Insight into scale selection of dimensionless phase-field model of alloy solidification
[Display omitted] •The phase-field model for alloy solidification is reformulated based on arbitrary concentration and temperature scales.•The dimensionless phase-field equations with arbitrary scales are validated and applied by simulating typical alloys.•A reasonable range of arbitrary scales is d...
Saved in:
Published in | Materials & design Vol. 254; p. 114028 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The phase-field model for alloy solidification is reformulated based on arbitrary concentration and temperature scales.•The dimensionless phase-field equations with arbitrary scales are validated and applied by simulating typical alloys.•A reasonable range of arbitrary scales is determined by evaluating both numerical accuracy and computing performance.•The reformulated model establishes the connection between models with different scales.
The available phase-field models are generally limited to certain specific concentrations and temperatures, weakening the universality of the method. A unified dimensionless framework is developed by adopting arbitrary concentration and temperature scales for nondimensionalization, thereby eliminating scale dependence in model comparisons. The dimensionless phase-field equations are validated by simulating the growth of two kinds of typical alloys including four-fold symmetry morphology (e.g., Fe, Al, and Cu) and six-fold symmetry morphology (e.g., Mg, Zn, and α-Ti) patterns in both 2D and 3D cases. The effect of the scales on characteristic parameters, including capillary length and relaxation time, is discussed, and a reasonable scale range is determined by evaluating both numerical accuracy and computing performance. Four typical phase-field equations are perfectly mapped by selecting specific concentration and temperature scales, which validates the applicability of the reformulated model and provides guidance for further application of the phase-field models. Furthermore, the relationship between the reformulated model and the grand-potential based model is simply analyzed, and the relation with the phase-field equations with decoupled dimensionless concentration is also discussed. |
---|---|
AbstractList | [Display omitted]
•The phase-field model for alloy solidification is reformulated based on arbitrary concentration and temperature scales.•The dimensionless phase-field equations with arbitrary scales are validated and applied by simulating typical alloys.•A reasonable range of arbitrary scales is determined by evaluating both numerical accuracy and computing performance.•The reformulated model establishes the connection between models with different scales.
The available phase-field models are generally limited to certain specific concentrations and temperatures, weakening the universality of the method. A unified dimensionless framework is developed by adopting arbitrary concentration and temperature scales for nondimensionalization, thereby eliminating scale dependence in model comparisons. The dimensionless phase-field equations are validated by simulating the growth of two kinds of typical alloys including four-fold symmetry morphology (e.g., Fe, Al, and Cu) and six-fold symmetry morphology (e.g., Mg, Zn, and α-Ti) patterns in both 2D and 3D cases. The effect of the scales on characteristic parameters, including capillary length and relaxation time, is discussed, and a reasonable scale range is determined by evaluating both numerical accuracy and computing performance. Four typical phase-field equations are perfectly mapped by selecting specific concentration and temperature scales, which validates the applicability of the reformulated model and provides guidance for further application of the phase-field models. Furthermore, the relationship between the reformulated model and the grand-potential based model is simply analyzed, and the relation with the phase-field equations with decoupled dimensionless concentration is also discussed. The available phase-field models are generally limited to certain specific concentrations and temperatures, weakening the universality of the method. A unified dimensionless framework is developed by adopting arbitrary concentration and temperature scales for nondimensionalization, thereby eliminating scale dependence in model comparisons. The dimensionless phase-field equations are validated by simulating the growth of two kinds of typical alloys including four-fold symmetry morphology (e.g., Fe, Al, and Cu) and six-fold symmetry morphology (e.g., Mg, Zn, and α-Ti) patterns in both 2D and 3D cases. The effect of the scales on characteristic parameters, including capillary length and relaxation time, is discussed, and a reasonable scale range is determined by evaluating both numerical accuracy and computing performance. Four typical phase-field equations are perfectly mapped by selecting specific concentration and temperature scales, which validates the applicability of the reformulated model and provides guidance for further application of the phase-field models. Furthermore, the relationship between the reformulated model and the grand-potential based model is simply analyzed, and the relation with the phase-field equations with decoupled dimensionless concentration is also discussed. |
ArticleNumber | 114028 |
Author | Liu, He Jiang, Bin Li, Chuangming Zhang, Gengyun Tang, Yuchen Zhang, Ang Huang, Guangsheng Dong, Zhihua Li, Yongfeng |
Author_xml | – sequence: 1 givenname: Yuchen surname: Tang fullname: Tang, Yuchen – sequence: 2 givenname: Ang orcidid: 0000-0001-5479-5249 surname: Zhang fullname: Zhang, Ang email: angzhang@cqu.edu.cn – sequence: 3 givenname: He surname: Liu fullname: Liu, He – sequence: 4 givenname: Gengyun surname: Zhang fullname: Zhang, Gengyun – sequence: 5 givenname: Chuangming surname: Li fullname: Li, Chuangming – sequence: 6 givenname: Yongfeng surname: Li fullname: Li, Yongfeng – sequence: 7 givenname: Zhihua surname: Dong fullname: Dong, Zhihua – sequence: 8 givenname: Guangsheng surname: Huang fullname: Huang, Guangsheng – sequence: 9 givenname: Bin surname: Jiang fullname: Jiang, Bin |
BookMark | eNp9kE1qwzAQRrVIoUnaG3ThC9iVZMuKNoUS-hMIdNPSpRhLo0RGtoJlCrl9nbp02ZWGYb6nmbciiz72SMgdowWjrL5viw5Gi6nglIuCsYryzYIsKa-rnHEprskqpZZSzmVZLcnnrk_-cBwz348xSwYCZgkDmtHHPosus77DaST2AVPKTkdImDuPwWZdtBguIxBCPGcpBm-98wYu0Rty5SAkvP191-Tj-el9-5rv315228d9bspajblzsgalSumoFFNFK-k40Mo1ALxxNaAQzjGrnGJSCGmAU6wUqp-uFeWa7GaujdDq0-A7GM46gtc_jTgcNAyjNwF1XTeSgxKIbPrA0MYI63BjK3CmVpxOrGpmmSGmNKD74zGqL3J1q2e5-iJXz3Kn2MMcw-nOL4-DTsZjb9D6YfI4LeL_B3wDQbWKnA |
Cites_doi | 10.1103/PhysRevE.53.R3017 10.1016/j.jcp.2025.113720 10.1016/S0927-796X(03)00036-6 10.1016/j.actamat.2021.117005 10.1016/j.commatsci.2021.110812 10.1023/A:1015815928191 10.1007/s11663-018-1418-1 10.1016/j.jmst.2017.11.047 10.1007/s11669-019-00732-0 10.1016/j.engfracmech.2024.110068 10.1103/PhysRevE.90.012401 10.1016/j.engfracmech.2022.108738 10.1016/j.actamat.2019.02.009 10.1103/PhysRevE.86.051603 10.1007/s10853-020-05748-3 10.1103/PhysRevE.102.043313 10.1016/j.jma.2023.04.009 10.1016/j.jma.2023.11.003 10.1063/1.4734485 10.3390/met14101100 10.1016/j.msea.2022.143017 10.1016/j.cpc.2021.108042 10.1016/j.jma.2021.04.014 10.1103/PhysRevE.69.051607 10.34133/research.0394 10.1016/j.compstruc.2025.107651 10.1103/PhysRevE.100.023305 10.1016/j.jma.2023.07.008 10.1016/j.actamat.2018.10.039 10.1103/PhysRevE.60.7186 10.1103/PhysRevLett.87.115701 10.1002/adts.202000251 10.1016/j.commatsci.2020.109784 10.1016/j.jmst.2022.05.039 10.1103/PhysRevE.79.031603 10.1103/PhysRevE.57.4323 10.1103/PhysRevA.39.5887 10.1016/j.actamat.2019.03.008 10.1103/PhysRevE.70.061604 10.1016/j.commatsci.2019.109274 10.1016/j.matdes.2022.111041 10.1103/PhysRevLett.130.026203 10.1146/annurev-matsci-070218-010151 10.1016/j.seppur.2022.121656 10.1080/09506608.2018.1537090 10.1007/s12666-009-0058-1 10.1007/s11661-018-4603-6 10.1016/j.commatsci.2023.112366 10.1103/PhysRevE.84.031601 10.1007/s11661-023-07261-z |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2025.114028 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_66b72a95ee104fc0bc5dfe8d4afc6920 10_1016_j_matdes_2025_114028 S0264127525004484 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAFTH AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC BNPGV EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSH SSM SST SSZ T5K WUQ ~G- AAYXX CITATION EFKBS |
ID | FETCH-LOGICAL-c369t-ff76a9937f0756a9047f2a04fbaa2bf6ae55ff1d9f917557ca20e49e95ff1dd53 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:13:44 EDT 2025 Tue Aug 05 12:03:26 EDT 2025 Sat Jul 05 17:10:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase-field model Scale Simulation Solidification |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-ff76a9937f0756a9047f2a04fbaa2bf6ae55ff1d9f917557ca20e49e95ff1dd53 |
ORCID | 0000-0001-5479-5249 |
OpenAccessLink | https://doaj.org/article/66b72a95ee104fc0bc5dfe8d4afc6920 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_66b72a95ee104fc0bc5dfe8d4afc6920 crossref_primary_10_1016_j_matdes_2025_114028 elsevier_sciencedirect_doi_10_1016_j_matdes_2025_114028 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zhang, Jiang, Guo (b0100) 2021; 4 Werner, Becker, Baumann (b0165) 2021; 56 Wang, Li, Xu (b0025) 2022; 222 Zhang, Du, Meng (b0185) 2020; 171 Echebarria, Folch, Karma (b0105) 2004; 70 Chen, Yang, Yu (b0160) 2024; 12 Fan, Xiang, Shen (b0030) 2020; 5618021 Zhang, Miao, Chen (b0270) 2019; 40 Yan, Dong, Jia (b0020) 2024; 11 Ren, Mu, Zhao (b0125) 2024; 14 Zhang, Du, Guo (b0230) 2018; 49 Kiran, Nguyen-Thanh, Zhou (b0070) 2022; 274 Wang, Altschuh, Matz (b0135) 2019; 170 Zhang, Du, Guo (b0150) 2019; 100 Takaki, Sakane, Ohno (b0080) 2019; 164 Plapp (b0245) 2011; 84 Kavousi (b0005) 2019 Bamney, Capolungo (b0010) 2023; 11 Kiran, Choudhary, Nguyen-Thanh (b0060) 2025; 308 Karma, Rappel (b0210) 1996; 53 Ohno (b0260) 2012; 86 Hoyt (b0240) 2003; 41 Ohno, Matsuura (b0250) 2009; 79 Xu, Li, Sha (b0175) 2022; 841 Zhang, Guo, Jiang (b0075) 2021; 214 Karma (b0140) 2001; 87 Wei, Zhang, Ni (b0115) 2025; 524 Pinomaa, Provatas (b0220) 2019; 168 Wang, Peng, Ji (b0190) 2018; 34 Zhang, Du, Guo (b0200) 2021; 267 Zhang, Xie, Ma (b0040) 2022; 9839403 Kiran, Nguyen-Thanh, Zhou (b0065) 2024; 304 Gu, He, Han (b0110) 2021; 199 Meng, Zhang, Guo (b0090) 2020; 184 Zhang, Du, Yang (b0145) 2020; 102 Huang, Shu, Fu (b0180) 2018; 49 Bragard, Karma, Lee (b0235) 2002; 10 Kurz, Fisher, Trivedi (b0045) 2019; 64 Tonks, Aagesen (b0050) 2019; 49 Kim, Kim, Suzuki (b0255) 1999; 60 Bhogireddy, Hüter, Neugebauer (b0130) 2014; 90 Ji, Dorari, Clarke (b0225) 2023; 130 Ramirez, Beckermann, Karma (b0095) 2004; 69 Kang, Park, Song (b0015) 2022; 10 Caginalp (b0215) 1989; 39 Yuan, Lü, Bao (b0035) 2024; 7 Li, Song, Zhang (b0155) 2023; 11 Zhang, Yu, Ren (b0085) 2024; 55 He, Zhou, Yang (b0170) 2022; 131 Bogno, Nguyen-Thi, Billia (b0195) 2009; 62 Wang, Choudhury, Strassacker (b0265) 2012; 137 Karma, Rappel (b0205) 1998; 57 Zhang, Guo, Jiang (b0055) 2023; 228 Liu, Lan, Ye (b0120) 2022; 298 Kiran (10.1016/j.matdes.2025.114028_b0065) 2024; 304 Zhang (10.1016/j.matdes.2025.114028_b0075) 2021; 214 Tonks (10.1016/j.matdes.2025.114028_b0050) 2019; 49 Echebarria (10.1016/j.matdes.2025.114028_b0105) 2004; 70 Hoyt (10.1016/j.matdes.2025.114028_b0240) 2003; 41 Li (10.1016/j.matdes.2025.114028_b0155) 2023; 11 Zhang (10.1016/j.matdes.2025.114028_b0055) 2023; 228 Wei (10.1016/j.matdes.2025.114028_b0115) 2025; 524 Ren (10.1016/j.matdes.2025.114028_b0125) 2024; 14 Chen (10.1016/j.matdes.2025.114028_b0160) 2024; 12 Gu (10.1016/j.matdes.2025.114028_b0110) 2021; 199 Zhang (10.1016/j.matdes.2025.114028_b0145) 2020; 102 Zhang (10.1016/j.matdes.2025.114028_b0150) 2019; 100 Ohno (10.1016/j.matdes.2025.114028_b0260) 2012; 86 Fan (10.1016/j.matdes.2025.114028_b0030) 2020; 5618021 Takaki (10.1016/j.matdes.2025.114028_b0080) 2019; 164 Bragard (10.1016/j.matdes.2025.114028_b0235) 2002; 10 Ramirez (10.1016/j.matdes.2025.114028_b0095) 2004; 69 Bogno (10.1016/j.matdes.2025.114028_b0195) 2009; 62 Ji (10.1016/j.matdes.2025.114028_b0225) 2023; 130 Wang (10.1016/j.matdes.2025.114028_b0135) 2019; 170 Yuan (10.1016/j.matdes.2025.114028_b0035) 2024; 7 Kurz (10.1016/j.matdes.2025.114028_b0045) 2019; 64 Ohno (10.1016/j.matdes.2025.114028_b0250) 2009; 79 Yan (10.1016/j.matdes.2025.114028_b0020) 2024; 11 Zhang (10.1016/j.matdes.2025.114028_b0230) 2018; 49 Karma (10.1016/j.matdes.2025.114028_b0140) 2001; 87 Wang (10.1016/j.matdes.2025.114028_b0265) 2012; 137 Wang (10.1016/j.matdes.2025.114028_b0025) 2022; 222 Karma (10.1016/j.matdes.2025.114028_b0210) 1996; 53 Plapp (10.1016/j.matdes.2025.114028_b0245) 2011; 84 Zhang (10.1016/j.matdes.2025.114028_b0270) 2019; 40 Bamney (10.1016/j.matdes.2025.114028_b0010) 2023; 11 Werner (10.1016/j.matdes.2025.114028_b0165) 2021; 56 Zhang (10.1016/j.matdes.2025.114028_b0185) 2020; 171 Wang (10.1016/j.matdes.2025.114028_b0190) 2018; 34 Zhang (10.1016/j.matdes.2025.114028_b0200) 2021; 267 Karma (10.1016/j.matdes.2025.114028_b0205) 1998; 57 Bhogireddy (10.1016/j.matdes.2025.114028_b0130) 2014; 90 Kiran (10.1016/j.matdes.2025.114028_b0070) 2022; 274 Kavousi (10.1016/j.matdes.2025.114028_b0005) 2019 Pinomaa (10.1016/j.matdes.2025.114028_b0220) 2019; 168 Huang (10.1016/j.matdes.2025.114028_b0180) 2018; 49 Caginalp (10.1016/j.matdes.2025.114028_b0215) 1989; 39 Meng (10.1016/j.matdes.2025.114028_b0090) 2020; 184 Kang (10.1016/j.matdes.2025.114028_b0015) 2022; 10 Zhang (10.1016/j.matdes.2025.114028_b0100) 2021; 4 Kim (10.1016/j.matdes.2025.114028_b0255) 1999; 60 Liu (10.1016/j.matdes.2025.114028_b0120) 2022; 298 Xu (10.1016/j.matdes.2025.114028_b0175) 2022; 841 He (10.1016/j.matdes.2025.114028_b0170) 2022; 131 Zhang (10.1016/j.matdes.2025.114028_b0040) 2022; 9839403 Kiran (10.1016/j.matdes.2025.114028_b0060) 2025; 308 Zhang (10.1016/j.matdes.2025.114028_b0085) 2024; 55 |
References_xml | – volume: 137 year: 2012 ident: b0265 article-title: Spinodal decomposition and droplets entrapment in monotectic solidification[J] publication-title: J. Chem. Phys. – volume: 164 start-page: 237 year: 2019 end-page: 249 ident: b0080 article-title: Permeability prediction for flow normal to columnar solidification structures by large–scale simulations of phase-field and lattice Boltzmann methods[J] publication-title: Acta Mater. – volume: 10 start-page: 121 year: 2002 end-page: 136 ident: b0235 article-title: Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts[J] publication-title: Interface Sci. – volume: 11 start-page: 4525 year: 2023 end-page: 4541 ident: b0010 article-title: Assessing the predictive capabilities of precipitation strengthening models for deformation twinning in Mg alloys using phase-field simulations[J] publication-title: J. Magnesium Alloys – volume: 56 start-page: 8225 year: 2021 end-page: 8242 ident: b0165 article-title: In situ observation of the impact of hydrogen bubbles in Al-Cu melt on directional dendritic solidification[J] publication-title: J. Mater. Sci. – volume: 130 year: 2023 ident: b0225 article-title: Microstructural pattern formation during far-from-equilibrium alloy solidification[J] publication-title: Phys. Rev. Lett. – volume: 12 start-page: 4219 year: 2024 end-page: 4228 ident: b0160 article-title: One developed finite element model used in nano-layered flaky Ti2AlC MAX ceramic particles reinforced magnesium composite[J] publication-title: J. Magnesium Alloys – volume: 168 start-page: 167 year: 2019 end-page: 177 ident: b0220 article-title: Quantitative phase field modeling of solute trapping and continuous growth kinetics in quasi-rapid solidification[J] publication-title: Acta Mater. – volume: 9839403 year: 2022 ident: b0040 article-title: Graphene oxide-induced substantial strengthening of high-entropy alloy revealed by micropillar compression and molecular dynamics simulation[J] publication-title: Research – volume: 228 year: 2023 ident: b0055 article-title: Numerical solution to phase-field model of solidification: a review[J] publication-title: Comput. Mater. Sci – volume: 64 start-page: 311 year: 2019 end-page: 354 ident: b0045 article-title: Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000[J] publication-title: Int. Mater. Rev. – volume: 199 year: 2021 ident: b0110 article-title: On the phase-field modeling of rapid solidification[J] publication-title: Comput. Mater. Sci – volume: 49 start-page: 79 year: 2019 end-page: 102 ident: b0050 article-title: The phase field method: mesoscale simulation aiding material discovery[J] publication-title: Annu. Rev. Mat. Res. – volume: 214 year: 2021 ident: b0075 article-title: Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification[J] publication-title: Acta Mater. – volume: 7 start-page: 0394 year: 2024 ident: b0035 article-title: Thermal protection performance of biomimetic flexible skin for deformable high-speed vehicles (DHSV-bio-FS) under uniaxial tensile strain[J] publication-title: Research – volume: 57 start-page: 4323 year: 1998 end-page: 4349 ident: b0205 article-title: Quantitative phase-field modeling of dendritic growth in two and three dimensions[J] publication-title: Phys. Rev. E – volume: 10 start-page: 1672 year: 2022 end-page: 1679 ident: b0015 article-title: Microstructure analyses and phase-field simulation of partially divorced eutectic solidification in hypoeutectic Mg-Al alloys[J] publication-title: J. Magnesium Alloys – volume: 5618021 year: 2020 ident: b0030 article-title: Temperature-dependent mechanical properties of graphene/Cu nanocomposites with in-plane negative poisson’s ratios[J] publication-title: Research – volume: 90 year: 2014 ident: b0130 article-title: Phase-field modeling of grain-boundary premelting using obstacle potentials[J] publication-title: Phys. Rev. E – volume: 131 start-page: 167 year: 2022 end-page: 176 ident: b0170 article-title: In-situ investigation on the microstructure evolution of Mg-2Gd alloys during the V-bending tests[J] publication-title: J. Mater. Sci. Technol. – volume: 298 year: 2022 ident: b0120 article-title: Numerical simulation and experimental analysis of ice crystal growth and freezing-centrifugal desalination for seawater with different compositions[J] publication-title: Sep. Purif. Technol. – volume: 100 year: 2019 ident: b0150 article-title: Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking[J] publication-title: Phys. Rev. E – volume: 308 year: 2025 ident: b0060 article-title: Phase-field modeling of brittle anisotropic fracture in polycrystalline materials under combined thermo-mechanical loadings[J] publication-title: Comput. Struct. – volume: 4 year: 2021 ident: b0100 article-title: Solution to multiscale and multiphysics problems: a phase-field study of fully coupled thermal-solute-convection dendrite growth[J] publication-title: Adv. Theor. Simul. – volume: 62 start-page: 427 year: 2009 end-page: 431 ident: b0195 article-title: In situ analysis of dendritic equiaxed microstructure formation in Al-Cu alloys by synchrotron X-ray radiography[J] publication-title: Trans. Indian Inst. Met. – volume: 11 start-page: 4166 year: 2023 end-page: 4180 ident: b0155 article-title: Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components[J] publication-title: J. Magnesium Alloys – volume: 39 start-page: 5887 year: 1989 end-page: 5896 ident: b0215 article-title: Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations[J] publication-title: Phys. Rev. A – volume: 40 start-page: 495 year: 2019 end-page: 507 ident: b0270 article-title: CALPHAD-based modeling and experimental validation of microstructural evolution and microsegregation in magnesium alloys during solidification[J] publication-title: J. Phase Equilib. Diffus. – year: 2019 ident: b0005 article-title: Combined Molecular Dynamics and Phase Field Simulation of Crystal Melt Interfacial Properties and Microstructure Evolution during Rapid Solidification of Ti-Ni Alloys[D] – volume: 170 start-page: 138 year: 2019 end-page: 154 ident: b0135 article-title: Phase-field study on the growth of magnesium silicide occasioned by reactive diffusion on the surface of Si-foams[J] publication-title: Acta Mater. – volume: 49 start-page: 2193 year: 2018 end-page: 2201 ident: b0180 article-title: Prediction of cavitation depth in an Al-Cu alloy melt with bubble characteristics based on synchrotron X-ray radiography[J] publication-title: Metall. Mater. Trans. A – volume: 184 year: 2020 ident: b0090 article-title: Phase-field-lattice Boltzmann simulation of dendrite motion using an immersed boundary method[J] publication-title: Comput. Mater. Sci – volume: 34 start-page: 1142 year: 2018 end-page: 1148 ident: b0190 article-title: Effect of cooling rates on the dendritic morphology transition of Mg-6Gd alloy by in situ X-ray radiography[J] publication-title: J. Mater. Sci. Technol. – volume: 41 start-page: 121 year: 2003 end-page: 163 ident: b0240 article-title: Atomistic and continuum modeling of dendritic solidification[J] publication-title: Mater. Sci. Eng. R. Rep. – volume: 267 year: 2021 ident: b0200 article-title: Evolution of specific interface area during solidification: a three-dimensional thermosolutal phase-field study[J] publication-title: Comput. Phys. Commun. – volume: 53 start-page: R3017 year: 1996 end-page: R3020 ident: b0210 article-title: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J] publication-title: Phys. Rev. E – volume: 222 year: 2022 ident: b0025 article-title: Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability[J] publication-title: Mater. Des. – volume: 304 year: 2024 ident: b0065 article-title: On the phase-field modeling of thermo-electromechanical brittle fracture in piezoceramics using an adaptive isogeometric approach[J] publication-title: Eng. Fract. Mech. – volume: 87 year: 2001 ident: b0140 article-title: Phase-field formulation for quantitative modeling of alloy solidification[J] publication-title: Phys. Rev. Lett. – volume: 70 year: 2004 ident: b0105 article-title: Quantitative phase-field model of alloy solidification[J] publication-title: Phys. Rev. E – volume: 524 year: 2025 ident: b0115 article-title: A hybrid phase field-volume of fluid method for the simulation of three-dimensional binary solidification in the presence of gas bubble[J] publication-title: J. Comput. Phys. – volume: 86 year: 2012 ident: b0260 article-title: Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities[J] publication-title: Phys. Rev. E – volume: 841 year: 2022 ident: b0175 article-title: In-situ TEM observations on interaction of basal dislocations and β′ phases in a Mg-Gd binary alloy[J] publication-title: Mater. Sci. Eng. A – volume: 49 start-page: 3603 year: 2018 end-page: 3615 ident: b0230 article-title: A phase-field lattice-Boltzmann study on dendritic growth of Al-Cu alloy under convection[J] publication-title: Metall. Mater. Trans. B – volume: 11 year: 2024 ident: b0020 article-title: Thermal‐mechanical coupling performance of heat-resistant, high-strength and printable Al‐Si alloy antisymmetric lattice structure[J] publication-title: Adv. Sci. – volume: 84 year: 2011 ident: b0245 article-title: Unified derivation of phase-field models for alloy solidification from a grand-potential functional[J] publication-title: Phys. Rev. E – volume: 102 year: 2020 ident: b0145 article-title: General hierarchical structure to solve transport phenomena with dissimilar time scales: application in large-scale three-dimensional thermosolutal phase-field problems[J] publication-title: Phys. Rev. E – volume: 14 start-page: 1100 year: 2024 ident: b0125 article-title: Phase-field simulation and dendrite evolution analysis of solidification process for Cu-W alloy contact materials under arc ablation[J] publication-title: Metals – volume: 274 year: 2022 ident: b0070 article-title: Adaptive isogeometric analysis-based phase-field modeling of brittle electromechanical fracture in piezoceramics[J] publication-title: Eng. Fract. Mech. – volume: 55 start-page: 500 year: 2024 end-page: 512 ident: b0085 article-title: Tilting dynamics and parameter dependence of the dendrite array under a transverse magnetic field: a unified magnetic field-based phase-field study[J] publication-title: Metall. Mater. Trans. A – volume: 60 start-page: 7186 year: 1999 end-page: 7197 ident: b0255 article-title: Phase-field model for binary alloys[J] publication-title: Phys. Rev. E – volume: 79 year: 2009 ident: b0250 article-title: Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid[J] publication-title: Phys. Rev. E – volume: 69 year: 2004 ident: b0095 article-title: Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion[J] publication-title: Phys. Rev. E – volume: 171 year: 2020 ident: b0185 article-title: Three-dimensional thermosolutal simulation of dendritic and eutectic growth[J] publication-title: Comput. Mater. Sci – volume: 53 start-page: R3017 issue: 4 year: 1996 ident: 10.1016/j.matdes.2025.114028_b0210 article-title: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.R3017 – volume: 524 year: 2025 ident: 10.1016/j.matdes.2025.114028_b0115 article-title: A hybrid phase field-volume of fluid method for the simulation of three-dimensional binary solidification in the presence of gas bubble[J] publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2025.113720 – volume: 41 start-page: 121 issue: 6 year: 2003 ident: 10.1016/j.matdes.2025.114028_b0240 article-title: Atomistic and continuum modeling of dendritic solidification[J] publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/S0927-796X(03)00036-6 – volume: 214 year: 2021 ident: 10.1016/j.matdes.2025.114028_b0075 article-title: Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification[J] publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117005 – volume: 199 year: 2021 ident: 10.1016/j.matdes.2025.114028_b0110 article-title: On the phase-field modeling of rapid solidification[J] publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2021.110812 – volume: 9839403 year: 2022 ident: 10.1016/j.matdes.2025.114028_b0040 article-title: Graphene oxide-induced substantial strengthening of high-entropy alloy revealed by micropillar compression and molecular dynamics simulation[J] publication-title: Research – volume: 10 start-page: 121 issue: 2/3 year: 2002 ident: 10.1016/j.matdes.2025.114028_b0235 article-title: Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts[J] publication-title: Interface Sci. doi: 10.1023/A:1015815928191 – volume: 49 start-page: 3603 issue: 6 year: 2018 ident: 10.1016/j.matdes.2025.114028_b0230 article-title: A phase-field lattice-Boltzmann study on dendritic growth of Al-Cu alloy under convection[J] publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-018-1418-1 – volume: 34 start-page: 1142 issue: 7 year: 2018 ident: 10.1016/j.matdes.2025.114028_b0190 article-title: Effect of cooling rates on the dendritic morphology transition of Mg-6Gd alloy by in situ X-ray radiography[J] publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.11.047 – volume: 40 start-page: 495 issue: 4 year: 2019 ident: 10.1016/j.matdes.2025.114028_b0270 article-title: CALPHAD-based modeling and experimental validation of microstructural evolution and microsegregation in magnesium alloys during solidification[J] publication-title: J. Phase Equilib. Diffus. doi: 10.1007/s11669-019-00732-0 – volume: 11 issue: 42 year: 2024 ident: 10.1016/j.matdes.2025.114028_b0020 article-title: Thermal‐mechanical coupling performance of heat-resistant, high-strength and printable Al‐Si alloy antisymmetric lattice structure[J] publication-title: Adv. Sci. – volume: 304 year: 2024 ident: 10.1016/j.matdes.2025.114028_b0065 article-title: On the phase-field modeling of thermo-electromechanical brittle fracture in piezoceramics using an adaptive isogeometric approach[J] publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2024.110068 – volume: 90 issue: 1 year: 2014 ident: 10.1016/j.matdes.2025.114028_b0130 article-title: Phase-field modeling of grain-boundary premelting using obstacle potentials[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.012401 – volume: 274 year: 2022 ident: 10.1016/j.matdes.2025.114028_b0070 article-title: Adaptive isogeometric analysis-based phase-field modeling of brittle electromechanical fracture in piezoceramics[J] publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108738 – volume: 168 start-page: 167 year: 2019 ident: 10.1016/j.matdes.2025.114028_b0220 article-title: Quantitative phase field modeling of solute trapping and continuous growth kinetics in quasi-rapid solidification[J] publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.02.009 – volume: 86 issue: 5 year: 2012 ident: 10.1016/j.matdes.2025.114028_b0260 article-title: Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.051603 – volume: 56 start-page: 8225 issue: 13 year: 2021 ident: 10.1016/j.matdes.2025.114028_b0165 article-title: In situ observation of the impact of hydrogen bubbles in Al-Cu melt on directional dendritic solidification[J] publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05748-3 – volume: 102 issue: 4 year: 2020 ident: 10.1016/j.matdes.2025.114028_b0145 article-title: General hierarchical structure to solve transport phenomena with dissimilar time scales: application in large-scale three-dimensional thermosolutal phase-field problems[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.102.043313 – volume: 5618021 year: 2020 ident: 10.1016/j.matdes.2025.114028_b0030 article-title: Temperature-dependent mechanical properties of graphene/Cu nanocomposites with in-plane negative poisson’s ratios[J] publication-title: Research – volume: 12 start-page: 4219 issue: 10 year: 2024 ident: 10.1016/j.matdes.2025.114028_b0160 article-title: One developed finite element model used in nano-layered flaky Ti2AlC MAX ceramic particles reinforced magnesium composite[J] publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2023.04.009 – volume: 11 start-page: 4166 issue: 11 year: 2023 ident: 10.1016/j.matdes.2025.114028_b0155 article-title: Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components[J] publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2023.11.003 – volume: 137 issue: 3 year: 2012 ident: 10.1016/j.matdes.2025.114028_b0265 article-title: Spinodal decomposition and droplets entrapment in monotectic solidification[J] publication-title: J. Chem. Phys. doi: 10.1063/1.4734485 – volume: 14 start-page: 1100 issue: 10 year: 2024 ident: 10.1016/j.matdes.2025.114028_b0125 article-title: Phase-field simulation and dendrite evolution analysis of solidification process for Cu-W alloy contact materials under arc ablation[J] publication-title: Metals doi: 10.3390/met14101100 – volume: 841 year: 2022 ident: 10.1016/j.matdes.2025.114028_b0175 article-title: In-situ TEM observations on interaction of basal dislocations and β′ phases in a Mg-Gd binary alloy[J] publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2022.143017 – volume: 267 year: 2021 ident: 10.1016/j.matdes.2025.114028_b0200 article-title: Evolution of specific interface area during solidification: a three-dimensional thermosolutal phase-field study[J] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108042 – volume: 10 start-page: 1672 issue: 6 year: 2022 ident: 10.1016/j.matdes.2025.114028_b0015 article-title: Microstructure analyses and phase-field simulation of partially divorced eutectic solidification in hypoeutectic Mg-Al alloys[J] publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2021.04.014 – volume: 69 issue: 5 year: 2004 ident: 10.1016/j.matdes.2025.114028_b0095 article-title: Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.051607 – volume: 7 start-page: 0394 year: 2024 ident: 10.1016/j.matdes.2025.114028_b0035 article-title: Thermal protection performance of biomimetic flexible skin for deformable high-speed vehicles (DHSV-bio-FS) under uniaxial tensile strain[J] publication-title: Research doi: 10.34133/research.0394 – volume: 308 year: 2025 ident: 10.1016/j.matdes.2025.114028_b0060 article-title: Phase-field modeling of brittle anisotropic fracture in polycrystalline materials under combined thermo-mechanical loadings[J] publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2025.107651 – volume: 100 issue: 2 year: 2019 ident: 10.1016/j.matdes.2025.114028_b0150 article-title: Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.023305 – volume: 11 start-page: 4525 issue: 12 year: 2023 ident: 10.1016/j.matdes.2025.114028_b0010 article-title: Assessing the predictive capabilities of precipitation strengthening models for deformation twinning in Mg alloys using phase-field simulations[J] publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2023.07.008 – volume: 164 start-page: 237 year: 2019 ident: 10.1016/j.matdes.2025.114028_b0080 article-title: Permeability prediction for flow normal to columnar solidification structures by large–scale simulations of phase-field and lattice Boltzmann methods[J] publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.10.039 – volume: 60 start-page: 7186 issue: 6 year: 1999 ident: 10.1016/j.matdes.2025.114028_b0255 article-title: Phase-field model for binary alloys[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.60.7186 – volume: 87 issue: 11 year: 2001 ident: 10.1016/j.matdes.2025.114028_b0140 article-title: Phase-field formulation for quantitative modeling of alloy solidification[J] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.115701 – volume: 4 issue: 3 year: 2021 ident: 10.1016/j.matdes.2025.114028_b0100 article-title: Solution to multiscale and multiphysics problems: a phase-field study of fully coupled thermal-solute-convection dendrite growth[J] publication-title: Adv. Theor. Simul. doi: 10.1002/adts.202000251 – volume: 184 year: 2020 ident: 10.1016/j.matdes.2025.114028_b0090 article-title: Phase-field-lattice Boltzmann simulation of dendrite motion using an immersed boundary method[J] publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2020.109784 – volume: 131 start-page: 167 year: 2022 ident: 10.1016/j.matdes.2025.114028_b0170 article-title: In-situ investigation on the microstructure evolution of Mg-2Gd alloys during the V-bending tests[J] publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.05.039 – volume: 79 issue: 3 year: 2009 ident: 10.1016/j.matdes.2025.114028_b0250 article-title: Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.031603 – volume: 57 start-page: 4323 issue: 4 year: 1998 ident: 10.1016/j.matdes.2025.114028_b0205 article-title: Quantitative phase-field modeling of dendritic growth in two and three dimensions[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.57.4323 – volume: 39 start-page: 5887 issue: 11 year: 1989 ident: 10.1016/j.matdes.2025.114028_b0215 article-title: Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations[J] publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.39.5887 – volume: 170 start-page: 138 year: 2019 ident: 10.1016/j.matdes.2025.114028_b0135 article-title: Phase-field study on the growth of magnesium silicide occasioned by reactive diffusion on the surface of Si-foams[J] publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.03.008 – volume: 70 issue: 6 year: 2004 ident: 10.1016/j.matdes.2025.114028_b0105 article-title: Quantitative phase-field model of alloy solidification[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.061604 – volume: 171 year: 2020 ident: 10.1016/j.matdes.2025.114028_b0185 article-title: Three-dimensional thermosolutal simulation of dendritic and eutectic growth[J] publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2019.109274 – volume: 222 year: 2022 ident: 10.1016/j.matdes.2025.114028_b0025 article-title: Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability[J] publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111041 – volume: 130 issue: 2 year: 2023 ident: 10.1016/j.matdes.2025.114028_b0225 article-title: Microstructural pattern formation during far-from-equilibrium alloy solidification[J] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.026203 – year: 2019 ident: 10.1016/j.matdes.2025.114028_b0005 – volume: 49 start-page: 79 issue: 1 year: 2019 ident: 10.1016/j.matdes.2025.114028_b0050 article-title: The phase field method: mesoscale simulation aiding material discovery[J] publication-title: Annu. Rev. Mat. Res. doi: 10.1146/annurev-matsci-070218-010151 – volume: 298 year: 2022 ident: 10.1016/j.matdes.2025.114028_b0120 article-title: Numerical simulation and experimental analysis of ice crystal growth and freezing-centrifugal desalination for seawater with different compositions[J] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121656 – volume: 64 start-page: 311 issue: 6 year: 2019 ident: 10.1016/j.matdes.2025.114028_b0045 article-title: Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000[J] publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2018.1537090 – volume: 62 start-page: 427 issue: 4–5 year: 2009 ident: 10.1016/j.matdes.2025.114028_b0195 article-title: In situ analysis of dendritic equiaxed microstructure formation in Al-Cu alloys by synchrotron X-ray radiography[J] publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-009-0058-1 – volume: 49 start-page: 2193 issue: 6 year: 2018 ident: 10.1016/j.matdes.2025.114028_b0180 article-title: Prediction of cavitation depth in an Al-Cu alloy melt with bubble characteristics based on synchrotron X-ray radiography[J] publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-018-4603-6 – volume: 228 year: 2023 ident: 10.1016/j.matdes.2025.114028_b0055 article-title: Numerical solution to phase-field model of solidification: a review[J] publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2023.112366 – volume: 84 issue: 3 year: 2011 ident: 10.1016/j.matdes.2025.114028_b0245 article-title: Unified derivation of phase-field models for alloy solidification from a grand-potential functional[J] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.031601 – volume: 55 start-page: 500 issue: 2 year: 2024 ident: 10.1016/j.matdes.2025.114028_b0085 article-title: Tilting dynamics and parameter dependence of the dendrite array under a transverse magnetic field: a unified magnetic field-based phase-field study[J] publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-023-07261-z |
SSID | ssj0022734 |
Score | 2.450396 |
Snippet | [Display omitted]
•The phase-field model for alloy solidification is reformulated based on arbitrary concentration and temperature scales.•The dimensionless... The available phase-field models are generally limited to certain specific concentrations and temperatures, weakening the universality of the method. A unified... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 114028 |
SubjectTerms | Phase-field model Scale Simulation Solidification |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEB8RTlJQ-sUd3EdpIREKgF0QUQ3SIntiEIpVVbBv49d06CysLAljhOHH127uHcfQdwYfErc4mJgzjKk0AIGQYppyBHriM3LIxNLCUnP0zU6FncTeW0A9dtLgyFVTayv5bpXlo3LYMGzcG8LAeP6D0IoidHJc7RyRAb0AtRu_Iu9C7H96PJj99FDC71VgtR9MWyzaDzYV5oFxpLvN2hJN5cTmXZ1zSUJ_JfU1Rryud2B7Ybq5Fd1i-2Cx1b7cHWGpfgPryMqyU52qysVjO2ROgtW_oiN4g8mzlmiMef9sY-ULix-Ruqr8DHrzFfDYe60E_4L4arsTQUQeQn7QCeb2-erkdBUzUhKCKVrgLnYqXJ6nBoDeARF7ELNRcu1zrMndJWSueGJnXoqUkZFzrkVqQ29a1GRofQrWaVPQImKS02wUtKRkIrk8s8IovLcFsoZ3UfghapbF6TY2Rt1Nh7ViObEbJZjWwfrgjOn75Ebe0bZovXrJnbTKk8DnUqrUVP0RU8L6RxNjFCu0KlIe9D3E5G9mul4KPKP4c__vedJ7BJZ3WI2Cl0V4tPe4bGyCo_bxbbN7-63m8 priority: 102 providerName: Elsevier |
Title | Insight into scale selection of dimensionless phase-field model of alloy solidification |
URI | https://dx.doi.org/10.1016/j.matdes.2025.114028 https://doaj.org/article/66b72a95ee104fc0bc5dfe8d4afc6920 |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQWWBAfIryUXlgtUiT2E7GgkAtiE5UdLPs2BZFKK1oGfj33NkJygQLW-RYdvTOyb1zzu8IuXLwlvnCSiYzU7A85ykrE0xyTHTmh5V1hcPDyU9TMZ7lD3M-75T6wpywKA8cgbsWwshUl9w5CBx8lZiKW-8Km2tfiTIN0Tr4vDaYakItFG2Juyuoyid5e2guZHYBFbQOpbpTjlK5CVZi7ziloN3f8U0df3O_T_YaokhH8QEPyJarD8luRz7wiLxM6jXG1nRRb5Z0DWg7ug51bQBsuvTUonQ_boe9w_eMrl7BY7GQskZDARzsgv_dvygswIXFpKFgp2Myu797vh2zplACqzJRbpj3UmgkGh4IAFwlufSpBriM1qnxQjvOvR_a0kNwxrmsdJq4vHRlaLU8OyG9elm7U0I5noQt4JbgWa6FNdxkSLJs4irhne4T1iKlVlEPQ7WJYm8qIqsQWRWR7ZMbhPOnL6pZhwawsWpsrP6ycZ_I1hiqIQbR4cNQi1-nP_uP6c_JDg4ZE8QuSG_z8ekugYpszIBsjyaP4-kgrL5v5iTe3w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB51y2GXA9oXosDu-rDXqCaxneRYKlC7Lb0saLlZTmxDEEqrthz498w4CSoXDnuLHOehz5N5ODPfAPx2-JX5zKZRmhRZJISMo5xTkiM3iT8rrcscFSdfLdTkRvy5lbc9GHe1MJRW2er-RqcHbd2ODFs0h6uqGv7F6EEQPTkacY5BhvgAe8ROhWK-N5rOJovXuIsYXJqtFqLoS2VXQRfSvNAvtI54u2NJvLmc2rLvWKhA5L9jqHaMz-VnOGi9RjZqXuwL9Fz9FfZ3uAS_wb9pvaFAm1X1dsk2CL1jm9DkBpFnS88s8fjT3tgjKje2ukfzFYX8NRa64dAU-gn_zFAaK0sZRGHRvsPN5cX1eBK1XROiMlH5NvI-VYa8Do_eAB5xkfrYcOELY-LCK-Ok9P7M5h4jNSnT0sTcidzlYdTK5BD69bJ2R8AklcVmeErJRBhlC1kk5HFZ7krlnRlA1CGlVw05hu6yxh50g6wmZHWD7ADOCc7XuURtHQaW6zvdrq1Wqkhjk0vnMFL0JS9Kab3LrDC-VHnMB5B2i6HfSAreqnr38cf_feUv-Di5vprr-XQxO4FPdKZJFzuF_nb95H6gY7ItfraC9wJZ--Fe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+scale+selection+of+dimensionless+phase-field+model+of+alloy+solidification&rft.jtitle=Materials+%26+design&rft.au=Yuchen+Tang&rft.au=Ang+Zhang&rft.au=He+Liu&rft.au=Gengyun+Zhang&rft.date=2025-06-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=254&rft.spage=114028&rft_id=info:doi/10.1016%2Fj.matdes.2025.114028&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_66b72a95ee104fc0bc5dfe8d4afc6920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |