Leveraging machine learning for data-driven building energy rate prediction
•Proposes a novel data-driven methodology for predicting Building Energy Ratings (BER) in urban areas, with Dublin, Ireland, as a pilot case.•Integrates geospatial, building-specific, and neighborhood-scale environmental data for BER modeling.•Utilizes advanced Machine Learning algorithms (RF, DT, K...
Saved in:
Published in | Results in engineering Vol. 26; p. 104931 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Proposes a novel data-driven methodology for predicting Building Energy Ratings (BER) in urban areas, with Dublin, Ireland, as a pilot case.•Integrates geospatial, building-specific, and neighborhood-scale environmental data for BER modeling.•Utilizes advanced Machine Learning algorithms (RF, DT, KNN, SVM) to achieve high predictive accuracy.•Aligns BER prediction framework with European energy performance standards, ensuring scalability across urban contexts.•Offers a practical tool for policymakers to enhance urban energy planning and reduce carbon emissions, setting a new benchmark for predictive accuracy in Urban Building Energy Modeling (UBEM).
This paper presents a novel, data-driven approach for predicting Building Energy Ratings (BER) in urban environments, using advanced Machine Learning (ML) algorithms. Focusing on Dublin, we integrate diverse geospatial datasets with building-specific and neighbourhood-scale features to classify BER. Our approach leverages cutting-edge ML techniques, including Decision Trees (DT), Random Forest (RF), K-Nearest Neighbours (KNN), and Support Vector Machines (SVM), to develop highly accurate predictive models. The performance of these models was rigorously evaluated using comprehensive statistical metrics, such as Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), precision, recall, and overall accuracy (OA). The results demonstrate that the RF model outperformed other algorithms, achieving the highest classification accuracy, with AUC values ranging from 0.77 to 0.83. Notably, the model exhibited superior performance in classifying higher energy-consuming buildings (Class G), while the SVM showed limited discriminative power with AUC values between 0.37 and 0.49. These findings underscore the effectiveness of ML in Urban Building Energy Modelling (UBEM), particularly in forecasting energy consumption patterns and identifying high-energy-use buildings. This study makes significant contributions by advancing the application of ML to urban energy efficiency planning. By aligning the Building Energy Rating (BER) prediction framework with European energy performance standards (ISO/CEN), it ensures adaptability and relevance across diverse urban contexts. The approach addresses key limitations in UBEM while offering a robust tool for policymakers and urban planners to optimize energy consumption and reduce carbon emissions. Integrating spatial and contextual factors with BER establishes a new standard for predictive accuracy in urban energy research. |
---|---|
AbstractList | This paper presents a novel, data-driven approach for predicting Building Energy Ratings (BER) in urban environments, using advanced Machine Learning (ML) algorithms. Focusing on Dublin, we integrate diverse geospatial datasets with building-specific and neighbourhood-scale features to classify BER. Our approach leverages cutting-edge ML techniques, including Decision Trees (DT), Random Forest (RF), K-Nearest Neighbours (KNN), and Support Vector Machines (SVM), to develop highly accurate predictive models. The performance of these models was rigorously evaluated using comprehensive statistical metrics, such as Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), precision, recall, and overall accuracy (OA). The results demonstrate that the RF model outperformed other algorithms, achieving the highest classification accuracy, with AUC values ranging from 0.77 to 0.83. Notably, the model exhibited superior performance in classifying higher energy-consuming buildings (Class G), while the SVM showed limited discriminative power with AUC values between 0.37 and 0.49. These findings underscore the effectiveness of ML in Urban Building Energy Modelling (UBEM), particularly in forecasting energy consumption patterns and identifying high-energy-use buildings. This study makes significant contributions by advancing the application of ML to urban energy efficiency planning. By aligning the Building Energy Rating (BER) prediction framework with European energy performance standards (ISO/CEN), it ensures adaptability and relevance across diverse urban contexts. The approach addresses key limitations in UBEM while offering a robust tool for policymakers and urban planners to optimize energy consumption and reduce carbon emissions. Integrating spatial and contextual factors with BER establishes a new standard for predictive accuracy in urban energy research. •Proposes a novel data-driven methodology for predicting Building Energy Ratings (BER) in urban areas, with Dublin, Ireland, as a pilot case.•Integrates geospatial, building-specific, and neighborhood-scale environmental data for BER modeling.•Utilizes advanced Machine Learning algorithms (RF, DT, KNN, SVM) to achieve high predictive accuracy.•Aligns BER prediction framework with European energy performance standards, ensuring scalability across urban contexts.•Offers a practical tool for policymakers to enhance urban energy planning and reduce carbon emissions, setting a new benchmark for predictive accuracy in Urban Building Energy Modeling (UBEM). This paper presents a novel, data-driven approach for predicting Building Energy Ratings (BER) in urban environments, using advanced Machine Learning (ML) algorithms. Focusing on Dublin, we integrate diverse geospatial datasets with building-specific and neighbourhood-scale features to classify BER. Our approach leverages cutting-edge ML techniques, including Decision Trees (DT), Random Forest (RF), K-Nearest Neighbours (KNN), and Support Vector Machines (SVM), to develop highly accurate predictive models. The performance of these models was rigorously evaluated using comprehensive statistical metrics, such as Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), precision, recall, and overall accuracy (OA). The results demonstrate that the RF model outperformed other algorithms, achieving the highest classification accuracy, with AUC values ranging from 0.77 to 0.83. Notably, the model exhibited superior performance in classifying higher energy-consuming buildings (Class G), while the SVM showed limited discriminative power with AUC values between 0.37 and 0.49. These findings underscore the effectiveness of ML in Urban Building Energy Modelling (UBEM), particularly in forecasting energy consumption patterns and identifying high-energy-use buildings. This study makes significant contributions by advancing the application of ML to urban energy efficiency planning. By aligning the Building Energy Rating (BER) prediction framework with European energy performance standards (ISO/CEN), it ensures adaptability and relevance across diverse urban contexts. The approach addresses key limitations in UBEM while offering a robust tool for policymakers and urban planners to optimize energy consumption and reduce carbon emissions. Integrating spatial and contextual factors with BER establishes a new standard for predictive accuracy in urban energy research. |
ArticleNumber | 104931 |
Author | Pilla, Francesco Golamnia, Mehdi Eslamirad, Nasim Sajadi, Payam |
Author_xml | – sequence: 1 givenname: Nasim surname: Eslamirad fullname: Eslamirad, Nasim email: nasim.eslamirad@ucd.ie organization: School of Architecture Planning and Environmental Policy, University College Dublin, Ireland – sequence: 2 givenname: Mehdi surname: Golamnia fullname: Golamnia, Mehdi organization: School of Architecture Planning and Environmental Policy, University College Dublin, Ireland – sequence: 3 givenname: Payam surname: Sajadi fullname: Sajadi, Payam organization: School of Architecture Planning and Environmental Policy, University College Dublin, Ireland – sequence: 4 givenname: Francesco surname: Pilla fullname: Pilla, Francesco organization: School of Architecture Planning and Environmental Policy, University College Dublin, Ireland |
BookMark | eNp9kMtKxDAUhoOM4DjOG7joC3Q8ufS2EWTwhgMudB_S5KSmdNIhrQPz9qZWxJWrHP7D_yX5LsnC9x4JuaawoUDzm3YTnEffbBiwLEai4vSMLFlWQUoZh8Wf-YKsh6EFAFbGLi-W5GWHRwyqcb5J9kp_RFTSoQp-CmwfEqNGlZrgjuiT-tN1Zlqgx9CckqBGTA4BjdOj6_0VObeqG3D9c67I28P9-_Yp3b0-Pm_vdqnmeTWm1uRYcSgsmqK0BVdlqWxh8xpKmgE33BhWqbzEUnAtMqGZAK5LyHVlaMZX5Hmmml618hDcXoWT7JWT30EfGqnC6HSHstAWbCUKS6taMIMKOKiiFrkQVLB49YqImaVDPwwB7S-PgpzsylbOduVkV852Y-12rmH85dFhkIN26HUUEVCP8SHuf8AXF9aGTQ |
Cites_doi | 10.1016/j.engappai.2007.09.009 10.1016/j.apenergy.2020.114861 10.1016/j.eneco.2013.07.020 10.1023/A:1010933404324 10.1016/j.apenergy.2014.12.068 10.2214/ajr.184.2.01840364 10.1007/978-3-540-39964-3_62 10.1016/j.jag.2013.05.017 10.1007/s12273-023-1032-2 10.1016/j.envsoft.2016.07.005 10.5334/bc.71 10.26868/25222708.2023.1435 10.1016/j.buildenv.2019.106508 10.1007/s10822-014-9759-6 10.1016/j.geomorph.2020.107201 10.1080/10824669.2018.1523734 10.1007/BF01062525 10.1002/wics.1278 10.1016/j.enbuild.2011.10.061 10.1023/A:1022643204877 10.1016/j.patrec.2005.10.010 10.1023/A:1010920819831 10.1016/j.enbuild.2014.06.007 10.1016/j.isprsjprs.2016.01.011 10.1016/j.rser.2015.12.040 10.1016/j.energy.2006.11.010 10.1109/ACCESS.2022.3232490 10.1016/j.rser.2020.109902 10.1016/j.enbuild.2016.10.050 10.1109/TIT.1967.1053964 10.1080/0143116031000114851 10.1007/s12053-021-09962-z 10.1016/j.energy.2016.10.057 10.1016/j.enggeo.2011.09.006 10.21037/atm.2016.03.37 10.1007/s12273-021-0878-4 10.1109/TKDE.2003.1245283 10.1016/j.buildenv.2018.05.035 10.1007/s10994-006-6226-1 10.1080/00031305.1992.10475879 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rineng.2025.104931 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_7cf0f947f19b42dea030a7b4644142f7 10_1016_j_rineng_2025_104931 S2590123025010072 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c369t-fd6e9307fed78f73a88af7f6b081503d3dd29a68e843c454c2403c806c9d153 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Wed Aug 27 01:09:15 EDT 2025 Wed Jul 16 16:37:51 EDT 2025 Sat Aug 09 17:30:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Urban energy analysis Urban building energy modelling (UBEM) Machine learning classification models Data-driven approach Building energy rate (BER) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-fd6e9307fed78f73a88af7f6b081503d3dd29a68e843c454c2403c806c9d153 |
OpenAccessLink | https://doaj.org/article/7cf0f947f19b42dea030a7b4644142f7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7cf0f947f19b42dea030a7b4644142f7 crossref_primary_10_1016_j_rineng_2025_104931 elsevier_sciencedirect_doi_10_1016_j_rineng_2025_104931 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Farzana, Liu, Baldwin, Hossain (bib0019) 2014; 81 Ali, Shamsi, Hoare, ODonnell (bib0011) 2018 Deng, Chen, Yang, Chen (bib0029) 2022; 15 “GeoDirectory . GeoBuilding Intel [csv], Q4 2023, An Post GeoDirectory DAC. 2024.,” 2024. [Online]. Available Tardioli, Kerrigan, Oates, O'Donnell, Donal, Finn (bib0022) 2018; 140 Hyland, Lyons, Lyons (bib0016) 2013; 40 Eslamirad, Nia, Sajadi, Pilla (bib0037) 2024 Altman (bib0059) 1992; 46 Czodrowski (bib0071) 2014; 28 [Accessed 02 02 2024]. Santamouris, Vasilakopoulou (bib0007) 2021; 1 Sood, Alhindawi, Ali, McGrath, Byrne, Finn, O’Donnell (bib0026) 2023; 75 Sokol, Cerezo Davila, Reinhart (bib0033) 2017; 134 Hong, Chen, Luo, Luo, Lee (bib0032) 2020; 168 Martina, Causone, Tianzhen, Yixing (bib0025) 2020; 62 (bib0006) 2009 Tibshirani (bib0050) 1996 Guo, G.;. Wang, H.;. Bell, D.;. Bi, Y.;. Greer, K., “KNN model-based approach in classification,” in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986–996). Springer Berlin Heidelberg., Berlin Heidelberg, 2003. De Ville (bib0046) 2013; 56 Howard, Parshall, Thompson, Hammer, Dickinson, Modi (bib0021) 2012; 45 Bowers, Zhou (bib0072) 2019; 1 Wang, Liu, Xu, Tan, Wang, Yan (bib0010) 2023 Ben-David, A. “About the relationship between ROC curves and Cohen's kappa,” Eng. Appl. Artif. Intell., vol. 21, no. 6, pp. 874–882. Davila, Reinhart, Bemis (bib0009) 2016; 117 [Accessed 06 02 2024]. Luo, Hong, Tang (bib0031) 2020; 13 Belgiu, Drăguţ (bib0047) 2016; 114 Jasmina, Veljović, Sinisa, Zeljko, Tomovic (bib0043) 2017; 7 Yuhao, Scott, Chan, Camila, Justin, Aaron, Rysanek, Kellett, Cynthia (bib0024) 2021; 2 Geurts, Ernst, Wehenkel (bib0054) 2006; 63 [Accessed 04 2024]. Walsh (bib0036) 2012; 9 [Accessed 02 2024]. Cover, Hart (bib0057) 1967; 13 Johari, Peronato, Sadeghian, Zhao, Widén (bib0018) 2020; 128 (bib0005) 2009 Mahedy Hasan, Uddin, Mamun, Sharif, Ulhaq, Krishnamoorthy (bib0042) 2023; 11 Breiman (bib0044) 2001; 45 Obuchowski (bib0069) 2005; 184 Harish, Arun (bib0017) 2016; 56 Suthaharan, Suthaharan (bib0060) 2016; 36 Ali, Shamsi, Bohacek, Hoare, Purcell, Mangina, O’Donnell (bib0012) 2020; 267 Schölkopf, Smola (bib0064) 2001 Beretta (bib0003) 2007 Kavzoglu, Mather (bib0062) 2003; 24 Ding, Feng, Li, Zhou (bib0030) 2019; 158 Guyon, Elisseeff (bib0040) 2003; 3 Quinlan (bib0045) 1986; 1 “Heating and Cooling in Ireland Today,” seai, [Online]. Available Ghosh, Fassnacht, Joshi, Koch (bib0048) 2014; 26 Hand, Till (bib0067) 2001; 45 Qian, Dan, Credit (bib0028) 2024 Mutani, Todeschi (bib0034) 2021; 14 Kamel (bib0015) 2022; 15 Pham, Pradhan, Bui, Prakash, Dholakia (bib0063) 2016; 84 (bib0001) 2022; 2022 Sun, D.;. Wen, H.;. Wang,D.;. Xu, J., “A random forest model of landslide suscep,” Geomorphology, vol. 362, p. 107201. Boyd, K.; Costa, V.S.; Davis, J.; Page, C.D., “Unachievable region in precision-recall space and its effect on empirical evaluation,” in Proceedings of the… International Conference on Machine Learning. International Conference on Machine Learning (Vol. 2012, p. 349). NIH Public Access., 2012. Deng, Javanroodi, Nik, Chen (bib0035) 2023; 19 Fonseca, Schlueter (bib0014) 2015; 142 Purves (bib0068) 1992; 20 Hall, Holmes (bib0041) 2003; 16 Hastie, Tibshirani, Friedman (bib0052) 2000; 20 “Digital landscape Map, Tailte Éireann - Surveying and Government of Ireland [shp], CYAL50402364 © Tailte Éireann – Surveying,” [Online]. Available Cortes, Vapnik (bib0061) 1995; 20 Powers (bib0074) 2020 Hastie, Tibshirani, Friedman (bib0049) 2009; 2 Raschka (bib0065) 2018 Geoffrey K.F. Tso; Kelvin K.W. Yau, “Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks,” Energy, vol. 32, no. 9, pp. 1761–1768. Zhang, Li, Zong, Zhu, Wang (bib0058) 2017; 295 “Unies, N. World population prospects–2015 revision, 2015,” 2015. Dahlström, Broström, Widén (bib0013) 2022; 226 E. Commission, “Energy modelling- modelling framework,” [Online]. Available “bp. Statistical Review of World Energy 2022 | 71st edition,” 2022. Borgato, Prataviera, Bordignon, Garay-Martinez, Zarrella (bib0020) 2024 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas (bib0053) 2011; 12 Fawcett (bib0070) 2006; 27 Marjanović, M.;. Kovačević, M.;. Bajat, B.;. Voženílek, V., “Landslide susceptibility assessment using SVM machine learning algorithm,” Eng. Geol., vol. 123, no. 3, pp. 225–234, 201. Zhang (bib0066) 2016; 4 10.1016/j.rineng.2025.104931_bib0073 Powers (10.1016/j.rineng.2025.104931_bib0074) 2020 10.1016/j.rineng.2025.104931_bib0075 Hong (10.1016/j.rineng.2025.104931_bib0032) 2020; 168 10.1016/j.rineng.2025.104931_bib0038 Mahedy Hasan (10.1016/j.rineng.2025.104931_bib0042) 2023; 11 10.1016/j.rineng.2025.104931_bib0039 Fonseca (10.1016/j.rineng.2025.104931_bib0014) 2015; 142 Farzana (10.1016/j.rineng.2025.104931_bib0019) 2014; 81 Deng (10.1016/j.rineng.2025.104931_bib0035) 2023; 19 Jasmina (10.1016/j.rineng.2025.104931_bib0043) 2017; 7 Borgato (10.1016/j.rineng.2025.104931_bib0020) 2024 Wang (10.1016/j.rineng.2025.104931_bib0010) 2023 Hyland (10.1016/j.rineng.2025.104931_bib0016) 2013; 40 Sokol (10.1016/j.rineng.2025.104931_bib0033) 2017; 134 Qian (10.1016/j.rineng.2025.104931_bib0028) 2024 Cortes (10.1016/j.rineng.2025.104931_bib0061) 1995; 20 Fawcett (10.1016/j.rineng.2025.104931_bib0070) 2006; 27 Pedregosa (10.1016/j.rineng.2025.104931_bib0053) 2011; 12 10.1016/j.rineng.2025.104931_bib0002 Ali (10.1016/j.rineng.2025.104931_bib0011) 2018 10.1016/j.rineng.2025.104931_bib0004 Raschka (10.1016/j.rineng.2025.104931_bib0065) 2018 (10.1016/j.rineng.2025.104931_bib0006) 2009 Zhang (10.1016/j.rineng.2025.104931_bib0058) 2017; 295 Martina (10.1016/j.rineng.2025.104931_bib0025) 2020; 62 10.1016/j.rineng.2025.104931_bib0008 Tardioli (10.1016/j.rineng.2025.104931_bib0022) 2018; 140 Walsh (10.1016/j.rineng.2025.104931_bib0036) 2012; 9 Altman (10.1016/j.rineng.2025.104931_bib0059) 1992; 46 Kavzoglu (10.1016/j.rineng.2025.104931_bib0062) 2003; 24 Deng (10.1016/j.rineng.2025.104931_bib0029) 2022; 15 Johari (10.1016/j.rineng.2025.104931_bib0018) 2020; 128 Mutani (10.1016/j.rineng.2025.104931_bib0034) 2021; 14 Dahlström (10.1016/j.rineng.2025.104931_bib0013) 2022; 226 Guyon (10.1016/j.rineng.2025.104931_bib0040) 2003; 3 Bowers (10.1016/j.rineng.2025.104931_bib0072) 2019; 1 Hand (10.1016/j.rineng.2025.104931_bib0067) 2001; 45 10.1016/j.rineng.2025.104931_bib0051 Schölkopf (10.1016/j.rineng.2025.104931_bib0064) 2001 Yuhao (10.1016/j.rineng.2025.104931_bib0024) 2021; 2 10.1016/j.rineng.2025.104931_bib0056 10.1016/j.rineng.2025.104931_bib0055 Zhang (10.1016/j.rineng.2025.104931_bib0066) 2016; 4 Eslamirad (10.1016/j.rineng.2025.104931_bib0037) 2024 Davila (10.1016/j.rineng.2025.104931_bib0009) 2016; 117 Cover (10.1016/j.rineng.2025.104931_bib0057) 1967; 13 Luo (10.1016/j.rineng.2025.104931_bib0031) 2020; 13 Breiman (10.1016/j.rineng.2025.104931_bib0044) 2001; 45 Hastie (10.1016/j.rineng.2025.104931_bib0049) 2009; 2 Belgiu (10.1016/j.rineng.2025.104931_bib0047) 2016; 114 Obuchowski (10.1016/j.rineng.2025.104931_bib0069) 2005; 184 (10.1016/j.rineng.2025.104931_bib0001) 2022; 2022 (10.1016/j.rineng.2025.104931_bib0005) 2009 Howard (10.1016/j.rineng.2025.104931_bib0021) 2012; 45 Suthaharan (10.1016/j.rineng.2025.104931_bib0060) 2016; 36 Geurts (10.1016/j.rineng.2025.104931_bib0054) 2006; 63 Ding (10.1016/j.rineng.2025.104931_bib0030) 2019; 158 10.1016/j.rineng.2025.104931_bib0023 Pham (10.1016/j.rineng.2025.104931_bib0063) 2016; 84 De Ville (10.1016/j.rineng.2025.104931_bib0046) 2013; 56 Santamouris (10.1016/j.rineng.2025.104931_bib0007) 2021; 1 10.1016/j.rineng.2025.104931_bib0027 Hall (10.1016/j.rineng.2025.104931_bib0041) 2003; 16 Ali (10.1016/j.rineng.2025.104931_bib0012) 2020; 267 Tibshirani (10.1016/j.rineng.2025.104931_bib0050) 1996 Kamel (10.1016/j.rineng.2025.104931_bib0015) 2022; 15 Ghosh (10.1016/j.rineng.2025.104931_bib0048) 2014; 26 Purves (10.1016/j.rineng.2025.104931_bib0068) 1992; 20 Czodrowski (10.1016/j.rineng.2025.104931_bib0071) 2014; 28 Harish (10.1016/j.rineng.2025.104931_bib0017) 2016; 56 Beretta (10.1016/j.rineng.2025.104931_bib0003) 2007 Sood (10.1016/j.rineng.2025.104931_bib0026) 2023; 75 Quinlan (10.1016/j.rineng.2025.104931_bib0045) 1986; 1 Hastie (10.1016/j.rineng.2025.104931_bib0052) 2000; 20 |
References_xml | – volume: 20 year: 1995 ident: bib0061 article-title: Support-vector networks publication-title: Machine Learning – volume: 13 year: 1967 ident: bib0057 article-title: Nearest Neighbor Pattern Classification publication-title: IEEe Trans. Inf. Theory. – volume: 45 start-page: 141 year: 2012 end-page: 151 ident: bib0021 article-title: Spatial distribution of urban building energy consumption by end use publication-title: Energy Build. – year: 2001 ident: bib0064 article-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond Adaptive Computation and Machine Learning – start-page: 2024 year: 2024 ident: bib0028 article-title: Model failure or data corruption? Exploring inconsistencies in building energy ratings with self-supervised learning publication-title: Tackling Climate Change With Machine Learning – reference: . [Accessed 02 2024]. – volume: 117 start-page: 237 year: 2016 end-page: 250 ident: bib0009 article-title: Modelling Boston: a workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets publication-title: Energy – volume: 56 start-page: 448 year: 2013 end-page: 455 ident: bib0046 article-title: Decision trees publication-title: Wiley Interdiscipl. Rev.: Comput. Stat. – reference: . [Accessed 06 02 2024]. – volume: 46 year: 1992 ident: bib0059 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Statist. – volume: 15 year: 2022 ident: bib0029 article-title: Archetype identification and urban building energy modelling for city-scale buildings based on GIS datasets publication-title: Build. Simul. – volume: 184 start-page: 364 year: 2005 end-page: 372 ident: bib0069 article-title: ROC analysis publication-title: Am. J. Roentgenol. – reference: Guo, G.;. Wang, H.;. Bell, D.;. Bi, Y.;. Greer, K., “KNN model-based approach in classification,” in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986–996). Springer Berlin Heidelberg., Berlin Heidelberg, 2003. – year: 2020 ident: bib0074 article-title: arXiv preprint – reference: “GeoDirectory . GeoBuilding Intel [csv], Q4 2023, An Post GeoDirectory DAC. 2024.,” 2024. [Online]. Available: – reference: Ben-David, A. “About the relationship between ROC curves and Cohen's kappa,” Eng. Appl. Artif. Intell., vol. 21, no. 6, pp. 874–882. – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib0045 article-title: Induction of decision trees publication-title: Mach. Learn. – volume: 84 start-page: 240 year: 2016 end-page: 250 ident: bib0063 article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India) publication-title: Environ. Modell. Softw. – volume: 26 start-page: 49 year: 2014 end-page: 63 ident: bib0048 article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales publication-title: Int. J. Appl. Earth Observ. Geoinform. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0053 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 267 year: 2020 ident: bib0012 article-title: A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings publication-title: Appl. Energy – volume: 45 start-page: 171 year: 2001 end-page: 186 ident: bib0067 article-title: A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems publication-title: Mach. Learn. – volume: 2022 year: 2022 ident: bib0001 publication-title: World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3 – volume: 14 year: 2021 ident: bib0034 article-title: GIS-based urban energy modelling and energy efficiency scenarios using the energy performance certificate database publication-title: Energy Effic. – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib0054 article-title: Extremely randomized trees publication-title: Mach. Learn. – reference: Sun, D.;. Wen, H.;. Wang,D.;. Xu, J., “A random forest model of landslide suscep,” Geomorphology, vol. 362, p. 107201. – volume: 16 start-page: 1437 year: 2003 end-page: 1447 ident: bib0041 article-title: Benchmarking attribute selection techniques for discrete class data mining publication-title: IEEe Trans. Knowl. Data Eng. – year: 2018 ident: bib0065 article-title: arXiv preprint – reference: “bp. Statistical Review of World Energy 2022 | 71st edition,” 2022. – volume: 56 start-page: 1272 year: 2016 end-page: 1292 ident: bib0017 article-title: A review on modelling and simulation of building energy systems publication-title: Renew. Sustain. Energy Rev. – reference: E. Commission, “Energy modelling- modelling framework,” [Online]. Available: – volume: 2 start-page: 114 year: 2021 end-page: 133 ident: bib0024 article-title: Integration of an energy economy model with an urban energy model publication-title: Build. Cities – volume: 1 year: 2021 ident: bib0007 article-title: Present and future energy consumption of buildings: challenges and opportunities towards decarbonisation,” e-Prime - Advances in Electrical Engineering publication-title: Electron. Energy – volume: 24 year: 2003 ident: bib0062 article-title: The use of backpropagating artificial neural networks in land cover classification publication-title: Int. J. Remote Sens. – year: 1996 ident: bib0050 article-title: Technical Report – start-page: 01 year: 2007 ident: bib0003 article-title: World energy consumption and resources: an outlook for the rest of the century publication-title: Int. J. Environ. Technol. Manage. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0040 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – year: 2018 ident: bib0011 article-title: GIS-Based Residential Building Energy Modelling at District Scale publication-title: 4th Building Simulation and Optimization Conference – volume: 7 start-page: 39 year: 2017 end-page: 46 ident: bib0043 article-title: Evaluation of classification models in machine learning publication-title: Theory Appl. Math. Comput. Sci. – volume: 36 start-page: 207 year: 2016 end-page: 235 ident: bib0060 article-title: Support vector machine. Machine learning models and algorithms for big data classification publication-title: Integrated Series in Information Systems – reference: . [Accessed 04 2024]. – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib0070 article-title: An introduction to ROC analysis publication-title: Pattern. Recognit. Lett. – volume: 62 year: 2020 ident: bib0025 article-title: Urban building energy modelling (UBEM) tools: a state-of-the-art review of bottom-up physics-based approaches publication-title: Sustain. Cities. Soc. – reference: “Heating and Cooling in Ireland Today,” seai, [Online]. Available: – reference: Geoffrey K.F. Tso; Kelvin K.W. Yau, “Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks,” Energy, vol. 32, no. 9, pp. 1761–1768. – volume: 134 year: 2017 ident: bib0033 article-title: Validation of a Bayesian-based method for defining residential archetypes in urban building energy models publication-title: Energy Build. – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: bib0047 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogram. Remote Sens. – volume: 128 year: 2020 ident: bib0018 article-title: Urban building energy modelling: state of the art and future prospects publication-title: Renew. Sustain. Energy Rev. – volume: 13 year: 2020 ident: bib0031 article-title: Modelling thermal interactions between buildings in an urban context publication-title: Energies. (Basel) – year: 2024 ident: bib0020 article-title: A data-driven model for the analysis of energy consumption in buildings publication-title: in E3S Web of Conferences – year: 2009 ident: bib0006 article-title: Guidelines For Planning Authorities On Sustainable Residential Development in Urban Areas,” Environmnet – volume: 11 year: 2023 ident: bib0042 article-title: A Machine Learning Framework for Early-Stage Detection of Autism Spectrum Disorders publication-title: IEEe Access. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0044 article-title: Random forests publication-title: Mach. Learn. – volume: 20 start-page: 211 year: 1992 end-page: 226 ident: bib0068 article-title: Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC) publication-title: J. Pharmacokinet. Biopharm. – volume: 4 start-page: 218 year: 2016 ident: bib0066 article-title: Introduction to machine learning: k-nearest neighbors publication-title: Ann. Transl. Med. – volume: 9 year: 2012 ident: bib0036 publication-title: A Summary of Climate AveragC For Ireland 1981–2010.,” Climatological Note No.14, Met Éireann – volume: 20 year: 2000 ident: bib0052 article-title: The Elements of Statistical Learning: data Mining, Inference, and Prediction, Second Edition publication-title: J. Obstet. Gynaecol. (Lahore) – volume: 15 year: 2022 ident: bib0015 article-title: A Systematic Literature Review of Physics-Based Urban Building Energy Modelling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation. Energies publication-title: Energies. (Basel) – volume: 168 year: 2020 ident: bib0032 article-title: Ten questions on urban building energy modelling publication-title: Build. Environ. – reference: “Digital landscape Map, Tailte Éireann - Surveying and Government of Ireland [shp], CYAL50402364 © Tailte Éireann – Surveying,” [Online]. Available: – reference: . [Accessed 02 02 2024]. – volume: 158 year: 2019 ident: bib0030 article-title: Urban-scale building energy consumption database: a case study for Wuhan, China publication-title: Energy Procedia – volume: 2 year: 2009 ident: bib0049 publication-title: The Elements of Statistical Learning - Data Mining, Inference, and Prediction – volume: 295 start-page: 1774 year: 2017 end-page: 1785 ident: bib0058 article-title: Efficient kNN classification with different numbers of nearest neighbors publication-title: IEEE transactions on neural networks and learning systems – volume: 28 start-page: 1049 year: 2014 end-page: 1055 ident: bib0071 article-title: Count on kappa publication-title: J. Comput. Aided. Mol. Des. – volume: 1 start-page: 20 year: 2019 end-page: 46 ident: bib0072 article-title: Receiver operating characteristic (ROC) area under the curve (AUC): a diagnostic measure for evaluating the accuracy of predictors of education outcomes publication-title: J. Educ. Stud. Placed Risk (JESPAR) – volume: 81 start-page: 161 year: 2014 end-page: 169 ident: bib0019 article-title: Multi-model prediction and simulation of residential building energy in urban areas of Chongqing, South West China publication-title: Energy Build. – year: 2023 ident: bib0010 article-title: A high-fidelity zoning and characterization approach for building energy models for urban building energy modelling publication-title: Building Simulation Conference Proceedings – volume: 75 year: 2023 ident: bib0026 article-title: Simulation-based evaluation of occupancy on energy consumption of multi-scale residential building archetypes publication-title: J. Build. Eng. – year: 2024 ident: bib0037 article-title: Geospatial Analysis of Residential Buildings and Neighborhoods in Dublin, Ireland – year: 2009 ident: bib0005 article-title: World Energy Outlook – reference: Boyd, K.; Costa, V.S.; Davis, J.; Page, C.D., “Unachievable region in precision-recall space and its effect on empirical evaluation,” in Proceedings of the… International Conference on Machine Learning. International Conference on Machine Learning (Vol. 2012, p. 349). NIH Public Access., 2012. – volume: 140 start-page: 90 year: 2018 end-page: 106 ident: bib0022 article-title: Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach publication-title: Build. Environ. – reference: Marjanović, M.;. Kovačević, M.;. Bajat, B.;. Voženílek, V., “Landslide susceptibility assessment using SVM machine learning algorithm,” Eng. Geol., vol. 123, no. 3, pp. 225–234, 201. – reference: “Unies, N. World population prospects–2015 revision, 2015,” 2015. – volume: 142 start-page: 247 year: 2015 end-page: 265 ident: bib0014 article-title: Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts publication-title: Appl. Energy – volume: 226 year: 2022 ident: bib0013 article-title: Advancing urban building energy modelling through new model components and applications: a review publication-title: Energy Build. – volume: 40 start-page: 943 year: 2013 end-page: 952 ident: bib0016 article-title: The value of domestic building energy efficiency — Evidence from Ireland publication-title: Energy Econ. – volume: 19 year: 2023 ident: bib0035 article-title: Using urban building energy modelling to quantify the energy performance of residential buildings under climate change publication-title: Build. Simul. – ident: 10.1016/j.rineng.2025.104931_bib0075 doi: 10.1016/j.engappai.2007.09.009 – volume: 267 year: 2020 ident: 10.1016/j.rineng.2025.104931_bib0012 article-title: A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114861 – volume: 226 year: 2022 ident: 10.1016/j.rineng.2025.104931_bib0013 article-title: Advancing urban building energy modelling through new model components and applications: a review publication-title: Energy Build. – volume: 295 start-page: 1774 year: 2017 ident: 10.1016/j.rineng.2025.104931_bib0058 article-title: Efficient kNN classification with different numbers of nearest neighbors – year: 2018 ident: 10.1016/j.rineng.2025.104931_bib0065 – year: 2009 ident: 10.1016/j.rineng.2025.104931_bib0005 – volume: 40 start-page: 943 year: 2013 ident: 10.1016/j.rineng.2025.104931_bib0016 article-title: The value of domestic building energy efficiency — Evidence from Ireland publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.07.020 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.rineng.2025.104931_bib0044 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 62 issue: 102408 year: 2020 ident: 10.1016/j.rineng.2025.104931_bib0025 article-title: Urban building energy modelling (UBEM) tools: a state-of-the-art review of bottom-up physics-based approaches publication-title: Sustain. Cities. Soc. – volume: 142 start-page: 247 year: 2015 ident: 10.1016/j.rineng.2025.104931_bib0014 article-title: Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.12.068 – volume: 184 start-page: 364 issue: 2 year: 2005 ident: 10.1016/j.rineng.2025.104931_bib0069 article-title: ROC analysis publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.184.2.01840364 – ident: 10.1016/j.rineng.2025.104931_bib0056 doi: 10.1007/978-3-540-39964-3_62 – volume: 13 issue: 9 year: 2020 ident: 10.1016/j.rineng.2025.104931_bib0031 article-title: Modelling thermal interactions between buildings in an urban context publication-title: Energies. (Basel) – volume: 26 start-page: 49 year: 2014 ident: 10.1016/j.rineng.2025.104931_bib0048 article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2013.05.017 – start-page: 01 year: 2007 ident: 10.1016/j.rineng.2025.104931_bib0003 article-title: World energy consumption and resources: an outlook for the rest of the century publication-title: Int. J. Environ. Technol. Manage. – volume: 19 issue: 9 year: 2023 ident: 10.1016/j.rineng.2025.104931_bib0035 article-title: Using urban building energy modelling to quantify the energy performance of residential buildings under climate change publication-title: Build. Simul. doi: 10.1007/s12273-023-1032-2 – volume: 2 year: 2009 ident: 10.1016/j.rineng.2025.104931_bib0049 – ident: 10.1016/j.rineng.2025.104931_bib0004 – start-page: 2024 year: 2024 ident: 10.1016/j.rineng.2025.104931_bib0028 article-title: Model failure or data corruption? Exploring inconsistencies in building energy ratings with self-supervised learning – volume: 84 start-page: 240 year: 2016 ident: 10.1016/j.rineng.2025.104931_bib0063 article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India) publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2016.07.005 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.rineng.2025.104931_bib0040 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 15 issue: 8649 year: 2022 ident: 10.1016/j.rineng.2025.104931_bib0015 article-title: A Systematic Literature Review of Physics-Based Urban Building Energy Modelling (UBEM) Tools, Data Sources, and Challenges for Energy Conservation. Energies publication-title: Energies. (Basel) – volume: 2 start-page: 114 year: 2021 ident: 10.1016/j.rineng.2025.104931_bib0024 article-title: Integration of an energy economy model with an urban energy model publication-title: Build. Cities doi: 10.5334/bc.71 – year: 2009 ident: 10.1016/j.rineng.2025.104931_bib0006 – volume: 7 start-page: 39 issue: 1 year: 2017 ident: 10.1016/j.rineng.2025.104931_bib0043 article-title: Evaluation of classification models in machine learning publication-title: Theory Appl. Math. Comput. Sci. – year: 2023 ident: 10.1016/j.rineng.2025.104931_bib0010 article-title: A high-fidelity zoning and characterization approach for building energy models for urban building energy modelling doi: 10.26868/25222708.2023.1435 – ident: 10.1016/j.rineng.2025.104931_bib0008 – volume: 168 year: 2020 ident: 10.1016/j.rineng.2025.104931_bib0032 article-title: Ten questions on urban building energy modelling publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106508 – volume: 28 start-page: 1049 year: 2014 ident: 10.1016/j.rineng.2025.104931_bib0071 article-title: Count on kappa publication-title: J. Comput. Aided. Mol. Des. doi: 10.1007/s10822-014-9759-6 – volume: 2022 year: 2022 ident: 10.1016/j.rineng.2025.104931_bib0001 – year: 2020 ident: 10.1016/j.rineng.2025.104931_bib0074 – volume: 9 year: 2012 ident: 10.1016/j.rineng.2025.104931_bib0036 – ident: 10.1016/j.rineng.2025.104931_bib0073 – ident: 10.1016/j.rineng.2025.104931_bib0051 doi: 10.1016/j.geomorph.2020.107201 – volume: 1 start-page: 20 year: 2019 ident: 10.1016/j.rineng.2025.104931_bib0072 article-title: Receiver operating characteristic (ROC) area under the curve (AUC): a diagnostic measure for evaluating the accuracy of predictors of education outcomes publication-title: J. Educ. Stud. Placed Risk (JESPAR) doi: 10.1080/10824669.2018.1523734 – volume: 20 start-page: 211 year: 1992 ident: 10.1016/j.rineng.2025.104931_bib0068 article-title: Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC) publication-title: J. Pharmacokinet. Biopharm. doi: 10.1007/BF01062525 – volume: 56 start-page: 448 year: 2013 ident: 10.1016/j.rineng.2025.104931_bib0046 article-title: Decision trees publication-title: Wiley Interdiscipl. Rev.: Comput. Stat. doi: 10.1002/wics.1278 – volume: 45 start-page: 141 year: 2012 ident: 10.1016/j.rineng.2025.104931_bib0021 article-title: Spatial distribution of urban building energy consumption by end use publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.10.061 – volume: 75 year: 2023 ident: 10.1016/j.rineng.2025.104931_bib0026 article-title: Simulation-based evaluation of occupancy on energy consumption of multi-scale residential building archetypes publication-title: J. Build. Eng. – ident: 10.1016/j.rineng.2025.104931_bib0039 – volume: 1 start-page: 81 year: 1986 ident: 10.1016/j.rineng.2025.104931_bib0045 article-title: Induction of decision trees publication-title: Mach. Learn. doi: 10.1023/A:1022643204877 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.rineng.2025.104931_bib0070 article-title: An introduction to ROC analysis publication-title: Pattern. Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 45 start-page: 171 year: 2001 ident: 10.1016/j.rineng.2025.104931_bib0067 article-title: A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems publication-title: Mach. Learn. doi: 10.1023/A:1010920819831 – volume: 81 start-page: 161 year: 2014 ident: 10.1016/j.rineng.2025.104931_bib0019 article-title: Multi-model prediction and simulation of residential building energy in urban areas of Chongqing, South West China publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.06.007 – volume: 1 issue: 100002 year: 2021 ident: 10.1016/j.rineng.2025.104931_bib0007 article-title: Present and future energy consumption of buildings: challenges and opportunities towards decarbonisation,” e-Prime - Advances in Electrical Engineering publication-title: Electron. Energy – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.rineng.2025.104931_bib0047 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – year: 2018 ident: 10.1016/j.rineng.2025.104931_bib0011 article-title: GIS-Based Residential Building Energy Modelling at District Scale – volume: 56 start-page: 1272 year: 2016 ident: 10.1016/j.rineng.2025.104931_bib0017 article-title: A review on modelling and simulation of building energy systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.040 – volume: 36 start-page: 207 year: 2016 ident: 10.1016/j.rineng.2025.104931_bib0060 article-title: Support vector machine. Machine learning models and algorithms for big data classification – ident: 10.1016/j.rineng.2025.104931_bib0023 doi: 10.1016/j.energy.2006.11.010 – year: 1996 ident: 10.1016/j.rineng.2025.104931_bib0050 – volume: 11 year: 2023 ident: 10.1016/j.rineng.2025.104931_bib0042 article-title: A Machine Learning Framework for Early-Stage Detection of Autism Spectrum Disorders publication-title: IEEe Access. doi: 10.1109/ACCESS.2022.3232490 – volume: 128 year: 2020 ident: 10.1016/j.rineng.2025.104931_bib0018 article-title: Urban building energy modelling: state of the art and future prospects publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109902 – year: 2024 ident: 10.1016/j.rineng.2025.104931_bib0037 – volume: 134 year: 2017 ident: 10.1016/j.rineng.2025.104931_bib0033 article-title: Validation of a Bayesian-based method for defining residential archetypes in urban building energy models publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.10.050 – ident: 10.1016/j.rineng.2025.104931_bib0038 – volume: 13 issue: 1 year: 1967 ident: 10.1016/j.rineng.2025.104931_bib0057 article-title: Nearest Neighbor Pattern Classification publication-title: IEEe Trans. Inf. Theory. doi: 10.1109/TIT.1967.1053964 – volume: 24 issue: 23 year: 2003 ident: 10.1016/j.rineng.2025.104931_bib0062 article-title: The use of backpropagating artificial neural networks in land cover classification publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000114851 – volume: 14 issue: 5 year: 2021 ident: 10.1016/j.rineng.2025.104931_bib0034 article-title: GIS-based urban energy modelling and energy efficiency scenarios using the energy performance certificate database publication-title: Energy Effic. doi: 10.1007/s12053-021-09962-z – volume: 117 start-page: 237 year: 2016 ident: 10.1016/j.rineng.2025.104931_bib0009 article-title: Modelling Boston: a workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets publication-title: Energy doi: 10.1016/j.energy.2016.10.057 – year: 2001 ident: 10.1016/j.rineng.2025.104931_bib0064 – volume: 20 year: 2000 ident: 10.1016/j.rineng.2025.104931_bib0052 article-title: The Elements of Statistical Learning: data Mining, Inference, and Prediction, Second Edition publication-title: J. Obstet. Gynaecol. (Lahore) – ident: 10.1016/j.rineng.2025.104931_bib0055 doi: 10.1016/j.enggeo.2011.09.006 – year: 2024 ident: 10.1016/j.rineng.2025.104931_bib0020 article-title: A data-driven model for the analysis of energy consumption in buildings – ident: 10.1016/j.rineng.2025.104931_bib0002 – ident: 10.1016/j.rineng.2025.104931_bib0027 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.rineng.2025.104931_bib0053 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 4 start-page: 218 issue: 11 year: 2016 ident: 10.1016/j.rineng.2025.104931_bib0066 article-title: Introduction to machine learning: k-nearest neighbors publication-title: Ann. Transl. Med. doi: 10.21037/atm.2016.03.37 – volume: 15 issue: 9 year: 2022 ident: 10.1016/j.rineng.2025.104931_bib0029 article-title: Archetype identification and urban building energy modelling for city-scale buildings based on GIS datasets publication-title: Build. Simul. doi: 10.1007/s12273-021-0878-4 – volume: 20 year: 1995 ident: 10.1016/j.rineng.2025.104931_bib0061 article-title: Support-vector networks – volume: 16 start-page: 1437 issue: 6 year: 2003 ident: 10.1016/j.rineng.2025.104931_bib0041 article-title: Benchmarking attribute selection techniques for discrete class data mining publication-title: IEEe Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2003.1245283 – volume: 158 year: 2019 ident: 10.1016/j.rineng.2025.104931_bib0030 article-title: Urban-scale building energy consumption database: a case study for Wuhan, China – volume: 140 start-page: 90 year: 2018 ident: 10.1016/j.rineng.2025.104931_bib0022 article-title: Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.05.035 – volume: 63 start-page: 3 year: 2006 ident: 10.1016/j.rineng.2025.104931_bib0054 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 46 issue: 3 year: 1992 ident: 10.1016/j.rineng.2025.104931_bib0059 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Statist. doi: 10.1080/00031305.1992.10475879 |
SSID | ssj0002810137 |
Score | 2.293039 |
Snippet | •Proposes a novel data-driven methodology for predicting Building Energy Ratings (BER) in urban areas, with Dublin, Ireland, as a pilot case.•Integrates... This paper presents a novel, data-driven approach for predicting Building Energy Ratings (BER) in urban environments, using advanced Machine Learning (ML)... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 104931 |
SubjectTerms | Building energy rate (BER) Data-driven approach Machine learning classification models Urban building energy modelling (UBEM) Urban energy analysis |
Title | Leveraging machine learning for data-driven building energy rate prediction |
URI | https://dx.doi.org/10.1016/j.rineng.2025.104931 https://doaj.org/article/7cf0f947f19b42dea030a7b4644142f7 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBqkYcT2yOgVhVQFkDqZtmxXVGJgqqy8tu5sxMUFlhYMkSRHX138XeO774j5ILLRlausMwEUzFeWs5sDr6c51a5gAdJHmuHpw_15JnfzqpZr9UX5oQleeAE3KVoQhYUFyFXlhfOG_BKIyxHHudFiHXkwHm9zdQi_jLKUUuvq5WLCV1YTbecw5awqPBkU5X5Dy6Kkv09SurRzHiHbLfxIb1K77VLNvxyj2z1VAP3yd29B_-L3YXoa8yF9LRt_jCnEINSzPpkboXrGLVt22vqY5EfRWUI-r7C4xk0yQF5HI-ebias7YnAmrJWaxZc7RV8l8E7IYMojZQmiFBboPYqK13pXKFMLb3kZcMr3qDeXiOzulEOFrdDMli-Lf0RoR7iAKGw-XkJQZThqi6MCbB9cJmSIQ9Dwjps9HsSvtBdRthCJyw1YqkTlkNyjQB-P4uy1fEGGFO3xtR_GXNIRAe_biOAxOww1Muv0x__x_QnZBOHTJlgp2SwXn34M4g51vY8uhdcp5-jL3CN1OQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+machine+learning+for+data-driven+building+energy+rate+prediction&rft.jtitle=Results+in+engineering&rft.au=Nasim+Eslamirad&rft.au=Mehdi+Golamnia&rft.au=Payam+Sajadi&rft.au=Francesco+Pilla&rft.date=2025-06-01&rft.pub=Elsevier&rft.eissn=2590-1230&rft.volume=26&rft.spage=104931&rft_id=info:doi/10.1016%2Fj.rineng.2025.104931&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7cf0f947f19b42dea030a7b4644142f7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |