident: e_1_2_5_19_1 doi: 10.1111/geb.12595 – ident: e_1_2_5_67_1 doi: 10.1086/303240 – ident: e_1_2_5_108_1 doi: 10.1371/journal.pcbi.1006744 – ident: e_1_2_5_49_1 doi: 10.1016/S0169-5347(98)01498-0 – ident: e_1_2_5_119_1 doi: 10.1111/brv.12216 – ident: e_1_2_5_21_1 doi: 10.1111/ele.13155 – ident: e_1_2_5_105_1 doi: 10.1111/j.1365-2656.2006.01195.x – ident: e_1_2_5_92_1 doi: 10.1073/pnas.0305029101 – ident: e_1_2_5_82_1 doi: 10.1002/ece3.733 – ident: e_1_2_5_100_1 doi: 10.1007/978-94-011-2916-9 – ident: e_1_2_5_44_1 doi: 10.1098/rspb.1997.0069 – ident: e_1_2_5_93_1 doi: 10.1016/j.quaint.2006.01.016 – ident: e_1_2_5_83_1 doi: 10.1046/j.1461-0248.1999.22060.x – ident: e_1_2_5_120_1 doi: 10.1111/mec.12310 – ident: e_1_2_5_50_1 doi: 10.1111/j.2006.0030-1299.14686.x – ident: e_1_2_5_34_1 doi: 10.1038/29291 – ident: e_1_2_5_16_1 doi: 10.1126/science.1206432 – ident: e_1_2_5_18_1 doi: 10.1007/s10531-010-9960-4 – ident: e_1_2_5_31_1 doi: 10.1371/journal.pone.0079527 – ident: e_1_2_5_60_1 doi: 10.1086/303350 – ident: e_1_2_5_10_1 doi: 10.1046/j.1461-0248.2001.00225.x – ident: e_1_2_5_37_1 doi: 10.1111/gcb.14761 – ident: e_1_2_5_51_1 doi: 10.1016/0169-5347(90)90218-3 – ident: e_1_2_5_65_1 doi: 10.1038/nclimate2933 – ident: e_1_2_5_11_1 doi: 10.1016/S0169-5347(99)01677-8 – ident: e_1_2_5_56_1 doi: 10.1098/rsbl.2016.0235 – ident: e_1_2_5_59_1 doi: 10.1111/gcb.14280 – ident: e_1_2_5_61_1 doi: 10.1016/S0169-5347(98)01533-X – ident: e_1_2_5_57_1 doi: 10.1111/gcb.12195 – ident: e_1_2_5_76_1 doi: 10.1890/10-2206.1 – ident: e_1_2_5_39_1 doi: 10.1073/pnas.0606291103 – year: 2013 ident: e_1_2_5_90_1 publication-title: Ecology of climate change: the importance of biotic interactions – ident: e_1_2_5_38_1 doi: 10.1038/s41467-019-09332-5 – ident: e_1_2_5_122_1 doi: 10.1038/416389a – ident: e_1_2_5_113_1 doi: 10.1098/rspb.2010.1295 – ident: e_1_2_5_104_1 doi: 10.1016/S0065-2504(04)35009-9 – ident: e_1_2_5_3_1 – ident: e_1_2_5_15_1 doi: 10.1890/12-0268.1 – ident: e_1_2_5_110_1 doi: 10.1126/science.1071281 – ident: e_1_2_5_62_1 doi: 10.1034/j.1600-0587.2002.250304.x – ident: e_1_2_5_4_1 doi: 10.1111/j.1365-2656.2006.01034.x |
SSID | ssj0012968 |
Score | 2.539805 |
SecondaryResourceType | review_article |
Snippet | The world is spatially autocorrelated. Both abiotic and biotic properties are more similar among neighboring than distant locations, and their temporal... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1591 |
SubjectTerms | Autocorrelation Background noise birds Climate change Climate effects Correlation Density density regulation Dispersal Dispersion Ecological effects ecosystems Environmental changes Environmental factors Fluctuations Food webs generalized Moran effect Global warming Impact prediction Insects Literature reviews Local population mammals Marine plants nonlinear dynamics Plankton Population Population dynamics Populations prediction Weather |
Title | The Moran effect revisited: spatial population synchrony under global warming |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fecog.04962 https://www.proquest.com/docview/2457904024 https://www.proquest.com/docview/2477641522 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qoeCL1tbitfXYoi8KOZLNfiTii5SrpXBaioW-SNjdbHywpOVyh1z_-s5sPq4VEfQtkNlNsjsz-5vNzG8B3orcpt5Q9kxSqUh4mUWG6zLiyjmdOZGXCdUOz76o00txdiWvNuBjXwvT8kMMG25kGcFfk4Eb2zwwcsqvmSC-DQ6YkrUIEV0M3FG4joU6uDjHkFnLPO64SSmNZ9308Wq0hpgPgWpYaU6ew_f-HdsEk5-T5cJO3N1v9I3_-xHb8KyDoOxTqzMvYMPXO7DVHkq5wqup6672pusqOGzQuYFmF2aoXGyGylOzNh-EzUOROqLXD6yhHG0Uvx2OBmPNqnZEwrtiVLI2Zy0LCftlKBHnx0u4PJl-Oz6NunMZIpfqOIkqYXwluVaVyzJlU4Wwgtu8NEnsfWyV9lJp1A2TxVVcIsThVVrmQsrSEZqR6R5s1je1fwUMw0-d2JQ7L5zw6AvSzCurnKyENdj9CN7181O4jrSczs64LvrghUawCCM4gjeD7G1L1fFHqcN-movOXJuCC6lzdGdcjOBouI2GRn9PTO1vliSjtSK4g128D3P6l6cU0-OvnxE7ymT_X4QP4CmneD7UOh7C5mK-9K8R9CzsGJ5wcT4OWwbjoOj35Q7_Xg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELemIgQv42sVZcCM4GWTUiWOPxLeECrrNlqkqZX6FsWOwwNTQE0r1P313DlpCmhCGm-WcnGU-O78O-fud4Sc8ViHNsXsmSCXHrci8lKmMo9JY1RkeJwFWDs8GMr-mP-ciEmdm4O1MBU_RHPghpbh_DUaOB5IP7NyTLDpAsBFD7yGLb1dRPW7YY-CncxVwvkxBM1KxH7NToqJPKt7X-5HK5D5HKq6veZqq2qoWjqKQkwxuevOZ7pr_r4icHz3a2yTjzUKpReV2uyQD7bYJetVX8oFjHqmHrV7q0I4uKH2BOUeGYB-0QHoT0GrlBA6dXXqAGDPaYlp2iD-0HQHo-WiMMjDu6BYtTalFREJfUwxF-f2Exlf9UaXfa9uzeCZUPmBl_PU5oIpmZsokjqUgCyYjrM08K31tVRWSAXqkUZ-7meAclgeZjEXIjMIaETYJq3ivrD7hEIEqgIdMmO54RbcQRhZqaUROdcpTN8hX5cLlJiatxzbZ_xJlvELfsHEfcEOOW1kHyq2jn9KHS7XOakttkwYFyoGj8Z4h5w0l8HW8AdKWtj7OcooJRHxwBTf3KK-8ZSkd3nzHeCjCA7-R_gL2eiPBtfJ9Y_hr89kk2F470ofD0lrNp3bI8BAM33sNP0JyJ8BvA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_EYvGl1ap4atst-qKQI9nsRyJ9Eb2rbT0rUsEXCdnNpg9KPO6Dcv3rncnX2SJCfVvI7CbZnZn9TTLzW4A9EZvQpZQ9E-TKE05GXsp15nFlrY6siLOAaocH5-r0Sny7ltcL8Lmphan4IdoPbmQZpb8mAx9m-SMjp_yaLuJbcsCvhPIj0umTy5Y8CjeyshDOjzFm1jL2a3JSyuOZ9_17O5pjzMdItdxq-m_hpnnIKsPktjudmK798w9_40vfYgXe1BiUHVVKswoLrngHS9WplDNs9Wzd2ujNy-CwQ-0HxmswQO1iA9SeglUJIWxUVqkjfD1kY0rSRvFhezYYG88KSyy8M0Y1ayNW0ZCw3yll4vxah6t-7-fxqVcfzODZUPuBl4vU5ZJrldsoUibEyQ-4ibM08J3zjdJOKo3KkUZ-7meIcXgeZrGQMrMEZ2S4AYvFfeE2gWH8qQMTcuuEFQ6dQRg5ZZSVuTApDt-B_WZ9EluzltPhGXdJE73QDCblDHZgt5UdVlwdT0rtNMuc1PY6TriQOkZ_xkUHPrWX0dLo90lauPspyWitCO_gEAflmj5zl6R3_OMLgkcZbP2P8Ed4fXHST86-nn_fhmVOsX1Z97gDi5PR1L1HADQxH0o9fwDhtwB0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Moran+effect+revisited%3A+spatial+population+synchrony+under+global+warming&rft.jtitle=Ecography+%28Copenhagen%29&rft.au=Hansen%2C+Brage+B.&rft.au=Gr%C3%B8tan%2C+Vidar&rft.au=Herfindal%2C+Ivar&rft.au=Lee%2C+Aline+M.&rft.date=2020-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0906-7590&rft.eissn=1600-0587&rft.volume=43&rft.issue=11&rft.spage=1591&rft.epage=1602&rft_id=info:doi/10.1111%2Fecog.04962&rft.externalDBID=10.1111%252Fecog.04962&rft.externalDocID=ECOG12551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-7590&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-7590&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-7590&client=summon |