Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data
Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Diff...
Saved in:
Published in | Applied mathematics and nonlinear sciences Vol. 5; no. 1; pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beirut
Sciendo
01.01.2020
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and
-means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by
-means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated
-means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm. |
---|---|
AbstractList | Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and K-means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by K-means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated K-means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm. Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and K -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by K -means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated K -means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm. Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated -means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm. |
Author | Xie, Ting Wei, Zhengyuan Liu, Ruihua |
Author_xml | – sequence: 1 givenname: Ting surname: Xie fullname: Xie, Ting email: xieting@cqut.edu.cn organization: College of Science, Chongqing University of Technology, Chongqing 400054, China – sequence: 2 givenname: Ruihua surname: Liu fullname: Liu, Ruihua organization: College of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China – sequence: 3 givenname: Zhengyuan surname: Wei fullname: Wei, Zhengyuan organization: College of Science, Chongqing University of Technology, Chongqing 400054, China |
BookMark | eNp9kF1LwzAUhoMoOOd-gHcBrzuTpk1T8GZOp8OJXuh1SJu0y2jTmaTK_r3ZByiC5uYcDu-Tc3jOwLHpjALgAqNxnGTsSrTGjWMUozEeo_DwERjESZJEjKb0-Ed_CkbOrUIiJphQGg_Ay7xd2-5Dtcp42FXQLxWcCefhtOmdV1abGk6aurPaL1t4CEtYbOBj9KSEcVCbHXSja3grvDgHJ5VonBod6hC8ze5epw_R4vl-Pp0sopLQ3EeVYJIUNJNMVnkSRnmKKSE4I7LMZFowJCqUIcooUzFOUynLVGYZK6ocsRxXZAgu9_-Gi9575Txfdb01YSUnOMcxoYTikMr2qdJ2zllV8VJ74XVnvBW64RjxrUG-Nci3BjnmO4OBxL_ItdWtsJt_mes98yma4E6q2vab0Hyf9iebYky-AP0iiLM |
CitedBy_id | crossref_primary_10_1007_s11270_024_07233_y crossref_primary_10_1371_journal_pone_0271546 crossref_primary_10_3390_electronics11050724 crossref_primary_10_1007_s00521_023_08386_3 crossref_primary_10_1002_cpe_70035 crossref_primary_10_1016_j_procs_2023_11_105 crossref_primary_10_2478_amns_2022_2_0123 crossref_primary_10_1057_s41261_025_00269_y crossref_primary_10_3390_su12218920 crossref_primary_10_37031_jt_v20i1_206 crossref_primary_10_2478_amns_2021_2_00073 crossref_primary_10_2478_amns_2022_2_00010 crossref_primary_10_2478_amns_2021_2_00090 crossref_primary_10_3934_mbe_2021242 crossref_primary_10_2478_amns_2022_2_00015 crossref_primary_10_1186_s43897_024_00136_w crossref_primary_10_3390_app122312275 crossref_primary_10_1007_s12517_021_08045_8 crossref_primary_10_3390_sym13020355 crossref_primary_10_3934_mbe_2021205 crossref_primary_10_2478_amns_2021_2_00099 crossref_primary_10_1007_s00521_021_06690_4 crossref_primary_10_32604_cmc_2023_029046 crossref_primary_10_2478_amns_2022_2_0119 crossref_primary_10_2478_amns_2021_1_00098 crossref_primary_10_2478_amns_2021_1_00055 crossref_primary_10_2478_amns_2023_1_00016 crossref_primary_10_2478_amns_2021_1_00052 crossref_primary_10_3390_axioms12050456 crossref_primary_10_1016_j_ins_2022_11_139 crossref_primary_10_2478_amns_2022_2_0171 crossref_primary_10_3233_JCM_215126 crossref_primary_10_3233_JCM_215884 crossref_primary_10_3233_JCM_215523 crossref_primary_10_2478_amns_2022_2_0131 crossref_primary_10_3390_electronics11060883 crossref_primary_10_1155_2022_3037040 crossref_primary_10_1155_2022_6711470 crossref_primary_10_3233_JCM_215185 crossref_primary_10_3233_JIFS_230387 crossref_primary_10_3233_JCM226028 crossref_primary_10_3390_fintech3040027 crossref_primary_10_1016_j_jksuci_2023_101890 crossref_primary_10_1007_s00500_022_07359_3 crossref_primary_10_2478_amns_2021_2_00026 crossref_primary_10_3390_sym13020322 crossref_primary_10_1002_adts_202301113 |
Cites_doi | 10.1142/S0219691318400131 10.1016/S0306-4379(01)00008-4 10.1016/j.neucom.2019.03.055 10.1109/TIP.2008.918957 10.1038/44565 10.1016/S0031-3203(01)00095-4 10.1016/j.patrec.2016.06.021 10.1137/1.9781611972740.22 10.1109/34.1000236 10.1109/34.868688 10.1109/72.478389 10.1109/ECONF.2015.39 10.1109/TCOM.1980.1094577 10.1007/s11222-007-9033-z 10.1109/TIT.1982.1056489 10.1080/01969727308546046 10.1109/TPAMI.2003.1227987 10.1109/3477.826950 10.1109/TCYB.2014.2358564 10.1609/aaai.v30i1.10259 10.1109/TSMCB.2009.2024759 10.1109/TPAMI.2013.57 10.1145/1014052.1014118 10.1023/A:1007612920971 10.1109/TIP.2009.2028255 10.3847/1538-4357/aaa1f2 10.1016/j.patrec.2009.09.011 10.1016/j.eswa.2012.07.021 10.1016/j.asoc.2017.08.032 10.1109/TKDE.2012.51 10.1016/j.eswa.2008.01.039 10.1016/j.patcog.2017.08.024 10.1137/060655523 10.1016/j.neucom.2018.02.032 |
ContentType | Journal Article |
Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/amns.2020.1.00001 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2444-8656 |
EndPage | 10 |
ExternalDocumentID | 10_2478_amns_2020_1_00001 10_2478_amns_2020_1_00001511 |
GroupedDBID | 9WM AATOW ABFKT ADBLJ AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c369t-fa8d3b67d8df94369951633173dc7d5b80af0706868e2155ddc5d778bf90891f3 |
IEDL.DBID | BENPR |
ISSN | 2444-8656 |
IngestDate | Mon Jun 30 11:42:37 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Tue Jul 01 03:14:25 EDT 2025 Thu Jul 10 10:36:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-fa8d3b67d8df94369951633173dc7d5b80af0706868e2155ddc5d778bf90891f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3191236361?pq-origsite=%requestingapplication% |
PQID | 3191236361 |
PQPubID | 6761185 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3191236361 crossref_citationtrail_10_2478_amns_2020_1_00001 crossref_primary_10_2478_amns_2020_1_00001 walterdegruyter_journals_10_2478_amns_2020_1_00001511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beirut |
PublicationPlace_xml | – name: Beirut |
PublicationTitle | Applied mathematics and nonlinear sciences |
PublicationYear | 2020 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2024050207120457551_j_amns.2020.1.00001_ref_018_w2aab3b7d116b1b6b1ab2b1c18Aa 2024050207120457551_j_amns.2020.1.00001_ref_008_w2aab3b7d116b1b6b1ab2b1b8Aa 2024050207120457551_j_amns.2020.1.00001_ref_022_w2aab3b7d116b1b6b1ab2b1c22Aa 2024050207120457551_j_amns.2020.1.00001_ref_027_w2aab3b7d116b1b6b1ab2b1c27Aa 2024050207120457551_j_amns.2020.1.00001_ref_041_w2aab3b7d116b1b6b1ab2b1c41Aa 2024050207120457551_j_amns.2020.1.00001_ref_013_w2aab3b7d116b1b6b1ab2b1c13Aa 2024050207120457551_j_amns.2020.1.00001_ref_003_w2aab3b7d116b1b6b1ab2b1b3Aa 2024050207120457551_j_amns.2020.1.00001_ref_040_w2aab3b7d116b1b6b1ab2b1c40Aa 2024050207120457551_j_amns.2020.1.00001_ref_045_w2aab3b7d116b1b6b1ab2b1c45Aa 2024050207120457551_j_amns.2020.1.00001_ref_031_w2aab3b7d116b1b6b1ab2b1c31Aa 2024050207120457551_j_amns.2020.1.00001_ref_036_w2aab3b7d116b1b6b1ab2b1c36Aa 2024050207120457551_j_amns.2020.1.00001_ref_021_w2aab3b7d116b1b6b1ab2b1c21Aa 2024050207120457551_j_amns.2020.1.00001_ref_026_w2aab3b7d116b1b6b1ab2b1c26Aa 2024050207120457551_j_amns.2020.1.00001_ref_030_w2aab3b7d116b1b6b1ab2b1c30Aa 2024050207120457551_j_amns.2020.1.00001_ref_012_w2aab3b7d116b1b6b1ab2b1c12Aa 2024050207120457551_j_amns.2020.1.00001_ref_005_w2aab3b7d116b1b6b1ab2b1b5Aa 2024050207120457551_j_amns.2020.1.00001_ref_017_w2aab3b7d116b1b6b1ab2b1c17Aa 2024050207120457551_j_amns.2020.1.00001_ref_011_w2aab3b7d116b1b6b1ab2b1c11Aa 2024050207120457551_j_amns.2020.1.00001_ref_016_w2aab3b7d116b1b6b1ab2b1c16Aa 2024050207120457551_j_amns.2020.1.00001_ref_035_w2aab3b7d116b1b6b1ab2b1c35Aa 2024050207120457551_j_amns.2020.1.00001_ref_009_w2aab3b7d116b1b6b1ab2b1b9Aa 2024050207120457551_j_amns.2020.1.00001_ref_002_w2aab3b7d116b1b6b1ab2b1b2Aa 2024050207120457551_j_amns.2020.1.00001_ref_044_w2aab3b7d116b1b6b1ab2b1c44Aa 2024050207120457551_j_amns.2020.1.00001_ref_034_w2aab3b7d116b1b6b1ab2b1c34Aa 2024050207120457551_j_amns.2020.1.00001_ref_039_w2aab3b7d116b1b6b1ab2b1c39Aa 2024050207120457551_j_amns.2020.1.00001_ref_020_w2aab3b7d116b1b6b1ab2b1c20Aa 2024050207120457551_j_amns.2020.1.00001_ref_025_w2aab3b7d116b1b6b1ab2b1c25Aa 2024050207120457551_j_amns.2020.1.00001_ref_006_w2aab3b7d116b1b6b1ab2b1b6Aa 2024050207120457551_j_amns.2020.1.00001_ref_024_w2aab3b7d116b1b6b1ab2b1c24Aa 2024050207120457551_j_amns.2020.1.00001_ref_029_w2aab3b7d116b1b6b1ab2b1c29Aa 2024050207120457551_j_amns.2020.1.00001_ref_043_w2aab3b7d116b1b6b1ab2b1c43Aa 2024050207120457551_j_amns.2020.1.00001_ref_010_w2aab3b7d116b1b6b1ab2b1c10Aa 2024050207120457551_j_amns.2020.1.00001_ref_001_w2aab3b7d116b1b6b1ab2b1b1Aa 2024050207120457551_j_amns.2020.1.00001_ref_015_w2aab3b7d116b1b6b1ab2b1c15Aa 2024050207120457551_j_amns.2020.1.00001_ref_042_w2aab3b7d116b1b6b1ab2b1c42Aa 2024050207120457551_j_amns.2020.1.00001_ref_007_w2aab3b7d116b1b6b1ab2b1b7Aa 2024050207120457551_j_amns.2020.1.00001_ref_014_w2aab3b7d116b1b6b1ab2b1c14Aa 2024050207120457551_j_amns.2020.1.00001_ref_019_w2aab3b7d116b1b6b1ab2b1c19Aa 2024050207120457551_j_amns.2020.1.00001_ref_033_w2aab3b7d116b1b6b1ab2b1c33Aa 2024050207120457551_j_amns.2020.1.00001_ref_038_w2aab3b7d116b1b6b1ab2b1c38Aa 2024050207120457551_j_amns.2020.1.00001_ref_032_w2aab3b7d116b1b6b1ab2b1c32Aa 2024050207120457551_j_amns.2020.1.00001_ref_037_w2aab3b7d116b1b6b1ab2b1c37Aa 2024050207120457551_j_amns.2020.1.00001_ref_004_w2aab3b7d116b1b6b1ab2b1b4Aa 2024050207120457551_j_amns.2020.1.00001_ref_023_w2aab3b7d116b1b6b1ab2b1c23Aa 2024050207120457551_j_amns.2020.1.00001_ref_028_w2aab3b7d116b1b6b1ab2b1c28Aa |
References_xml | – ident: 2024050207120457551_j_amns.2020.1.00001_ref_008_w2aab3b7d116b1b6b1ab2b1b8Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_010_w2aab3b7d116b1b6b1ab2b1c10Aa doi: 10.1142/S0219691318400131 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_009_w2aab3b7d116b1b6b1ab2b1b9Aa doi: 10.1016/S0306-4379(01)00008-4 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_011_w2aab3b7d116b1b6b1ab2b1c11Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_016_w2aab3b7d116b1b6b1ab2b1c16Aa doi: 10.1016/j.neucom.2019.03.055 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_040_w2aab3b7d116b1b6b1ab2b1c40Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_006_w2aab3b7d116b1b6b1ab2b1b6Aa doi: 10.1109/TIP.2008.918957 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_012_w2aab3b7d116b1b6b1ab2b1c12Aa doi: 10.1038/44565 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_043_w2aab3b7d116b1b6b1ab2b1c43Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_001_w2aab3b7d116b1b6b1ab2b1b1Aa doi: 10.1016/S0031-3203(01)00095-4 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_041_w2aab3b7d116b1b6b1ab2b1c41Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_017_w2aab3b7d116b1b6b1ab2b1c17Aa doi: 10.1016/j.patrec.2016.06.021 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_036_w2aab3b7d116b1b6b1ab2b1c36Aa doi: 10.1137/1.9781611972740.22 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_039_w2aab3b7d116b1b6b1ab2b1c39Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_015_w2aab3b7d116b1b6b1ab2b1c15Aa doi: 10.1109/34.1000236 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_020_w2aab3b7d116b1b6b1ab2b1c20Aa doi: 10.1109/34.868688 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_038_w2aab3b7d116b1b6b1ab2b1c38Aa doi: 10.1109/72.478389 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_033_w2aab3b7d116b1b6b1ab2b1c33Aa doi: 10.1109/ECONF.2015.39 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_037_w2aab3b7d116b1b6b1ab2b1c37Aa doi: 10.1109/TCOM.1980.1094577 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_019_w2aab3b7d116b1b6b1ab2b1c19Aa doi: 10.1007/s11222-007-9033-z – ident: 2024050207120457551_j_amns.2020.1.00001_ref_025_w2aab3b7d116b1b6b1ab2b1c25Aa doi: 10.1109/TIT.1982.1056489 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_034_w2aab3b7d116b1b6b1ab2b1c34Aa doi: 10.1080/01969727308546046 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_044_w2aab3b7d116b1b6b1ab2b1c44Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_004_w2aab3b7d116b1b6b1ab2b1b4Aa doi: 10.1109/TPAMI.2003.1227987 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_032_w2aab3b7d116b1b6b1ab2b1c32Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_028_w2aab3b7d116b1b6b1ab2b1c28Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_042_w2aab3b7d116b1b6b1ab2b1c42Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_002_w2aab3b7d116b1b6b1ab2b1b2Aa doi: 10.1109/3477.826950 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_018_w2aab3b7d116b1b6b1ab2b1c18Aa doi: 10.1109/TCYB.2014.2358564 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_029_w2aab3b7d116b1b6b1ab2b1c29Aa doi: 10.1609/aaai.v30i1.10259 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_003_w2aab3b7d116b1b6b1ab2b1b3Aa doi: 10.1109/TSMCB.2009.2024759 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_022_w2aab3b7d116b1b6b1ab2b1c22Aa doi: 10.1109/TPAMI.2013.57 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_045_w2aab3b7d116b1b6b1ab2b1c45Aa – ident: 2024050207120457551_j_amns.2020.1.00001_ref_031_w2aab3b7d116b1b6b1ab2b1c31Aa doi: 10.1145/1014052.1014118 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_035_w2aab3b7d116b1b6b1ab2b1c35Aa doi: 10.1023/A:1007612920971 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_007_w2aab3b7d116b1b6b1ab2b1b7Aa doi: 10.1109/TIP.2009.2028255 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_013_w2aab3b7d116b1b6b1ab2b1c13Aa doi: 10.3847/1538-4357/aaa1f2 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_024_w2aab3b7d116b1b6b1ab2b1c24Aa doi: 10.1016/j.patrec.2009.09.011 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_030_w2aab3b7d116b1b6b1ab2b1c30Aa doi: 10.1016/j.eswa.2012.07.021 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_027_w2aab3b7d116b1b6b1ab2b1c27Aa doi: 10.1016/j.asoc.2017.08.032 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_014_w2aab3b7d116b1b6b1ab2b1c14Aa doi: 10.1109/TKDE.2012.51 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_026_w2aab3b7d116b1b6b1ab2b1c26Aa doi: 10.1016/j.eswa.2008.01.039 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_021_w2aab3b7d116b1b6b1ab2b1c21Aa doi: 10.1016/j.patcog.2017.08.024 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_023_w2aab3b7d116b1b6b1ab2b1c23Aa doi: 10.1137/060655523 – ident: 2024050207120457551_j_amns.2020.1.00001_ref_005_w2aab3b7d116b1b6b1ab2b1b5Aa doi: 10.1016/j.neucom.2018.02.032 |
SSID | ssj0002313662 |
Score | 2.3299766 |
Snippet | Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and
-means is demonstrably the most popular clustering... Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and K -means is demonstrably the most popular clustering... Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and K-means is demonstrably the most popular clustering... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 62K86 Big Data Clustering Feature space means |
Title | Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data |
URI | https://www.degruyter.com/doi/10.2478/amns.2020.1.00001 https://www.proquest.com/docview/3191236361 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da8IwEA-bvuzFfTM3J3nY06BobZsmT0OdIhuKjMl8K0mTOkGrs5Xhf79LG5UN5mubXOld7u53d-EOoYcGmEN4JSxfRMxyXS4s5nkUgJwijCs3olwHiv0B6Y3cl7E3Ngm3xFyr3NrEzFDLRahz5DU4KrpRiEPsp-WXpadG6eqqGaFxjIrwTUoLqNjqDIZvuywLoBeHkEZezmy4Pq3xeay7dDfAWGS9C-3fDmmPMkvfWb1aqslqvUm39dHM7XTPUMngRdzMBXyOjlR8gU4NdsRGM5NLNMyzA1myDy8iDLgOd3mS4vZsrXshgIfCzdkE_ij9nGOzWGKxwa9WX4G_wtM429SaTvAzT_kVGnU77-2eZaYlWKFDWGpFnEpHEF9SGTEXHgF2Ig7AA0eGvvQErfMI9JtQQhX4eU_K0JO-T0FGdcrsyLlGhXgRqxuE3QjU3AcSQkK0aDPOhO0om7Gwrqu2XhnVtywLQtNKXE-0mAUQUmguB5rLgeZyYAcZl8vocbdlmffROLS4spVDYFQqCfYHoIy8P7LZr_qXJgDL28Nk79CJ3pDnVyqokK7W6h4QRyqqYDg_-lVzuH4AvdvUuQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTyMxDLagHODC8hRdWMgBLkgj5plJDivEqyqUVgiBxC0kk0y3UpkCnQr1T_Eb15kH1a4EN64zsaVxHPuznbEB9n00h_hKObFKuROGUjk8ihgCOUO5NGHKpA0Uuz3avg-vHqKHOXiv_4Wx1yprm1gYaj1KbI78CFXFNgoJqHf8_OLYqVG2ulqP0CjVomOmbxiyjX9fnuP-Hvh-6-LurO1UUwWcJKA8d1LJdKBorJlOeYiPEGPQAN1ooJNYR4q5MsVzQBllBv1hpHUS6Thm-C0u414aIN95WEBK12_AwulF7-b2I6uDaCmg1C_Lp34YsyP5lNmu4D4ap6JXovevA5yh2uW3oj6uTf91Ms3remzh5lorsFzhU3JSKtQqzJlsDX5UWJVUlmC8DjdlNqJILpJRShBHkpYc5-RsOLG9F9AjkpNhHyWY_3ki1WJN1JR0nK5B_0gGWUF0OuiTc5nLDbj_FjluQiMbZWYLSJiiWYmRhdIYnXpccuUFxuM8cW2VOGqCW4tMJFXrcjtBYygwhLFSFlbKwkpZeKKQchMOP0iey74dXy3eqfdBVEd4LGYK14Tov72ZrfqUJwLZn1-z3YPF9l33Wlxf9jrbsGSJy9zODjTy14n5hWgnV7uVihF4_G6t_gstqw-v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVkJc2vIShVJ8gAvSqtmHvfahh9A0pISWSlCpN2Ov7RAp3VTJRlV-Dv-UsddpVQQckHrdsS1rPI9vZrxjgLcZmkMk6aTUTiRFoXQiKOUI5CwTyhaOKx8onpyywXnx6YJerMHP1b8wwe6bUK3cvzIuXFUuSr6vLmvfXDtDHQ8tB9N4j3Jol9cYpc0Pjnt4pO-yrH_07XCQxIcEkipnokmc4ibXrDTcOFHgJ4QVLEfPmZuqNFTzjnIo-owzbtEFUmMqasqS4_Y7XKQux3UfwEZJRYZKtNEdfPz65SaRgwApZyxrK6Z_3utdn3cLZDevQ0nc2NFssWxWJdjg2frbsBkhKem2MvQY1mz9BLYiPCVR-edP4axNQIR8Ipk6gtCR9NW8IYeThW-3gE6QdCej6Wzc_LgkcbAhekmGyYlFl0jGdZj0YTwiPdWoZ3B-L3x8Duv1tLYvgBQOLUmJS2iDAWkqlNBpblMhqo4vDNMd6KxYJqvYrdw_mjGRGLV4LkvPZem5LFMZuLwD72-mXLWtOv41eHd1DjJq7VyiOfLNaHKGZPrb2dyO-uuaiF1f_ue8N_DwrNeXn49Ph6_gkSe2aZ5dWG9mC_sagU-j96LoEfh-39L-C4nmD9U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+the+Fast+Clustering+Algorithm+Improved+by+K-Means+in+the+Big+Data&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Xie%2C+Ting&rft.au=Liu%2C+Ruihua&rft.au=Wei%2C+Zhengyuan&rft.date=2020-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.2478%2Famns.2020.1.00001&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2020_1_00001511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |