Leveraging machine learning for data-driven building energy rate prediction

•Proposes a novel data-driven methodology for predicting Building Energy Ratings (BER) in urban areas, with Dublin, Ireland, as a pilot case.•Integrates geospatial, building-specific, and neighborhood-scale environmental data for BER modeling.•Utilizes advanced Machine Learning algorithms (RF, DT, K...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 26; p. 104931
Main Authors Eslamirad, Nasim, Golamnia, Mehdi, Sajadi, Payam, Pilla, Francesco
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Proposes a novel data-driven methodology for predicting Building Energy Ratings (BER) in urban areas, with Dublin, Ireland, as a pilot case.•Integrates geospatial, building-specific, and neighborhood-scale environmental data for BER modeling.•Utilizes advanced Machine Learning algorithms (RF, DT, KNN, SVM) to achieve high predictive accuracy.•Aligns BER prediction framework with European energy performance standards, ensuring scalability across urban contexts.•Offers a practical tool for policymakers to enhance urban energy planning and reduce carbon emissions, setting a new benchmark for predictive accuracy in Urban Building Energy Modeling (UBEM). This paper presents a novel, data-driven approach for predicting Building Energy Ratings (BER) in urban environments, using advanced Machine Learning (ML) algorithms. Focusing on Dublin, we integrate diverse geospatial datasets with building-specific and neighbourhood-scale features to classify BER. Our approach leverages cutting-edge ML techniques, including Decision Trees (DT), Random Forest (RF), K-Nearest Neighbours (KNN), and Support Vector Machines (SVM), to develop highly accurate predictive models. The performance of these models was rigorously evaluated using comprehensive statistical metrics, such as Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), precision, recall, and overall accuracy (OA). The results demonstrate that the RF model outperformed other algorithms, achieving the highest classification accuracy, with AUC values ranging from 0.77 to 0.83. Notably, the model exhibited superior performance in classifying higher energy-consuming buildings (Class G), while the SVM showed limited discriminative power with AUC values between 0.37 and 0.49. These findings underscore the effectiveness of ML in Urban Building Energy Modelling (UBEM), particularly in forecasting energy consumption patterns and identifying high-energy-use buildings. This study makes significant contributions by advancing the application of ML to urban energy efficiency planning. By aligning the Building Energy Rating (BER) prediction framework with European energy performance standards (ISO/CEN), it ensures adaptability and relevance across diverse urban contexts. The approach addresses key limitations in UBEM while offering a robust tool for policymakers and urban planners to optimize energy consumption and reduce carbon emissions. Integrating spatial and contextual factors with BER establishes a new standard for predictive accuracy in urban energy research.
AbstractList This paper presents a novel, data-driven approach for predicting Building Energy Ratings (BER) in urban environments, using advanced Machine Learning (ML) algorithms. Focusing on Dublin, we integrate diverse geospatial datasets with building-specific and neighbourhood-scale features to classify BER. Our approach leverages cutting-edge ML techniques, including Decision Trees (DT), Random Forest (RF), K-Nearest Neighbours (KNN), and Support Vector Machines (SVM), to develop highly accurate predictive models. The performance of these models was rigorously evaluated using comprehensive statistical metrics, such as Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), precision, recall, and overall accuracy (OA). The results demonstrate that the RF model outperformed other algorithms, achieving the highest classification accuracy, with AUC values ranging from 0.77 to 0.83. Notably, the model exhibited superior performance in classifying higher energy-consuming buildings (Class G), while the SVM showed limited discriminative power with AUC values between 0.37 and 0.49. These findings underscore the effectiveness of ML in Urban Building Energy Modelling (UBEM), particularly in forecasting energy consumption patterns and identifying high-energy-use buildings. This study makes significant contributions by advancing the application of ML to urban energy efficiency planning. By aligning the Building Energy Rating (BER) prediction framework with European energy performance standards (ISO/CEN), it ensures adaptability and relevance across diverse urban contexts. The approach addresses key limitations in UBEM while offering a robust tool for policymakers and urban planners to optimize energy consumption and reduce carbon emissions. Integrating spatial and contextual factors with BER establishes a new standard for predictive accuracy in urban energy research.
•Proposes a novel data-driven methodology for predicting Building Energy Ratings (BER) in urban areas, with Dublin, Ireland, as a pilot case.•Integrates geospatial, building-specific, and neighborhood-scale environmental data for BER modeling.•Utilizes advanced Machine Learning algorithms (RF, DT, KNN, SVM) to achieve high predictive accuracy.•Aligns BER prediction framework with European energy performance standards, ensuring scalability across urban contexts.•Offers a practical tool for policymakers to enhance urban energy planning and reduce carbon emissions, setting a new benchmark for predictive accuracy in Urban Building Energy Modeling (UBEM). This paper presents a novel, data-driven approach for predicting Building Energy Ratings (BER) in urban environments, using advanced Machine Learning (ML) algorithms. Focusing on Dublin, we integrate diverse geospatial datasets with building-specific and neighbourhood-scale features to classify BER. Our approach leverages cutting-edge ML techniques, including Decision Trees (DT), Random Forest (RF), K-Nearest Neighbours (KNN), and Support Vector Machines (SVM), to develop highly accurate predictive models. The performance of these models was rigorously evaluated using comprehensive statistical metrics, such as Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), precision, recall, and overall accuracy (OA). The results demonstrate that the RF model outperformed other algorithms, achieving the highest classification accuracy, with AUC values ranging from 0.77 to 0.83. Notably, the model exhibited superior performance in classifying higher energy-consuming buildings (Class G), while the SVM showed limited discriminative power with AUC values between 0.37 and 0.49. These findings underscore the effectiveness of ML in Urban Building Energy Modelling (UBEM), particularly in forecasting energy consumption patterns and identifying high-energy-use buildings. This study makes significant contributions by advancing the application of ML to urban energy efficiency planning. By aligning the Building Energy Rating (BER) prediction framework with European energy performance standards (ISO/CEN), it ensures adaptability and relevance across diverse urban contexts. The approach addresses key limitations in UBEM while offering a robust tool for policymakers and urban planners to optimize energy consumption and reduce carbon emissions. Integrating spatial and contextual factors with BER establishes a new standard for predictive accuracy in urban energy research.
ArticleNumber 104931
Author Pilla, Francesco
Golamnia, Mehdi
Eslamirad, Nasim
Sajadi, Payam
Author_xml – sequence: 1
  givenname: Nasim
  surname: Eslamirad
  fullname: Eslamirad, Nasim
  email: nasim.eslamirad@ucd.ie
  organization: School of Architecture Planning and Environmental Policy, University College Dublin, Ireland
– sequence: 2
  givenname: Mehdi
  surname: Golamnia
  fullname: Golamnia, Mehdi
  organization: School of Architecture Planning and Environmental Policy, University College Dublin, Ireland
– sequence: 3
  givenname: Payam
  surname: Sajadi
  fullname: Sajadi, Payam
  organization: School of Architecture Planning and Environmental Policy, University College Dublin, Ireland
– sequence: 4
  givenname: Francesco
  surname: Pilla
  fullname: Pilla, Francesco
  organization: School of Architecture Planning and Environmental Policy, University College Dublin, Ireland
BookMark eNp9kMtKxDAUhoOM4DjOG7joC3Q8ufS2EWTwhgMudB_S5KSmdNIhrQPz9qZWxJWrHP7D_yX5LsnC9x4JuaawoUDzm3YTnEffbBiwLEai4vSMLFlWQUoZh8Wf-YKsh6EFAFbGLi-W5GWHRwyqcb5J9kp_RFTSoQp-CmwfEqNGlZrgjuiT-tN1Zlqgx9CckqBGTA4BjdOj6_0VObeqG3D9c67I28P9-_Yp3b0-Pm_vdqnmeTWm1uRYcSgsmqK0BVdlqWxh8xpKmgE33BhWqbzEUnAtMqGZAK5LyHVlaMZX5Hmmml618hDcXoWT7JWT30EfGqnC6HSHstAWbCUKS6taMIMKOKiiFrkQVLB49YqImaVDPwwB7S-PgpzsylbOduVkV852Y-12rmH85dFhkIN26HUUEVCP8SHuf8AXF9aGTQ
Cites_doi 10.1016/j.engappai.2007.09.009
10.1016/j.apenergy.2020.114861
10.1016/j.eneco.2013.07.020
10.1023/A:1010933404324
10.1016/j.apenergy.2014.12.068
10.2214/ajr.184.2.01840364
10.1007/978-3-540-39964-3_62
10.1016/j.jag.2013.05.017
10.1007/s12273-023-1032-2
10.1016/j.envsoft.2016.07.005
10.5334/bc.71
10.26868/25222708.2023.1435
10.1016/j.buildenv.2019.106508
10.1007/s10822-014-9759-6
10.1016/j.geomorph.2020.107201
10.1080/10824669.2018.1523734
10.1007/BF01062525
10.1002/wics.1278
10.1016/j.enbuild.2011.10.061
10.1023/A:1022643204877
10.1016/j.patrec.2005.10.010
10.1023/A:1010920819831
10.1016/j.enbuild.2014.06.007
10.1016/j.isprsjprs.2016.01.011
10.1016/j.rser.2015.12.040
10.1016/j.energy.2006.11.010
10.1109/ACCESS.2022.3232490
10.1016/j.rser.2020.109902
10.1016/j.enbuild.2016.10.050
10.1109/TIT.1967.1053964
10.1080/0143116031000114851
10.1007/s12053-021-09962-z
10.1016/j.energy.2016.10.057
10.1016/j.enggeo.2011.09.006
10.21037/atm.2016.03.37
10.1007/s12273-021-0878-4
10.1109/TKDE.2003.1245283
10.1016/j.buildenv.2018.05.035
10.1007/s10994-006-6226-1
10.1080/00031305.1992.10475879
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2025.104931
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_7cf0f947f19b42dea030a7b4644142f7
10_1016_j_rineng_2025_104931
S2590123025010072
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c369t-fd6e9307fed78f73a88af7f6b081503d3dd29a68e843c454c2403c806c9d153
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:09:15 EDT 2025
Wed Jul 16 16:37:51 EDT 2025
Sat Aug 09 17:30:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Urban energy analysis
Urban building energy modelling (UBEM)
Machine learning classification models
Data-driven approach
Building energy rate (BER)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-fd6e9307fed78f73a88af7f6b081503d3dd29a68e843c454c2403c806c9d153
OpenAccessLink https://doaj.org/article/7cf0f947f19b42dea030a7b4644142f7
ParticipantIDs doaj_primary_oai_doaj_org_article_7cf0f947f19b42dea030a7b4644142f7
crossref_primary_10_1016_j_rineng_2025_104931
elsevier_sciencedirect_doi_10_1016_j_rineng_2025_104931
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Farzana, Liu, Baldwin, Hossain (bib0019) 2014; 81
Ali, Shamsi, Hoare, ODonnell (bib0011) 2018
Deng, Chen, Yang, Chen (bib0029) 2022; 15
“GeoDirectory . GeoBuilding Intel [csv], Q4 2023, An Post GeoDirectory DAC. 2024.,” 2024. [Online]. Available
Tardioli, Kerrigan, Oates, O'Donnell, Donal, Finn (bib0022) 2018; 140
Hyland, Lyons, Lyons (bib0016) 2013; 40
Eslamirad, Nia, Sajadi, Pilla (bib0037) 2024
Altman (bib0059) 1992; 46
Czodrowski (bib0071) 2014; 28
[Accessed 02 02 2024].
Santamouris, Vasilakopoulou (bib0007) 2021; 1
Sood, Alhindawi, Ali, McGrath, Byrne, Finn, O’Donnell (bib0026) 2023; 75
Sokol, Cerezo Davila, Reinhart (bib0033) 2017; 134
Hong, Chen, Luo, Luo, Lee (bib0032) 2020; 168
Martina, Causone, Tianzhen, Yixing (bib0025) 2020; 62
(bib0006) 2009
Tibshirani (bib0050) 1996
Guo, G.;. Wang, H.;. Bell, D.;. Bi, Y.;. Greer, K., “KNN model-based approach in classification,” in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986–996). Springer Berlin Heidelberg., Berlin Heidelberg, 2003.
De Ville (bib0046) 2013; 56
Howard, Parshall, Thompson, Hammer, Dickinson, Modi (bib0021) 2012; 45
Bowers, Zhou (bib0072) 2019; 1
Wang, Liu, Xu, Tan, Wang, Yan (bib0010) 2023
Ben-David, A. “About the relationship between ROC curves and Cohen's kappa,” Eng. Appl. Artif. Intell., vol. 21, no. 6, pp. 874–882.
Davila, Reinhart, Bemis (bib0009) 2016; 117
[Accessed 06 02 2024].
Luo, Hong, Tang (bib0031) 2020; 13
Belgiu, Drăguţ (bib0047) 2016; 114
Jasmina, Veljović, Sinisa, Zeljko, Tomovic (bib0043) 2017; 7
Yuhao, Scott, Chan, Camila, Justin, Aaron, Rysanek, Kellett, Cynthia (bib0024) 2021; 2
Geurts, Ernst, Wehenkel (bib0054) 2006; 63
[Accessed 04 2024].
Walsh (bib0036) 2012; 9
[Accessed 02 2024].
Cover, Hart (bib0057) 1967; 13
Johari, Peronato, Sadeghian, Zhao, Widén (bib0018) 2020; 128
(bib0005) 2009
Mahedy Hasan, Uddin, Mamun, Sharif, Ulhaq, Krishnamoorthy (bib0042) 2023; 11
Breiman (bib0044) 2001; 45
Obuchowski (bib0069) 2005; 184
Harish, Arun (bib0017) 2016; 56
Suthaharan, Suthaharan (bib0060) 2016; 36
Ali, Shamsi, Bohacek, Hoare, Purcell, Mangina, O’Donnell (bib0012) 2020; 267
Schölkopf, Smola (bib0064) 2001
Beretta (bib0003) 2007
Kavzoglu, Mather (bib0062) 2003; 24
Ding, Feng, Li, Zhou (bib0030) 2019; 158
Guyon, Elisseeff (bib0040) 2003; 3
Quinlan (bib0045) 1986; 1
“Heating and Cooling in Ireland Today,” seai, [Online]. Available
Ghosh, Fassnacht, Joshi, Koch (bib0048) 2014; 26
Hand, Till (bib0067) 2001; 45
Qian, Dan, Credit (bib0028) 2024
Mutani, Todeschi (bib0034) 2021; 14
Kamel (bib0015) 2022; 15
Pham, Pradhan, Bui, Prakash, Dholakia (bib0063) 2016; 84
(bib0001) 2022; 2022
Sun, D.;. Wen, H.;. Wang,D.;. Xu, J., “A random forest model of landslide suscep,” Geomorphology, vol. 362, p. 107201.
Boyd, K.; Costa, V.S.; Davis, J.; Page, C.D., “Unachievable region in precision-recall space and its effect on empirical evaluation,” in Proceedings of the… International Conference on Machine Learning. International Conference on Machine Learning (Vol. 2012, p. 349). NIH Public Access., 2012.
Deng, Javanroodi, Nik, Chen (bib0035) 2023; 19
Fonseca, Schlueter (bib0014) 2015; 142
Purves (bib0068) 1992; 20
Hall, Holmes (bib0041) 2003; 16
Hastie, Tibshirani, Friedman (bib0052) 2000; 20
“Digital landscape Map, Tailte Éireann - Surveying and Government of Ireland [shp], CYAL50402364 © Tailte Éireann – Surveying,” [Online]. Available
Cortes, Vapnik (bib0061) 1995; 20
Powers (bib0074) 2020
Hastie, Tibshirani, Friedman (bib0049) 2009; 2
Raschka (bib0065) 2018
Geoffrey K.F. Tso; Kelvin K.W. Yau, “Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks,” Energy, vol. 32, no. 9, pp. 1761–1768.
Zhang, Li, Zong, Zhu, Wang (bib0058) 2017; 295
“Unies, N. World population prospects–2015 revision, 2015,” 2015.
Dahlström, Broström, Widén (bib0013) 2022; 226
E. Commission, “Energy modelling- modelling framework,” [Online]. Available
“bp. Statistical Review of World Energy 2022 | 71st edition,” 2022.
Borgato, Prataviera, Bordignon, Garay-Martinez, Zarrella (bib0020) 2024
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas (bib0053) 2011; 12
Fawcett (bib0070) 2006; 27
Marjanović, M.;. Kovačević, M.;. Bajat, B.;. Voženílek, V., “Landslide susceptibility assessment using SVM machine learning algorithm,” Eng. Geol., vol. 123, no. 3, pp. 225–234, 201.
Zhang (bib0066) 2016; 4
10.1016/j.rineng.2025.104931_bib0073
Powers (10.1016/j.rineng.2025.104931_bib0074) 2020
10.1016/j.rineng.2025.104931_bib0075
Hong (10.1016/j.rineng.2025.104931_bib0032) 2020; 168
10.1016/j.rineng.2025.104931_bib0038
Mahedy Hasan (10.1016/j.rineng.2025.104931_bib0042) 2023; 11
10.1016/j.rineng.2025.104931_bib0039
Fonseca (10.1016/j.rineng.2025.104931_bib0014) 2015; 142
Farzana (10.1016/j.rineng.2025.104931_bib0019) 2014; 81
Deng (10.1016/j.rineng.2025.104931_bib0035) 2023; 19
Jasmina (10.1016/j.rineng.2025.104931_bib0043) 2017; 7
Borgato (10.1016/j.rineng.2025.104931_bib0020) 2024
Wang (10.1016/j.rineng.2025.104931_bib0010) 2023
Hyland (10.1016/j.rineng.2025.104931_bib0016) 2013; 40
Sokol (10.1016/j.rineng.2025.104931_bib0033) 2017; 134
Qian (10.1016/j.rineng.2025.104931_bib0028) 2024
Cortes (10.1016/j.rineng.2025.104931_bib0061) 1995; 20
Fawcett (10.1016/j.rineng.2025.104931_bib0070) 2006; 27
Pedregosa (10.1016/j.rineng.2025.104931_bib0053) 2011; 12
10.1016/j.rineng.2025.104931_bib0002
Ali (10.1016/j.rineng.2025.104931_bib0011) 2018
10.1016/j.rineng.2025.104931_bib0004
Raschka (10.1016/j.rineng.2025.104931_bib0065) 2018
(10.1016/j.rineng.2025.104931_bib0006) 2009
Zhang (10.1016/j.rineng.2025.104931_bib0058) 2017; 295
Martina (10.1016/j.rineng.2025.104931_bib0025) 2020; 62
10.1016/j.rineng.2025.104931_bib0008
Tardioli (10.1016/j.rineng.2025.104931_bib0022) 2018; 140
Walsh (10.1016/j.rineng.2025.104931_bib0036) 2012; 9
Altman (10.1016/j.rineng.2025.104931_bib0059) 1992; 46
Kavzoglu (10.1016/j.rineng.2025.104931_bib0062) 2003; 24
Deng (10.1016/j.rineng.2025.104931_bib0029) 2022; 15
Johari (10.1016/j.rineng.2025.104931_bib0018) 2020; 128
Mutani (10.1016/j.rineng.2025.104931_bib0034) 2021; 14
Dahlström (10.1016/j.rineng.2025.104931_bib0013) 2022; 226
Guyon (10.1016/j.rineng.2025.104931_bib0040) 2003; 3
Bowers (10.1016/j.rineng.2025.104931_bib0072) 2019; 1
Hand (10.1016/j.rineng.2025.104931_bib0067) 2001; 45
10.1016/j.rineng.2025.104931_bib0051
Schölkopf (10.1016/j.rineng.2025.104931_bib0064) 2001
Yuhao (10.1016/j.rineng.2025.104931_bib0024) 2021; 2
10.1016/j.rineng.2025.104931_bib0056
10.1016/j.rineng.2025.104931_bib0055
Zhang (10.1016/j.rineng.2025.104931_bib0066) 2016; 4
Eslamirad (10.1016/j.rineng.2025.104931_bib0037) 2024
Davila (10.1016/j.rineng.2025.104931_bib0009) 2016; 117
Cover (10.1016/j.rineng.2025.104931_bib0057) 1967; 13
Luo (10.1016/j.rineng.2025.104931_bib0031) 2020; 13
Breiman (10.1016/j.rineng.2025.104931_bib0044) 2001; 45
Hastie (10.1016/j.rineng.2025.104931_bib0049) 2009; 2
Belgiu (10.1016/j.rineng.2025.104931_bib0047) 2016; 114
Obuchowski (10.1016/j.rineng.2025.104931_bib0069) 2005; 184
(10.1016/j.rineng.2025.104931_bib0001) 2022; 2022
(10.1016/j.rineng.2025.104931_bib0005) 2009
Howard (10.1016/j.rineng.2025.104931_bib0021) 2012; 45
Suthaharan (10.1016/j.rineng.2025.104931_bib0060) 2016; 36
Geurts (10.1016/j.rineng.2025.104931_bib0054) 2006; 63
Ding (10.1016/j.rineng.2025.104931_bib0030) 2019; 158
10.1016/j.rineng.2025.104931_bib0023
Pham (10.1016/j.rineng.2025.104931_bib0063) 2016; 84
De Ville (10.1016/j.rineng.2025.104931_bib0046) 2013; 56
Santamouris (10.1016/j.rineng.2025.104931_bib0007) 2021; 1
10.1016/j.rineng.2025.104931_bib0027
Hall (10.1016/j.rineng.2025.104931_bib0041) 2003; 16
Ali (10.1016/j.rineng.2025.104931_bib0012) 2020; 267
Tibshirani (10.1016/j.rineng.2025.104931_bib0050) 1996
Kamel (10.1016/j.rineng.2025.104931_bib0015) 2022; 15
Ghosh (10.1016/j.rineng.2025.104931_bib0048) 2014; 26
Purves (10.1016/j.rineng.2025.104931_bib0068) 1992; 20
Czodrowski (10.1016/j.rineng.2025.104931_bib0071) 2014; 28
Harish (10.1016/j.rineng.2025.104931_bib0017) 2016; 56
Beretta (10.1016/j.rineng.2025.104931_bib0003) 2007
Sood (10.1016/j.rineng.2025.104931_bib0026) 2023; 75
Quinlan (10.1016/j.rineng.2025.104931_bib0045) 1986; 1
Hastie (10.1016/j.rineng.2025.104931_bib0052) 2000; 20
References_xml – volume: 20
  year: 1995
  ident: bib0061
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 13
  year: 1967
  ident: bib0057
  article-title: Nearest Neighbor Pattern Classification
  publication-title: IEEe Trans. Inf. Theory.
– volume: 45
  start-page: 141
  year: 2012
  end-page: 151
  ident: bib0021
  article-title: Spatial distribution of urban building energy consumption by end use
  publication-title: Energy Build.
– year: 2001
  ident: bib0064
  article-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond Adaptive Computation and Machine Learning
– start-page: 2024
  year: 2024
  ident: bib0028
  article-title: Model failure or data corruption? Exploring inconsistencies in building energy ratings with self-supervised learning
  publication-title: Tackling Climate Change With Machine Learning
– reference: . [Accessed 02 2024].
– volume: 117
  start-page: 237
  year: 2016
  end-page: 250
  ident: bib0009
  article-title: Modelling Boston: a workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets
  publication-title: Energy
– volume: 56
  start-page: 448
  year: 2013
  end-page: 455
  ident: bib0046
  article-title: Decision trees
  publication-title: Wiley Interdiscipl. Rev.: Comput. Stat.
– reference: . [Accessed 06 02 2024].
– volume: 46
  year: 1992
  ident: bib0059
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Statist.
– volume: 15
  year: 2022
  ident: bib0029
  article-title: Archetype identification and urban building energy modelling for city-scale buildings based on GIS datasets
  publication-title: Build. Simul.
– volume: 184
  start-page: 364
  year: 2005
  end-page: 372
  ident: bib0069
  article-title: ROC analysis
  publication-title: Am. J. Roentgenol.
– reference: Guo, G.;. Wang, H.;. Bell, D.;. Bi, Y.;. Greer, K., “KNN model-based approach in classification,” in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986–996). Springer Berlin Heidelberg., Berlin Heidelberg, 2003.
– year: 2020
  ident: bib0074
  article-title: arXiv preprint
– reference: “GeoDirectory . GeoBuilding Intel [csv], Q4 2023, An Post GeoDirectory DAC. 2024.,” 2024. [Online]. Available:
– reference: Ben-David, A. “About the relationship between ROC curves and Cohen's kappa,” Eng. Appl. Artif. Intell., vol. 21, no. 6, pp. 874–882.
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib0045
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 84
  start-page: 240
  year: 2016
  end-page: 250
  ident: bib0063
  article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India)
  publication-title: Environ. Modell. Softw.
– volume: 26
  start-page: 49
  year: 2014
  end-page: 63
  ident: bib0048
  article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0053
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 267
  year: 2020
  ident: bib0012
  article-title: A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings
  publication-title: Appl. Energy
– volume: 45
  start-page: 171
  year: 2001
  end-page: 186
  ident: bib0067
  article-title: A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems
  publication-title: Mach. Learn.
– volume: 2022
  year: 2022
  ident: bib0001
  publication-title: World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3
– volume: 14
  year: 2021
  ident: bib0034
  article-title: GIS-based urban energy modelling and energy efficiency scenarios using the energy performance certificate database
  publication-title: Energy Effic.
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib0054
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– reference: Sun, D.;. Wen, H.;. Wang,D.;. Xu, J., “A random forest model of landslide suscep,” Geomorphology, vol. 362, p. 107201.
– volume: 16
  start-page: 1437
  year: 2003
  end-page: 1447
  ident: bib0041
  article-title: Benchmarking attribute selection techniques for discrete class data mining
  publication-title: IEEe Trans. Knowl. Data Eng.
– year: 2018
  ident: bib0065
  article-title: arXiv preprint
– reference: “bp. Statistical Review of World Energy 2022 | 71st edition,” 2022.
– volume: 56
  start-page: 1272
  year: 2016
  end-page: 1292
  ident: bib0017
  article-title: A review on modelling and simulation of building energy systems
  publication-title: Renew. Sustain. Energy Rev.
– reference: E. Commission, “Energy modelling- modelling framework,” [Online]. Available:
– volume: 2
  start-page: 114
  year: 2021
  end-page: 133
  ident: bib0024
  article-title: Integration of an energy economy model with an urban energy model
  publication-title: Build. Cities
– volume: 1
  year: 2021
  ident: bib0007
  article-title: Present and future energy consumption of buildings: challenges and opportunities towards decarbonisation,” e-Prime - Advances in Electrical Engineering
  publication-title: Electron. Energy
– volume: 24
  year: 2003
  ident: bib0062
  article-title: The use of backpropagating artificial neural networks in land cover classification
  publication-title: Int. J. Remote Sens.
– year: 1996
  ident: bib0050
  article-title: Technical Report
– start-page: 01
  year: 2007
  ident: bib0003
  article-title: World energy consumption and resources: an outlook for the rest of the century
  publication-title: Int. J. Environ. Technol. Manage.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0040
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: bib0011
  article-title: GIS-Based Residential Building Energy Modelling at District Scale
  publication-title: 4th Building Simulation and Optimization Conference
– volume: 7
  start-page: 39
  year: 2017
  end-page: 46
  ident: bib0043
  article-title: Evaluation of classification models in machine learning
  publication-title: Theory Appl. Math. Comput. Sci.
– volume: 36
  start-page: 207
  year: 2016
  end-page: 235
  ident: bib0060
  article-title: Support vector machine. Machine learning models and algorithms for big data classification
  publication-title: Integrated Series in Information Systems
– reference: . [Accessed 04 2024].
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib0070
  article-title: An introduction to ROC analysis
  publication-title: Pattern. Recognit. Lett.
– volume: 62
  year: 2020
  ident: bib0025
  article-title: Urban building energy modelling (UBEM) tools: a state-of-the-art review of bottom-up physics-based approaches
  publication-title: Sustain. Cities. Soc.
– reference: “Heating and Cooling in Ireland Today,” seai, [Online]. Available:
– reference: Geoffrey K.F. Tso; Kelvin K.W. Yau, “Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks,” Energy, vol. 32, no. 9, pp. 1761–1768.
– volume: 134
  year: 2017
  ident: bib0033
  article-title: Validation of a Bayesian-based method for defining residential archetypes in urban building energy models
  publication-title: Energy Build.
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: bib0047
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 128
  year: 2020
  ident: bib0018
  article-title: Urban building energy modelling: state of the art and future prospects
  publication-title: Renew. Sustain. Energy Rev.
– volume: 13
  year: 2020
  ident: bib0031
  article-title: Modelling thermal interactions between buildings in an urban context
  publication-title: Energies. (Basel)
– year: 2024
  ident: bib0020
  article-title: A data-driven model for the analysis of energy consumption in buildings
  publication-title: in E3S Web of Conferences
– year: 2009
  ident: bib0006
  article-title: Guidelines For Planning Authorities On Sustainable Residential Development in Urban Areas,” Environmnet
– volume: 11
  year: 2023
  ident: bib0042
  article-title: A Machine Learning Framework for Early-Stage Detection of Autism Spectrum Disorders
  publication-title: IEEe Access.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0044
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 20
  start-page: 211
  year: 1992
  end-page: 226
  ident: bib0068
  article-title: Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC)
  publication-title: J. Pharmacokinet. Biopharm.
– volume: 4
  start-page: 218
  year: 2016
  ident: bib0066
  article-title: Introduction to machine learning: k-nearest neighbors
  publication-title: Ann. Transl. Med.
– volume: 9
  year: 2012
  ident: bib0036
  publication-title: A Summary of Climate AveragC For Ireland 1981–2010.,” Climatological Note No.14, Met Éireann
– volume: 20
  year: 2000
  ident: bib0052
  article-title: The Elements of Statistical Learning: data Mining, Inference, and Prediction, Second Edition
  publication-title: J. Obstet. Gynaecol. (Lahore)
– volume: 15
  year: 2022
  ident: bib0015
  article-title: A Systematic Literature Review of Physics-Based Urban Building Energy Modelling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation. Energies
  publication-title: Energies. (Basel)
– volume: 168
  year: 2020
  ident: bib0032
  article-title: Ten questions on urban building energy modelling
  publication-title: Build. Environ.
– reference: “Digital landscape Map, Tailte Éireann - Surveying and Government of Ireland [shp], CYAL50402364 © Tailte Éireann – Surveying,” [Online]. Available:
– reference: . [Accessed 02 02 2024].
– volume: 158
  year: 2019
  ident: bib0030
  article-title: Urban-scale building energy consumption database: a case study for Wuhan, China
  publication-title: Energy Procedia
– volume: 2
  year: 2009
  ident: bib0049
  publication-title: The Elements of Statistical Learning - Data Mining, Inference, and Prediction
– volume: 295
  start-page: 1774
  year: 2017
  end-page: 1785
  ident: bib0058
  article-title: Efficient kNN classification with different numbers of nearest neighbors
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 28
  start-page: 1049
  year: 2014
  end-page: 1055
  ident: bib0071
  article-title: Count on kappa
  publication-title: J. Comput. Aided. Mol. Des.
– volume: 1
  start-page: 20
  year: 2019
  end-page: 46
  ident: bib0072
  article-title: Receiver operating characteristic (ROC) area under the curve (AUC): a diagnostic measure for evaluating the accuracy of predictors of education outcomes
  publication-title: J. Educ. Stud. Placed Risk (JESPAR)
– volume: 81
  start-page: 161
  year: 2014
  end-page: 169
  ident: bib0019
  article-title: Multi-model prediction and simulation of residential building energy in urban areas of Chongqing, South West China
  publication-title: Energy Build.
– year: 2023
  ident: bib0010
  article-title: A high-fidelity zoning and characterization approach for building energy models for urban building energy modelling
  publication-title: Building Simulation Conference Proceedings
– volume: 75
  year: 2023
  ident: bib0026
  article-title: Simulation-based evaluation of occupancy on energy consumption of multi-scale residential building archetypes
  publication-title: J. Build. Eng.
– year: 2024
  ident: bib0037
  article-title: Geospatial Analysis of Residential Buildings and Neighborhoods in Dublin, Ireland
– year: 2009
  ident: bib0005
  article-title: World Energy Outlook
– reference: Boyd, K.; Costa, V.S.; Davis, J.; Page, C.D., “Unachievable region in precision-recall space and its effect on empirical evaluation,” in Proceedings of the… International Conference on Machine Learning. International Conference on Machine Learning (Vol. 2012, p. 349). NIH Public Access., 2012.
– volume: 140
  start-page: 90
  year: 2018
  end-page: 106
  ident: bib0022
  article-title: Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach
  publication-title: Build. Environ.
– reference: Marjanović, M.;. Kovačević, M.;. Bajat, B.;. Voženílek, V., “Landslide susceptibility assessment using SVM machine learning algorithm,” Eng. Geol., vol. 123, no. 3, pp. 225–234, 201.
– reference: “Unies, N. World population prospects–2015 revision, 2015,” 2015.
– volume: 142
  start-page: 247
  year: 2015
  end-page: 265
  ident: bib0014
  article-title: Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts
  publication-title: Appl. Energy
– volume: 226
  year: 2022
  ident: bib0013
  article-title: Advancing urban building energy modelling through new model components and applications: a review
  publication-title: Energy Build.
– volume: 40
  start-page: 943
  year: 2013
  end-page: 952
  ident: bib0016
  article-title: The value of domestic building energy efficiency — Evidence from Ireland
  publication-title: Energy Econ.
– volume: 19
  year: 2023
  ident: bib0035
  article-title: Using urban building energy modelling to quantify the energy performance of residential buildings under climate change
  publication-title: Build. Simul.
– ident: 10.1016/j.rineng.2025.104931_bib0075
  doi: 10.1016/j.engappai.2007.09.009
– volume: 267
  year: 2020
  ident: 10.1016/j.rineng.2025.104931_bib0012
  article-title: A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114861
– volume: 226
  year: 2022
  ident: 10.1016/j.rineng.2025.104931_bib0013
  article-title: Advancing urban building energy modelling through new model components and applications: a review
  publication-title: Energy Build.
– volume: 295
  start-page: 1774
  year: 2017
  ident: 10.1016/j.rineng.2025.104931_bib0058
  article-title: Efficient kNN classification with different numbers of nearest neighbors
– year: 2018
  ident: 10.1016/j.rineng.2025.104931_bib0065
– year: 2009
  ident: 10.1016/j.rineng.2025.104931_bib0005
– volume: 40
  start-page: 943
  year: 2013
  ident: 10.1016/j.rineng.2025.104931_bib0016
  article-title: The value of domestic building energy efficiency — Evidence from Ireland
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.07.020
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.rineng.2025.104931_bib0044
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 62
  issue: 102408
  year: 2020
  ident: 10.1016/j.rineng.2025.104931_bib0025
  article-title: Urban building energy modelling (UBEM) tools: a state-of-the-art review of bottom-up physics-based approaches
  publication-title: Sustain. Cities. Soc.
– volume: 142
  start-page: 247
  year: 2015
  ident: 10.1016/j.rineng.2025.104931_bib0014
  article-title: Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.12.068
– volume: 184
  start-page: 364
  issue: 2
  year: 2005
  ident: 10.1016/j.rineng.2025.104931_bib0069
  article-title: ROC analysis
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.184.2.01840364
– ident: 10.1016/j.rineng.2025.104931_bib0056
  doi: 10.1007/978-3-540-39964-3_62
– volume: 13
  issue: 9
  year: 2020
  ident: 10.1016/j.rineng.2025.104931_bib0031
  article-title: Modelling thermal interactions between buildings in an urban context
  publication-title: Energies. (Basel)
– volume: 26
  start-page: 49
  year: 2014
  ident: 10.1016/j.rineng.2025.104931_bib0048
  article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2013.05.017
– start-page: 01
  year: 2007
  ident: 10.1016/j.rineng.2025.104931_bib0003
  article-title: World energy consumption and resources: an outlook for the rest of the century
  publication-title: Int. J. Environ. Technol. Manage.
– volume: 19
  issue: 9
  year: 2023
  ident: 10.1016/j.rineng.2025.104931_bib0035
  article-title: Using urban building energy modelling to quantify the energy performance of residential buildings under climate change
  publication-title: Build. Simul.
  doi: 10.1007/s12273-023-1032-2
– volume: 2
  year: 2009
  ident: 10.1016/j.rineng.2025.104931_bib0049
– ident: 10.1016/j.rineng.2025.104931_bib0004
– start-page: 2024
  year: 2024
  ident: 10.1016/j.rineng.2025.104931_bib0028
  article-title: Model failure or data corruption? Exploring inconsistencies in building energy ratings with self-supervised learning
– volume: 84
  start-page: 240
  year: 2016
  ident: 10.1016/j.rineng.2025.104931_bib0063
  article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India)
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2016.07.005
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.rineng.2025.104931_bib0040
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 15
  issue: 8649
  year: 2022
  ident: 10.1016/j.rineng.2025.104931_bib0015
  article-title: A Systematic Literature Review of Physics-Based Urban Building Energy Modelling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation. Energies
  publication-title: Energies. (Basel)
– volume: 2
  start-page: 114
  year: 2021
  ident: 10.1016/j.rineng.2025.104931_bib0024
  article-title: Integration of an energy economy model with an urban energy model
  publication-title: Build. Cities
  doi: 10.5334/bc.71
– year: 2009
  ident: 10.1016/j.rineng.2025.104931_bib0006
– volume: 7
  start-page: 39
  issue: 1
  year: 2017
  ident: 10.1016/j.rineng.2025.104931_bib0043
  article-title: Evaluation of classification models in machine learning
  publication-title: Theory Appl. Math. Comput. Sci.
– year: 2023
  ident: 10.1016/j.rineng.2025.104931_bib0010
  article-title: A high-fidelity zoning and characterization approach for building energy models for urban building energy modelling
  doi: 10.26868/25222708.2023.1435
– ident: 10.1016/j.rineng.2025.104931_bib0008
– volume: 168
  year: 2020
  ident: 10.1016/j.rineng.2025.104931_bib0032
  article-title: Ten questions on urban building energy modelling
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106508
– volume: 28
  start-page: 1049
  year: 2014
  ident: 10.1016/j.rineng.2025.104931_bib0071
  article-title: Count on kappa
  publication-title: J. Comput. Aided. Mol. Des.
  doi: 10.1007/s10822-014-9759-6
– volume: 2022
  year: 2022
  ident: 10.1016/j.rineng.2025.104931_bib0001
– year: 2020
  ident: 10.1016/j.rineng.2025.104931_bib0074
– volume: 9
  year: 2012
  ident: 10.1016/j.rineng.2025.104931_bib0036
– ident: 10.1016/j.rineng.2025.104931_bib0073
– ident: 10.1016/j.rineng.2025.104931_bib0051
  doi: 10.1016/j.geomorph.2020.107201
– volume: 1
  start-page: 20
  year: 2019
  ident: 10.1016/j.rineng.2025.104931_bib0072
  article-title: Receiver operating characteristic (ROC) area under the curve (AUC): a diagnostic measure for evaluating the accuracy of predictors of education outcomes
  publication-title: J. Educ. Stud. Placed Risk (JESPAR)
  doi: 10.1080/10824669.2018.1523734
– volume: 20
  start-page: 211
  year: 1992
  ident: 10.1016/j.rineng.2025.104931_bib0068
  article-title: Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC)
  publication-title: J. Pharmacokinet. Biopharm.
  doi: 10.1007/BF01062525
– volume: 56
  start-page: 448
  year: 2013
  ident: 10.1016/j.rineng.2025.104931_bib0046
  article-title: Decision trees
  publication-title: Wiley Interdiscipl. Rev.: Comput. Stat.
  doi: 10.1002/wics.1278
– volume: 45
  start-page: 141
  year: 2012
  ident: 10.1016/j.rineng.2025.104931_bib0021
  article-title: Spatial distribution of urban building energy consumption by end use
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.10.061
– volume: 75
  year: 2023
  ident: 10.1016/j.rineng.2025.104931_bib0026
  article-title: Simulation-based evaluation of occupancy on energy consumption of multi-scale residential building archetypes
  publication-title: J. Build. Eng.
– ident: 10.1016/j.rineng.2025.104931_bib0039
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.rineng.2025.104931_bib0045
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022643204877
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.rineng.2025.104931_bib0070
  article-title: An introduction to ROC analysis
  publication-title: Pattern. Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 45
  start-page: 171
  year: 2001
  ident: 10.1016/j.rineng.2025.104931_bib0067
  article-title: A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010920819831
– volume: 81
  start-page: 161
  year: 2014
  ident: 10.1016/j.rineng.2025.104931_bib0019
  article-title: Multi-model prediction and simulation of residential building energy in urban areas of Chongqing, South West China
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.007
– volume: 1
  issue: 100002
  year: 2021
  ident: 10.1016/j.rineng.2025.104931_bib0007
  article-title: Present and future energy consumption of buildings: challenges and opportunities towards decarbonisation,” e-Prime - Advances in Electrical Engineering
  publication-title: Electron. Energy
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.rineng.2025.104931_bib0047
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– year: 2018
  ident: 10.1016/j.rineng.2025.104931_bib0011
  article-title: GIS-Based Residential Building Energy Modelling at District Scale
– volume: 56
  start-page: 1272
  year: 2016
  ident: 10.1016/j.rineng.2025.104931_bib0017
  article-title: A review on modelling and simulation of building energy systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.040
– volume: 36
  start-page: 207
  year: 2016
  ident: 10.1016/j.rineng.2025.104931_bib0060
  article-title: Support vector machine. Machine learning models and algorithms for big data classification
– ident: 10.1016/j.rineng.2025.104931_bib0023
  doi: 10.1016/j.energy.2006.11.010
– year: 1996
  ident: 10.1016/j.rineng.2025.104931_bib0050
– volume: 11
  year: 2023
  ident: 10.1016/j.rineng.2025.104931_bib0042
  article-title: A Machine Learning Framework for Early-Stage Detection of Autism Spectrum Disorders
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2022.3232490
– volume: 128
  year: 2020
  ident: 10.1016/j.rineng.2025.104931_bib0018
  article-title: Urban building energy modelling: state of the art and future prospects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109902
– year: 2024
  ident: 10.1016/j.rineng.2025.104931_bib0037
– volume: 134
  year: 2017
  ident: 10.1016/j.rineng.2025.104931_bib0033
  article-title: Validation of a Bayesian-based method for defining residential archetypes in urban building energy models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.10.050
– ident: 10.1016/j.rineng.2025.104931_bib0038
– volume: 13
  issue: 1
  year: 1967
  ident: 10.1016/j.rineng.2025.104931_bib0057
  article-title: Nearest Neighbor Pattern Classification
  publication-title: IEEe Trans. Inf. Theory.
  doi: 10.1109/TIT.1967.1053964
– volume: 24
  issue: 23
  year: 2003
  ident: 10.1016/j.rineng.2025.104931_bib0062
  article-title: The use of backpropagating artificial neural networks in land cover classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000114851
– volume: 14
  issue: 5
  year: 2021
  ident: 10.1016/j.rineng.2025.104931_bib0034
  article-title: GIS-based urban energy modelling and energy efficiency scenarios using the energy performance certificate database
  publication-title: Energy Effic.
  doi: 10.1007/s12053-021-09962-z
– volume: 117
  start-page: 237
  year: 2016
  ident: 10.1016/j.rineng.2025.104931_bib0009
  article-title: Modelling Boston: a workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.057
– year: 2001
  ident: 10.1016/j.rineng.2025.104931_bib0064
– volume: 20
  year: 2000
  ident: 10.1016/j.rineng.2025.104931_bib0052
  article-title: The Elements of Statistical Learning: data Mining, Inference, and Prediction, Second Edition
  publication-title: J. Obstet. Gynaecol. (Lahore)
– ident: 10.1016/j.rineng.2025.104931_bib0055
  doi: 10.1016/j.enggeo.2011.09.006
– year: 2024
  ident: 10.1016/j.rineng.2025.104931_bib0020
  article-title: A data-driven model for the analysis of energy consumption in buildings
– ident: 10.1016/j.rineng.2025.104931_bib0002
– ident: 10.1016/j.rineng.2025.104931_bib0027
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.rineng.2025.104931_bib0053
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 218
  issue: 11
  year: 2016
  ident: 10.1016/j.rineng.2025.104931_bib0066
  article-title: Introduction to machine learning: k-nearest neighbors
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2016.03.37
– volume: 15
  issue: 9
  year: 2022
  ident: 10.1016/j.rineng.2025.104931_bib0029
  article-title: Archetype identification and urban building energy modelling for city-scale buildings based on GIS datasets
  publication-title: Build. Simul.
  doi: 10.1007/s12273-021-0878-4
– volume: 20
  year: 1995
  ident: 10.1016/j.rineng.2025.104931_bib0061
  article-title: Support-vector networks
– volume: 16
  start-page: 1437
  issue: 6
  year: 2003
  ident: 10.1016/j.rineng.2025.104931_bib0041
  article-title: Benchmarking attribute selection techniques for discrete class data mining
  publication-title: IEEe Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2003.1245283
– volume: 158
  year: 2019
  ident: 10.1016/j.rineng.2025.104931_bib0030
  article-title: Urban-scale building energy consumption database: a case study for Wuhan, China
– volume: 140
  start-page: 90
  year: 2018
  ident: 10.1016/j.rineng.2025.104931_bib0022
  article-title: Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.05.035
– volume: 63
  start-page: 3
  year: 2006
  ident: 10.1016/j.rineng.2025.104931_bib0054
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 46
  issue: 3
  year: 1992
  ident: 10.1016/j.rineng.2025.104931_bib0059
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Statist.
  doi: 10.1080/00031305.1992.10475879
SSID ssj0002810137
Score 2.293039
Snippet •Proposes a novel data-driven methodology for predicting Building Energy Ratings (BER) in urban areas, with Dublin, Ireland, as a pilot case.•Integrates...
This paper presents a novel, data-driven approach for predicting Building Energy Ratings (BER) in urban environments, using advanced Machine Learning (ML)...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 104931
SubjectTerms Building energy rate (BER)
Data-driven approach
Machine learning classification models
Urban building energy modelling (UBEM)
Urban energy analysis
Title Leveraging machine learning for data-driven building energy rate prediction
URI https://dx.doi.org/10.1016/j.rineng.2025.104931
https://doaj.org/article/7cf0f947f19b42dea030a7b4644142f7
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBqkYcT2yOgVhVQFkDqZtmxXVGJgqqy8tu5sxMUFlhYMkSRHX138XeO774j5ILLRlausMwEUzFeWs5sDr6c51a5gAdJHmuHpw_15JnfzqpZr9UX5oQleeAE3KVoQhYUFyFXlhfOG_BKIyxHHudFiHXkwHm9zdQi_jLKUUuvq5WLCV1YTbecw5awqPBkU5X5Dy6Kkv09SurRzHiHbLfxIb1K77VLNvxyj2z1VAP3yd29B_-L3YXoa8yF9LRt_jCnEINSzPpkboXrGLVt22vqY5EfRWUI-r7C4xk0yQF5HI-ebias7YnAmrJWaxZc7RV8l8E7IYMojZQmiFBboPYqK13pXKFMLb3kZcMr3qDeXiOzulEOFrdDMli-Lf0RoR7iAKGw-XkJQZThqi6MCbB9cJmSIQ9Dwjps9HsSvtBdRthCJyw1YqkTlkNyjQB-P4uy1fEGGFO3xtR_GXNIRAe_biOAxOww1Muv0x__x_QnZBOHTJlgp2SwXn34M4g51vY8uhdcp5-jL3CN1OQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+machine+learning+for+data-driven+building+energy+rate+prediction&rft.jtitle=Results+in+engineering&rft.au=Nasim+Eslamirad&rft.au=Mehdi+Golamnia&rft.au=Payam+Sajadi&rft.au=Francesco+Pilla&rft.date=2025-06-01&rft.pub=Elsevier&rft.eissn=2590-1230&rft.volume=26&rft.spage=104931&rft_id=info:doi/10.1016%2Fj.rineng.2025.104931&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7cf0f947f19b42dea030a7b4644142f7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon