Insight into scale selection of dimensionless phase-field model of alloy solidification

[Display omitted] •The phase-field model for alloy solidification is reformulated based on arbitrary concentration and temperature scales.•The dimensionless phase-field equations with arbitrary scales are validated and applied by simulating typical alloys.•A reasonable range of arbitrary scales is d...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 254; p. 114028
Main Authors Tang, Yuchen, Zhang, Ang, Liu, He, Zhang, Gengyun, Li, Chuangming, Li, Yongfeng, Dong, Zhihua, Huang, Guangsheng, Jiang, Bin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The phase-field model for alloy solidification is reformulated based on arbitrary concentration and temperature scales.•The dimensionless phase-field equations with arbitrary scales are validated and applied by simulating typical alloys.•A reasonable range of arbitrary scales is determined by evaluating both numerical accuracy and computing performance.•The reformulated model establishes the connection between models with different scales. The available phase-field models are generally limited to certain specific concentrations and temperatures, weakening the universality of the method. A unified dimensionless framework is developed by adopting arbitrary concentration and temperature scales for nondimensionalization, thereby eliminating scale dependence in model comparisons. The dimensionless phase-field equations are validated by simulating the growth of two kinds of typical alloys including four-fold symmetry morphology (e.g., Fe, Al, and Cu) and six-fold symmetry morphology (e.g., Mg, Zn, and α-Ti) patterns in both 2D and 3D cases. The effect of the scales on characteristic parameters, including capillary length and relaxation time, is discussed, and a reasonable scale range is determined by evaluating both numerical accuracy and computing performance. Four typical phase-field equations are perfectly mapped by selecting specific concentration and temperature scales, which validates the applicability of the reformulated model and provides guidance for further application of the phase-field models. Furthermore, the relationship between the reformulated model and the grand-potential based model is simply analyzed, and the relation with the phase-field equations with decoupled dimensionless concentration is also discussed.
AbstractList [Display omitted] •The phase-field model for alloy solidification is reformulated based on arbitrary concentration and temperature scales.•The dimensionless phase-field equations with arbitrary scales are validated and applied by simulating typical alloys.•A reasonable range of arbitrary scales is determined by evaluating both numerical accuracy and computing performance.•The reformulated model establishes the connection between models with different scales. The available phase-field models are generally limited to certain specific concentrations and temperatures, weakening the universality of the method. A unified dimensionless framework is developed by adopting arbitrary concentration and temperature scales for nondimensionalization, thereby eliminating scale dependence in model comparisons. The dimensionless phase-field equations are validated by simulating the growth of two kinds of typical alloys including four-fold symmetry morphology (e.g., Fe, Al, and Cu) and six-fold symmetry morphology (e.g., Mg, Zn, and α-Ti) patterns in both 2D and 3D cases. The effect of the scales on characteristic parameters, including capillary length and relaxation time, is discussed, and a reasonable scale range is determined by evaluating both numerical accuracy and computing performance. Four typical phase-field equations are perfectly mapped by selecting specific concentration and temperature scales, which validates the applicability of the reformulated model and provides guidance for further application of the phase-field models. Furthermore, the relationship between the reformulated model and the grand-potential based model is simply analyzed, and the relation with the phase-field equations with decoupled dimensionless concentration is also discussed.
The available phase-field models are generally limited to certain specific concentrations and temperatures, weakening the universality of the method. A unified dimensionless framework is developed by adopting arbitrary concentration and temperature scales for nondimensionalization, thereby eliminating scale dependence in model comparisons. The dimensionless phase-field equations are validated by simulating the growth of two kinds of typical alloys including four-fold symmetry morphology (e.g., Fe, Al, and Cu) and six-fold symmetry morphology (e.g., Mg, Zn, and α-Ti) patterns in both 2D and 3D cases. The effect of the scales on characteristic parameters, including capillary length and relaxation time, is discussed, and a reasonable scale range is determined by evaluating both numerical accuracy and computing performance. Four typical phase-field equations are perfectly mapped by selecting specific concentration and temperature scales, which validates the applicability of the reformulated model and provides guidance for further application of the phase-field models. Furthermore, the relationship between the reformulated model and the grand-potential based model is simply analyzed, and the relation with the phase-field equations with decoupled dimensionless concentration is also discussed.
ArticleNumber 114028
Author Liu, He
Jiang, Bin
Li, Chuangming
Zhang, Gengyun
Tang, Yuchen
Zhang, Ang
Huang, Guangsheng
Dong, Zhihua
Li, Yongfeng
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Tang
  fullname: Tang, Yuchen
– sequence: 2
  givenname: Ang
  orcidid: 0000-0001-5479-5249
  surname: Zhang
  fullname: Zhang, Ang
  email: angzhang@cqu.edu.cn
– sequence: 3
  givenname: He
  surname: Liu
  fullname: Liu, He
– sequence: 4
  givenname: Gengyun
  surname: Zhang
  fullname: Zhang, Gengyun
– sequence: 5
  givenname: Chuangming
  surname: Li
  fullname: Li, Chuangming
– sequence: 6
  givenname: Yongfeng
  surname: Li
  fullname: Li, Yongfeng
– sequence: 7
  givenname: Zhihua
  surname: Dong
  fullname: Dong, Zhihua
– sequence: 8
  givenname: Guangsheng
  surname: Huang
  fullname: Huang, Guangsheng
– sequence: 9
  givenname: Bin
  surname: Jiang
  fullname: Jiang, Bin
BookMark eNp9kE1qwzAQRrVIoUnaG3ThC9iVZMuKNoUS-hMIdNPSpRhLo0RGtoJlCrl9nbp02ZWGYb6nmbciiz72SMgdowWjrL5viw5Gi6nglIuCsYryzYIsKa-rnHEprskqpZZSzmVZLcnnrk_-cBwz348xSwYCZgkDmtHHPosus77DaST2AVPKTkdImDuPwWZdtBguIxBCPGcpBm-98wYu0Rty5SAkvP191-Tj-el9-5rv315228d9bspajblzsgalSumoFFNFK-k40Mo1ALxxNaAQzjGrnGJSCGmAU6wUqp-uFeWa7GaujdDq0-A7GM46gtc_jTgcNAyjNwF1XTeSgxKIbPrA0MYI63BjK3CmVpxOrGpmmSGmNKD74zGqL3J1q2e5-iJXz3Kn2MMcw-nOL4-DTsZjb9D6YfI4LeL_B3wDQbWKnA
Cites_doi 10.1103/PhysRevE.53.R3017
10.1016/j.jcp.2025.113720
10.1016/S0927-796X(03)00036-6
10.1016/j.actamat.2021.117005
10.1016/j.commatsci.2021.110812
10.1023/A:1015815928191
10.1007/s11663-018-1418-1
10.1016/j.jmst.2017.11.047
10.1007/s11669-019-00732-0
10.1016/j.engfracmech.2024.110068
10.1103/PhysRevE.90.012401
10.1016/j.engfracmech.2022.108738
10.1016/j.actamat.2019.02.009
10.1103/PhysRevE.86.051603
10.1007/s10853-020-05748-3
10.1103/PhysRevE.102.043313
10.1016/j.jma.2023.04.009
10.1016/j.jma.2023.11.003
10.1063/1.4734485
10.3390/met14101100
10.1016/j.msea.2022.143017
10.1016/j.cpc.2021.108042
10.1016/j.jma.2021.04.014
10.1103/PhysRevE.69.051607
10.34133/research.0394
10.1016/j.compstruc.2025.107651
10.1103/PhysRevE.100.023305
10.1016/j.jma.2023.07.008
10.1016/j.actamat.2018.10.039
10.1103/PhysRevE.60.7186
10.1103/PhysRevLett.87.115701
10.1002/adts.202000251
10.1016/j.commatsci.2020.109784
10.1016/j.jmst.2022.05.039
10.1103/PhysRevE.79.031603
10.1103/PhysRevE.57.4323
10.1103/PhysRevA.39.5887
10.1016/j.actamat.2019.03.008
10.1103/PhysRevE.70.061604
10.1016/j.commatsci.2019.109274
10.1016/j.matdes.2022.111041
10.1103/PhysRevLett.130.026203
10.1146/annurev-matsci-070218-010151
10.1016/j.seppur.2022.121656
10.1080/09506608.2018.1537090
10.1007/s12666-009-0058-1
10.1007/s11661-018-4603-6
10.1016/j.commatsci.2023.112366
10.1103/PhysRevE.84.031601
10.1007/s11661-023-07261-z
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2025.114028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_66b72a95ee104fc0bc5dfe8d4afc6920
10_1016_j_matdes_2025_114028
S0264127525004484
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSH
SSM
SST
SSZ
T5K
WUQ
~G-
AAYXX
CITATION
EFKBS
ID FETCH-LOGICAL-c369t-ff76a9937f0756a9047f2a04fbaa2bf6ae55ff1d9f917557ca20e49e95ff1dd53
IEDL.DBID DOA
ISSN 0264-1275
IngestDate Wed Aug 27 01:13:44 EDT 2025
Tue Aug 05 12:03:26 EDT 2025
Sat Jul 05 17:10:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phase-field model
Scale
Simulation
Solidification
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-ff76a9937f0756a9047f2a04fbaa2bf6ae55ff1d9f917557ca20e49e95ff1dd53
ORCID 0000-0001-5479-5249
OpenAccessLink https://doaj.org/article/66b72a95ee104fc0bc5dfe8d4afc6920
ParticipantIDs doaj_primary_oai_doaj_org_article_66b72a95ee104fc0bc5dfe8d4afc6920
crossref_primary_10_1016_j_matdes_2025_114028
elsevier_sciencedirect_doi_10_1016_j_matdes_2025_114028
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, Jiang, Guo (b0100) 2021; 4
Werner, Becker, Baumann (b0165) 2021; 56
Wang, Li, Xu (b0025) 2022; 222
Zhang, Du, Meng (b0185) 2020; 171
Echebarria, Folch, Karma (b0105) 2004; 70
Chen, Yang, Yu (b0160) 2024; 12
Fan, Xiang, Shen (b0030) 2020; 5618021
Zhang, Miao, Chen (b0270) 2019; 40
Yan, Dong, Jia (b0020) 2024; 11
Ren, Mu, Zhao (b0125) 2024; 14
Zhang, Du, Guo (b0230) 2018; 49
Kiran, Nguyen-Thanh, Zhou (b0070) 2022; 274
Wang, Altschuh, Matz (b0135) 2019; 170
Zhang, Du, Guo (b0150) 2019; 100
Takaki, Sakane, Ohno (b0080) 2019; 164
Plapp (b0245) 2011; 84
Kavousi (b0005) 2019
Bamney, Capolungo (b0010) 2023; 11
Kiran, Choudhary, Nguyen-Thanh (b0060) 2025; 308
Karma, Rappel (b0210) 1996; 53
Ohno (b0260) 2012; 86
Hoyt (b0240) 2003; 41
Ohno, Matsuura (b0250) 2009; 79
Xu, Li, Sha (b0175) 2022; 841
Zhang, Guo, Jiang (b0075) 2021; 214
Karma (b0140) 2001; 87
Wei, Zhang, Ni (b0115) 2025; 524
Pinomaa, Provatas (b0220) 2019; 168
Wang, Peng, Ji (b0190) 2018; 34
Zhang, Du, Guo (b0200) 2021; 267
Zhang, Xie, Ma (b0040) 2022; 9839403
Kiran, Nguyen-Thanh, Zhou (b0065) 2024; 304
Gu, He, Han (b0110) 2021; 199
Meng, Zhang, Guo (b0090) 2020; 184
Zhang, Du, Yang (b0145) 2020; 102
Huang, Shu, Fu (b0180) 2018; 49
Bragard, Karma, Lee (b0235) 2002; 10
Kurz, Fisher, Trivedi (b0045) 2019; 64
Tonks, Aagesen (b0050) 2019; 49
Kim, Kim, Suzuki (b0255) 1999; 60
Bhogireddy, Hüter, Neugebauer (b0130) 2014; 90
Ji, Dorari, Clarke (b0225) 2023; 130
Ramirez, Beckermann, Karma (b0095) 2004; 69
Kang, Park, Song (b0015) 2022; 10
Caginalp (b0215) 1989; 39
Yuan, Lü, Bao (b0035) 2024; 7
Li, Song, Zhang (b0155) 2023; 11
Zhang, Yu, Ren (b0085) 2024; 55
He, Zhou, Yang (b0170) 2022; 131
Bogno, Nguyen-Thi, Billia (b0195) 2009; 62
Wang, Choudhury, Strassacker (b0265) 2012; 137
Karma, Rappel (b0205) 1998; 57
Zhang, Guo, Jiang (b0055) 2023; 228
Liu, Lan, Ye (b0120) 2022; 298
Kiran (10.1016/j.matdes.2025.114028_b0065) 2024; 304
Zhang (10.1016/j.matdes.2025.114028_b0075) 2021; 214
Tonks (10.1016/j.matdes.2025.114028_b0050) 2019; 49
Echebarria (10.1016/j.matdes.2025.114028_b0105) 2004; 70
Hoyt (10.1016/j.matdes.2025.114028_b0240) 2003; 41
Li (10.1016/j.matdes.2025.114028_b0155) 2023; 11
Zhang (10.1016/j.matdes.2025.114028_b0055) 2023; 228
Wei (10.1016/j.matdes.2025.114028_b0115) 2025; 524
Ren (10.1016/j.matdes.2025.114028_b0125) 2024; 14
Chen (10.1016/j.matdes.2025.114028_b0160) 2024; 12
Gu (10.1016/j.matdes.2025.114028_b0110) 2021; 199
Zhang (10.1016/j.matdes.2025.114028_b0145) 2020; 102
Zhang (10.1016/j.matdes.2025.114028_b0150) 2019; 100
Ohno (10.1016/j.matdes.2025.114028_b0260) 2012; 86
Fan (10.1016/j.matdes.2025.114028_b0030) 2020; 5618021
Takaki (10.1016/j.matdes.2025.114028_b0080) 2019; 164
Bragard (10.1016/j.matdes.2025.114028_b0235) 2002; 10
Ramirez (10.1016/j.matdes.2025.114028_b0095) 2004; 69
Bogno (10.1016/j.matdes.2025.114028_b0195) 2009; 62
Ji (10.1016/j.matdes.2025.114028_b0225) 2023; 130
Wang (10.1016/j.matdes.2025.114028_b0135) 2019; 170
Yuan (10.1016/j.matdes.2025.114028_b0035) 2024; 7
Kurz (10.1016/j.matdes.2025.114028_b0045) 2019; 64
Ohno (10.1016/j.matdes.2025.114028_b0250) 2009; 79
Yan (10.1016/j.matdes.2025.114028_b0020) 2024; 11
Zhang (10.1016/j.matdes.2025.114028_b0230) 2018; 49
Karma (10.1016/j.matdes.2025.114028_b0140) 2001; 87
Wang (10.1016/j.matdes.2025.114028_b0265) 2012; 137
Wang (10.1016/j.matdes.2025.114028_b0025) 2022; 222
Karma (10.1016/j.matdes.2025.114028_b0210) 1996; 53
Plapp (10.1016/j.matdes.2025.114028_b0245) 2011; 84
Zhang (10.1016/j.matdes.2025.114028_b0270) 2019; 40
Bamney (10.1016/j.matdes.2025.114028_b0010) 2023; 11
Werner (10.1016/j.matdes.2025.114028_b0165) 2021; 56
Zhang (10.1016/j.matdes.2025.114028_b0185) 2020; 171
Wang (10.1016/j.matdes.2025.114028_b0190) 2018; 34
Zhang (10.1016/j.matdes.2025.114028_b0200) 2021; 267
Karma (10.1016/j.matdes.2025.114028_b0205) 1998; 57
Bhogireddy (10.1016/j.matdes.2025.114028_b0130) 2014; 90
Kiran (10.1016/j.matdes.2025.114028_b0070) 2022; 274
Kavousi (10.1016/j.matdes.2025.114028_b0005) 2019
Pinomaa (10.1016/j.matdes.2025.114028_b0220) 2019; 168
Huang (10.1016/j.matdes.2025.114028_b0180) 2018; 49
Caginalp (10.1016/j.matdes.2025.114028_b0215) 1989; 39
Meng (10.1016/j.matdes.2025.114028_b0090) 2020; 184
Kang (10.1016/j.matdes.2025.114028_b0015) 2022; 10
Zhang (10.1016/j.matdes.2025.114028_b0100) 2021; 4
Kim (10.1016/j.matdes.2025.114028_b0255) 1999; 60
Liu (10.1016/j.matdes.2025.114028_b0120) 2022; 298
Xu (10.1016/j.matdes.2025.114028_b0175) 2022; 841
He (10.1016/j.matdes.2025.114028_b0170) 2022; 131
Zhang (10.1016/j.matdes.2025.114028_b0040) 2022; 9839403
Kiran (10.1016/j.matdes.2025.114028_b0060) 2025; 308
Zhang (10.1016/j.matdes.2025.114028_b0085) 2024; 55
References_xml – volume: 137
  year: 2012
  ident: b0265
  article-title: Spinodal decomposition and droplets entrapment in monotectic solidification[J]
  publication-title: J. Chem. Phys.
– volume: 164
  start-page: 237
  year: 2019
  end-page: 249
  ident: b0080
  article-title: Permeability prediction for flow normal to columnar solidification structures by large–scale simulations of phase-field and lattice Boltzmann methods[J]
  publication-title: Acta Mater.
– volume: 10
  start-page: 121
  year: 2002
  end-page: 136
  ident: b0235
  article-title: Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts[J]
  publication-title: Interface Sci.
– volume: 11
  start-page: 4525
  year: 2023
  end-page: 4541
  ident: b0010
  article-title: Assessing the predictive capabilities of precipitation strengthening models for deformation twinning in Mg alloys using phase-field simulations[J]
  publication-title: J. Magnesium Alloys
– volume: 56
  start-page: 8225
  year: 2021
  end-page: 8242
  ident: b0165
  article-title: In situ observation of the impact of hydrogen bubbles in Al-Cu melt on directional dendritic solidification[J]
  publication-title: J. Mater. Sci.
– volume: 130
  year: 2023
  ident: b0225
  article-title: Microstructural pattern formation during far-from-equilibrium alloy solidification[J]
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 4219
  year: 2024
  end-page: 4228
  ident: b0160
  article-title: One developed finite element model used in nano-layered flaky Ti2AlC MAX ceramic particles reinforced magnesium composite[J]
  publication-title: J. Magnesium Alloys
– volume: 168
  start-page: 167
  year: 2019
  end-page: 177
  ident: b0220
  article-title: Quantitative phase field modeling of solute trapping and continuous growth kinetics in quasi-rapid solidification[J]
  publication-title: Acta Mater.
– volume: 9839403
  year: 2022
  ident: b0040
  article-title: Graphene oxide-induced substantial strengthening of high-entropy alloy revealed by micropillar compression and molecular dynamics simulation[J]
  publication-title: Research
– volume: 228
  year: 2023
  ident: b0055
  article-title: Numerical solution to phase-field model of solidification: a review[J]
  publication-title: Comput. Mater. Sci
– volume: 64
  start-page: 311
  year: 2019
  end-page: 354
  ident: b0045
  article-title: Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000[J]
  publication-title: Int. Mater. Rev.
– volume: 199
  year: 2021
  ident: b0110
  article-title: On the phase-field modeling of rapid solidification[J]
  publication-title: Comput. Mater. Sci
– volume: 49
  start-page: 79
  year: 2019
  end-page: 102
  ident: b0050
  article-title: The phase field method: mesoscale simulation aiding material discovery[J]
  publication-title: Annu. Rev. Mat. Res.
– volume: 214
  year: 2021
  ident: b0075
  article-title: Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification[J]
  publication-title: Acta Mater.
– volume: 7
  start-page: 0394
  year: 2024
  ident: b0035
  article-title: Thermal protection performance of biomimetic flexible skin for deformable high-speed vehicles (DHSV-bio-FS) under uniaxial tensile strain[J]
  publication-title: Research
– volume: 57
  start-page: 4323
  year: 1998
  end-page: 4349
  ident: b0205
  article-title: Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]
  publication-title: Phys. Rev. E
– volume: 10
  start-page: 1672
  year: 2022
  end-page: 1679
  ident: b0015
  article-title: Microstructure analyses and phase-field simulation of partially divorced eutectic solidification in hypoeutectic Mg-Al alloys[J]
  publication-title: J. Magnesium Alloys
– volume: 5618021
  year: 2020
  ident: b0030
  article-title: Temperature-dependent mechanical properties of graphene/Cu nanocomposites with in-plane negative poisson’s ratios[J]
  publication-title: Research
– volume: 90
  year: 2014
  ident: b0130
  article-title: Phase-field modeling of grain-boundary premelting using obstacle potentials[J]
  publication-title: Phys. Rev. E
– volume: 131
  start-page: 167
  year: 2022
  end-page: 176
  ident: b0170
  article-title: In-situ investigation on the microstructure evolution of Mg-2Gd alloys during the V-bending tests[J]
  publication-title: J. Mater. Sci. Technol.
– volume: 298
  year: 2022
  ident: b0120
  article-title: Numerical simulation and experimental analysis of ice crystal growth and freezing-centrifugal desalination for seawater with different compositions[J]
  publication-title: Sep. Purif. Technol.
– volume: 100
  year: 2019
  ident: b0150
  article-title: Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking[J]
  publication-title: Phys. Rev. E
– volume: 308
  year: 2025
  ident: b0060
  article-title: Phase-field modeling of brittle anisotropic fracture in polycrystalline materials under combined thermo-mechanical loadings[J]
  publication-title: Comput. Struct.
– volume: 4
  year: 2021
  ident: b0100
  article-title: Solution to multiscale and multiphysics problems: a phase-field study of fully coupled thermal-solute-convection dendrite growth[J]
  publication-title: Adv. Theor. Simul.
– volume: 62
  start-page: 427
  year: 2009
  end-page: 431
  ident: b0195
  article-title: In situ analysis of dendritic equiaxed microstructure formation in Al-Cu alloys by synchrotron X-ray radiography[J]
  publication-title: Trans. Indian Inst. Met.
– volume: 11
  start-page: 4166
  year: 2023
  end-page: 4180
  ident: b0155
  article-title: Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components[J]
  publication-title: J. Magnesium Alloys
– volume: 39
  start-page: 5887
  year: 1989
  end-page: 5896
  ident: b0215
  article-title: Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations[J]
  publication-title: Phys. Rev. A
– volume: 40
  start-page: 495
  year: 2019
  end-page: 507
  ident: b0270
  article-title: CALPHAD-based modeling and experimental validation of microstructural evolution and microsegregation in magnesium alloys during solidification[J]
  publication-title: J. Phase Equilib. Diffus.
– year: 2019
  ident: b0005
  article-title: Combined Molecular Dynamics and Phase Field Simulation of Crystal Melt Interfacial Properties and Microstructure Evolution during Rapid Solidification of Ti-Ni Alloys[D]
– volume: 170
  start-page: 138
  year: 2019
  end-page: 154
  ident: b0135
  article-title: Phase-field study on the growth of magnesium silicide occasioned by reactive diffusion on the surface of Si-foams[J]
  publication-title: Acta Mater.
– volume: 49
  start-page: 2193
  year: 2018
  end-page: 2201
  ident: b0180
  article-title: Prediction of cavitation depth in an Al-Cu alloy melt with bubble characteristics based on synchrotron X-ray radiography[J]
  publication-title: Metall. Mater. Trans. A
– volume: 184
  year: 2020
  ident: b0090
  article-title: Phase-field-lattice Boltzmann simulation of dendrite motion using an immersed boundary method[J]
  publication-title: Comput. Mater. Sci
– volume: 34
  start-page: 1142
  year: 2018
  end-page: 1148
  ident: b0190
  article-title: Effect of cooling rates on the dendritic morphology transition of Mg-6Gd alloy by in situ X-ray radiography[J]
  publication-title: J. Mater. Sci. Technol.
– volume: 41
  start-page: 121
  year: 2003
  end-page: 163
  ident: b0240
  article-title: Atomistic and continuum modeling of dendritic solidification[J]
  publication-title: Mater. Sci. Eng. R. Rep.
– volume: 267
  year: 2021
  ident: b0200
  article-title: Evolution of specific interface area during solidification: a three-dimensional thermosolutal phase-field study[J]
  publication-title: Comput. Phys. Commun.
– volume: 53
  start-page: R3017
  year: 1996
  end-page: R3020
  ident: b0210
  article-title: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]
  publication-title: Phys. Rev. E
– volume: 222
  year: 2022
  ident: b0025
  article-title: Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability[J]
  publication-title: Mater. Des.
– volume: 304
  year: 2024
  ident: b0065
  article-title: On the phase-field modeling of thermo-electromechanical brittle fracture in piezoceramics using an adaptive isogeometric approach[J]
  publication-title: Eng. Fract. Mech.
– volume: 87
  year: 2001
  ident: b0140
  article-title: Phase-field formulation for quantitative modeling of alloy solidification[J]
  publication-title: Phys. Rev. Lett.
– volume: 70
  year: 2004
  ident: b0105
  article-title: Quantitative phase-field model of alloy solidification[J]
  publication-title: Phys. Rev. E
– volume: 524
  year: 2025
  ident: b0115
  article-title: A hybrid phase field-volume of fluid method for the simulation of three-dimensional binary solidification in the presence of gas bubble[J]
  publication-title: J. Comput. Phys.
– volume: 86
  year: 2012
  ident: b0260
  article-title: Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities[J]
  publication-title: Phys. Rev. E
– volume: 841
  year: 2022
  ident: b0175
  article-title: In-situ TEM observations on interaction of basal dislocations and β′ phases in a Mg-Gd binary alloy[J]
  publication-title: Mater. Sci. Eng. A
– volume: 49
  start-page: 3603
  year: 2018
  end-page: 3615
  ident: b0230
  article-title: A phase-field lattice-Boltzmann study on dendritic growth of Al-Cu alloy under convection[J]
  publication-title: Metall. Mater. Trans. B
– volume: 11
  year: 2024
  ident: b0020
  article-title: Thermal‐mechanical coupling performance of heat-resistant, high-strength and printable Al‐Si alloy antisymmetric lattice structure[J]
  publication-title: Adv. Sci.
– volume: 84
  year: 2011
  ident: b0245
  article-title: Unified derivation of phase-field models for alloy solidification from a grand-potential functional[J]
  publication-title: Phys. Rev. E
– volume: 102
  year: 2020
  ident: b0145
  article-title: General hierarchical structure to solve transport phenomena with dissimilar time scales: application in large-scale three-dimensional thermosolutal phase-field problems[J]
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 1100
  year: 2024
  ident: b0125
  article-title: Phase-field simulation and dendrite evolution analysis of solidification process for Cu-W alloy contact materials under arc ablation[J]
  publication-title: Metals
– volume: 274
  year: 2022
  ident: b0070
  article-title: Adaptive isogeometric analysis-based phase-field modeling of brittle electromechanical fracture in piezoceramics[J]
  publication-title: Eng. Fract. Mech.
– volume: 55
  start-page: 500
  year: 2024
  end-page: 512
  ident: b0085
  article-title: Tilting dynamics and parameter dependence of the dendrite array under a transverse magnetic field: a unified magnetic field-based phase-field study[J]
  publication-title: Metall. Mater. Trans. A
– volume: 60
  start-page: 7186
  year: 1999
  end-page: 7197
  ident: b0255
  article-title: Phase-field model for binary alloys[J]
  publication-title: Phys. Rev. E
– volume: 79
  year: 2009
  ident: b0250
  article-title: Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid[J]
  publication-title: Phys. Rev. E
– volume: 69
  year: 2004
  ident: b0095
  article-title: Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion[J]
  publication-title: Phys. Rev. E
– volume: 171
  year: 2020
  ident: b0185
  article-title: Three-dimensional thermosolutal simulation of dendritic and eutectic growth[J]
  publication-title: Comput. Mater. Sci
– volume: 53
  start-page: R3017
  issue: 4
  year: 1996
  ident: 10.1016/j.matdes.2025.114028_b0210
  article-title: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.R3017
– volume: 524
  year: 2025
  ident: 10.1016/j.matdes.2025.114028_b0115
  article-title: A hybrid phase field-volume of fluid method for the simulation of three-dimensional binary solidification in the presence of gas bubble[J]
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2025.113720
– volume: 41
  start-page: 121
  issue: 6
  year: 2003
  ident: 10.1016/j.matdes.2025.114028_b0240
  article-title: Atomistic and continuum modeling of dendritic solidification[J]
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/S0927-796X(03)00036-6
– volume: 214
  year: 2021
  ident: 10.1016/j.matdes.2025.114028_b0075
  article-title: Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification[J]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117005
– volume: 199
  year: 2021
  ident: 10.1016/j.matdes.2025.114028_b0110
  article-title: On the phase-field modeling of rapid solidification[J]
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2021.110812
– volume: 9839403
  year: 2022
  ident: 10.1016/j.matdes.2025.114028_b0040
  article-title: Graphene oxide-induced substantial strengthening of high-entropy alloy revealed by micropillar compression and molecular dynamics simulation[J]
  publication-title: Research
– volume: 10
  start-page: 121
  issue: 2/3
  year: 2002
  ident: 10.1016/j.matdes.2025.114028_b0235
  article-title: Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts[J]
  publication-title: Interface Sci.
  doi: 10.1023/A:1015815928191
– volume: 49
  start-page: 3603
  issue: 6
  year: 2018
  ident: 10.1016/j.matdes.2025.114028_b0230
  article-title: A phase-field lattice-Boltzmann study on dendritic growth of Al-Cu alloy under convection[J]
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-018-1418-1
– volume: 34
  start-page: 1142
  issue: 7
  year: 2018
  ident: 10.1016/j.matdes.2025.114028_b0190
  article-title: Effect of cooling rates on the dendritic morphology transition of Mg-6Gd alloy by in situ X-ray radiography[J]
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2017.11.047
– volume: 40
  start-page: 495
  issue: 4
  year: 2019
  ident: 10.1016/j.matdes.2025.114028_b0270
  article-title: CALPHAD-based modeling and experimental validation of microstructural evolution and microsegregation in magnesium alloys during solidification[J]
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-019-00732-0
– volume: 11
  issue: 42
  year: 2024
  ident: 10.1016/j.matdes.2025.114028_b0020
  article-title: Thermal‐mechanical coupling performance of heat-resistant, high-strength and printable Al‐Si alloy antisymmetric lattice structure[J]
  publication-title: Adv. Sci.
– volume: 304
  year: 2024
  ident: 10.1016/j.matdes.2025.114028_b0065
  article-title: On the phase-field modeling of thermo-electromechanical brittle fracture in piezoceramics using an adaptive isogeometric approach[J]
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2024.110068
– volume: 90
  issue: 1
  year: 2014
  ident: 10.1016/j.matdes.2025.114028_b0130
  article-title: Phase-field modeling of grain-boundary premelting using obstacle potentials[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.012401
– volume: 274
  year: 2022
  ident: 10.1016/j.matdes.2025.114028_b0070
  article-title: Adaptive isogeometric analysis-based phase-field modeling of brittle electromechanical fracture in piezoceramics[J]
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108738
– volume: 168
  start-page: 167
  year: 2019
  ident: 10.1016/j.matdes.2025.114028_b0220
  article-title: Quantitative phase field modeling of solute trapping and continuous growth kinetics in quasi-rapid solidification[J]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.02.009
– volume: 86
  issue: 5
  year: 2012
  ident: 10.1016/j.matdes.2025.114028_b0260
  article-title: Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.051603
– volume: 56
  start-page: 8225
  issue: 13
  year: 2021
  ident: 10.1016/j.matdes.2025.114028_b0165
  article-title: In situ observation of the impact of hydrogen bubbles in Al-Cu melt on directional dendritic solidification[J]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05748-3
– volume: 102
  issue: 4
  year: 2020
  ident: 10.1016/j.matdes.2025.114028_b0145
  article-title: General hierarchical structure to solve transport phenomena with dissimilar time scales: application in large-scale three-dimensional thermosolutal phase-field problems[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.043313
– volume: 5618021
  year: 2020
  ident: 10.1016/j.matdes.2025.114028_b0030
  article-title: Temperature-dependent mechanical properties of graphene/Cu nanocomposites with in-plane negative poisson’s ratios[J]
  publication-title: Research
– volume: 12
  start-page: 4219
  issue: 10
  year: 2024
  ident: 10.1016/j.matdes.2025.114028_b0160
  article-title: One developed finite element model used in nano-layered flaky Ti2AlC MAX ceramic particles reinforced magnesium composite[J]
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2023.04.009
– volume: 11
  start-page: 4166
  issue: 11
  year: 2023
  ident: 10.1016/j.matdes.2025.114028_b0155
  article-title: Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components[J]
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2023.11.003
– volume: 137
  issue: 3
  year: 2012
  ident: 10.1016/j.matdes.2025.114028_b0265
  article-title: Spinodal decomposition and droplets entrapment in monotectic solidification[J]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4734485
– volume: 14
  start-page: 1100
  issue: 10
  year: 2024
  ident: 10.1016/j.matdes.2025.114028_b0125
  article-title: Phase-field simulation and dendrite evolution analysis of solidification process for Cu-W alloy contact materials under arc ablation[J]
  publication-title: Metals
  doi: 10.3390/met14101100
– volume: 841
  year: 2022
  ident: 10.1016/j.matdes.2025.114028_b0175
  article-title: In-situ TEM observations on interaction of basal dislocations and β′ phases in a Mg-Gd binary alloy[J]
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2022.143017
– volume: 267
  year: 2021
  ident: 10.1016/j.matdes.2025.114028_b0200
  article-title: Evolution of specific interface area during solidification: a three-dimensional thermosolutal phase-field study[J]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108042
– volume: 10
  start-page: 1672
  issue: 6
  year: 2022
  ident: 10.1016/j.matdes.2025.114028_b0015
  article-title: Microstructure analyses and phase-field simulation of partially divorced eutectic solidification in hypoeutectic Mg-Al alloys[J]
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2021.04.014
– volume: 69
  issue: 5
  year: 2004
  ident: 10.1016/j.matdes.2025.114028_b0095
  article-title: Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.051607
– volume: 7
  start-page: 0394
  year: 2024
  ident: 10.1016/j.matdes.2025.114028_b0035
  article-title: Thermal protection performance of biomimetic flexible skin for deformable high-speed vehicles (DHSV-bio-FS) under uniaxial tensile strain[J]
  publication-title: Research
  doi: 10.34133/research.0394
– volume: 308
  year: 2025
  ident: 10.1016/j.matdes.2025.114028_b0060
  article-title: Phase-field modeling of brittle anisotropic fracture in polycrystalline materials under combined thermo-mechanical loadings[J]
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2025.107651
– volume: 100
  issue: 2
  year: 2019
  ident: 10.1016/j.matdes.2025.114028_b0150
  article-title: Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.023305
– volume: 11
  start-page: 4525
  issue: 12
  year: 2023
  ident: 10.1016/j.matdes.2025.114028_b0010
  article-title: Assessing the predictive capabilities of precipitation strengthening models for deformation twinning in Mg alloys using phase-field simulations[J]
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2023.07.008
– volume: 164
  start-page: 237
  year: 2019
  ident: 10.1016/j.matdes.2025.114028_b0080
  article-title: Permeability prediction for flow normal to columnar solidification structures by large–scale simulations of phase-field and lattice Boltzmann methods[J]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.10.039
– volume: 60
  start-page: 7186
  issue: 6
  year: 1999
  ident: 10.1016/j.matdes.2025.114028_b0255
  article-title: Phase-field model for binary alloys[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.60.7186
– volume: 87
  issue: 11
  year: 2001
  ident: 10.1016/j.matdes.2025.114028_b0140
  article-title: Phase-field formulation for quantitative modeling of alloy solidification[J]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.115701
– volume: 4
  issue: 3
  year: 2021
  ident: 10.1016/j.matdes.2025.114028_b0100
  article-title: Solution to multiscale and multiphysics problems: a phase-field study of fully coupled thermal-solute-convection dendrite growth[J]
  publication-title: Adv. Theor. Simul.
  doi: 10.1002/adts.202000251
– volume: 184
  year: 2020
  ident: 10.1016/j.matdes.2025.114028_b0090
  article-title: Phase-field-lattice Boltzmann simulation of dendrite motion using an immersed boundary method[J]
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2020.109784
– volume: 131
  start-page: 167
  year: 2022
  ident: 10.1016/j.matdes.2025.114028_b0170
  article-title: In-situ investigation on the microstructure evolution of Mg-2Gd alloys during the V-bending tests[J]
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.05.039
– volume: 79
  issue: 3
  year: 2009
  ident: 10.1016/j.matdes.2025.114028_b0250
  article-title: Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.031603
– volume: 57
  start-page: 4323
  issue: 4
  year: 1998
  ident: 10.1016/j.matdes.2025.114028_b0205
  article-title: Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.57.4323
– volume: 39
  start-page: 5887
  issue: 11
  year: 1989
  ident: 10.1016/j.matdes.2025.114028_b0215
  article-title: Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations[J]
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.39.5887
– volume: 170
  start-page: 138
  year: 2019
  ident: 10.1016/j.matdes.2025.114028_b0135
  article-title: Phase-field study on the growth of magnesium silicide occasioned by reactive diffusion on the surface of Si-foams[J]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.03.008
– volume: 70
  issue: 6
  year: 2004
  ident: 10.1016/j.matdes.2025.114028_b0105
  article-title: Quantitative phase-field model of alloy solidification[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.061604
– volume: 171
  year: 2020
  ident: 10.1016/j.matdes.2025.114028_b0185
  article-title: Three-dimensional thermosolutal simulation of dendritic and eutectic growth[J]
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2019.109274
– volume: 222
  year: 2022
  ident: 10.1016/j.matdes.2025.114028_b0025
  article-title: Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability[J]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111041
– volume: 130
  issue: 2
  year: 2023
  ident: 10.1016/j.matdes.2025.114028_b0225
  article-title: Microstructural pattern formation during far-from-equilibrium alloy solidification[J]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.026203
– year: 2019
  ident: 10.1016/j.matdes.2025.114028_b0005
– volume: 49
  start-page: 79
  issue: 1
  year: 2019
  ident: 10.1016/j.matdes.2025.114028_b0050
  article-title: The phase field method: mesoscale simulation aiding material discovery[J]
  publication-title: Annu. Rev. Mat. Res.
  doi: 10.1146/annurev-matsci-070218-010151
– volume: 298
  year: 2022
  ident: 10.1016/j.matdes.2025.114028_b0120
  article-title: Numerical simulation and experimental analysis of ice crystal growth and freezing-centrifugal desalination for seawater with different compositions[J]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121656
– volume: 64
  start-page: 311
  issue: 6
  year: 2019
  ident: 10.1016/j.matdes.2025.114028_b0045
  article-title: Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000[J]
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2018.1537090
– volume: 62
  start-page: 427
  issue: 4–5
  year: 2009
  ident: 10.1016/j.matdes.2025.114028_b0195
  article-title: In situ analysis of dendritic equiaxed microstructure formation in Al-Cu alloys by synchrotron X-ray radiography[J]
  publication-title: Trans. Indian Inst. Met.
  doi: 10.1007/s12666-009-0058-1
– volume: 49
  start-page: 2193
  issue: 6
  year: 2018
  ident: 10.1016/j.matdes.2025.114028_b0180
  article-title: Prediction of cavitation depth in an Al-Cu alloy melt with bubble characteristics based on synchrotron X-ray radiography[J]
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-018-4603-6
– volume: 228
  year: 2023
  ident: 10.1016/j.matdes.2025.114028_b0055
  article-title: Numerical solution to phase-field model of solidification: a review[J]
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2023.112366
– volume: 84
  issue: 3
  year: 2011
  ident: 10.1016/j.matdes.2025.114028_b0245
  article-title: Unified derivation of phase-field models for alloy solidification from a grand-potential functional[J]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.031601
– volume: 55
  start-page: 500
  issue: 2
  year: 2024
  ident: 10.1016/j.matdes.2025.114028_b0085
  article-title: Tilting dynamics and parameter dependence of the dendrite array under a transverse magnetic field: a unified magnetic field-based phase-field study[J]
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-023-07261-z
SSID ssj0022734
Score 2.450396
Snippet [Display omitted] •The phase-field model for alloy solidification is reformulated based on arbitrary concentration and temperature scales.•The dimensionless...
The available phase-field models are generally limited to certain specific concentrations and temperatures, weakening the universality of the method. A unified...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 114028
SubjectTerms Phase-field model
Scale
Simulation
Solidification
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEB8RTlJQ-sUd3EdpIREKgF0QUQ3SIntiEIpVVbBv49d06CysLAljhOHH127uHcfQdwYfErc4mJgzjKk0AIGQYppyBHriM3LIxNLCUnP0zU6FncTeW0A9dtLgyFVTayv5bpXlo3LYMGzcG8LAeP6D0IoidHJc7RyRAb0AtRu_Iu9C7H96PJj99FDC71VgtR9MWyzaDzYV5oFxpLvN2hJN5cTmXZ1zSUJ_JfU1Rryud2B7Ybq5Fd1i-2Cx1b7cHWGpfgPryMqyU52qysVjO2ROgtW_oiN4g8mzlmiMef9sY-ULix-Ruqr8DHrzFfDYe60E_4L4arsTQUQeQn7QCeb2-erkdBUzUhKCKVrgLnYqXJ6nBoDeARF7ELNRcu1zrMndJWSueGJnXoqUkZFzrkVqQ29a1GRofQrWaVPQImKS02wUtKRkIrk8s8IovLcFsoZ3UfghapbF6TY2Rt1Nh7ViObEbJZjWwfrgjOn75Ebe0bZovXrJnbTKk8DnUqrUVP0RU8L6RxNjFCu0KlIe9D3E5G9mul4KPKP4c__vedJ7BJZ3WI2Cl0V4tPe4bGyCo_bxbbN7-63m8
  priority: 102
  providerName: Elsevier
Title Insight into scale selection of dimensionless phase-field model of alloy solidification
URI https://dx.doi.org/10.1016/j.matdes.2025.114028
https://doaj.org/article/66b72a95ee104fc0bc5dfe8d4afc6920
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQWWBAfIryUXlgtUiT2E7GgkAtiE5UdLPs2BZFKK1oGfj33NkJygQLW-RYdvTOyb1zzu8IuXLwlvnCSiYzU7A85ykrE0xyTHTmh5V1hcPDyU9TMZ7lD3M-75T6wpywKA8cgbsWwshUl9w5CBx8lZiKW-8Km2tfiTIN0Tr4vDaYakItFG2Juyuoyid5e2guZHYBFbQOpbpTjlK5CVZi7ziloN3f8U0df3O_T_YaokhH8QEPyJarD8luRz7wiLxM6jXG1nRRb5Z0DWg7ug51bQBsuvTUonQ_boe9w_eMrl7BY7GQskZDARzsgv_dvygswIXFpKFgp2Myu797vh2zplACqzJRbpj3UmgkGh4IAFwlufSpBriM1qnxQjvOvR_a0kNwxrmsdJq4vHRlaLU8OyG9elm7U0I5noQt4JbgWa6FNdxkSLJs4irhne4T1iKlVlEPQ7WJYm8qIqsQWRWR7ZMbhPOnL6pZhwawsWpsrP6ycZ_I1hiqIQbR4cNQi1-nP_uP6c_JDg4ZE8QuSG_z8ekugYpszIBsjyaP4-kgrL5v5iTe3w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB51y2GXA9oXosDu-rDXqCaxneRYKlC7Lb0saLlZTmxDEEqrthz498w4CSoXDnuLHOehz5N5ODPfAPx2-JX5zKZRmhRZJISMo5xTkiM3iT8rrcscFSdfLdTkRvy5lbc9GHe1MJRW2er-RqcHbd2ODFs0h6uqGv7F6EEQPTkacY5BhvgAe8ROhWK-N5rOJovXuIsYXJqtFqLoS2VXQRfSvNAvtI54u2NJvLmc2rLvWKhA5L9jqHaMz-VnOGi9RjZqXuwL9Fz9FfZ3uAS_wb9pvaFAm1X1dsk2CL1jm9DkBpFnS88s8fjT3tgjKje2ukfzFYX8NRa64dAU-gn_zFAaK0sZRGHRvsPN5cX1eBK1XROiMlH5NvI-VYa8Do_eAB5xkfrYcOELY-LCK-Ok9P7M5h4jNSnT0sTcidzlYdTK5BD69bJ2R8AklcVmeErJRBhlC1kk5HFZ7krlnRlA1CGlVw05hu6yxh50g6wmZHWD7ADOCc7XuURtHQaW6zvdrq1Wqkhjk0vnMFL0JS9Kab3LrDC-VHnMB5B2i6HfSAreqnr38cf_feUv-Di5vprr-XQxO4FPdKZJFzuF_nb95H6gY7ItfraC9wJZ--Fe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+scale+selection+of+dimensionless+phase-field+model+of+alloy+solidification&rft.jtitle=Materials+%26+design&rft.au=Yuchen+Tang&rft.au=Ang+Zhang&rft.au=He+Liu&rft.au=Gengyun+Zhang&rft.date=2025-06-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=254&rft.spage=114028&rft_id=info:doi/10.1016%2Fj.matdes.2025.114028&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_66b72a95ee104fc0bc5dfe8d4afc6920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon