Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data

Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Diff...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 5; no. 1; pp. 1 - 10
Main Authors Xie, Ting, Liu, Ruihua, Wei, Zhengyuan
Format Journal Article
LanguageEnglish
Published Beirut Sciendo 01.01.2020
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated -means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm.
AbstractList Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and K-means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by K-means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated K-means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm.
Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and K -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by K -means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated K -means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm.
Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated -means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm.
Author Xie, Ting
Wei, Zhengyuan
Liu, Ruihua
Author_xml – sequence: 1
  givenname: Ting
  surname: Xie
  fullname: Xie, Ting
  email: xieting@cqut.edu.cn
  organization: College of Science, Chongqing University of Technology, Chongqing 400054, China
– sequence: 2
  givenname: Ruihua
  surname: Liu
  fullname: Liu, Ruihua
  organization: College of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China
– sequence: 3
  givenname: Zhengyuan
  surname: Wei
  fullname: Wei, Zhengyuan
  organization: College of Science, Chongqing University of Technology, Chongqing 400054, China
BookMark eNp9kF1LwzAUhoMoOOd-gHcBrzuTpk1T8GZOp8OJXuh1SJu0y2jTmaTK_r3ZByiC5uYcDu-Tc3jOwLHpjALgAqNxnGTsSrTGjWMUozEeo_DwERjESZJEjKb0-Ed_CkbOrUIiJphQGg_Ay7xd2-5Dtcp42FXQLxWcCefhtOmdV1abGk6aurPaL1t4CEtYbOBj9KSEcVCbHXSja3grvDgHJ5VonBod6hC8ze5epw_R4vl-Pp0sopLQ3EeVYJIUNJNMVnkSRnmKKSE4I7LMZFowJCqUIcooUzFOUynLVGYZK6ocsRxXZAgu9_-Gi9575Txfdb01YSUnOMcxoYTikMr2qdJ2zllV8VJ74XVnvBW64RjxrUG-Nci3BjnmO4OBxL_ItdWtsJt_mes98yma4E6q2vab0Hyf9iebYky-AP0iiLM
CitedBy_id crossref_primary_10_1007_s11270_024_07233_y
crossref_primary_10_1371_journal_pone_0271546
crossref_primary_10_3390_electronics11050724
crossref_primary_10_1007_s00521_023_08386_3
crossref_primary_10_1002_cpe_70035
crossref_primary_10_1016_j_procs_2023_11_105
crossref_primary_10_2478_amns_2022_2_0123
crossref_primary_10_1057_s41261_025_00269_y
crossref_primary_10_3390_su12218920
crossref_primary_10_37031_jt_v20i1_206
crossref_primary_10_2478_amns_2021_2_00073
crossref_primary_10_2478_amns_2022_2_00010
crossref_primary_10_2478_amns_2021_2_00090
crossref_primary_10_3934_mbe_2021242
crossref_primary_10_2478_amns_2022_2_00015
crossref_primary_10_1186_s43897_024_00136_w
crossref_primary_10_3390_app122312275
crossref_primary_10_1007_s12517_021_08045_8
crossref_primary_10_3390_sym13020355
crossref_primary_10_3934_mbe_2021205
crossref_primary_10_2478_amns_2021_2_00099
crossref_primary_10_1007_s00521_021_06690_4
crossref_primary_10_32604_cmc_2023_029046
crossref_primary_10_2478_amns_2022_2_0119
crossref_primary_10_2478_amns_2021_1_00098
crossref_primary_10_2478_amns_2021_1_00055
crossref_primary_10_2478_amns_2023_1_00016
crossref_primary_10_2478_amns_2021_1_00052
crossref_primary_10_3390_axioms12050456
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_2478_amns_2022_2_0171
crossref_primary_10_3233_JCM_215126
crossref_primary_10_3233_JCM_215884
crossref_primary_10_3233_JCM_215523
crossref_primary_10_2478_amns_2022_2_0131
crossref_primary_10_3390_electronics11060883
crossref_primary_10_1155_2022_3037040
crossref_primary_10_1155_2022_6711470
crossref_primary_10_3233_JCM_215185
crossref_primary_10_3233_JIFS_230387
crossref_primary_10_3233_JCM226028
crossref_primary_10_3390_fintech3040027
crossref_primary_10_1016_j_jksuci_2023_101890
crossref_primary_10_1007_s00500_022_07359_3
crossref_primary_10_2478_amns_2021_2_00026
crossref_primary_10_3390_sym13020322
crossref_primary_10_1002_adts_202301113
Cites_doi 10.1142/S0219691318400131
10.1016/S0306-4379(01)00008-4
10.1016/j.neucom.2019.03.055
10.1109/TIP.2008.918957
10.1038/44565
10.1016/S0031-3203(01)00095-4
10.1016/j.patrec.2016.06.021
10.1137/1.9781611972740.22
10.1109/34.1000236
10.1109/34.868688
10.1109/72.478389
10.1109/ECONF.2015.39
10.1109/TCOM.1980.1094577
10.1007/s11222-007-9033-z
10.1109/TIT.1982.1056489
10.1080/01969727308546046
10.1109/TPAMI.2003.1227987
10.1109/3477.826950
10.1109/TCYB.2014.2358564
10.1609/aaai.v30i1.10259
10.1109/TSMCB.2009.2024759
10.1109/TPAMI.2013.57
10.1145/1014052.1014118
10.1023/A:1007612920971
10.1109/TIP.2009.2028255
10.3847/1538-4357/aaa1f2
10.1016/j.patrec.2009.09.011
10.1016/j.eswa.2012.07.021
10.1016/j.asoc.2017.08.032
10.1109/TKDE.2012.51
10.1016/j.eswa.2008.01.039
10.1016/j.patcog.2017.08.024
10.1137/060655523
10.1016/j.neucom.2018.02.032
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/amns.2020.1.00001
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
EndPage 10
ExternalDocumentID 10_2478_amns_2020_1_00001
10_2478_amns_2020_1_00001511
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c369t-fa8d3b67d8df94369951633173dc7d5b80af0706868e2155ddc5d778bf90891f3
IEDL.DBID BENPR
ISSN 2444-8656
IngestDate Mon Jun 30 11:42:37 EDT 2025
Thu Apr 24 23:12:46 EDT 2025
Tue Jul 01 03:14:25 EDT 2025
Thu Jul 10 10:36:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-fa8d3b67d8df94369951633173dc7d5b80af0706868e2155ddc5d778bf90891f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3191236361?pq-origsite=%requestingapplication%
PQID 3191236361
PQPubID 6761185
PageCount 10
ParticipantIDs proquest_journals_3191236361
crossref_citationtrail_10_2478_amns_2020_1_00001
crossref_primary_10_2478_amns_2020_1_00001
walterdegruyter_journals_10_2478_amns_2020_1_00001511
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2020
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2024050207120457551_j_amns.2020.1.00001_ref_018_w2aab3b7d116b1b6b1ab2b1c18Aa
2024050207120457551_j_amns.2020.1.00001_ref_008_w2aab3b7d116b1b6b1ab2b1b8Aa
2024050207120457551_j_amns.2020.1.00001_ref_022_w2aab3b7d116b1b6b1ab2b1c22Aa
2024050207120457551_j_amns.2020.1.00001_ref_027_w2aab3b7d116b1b6b1ab2b1c27Aa
2024050207120457551_j_amns.2020.1.00001_ref_041_w2aab3b7d116b1b6b1ab2b1c41Aa
2024050207120457551_j_amns.2020.1.00001_ref_013_w2aab3b7d116b1b6b1ab2b1c13Aa
2024050207120457551_j_amns.2020.1.00001_ref_003_w2aab3b7d116b1b6b1ab2b1b3Aa
2024050207120457551_j_amns.2020.1.00001_ref_040_w2aab3b7d116b1b6b1ab2b1c40Aa
2024050207120457551_j_amns.2020.1.00001_ref_045_w2aab3b7d116b1b6b1ab2b1c45Aa
2024050207120457551_j_amns.2020.1.00001_ref_031_w2aab3b7d116b1b6b1ab2b1c31Aa
2024050207120457551_j_amns.2020.1.00001_ref_036_w2aab3b7d116b1b6b1ab2b1c36Aa
2024050207120457551_j_amns.2020.1.00001_ref_021_w2aab3b7d116b1b6b1ab2b1c21Aa
2024050207120457551_j_amns.2020.1.00001_ref_026_w2aab3b7d116b1b6b1ab2b1c26Aa
2024050207120457551_j_amns.2020.1.00001_ref_030_w2aab3b7d116b1b6b1ab2b1c30Aa
2024050207120457551_j_amns.2020.1.00001_ref_012_w2aab3b7d116b1b6b1ab2b1c12Aa
2024050207120457551_j_amns.2020.1.00001_ref_005_w2aab3b7d116b1b6b1ab2b1b5Aa
2024050207120457551_j_amns.2020.1.00001_ref_017_w2aab3b7d116b1b6b1ab2b1c17Aa
2024050207120457551_j_amns.2020.1.00001_ref_011_w2aab3b7d116b1b6b1ab2b1c11Aa
2024050207120457551_j_amns.2020.1.00001_ref_016_w2aab3b7d116b1b6b1ab2b1c16Aa
2024050207120457551_j_amns.2020.1.00001_ref_035_w2aab3b7d116b1b6b1ab2b1c35Aa
2024050207120457551_j_amns.2020.1.00001_ref_009_w2aab3b7d116b1b6b1ab2b1b9Aa
2024050207120457551_j_amns.2020.1.00001_ref_002_w2aab3b7d116b1b6b1ab2b1b2Aa
2024050207120457551_j_amns.2020.1.00001_ref_044_w2aab3b7d116b1b6b1ab2b1c44Aa
2024050207120457551_j_amns.2020.1.00001_ref_034_w2aab3b7d116b1b6b1ab2b1c34Aa
2024050207120457551_j_amns.2020.1.00001_ref_039_w2aab3b7d116b1b6b1ab2b1c39Aa
2024050207120457551_j_amns.2020.1.00001_ref_020_w2aab3b7d116b1b6b1ab2b1c20Aa
2024050207120457551_j_amns.2020.1.00001_ref_025_w2aab3b7d116b1b6b1ab2b1c25Aa
2024050207120457551_j_amns.2020.1.00001_ref_006_w2aab3b7d116b1b6b1ab2b1b6Aa
2024050207120457551_j_amns.2020.1.00001_ref_024_w2aab3b7d116b1b6b1ab2b1c24Aa
2024050207120457551_j_amns.2020.1.00001_ref_029_w2aab3b7d116b1b6b1ab2b1c29Aa
2024050207120457551_j_amns.2020.1.00001_ref_043_w2aab3b7d116b1b6b1ab2b1c43Aa
2024050207120457551_j_amns.2020.1.00001_ref_010_w2aab3b7d116b1b6b1ab2b1c10Aa
2024050207120457551_j_amns.2020.1.00001_ref_001_w2aab3b7d116b1b6b1ab2b1b1Aa
2024050207120457551_j_amns.2020.1.00001_ref_015_w2aab3b7d116b1b6b1ab2b1c15Aa
2024050207120457551_j_amns.2020.1.00001_ref_042_w2aab3b7d116b1b6b1ab2b1c42Aa
2024050207120457551_j_amns.2020.1.00001_ref_007_w2aab3b7d116b1b6b1ab2b1b7Aa
2024050207120457551_j_amns.2020.1.00001_ref_014_w2aab3b7d116b1b6b1ab2b1c14Aa
2024050207120457551_j_amns.2020.1.00001_ref_019_w2aab3b7d116b1b6b1ab2b1c19Aa
2024050207120457551_j_amns.2020.1.00001_ref_033_w2aab3b7d116b1b6b1ab2b1c33Aa
2024050207120457551_j_amns.2020.1.00001_ref_038_w2aab3b7d116b1b6b1ab2b1c38Aa
2024050207120457551_j_amns.2020.1.00001_ref_032_w2aab3b7d116b1b6b1ab2b1c32Aa
2024050207120457551_j_amns.2020.1.00001_ref_037_w2aab3b7d116b1b6b1ab2b1c37Aa
2024050207120457551_j_amns.2020.1.00001_ref_004_w2aab3b7d116b1b6b1ab2b1b4Aa
2024050207120457551_j_amns.2020.1.00001_ref_023_w2aab3b7d116b1b6b1ab2b1c23Aa
2024050207120457551_j_amns.2020.1.00001_ref_028_w2aab3b7d116b1b6b1ab2b1c28Aa
References_xml – ident: 2024050207120457551_j_amns.2020.1.00001_ref_008_w2aab3b7d116b1b6b1ab2b1b8Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_010_w2aab3b7d116b1b6b1ab2b1c10Aa
  doi: 10.1142/S0219691318400131
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_009_w2aab3b7d116b1b6b1ab2b1b9Aa
  doi: 10.1016/S0306-4379(01)00008-4
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_011_w2aab3b7d116b1b6b1ab2b1c11Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_016_w2aab3b7d116b1b6b1ab2b1c16Aa
  doi: 10.1016/j.neucom.2019.03.055
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_040_w2aab3b7d116b1b6b1ab2b1c40Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_006_w2aab3b7d116b1b6b1ab2b1b6Aa
  doi: 10.1109/TIP.2008.918957
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_012_w2aab3b7d116b1b6b1ab2b1c12Aa
  doi: 10.1038/44565
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_043_w2aab3b7d116b1b6b1ab2b1c43Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_001_w2aab3b7d116b1b6b1ab2b1b1Aa
  doi: 10.1016/S0031-3203(01)00095-4
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_041_w2aab3b7d116b1b6b1ab2b1c41Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_017_w2aab3b7d116b1b6b1ab2b1c17Aa
  doi: 10.1016/j.patrec.2016.06.021
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_036_w2aab3b7d116b1b6b1ab2b1c36Aa
  doi: 10.1137/1.9781611972740.22
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_039_w2aab3b7d116b1b6b1ab2b1c39Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_015_w2aab3b7d116b1b6b1ab2b1c15Aa
  doi: 10.1109/34.1000236
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_020_w2aab3b7d116b1b6b1ab2b1c20Aa
  doi: 10.1109/34.868688
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_038_w2aab3b7d116b1b6b1ab2b1c38Aa
  doi: 10.1109/72.478389
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_033_w2aab3b7d116b1b6b1ab2b1c33Aa
  doi: 10.1109/ECONF.2015.39
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_037_w2aab3b7d116b1b6b1ab2b1c37Aa
  doi: 10.1109/TCOM.1980.1094577
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_019_w2aab3b7d116b1b6b1ab2b1c19Aa
  doi: 10.1007/s11222-007-9033-z
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_025_w2aab3b7d116b1b6b1ab2b1c25Aa
  doi: 10.1109/TIT.1982.1056489
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_034_w2aab3b7d116b1b6b1ab2b1c34Aa
  doi: 10.1080/01969727308546046
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_044_w2aab3b7d116b1b6b1ab2b1c44Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_004_w2aab3b7d116b1b6b1ab2b1b4Aa
  doi: 10.1109/TPAMI.2003.1227987
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_032_w2aab3b7d116b1b6b1ab2b1c32Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_028_w2aab3b7d116b1b6b1ab2b1c28Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_042_w2aab3b7d116b1b6b1ab2b1c42Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_002_w2aab3b7d116b1b6b1ab2b1b2Aa
  doi: 10.1109/3477.826950
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_018_w2aab3b7d116b1b6b1ab2b1c18Aa
  doi: 10.1109/TCYB.2014.2358564
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_029_w2aab3b7d116b1b6b1ab2b1c29Aa
  doi: 10.1609/aaai.v30i1.10259
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_003_w2aab3b7d116b1b6b1ab2b1b3Aa
  doi: 10.1109/TSMCB.2009.2024759
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_022_w2aab3b7d116b1b6b1ab2b1c22Aa
  doi: 10.1109/TPAMI.2013.57
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_045_w2aab3b7d116b1b6b1ab2b1c45Aa
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_031_w2aab3b7d116b1b6b1ab2b1c31Aa
  doi: 10.1145/1014052.1014118
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_035_w2aab3b7d116b1b6b1ab2b1c35Aa
  doi: 10.1023/A:1007612920971
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_007_w2aab3b7d116b1b6b1ab2b1b7Aa
  doi: 10.1109/TIP.2009.2028255
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_013_w2aab3b7d116b1b6b1ab2b1c13Aa
  doi: 10.3847/1538-4357/aaa1f2
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_024_w2aab3b7d116b1b6b1ab2b1c24Aa
  doi: 10.1016/j.patrec.2009.09.011
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_030_w2aab3b7d116b1b6b1ab2b1c30Aa
  doi: 10.1016/j.eswa.2012.07.021
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_027_w2aab3b7d116b1b6b1ab2b1c27Aa
  doi: 10.1016/j.asoc.2017.08.032
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_014_w2aab3b7d116b1b6b1ab2b1c14Aa
  doi: 10.1109/TKDE.2012.51
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_026_w2aab3b7d116b1b6b1ab2b1c26Aa
  doi: 10.1016/j.eswa.2008.01.039
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_021_w2aab3b7d116b1b6b1ab2b1c21Aa
  doi: 10.1016/j.patcog.2017.08.024
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_023_w2aab3b7d116b1b6b1ab2b1c23Aa
  doi: 10.1137/060655523
– ident: 2024050207120457551_j_amns.2020.1.00001_ref_005_w2aab3b7d116b1b6b1ab2b1b5Aa
  doi: 10.1016/j.neucom.2018.02.032
SSID ssj0002313662
Score 2.3299766
Snippet Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering...
Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and K -means is demonstrably the most popular clustering...
Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and K-means is demonstrably the most popular clustering...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 62K86
Big Data
Clustering
Feature space
means
Title Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data
URI https://www.degruyter.com/doi/10.2478/amns.2020.1.00001
https://www.proquest.com/docview/3191236361
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da8IwEA-bvuzFfTM3J3nY06BobZsmT0OdIhuKjMl8K0mTOkGrs5Xhf79LG5UN5mubXOld7u53d-EOoYcGmEN4JSxfRMxyXS4s5nkUgJwijCs3olwHiv0B6Y3cl7E3Ngm3xFyr3NrEzFDLRahz5DU4KrpRiEPsp-WXpadG6eqqGaFxjIrwTUoLqNjqDIZvuywLoBeHkEZezmy4Pq3xeay7dDfAWGS9C-3fDmmPMkvfWb1aqslqvUm39dHM7XTPUMngRdzMBXyOjlR8gU4NdsRGM5NLNMyzA1myDy8iDLgOd3mS4vZsrXshgIfCzdkE_ij9nGOzWGKxwa9WX4G_wtM429SaTvAzT_kVGnU77-2eZaYlWKFDWGpFnEpHEF9SGTEXHgF2Ig7AA0eGvvQErfMI9JtQQhX4eU_K0JO-T0FGdcrsyLlGhXgRqxuE3QjU3AcSQkK0aDPOhO0om7Gwrqu2XhnVtywLQtNKXE-0mAUQUmguB5rLgeZyYAcZl8vocbdlmffROLS4spVDYFQqCfYHoIy8P7LZr_qXJgDL28Nk79CJ3pDnVyqokK7W6h4QRyqqYDg_-lVzuH4AvdvUuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTyMxDLagHODC8hRdWMgBLkgj5plJDivEqyqUVgiBxC0kk0y3UpkCnQr1T_Eb15kH1a4EN64zsaVxHPuznbEB9n00h_hKObFKuROGUjk8ihgCOUO5NGHKpA0Uuz3avg-vHqKHOXiv_4Wx1yprm1gYaj1KbI78CFXFNgoJqHf8_OLYqVG2ulqP0CjVomOmbxiyjX9fnuP-Hvh-6-LurO1UUwWcJKA8d1LJdKBorJlOeYiPEGPQAN1ooJNYR4q5MsVzQBllBv1hpHUS6Thm-C0u414aIN95WEBK12_AwulF7-b2I6uDaCmg1C_Lp34YsyP5lNmu4D4ap6JXovevA5yh2uW3oj6uTf91Ms3remzh5lorsFzhU3JSKtQqzJlsDX5UWJVUlmC8DjdlNqJILpJRShBHkpYc5-RsOLG9F9AjkpNhHyWY_3ki1WJN1JR0nK5B_0gGWUF0OuiTc5nLDbj_FjluQiMbZWYLSJiiWYmRhdIYnXpccuUFxuM8cW2VOGqCW4tMJFXrcjtBYygwhLFSFlbKwkpZeKKQchMOP0iey74dXy3eqfdBVEd4LGYK14Tov72ZrfqUJwLZn1-z3YPF9l33Wlxf9jrbsGSJy9zODjTy14n5hWgnV7uVihF4_G6t_gstqw-v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVkJc2vIShVJ8gAvSqtmHvfahh9A0pISWSlCpN2Ov7RAp3VTJRlV-Dv-UsddpVQQckHrdsS1rPI9vZrxjgLcZmkMk6aTUTiRFoXQiKOUI5CwTyhaOKx8onpyywXnx6YJerMHP1b8wwe6bUK3cvzIuXFUuSr6vLmvfXDtDHQ8tB9N4j3Jol9cYpc0Pjnt4pO-yrH_07XCQxIcEkipnokmc4ibXrDTcOFHgJ4QVLEfPmZuqNFTzjnIo-owzbtEFUmMqasqS4_Y7XKQux3UfwEZJRYZKtNEdfPz65SaRgwApZyxrK6Z_3utdn3cLZDevQ0nc2NFssWxWJdjg2frbsBkhKem2MvQY1mz9BLYiPCVR-edP4axNQIR8Ipk6gtCR9NW8IYeThW-3gE6QdCej6Wzc_LgkcbAhekmGyYlFl0jGdZj0YTwiPdWoZ3B-L3x8Duv1tLYvgBQOLUmJS2iDAWkqlNBpblMhqo4vDNMd6KxYJqvYrdw_mjGRGLV4LkvPZem5LFMZuLwD72-mXLWtOv41eHd1DjJq7VyiOfLNaHKGZPrb2dyO-uuaiF1f_ue8N_DwrNeXn49Ph6_gkSe2aZ5dWG9mC_sagU-j96LoEfh-39L-C4nmD9U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+the+Fast+Clustering+Algorithm+Improved+by+K-Means+in+the+Big+Data&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Xie%2C+Ting&rft.au=Liu%2C+Ruihua&rft.au=Wei%2C+Zhengyuan&rft.date=2020-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.2478%2Famns.2020.1.00001&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2020_1_00001511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon