In-plane dynamic crushing of honeycomb. Part II: application to impact
Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/ t=38 and 167). The response of the honeycomb with the smaller slenderness ratio was studied for impact speeds up to 40.0 m/s which corresponds to a nominal strai...
Saved in:
Published in | International journal of mechanical sciences Vol. 44; no. 8; pp. 1697 - 1714 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2002
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios
L/
t=38 and 167). The response of the honeycomb with the smaller slenderness ratio was studied for impact speeds up to
40.0
m/s
which corresponds to a nominal strain rate for the specimen of
500
s
−1
. Total plastically dissipated energy was used to quantify the effects of increasing strain-rate, since other measures showed a strong dependence on details of the finite element model. The simulations revealed a strong increase of total dissipated energy with increasing impact speed for velocities larger than the critical speed for wave trapping,
v
cr
. One reason was a higher percent of cells collapsing in a symmetric crush mode (IV). Another reason for the larger total dissipation at higher crushing speeds was the greater irregularity in the folding pattern that developed. Experimental and calculated global force-time curves were compared for the honeycomb with the larger slenderness ratio at impact speeds 3.0 and
7.2
m/s
and a satisfactory agreement was found. At these low impact speeds there was no increase of initial collapse or plateau stresses. A comparison of sequences of deformed mesh plots and high speed photos showed good correlation of the general distribution and modes of crushing. |
---|---|
AbstractList | Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/t=38 and 167). The response of the honeycomb with the smaller slenderness ratio was studied for impact speeds up to 40.0 m/s which corresponds to a nominal strain rate for the specimen of 500 s super(-1). Total plastically dissipated energy was used to quantify the effects of increasing strain-rate, since other measures showed a strong dependence on details of the finite element model. The simulations revealed a strong increase of total dissipated energy with increasing impact speed for velocities larger than the critical speed for wave trapping, v sub(cr). One reason was a higher percent of cells collapsing in a symmetric crush mode (IV). Another reason for the larger total dissipation at higher crushing speeds was the greater irregularity in the folding pattern that developed. Experimental and calculated global force-time curves were compared for the honeycomb with the larger slenderness ratio at impact speeds 3.0 and 7.2 m/s and a satisfactory agreement was found. At these low impact speeds there was no increase of initial collapse or plateau stresses. A comparison of sequences of deformed mesh plots and high speed photos showed good correlation of the general distribution and modes of crushing. copyright 2002 Elsevier Science Ltd. All rights reserved. Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/ t=38 and 167). The response of the honeycomb with the smaller slenderness ratio was studied for impact speeds up to 40.0 m/s which corresponds to a nominal strain rate for the specimen of 500 s −1 . Total plastically dissipated energy was used to quantify the effects of increasing strain-rate, since other measures showed a strong dependence on details of the finite element model. The simulations revealed a strong increase of total dissipated energy with increasing impact speed for velocities larger than the critical speed for wave trapping, v cr . One reason was a higher percent of cells collapsing in a symmetric crush mode (IV). Another reason for the larger total dissipation at higher crushing speeds was the greater irregularity in the folding pattern that developed. Experimental and calculated global force-time curves were compared for the honeycomb with the larger slenderness ratio at impact speeds 3.0 and 7.2 m/s and a satisfactory agreement was found. At these low impact speeds there was no increase of initial collapse or plateau stresses. A comparison of sequences of deformed mesh plots and high speed photos showed good correlation of the general distribution and modes of crushing. |
Author | Hönig, A Stronge, W.J |
Author_xml | – sequence: 1 givenname: A surname: Hönig fullname: Hönig, A – sequence: 2 givenname: W.J surname: Stronge fullname: Stronge, W.J email: wjs@eng.cam.ac.uk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13891315$$DView record in Pascal Francis |
BookMark | eNqFkMFqGzEURUVJobbbTyhoE5Isxn2SRpLVTQihbgyBBNquhfxG0yjMSFNpHPDfZxyHZNnV25z7LvfMyUlM0RPylcGSAVPffgFwqHQN4hz4BQAoVpkPZMZW2lScKX5CZm_IJzIv5RGAaZBiRtabWA2di542--j6gBTzrjyE-Jemlj5MRXtM_XZJ710e6Wbznbph6AK6MaRIx0RDPzgcP5OPreuK__J6F-TP-sfv65vq9u7n5vrqtkKhzFi1Rjkm2hqN3GrFpVat56bm27oxWtZ-5ZpWK80boVkD6ARoVBI8KK2xWXmxIGfHv0NO_3a-jLYPBX13WJB2xepamlpyEBMpjyTmVEr2rR1y6F3eWwb2oM2-aLMHJxa4fdFmzZQ7fW1wBV3XZhcxlPewWBkmmJy4yyPnp7lPwWdbMPiIvgnZ42ibFP7T9AwqB4Fn |
CODEN | IMSCAW |
CitedBy_id | crossref_primary_10_1016_j_euromechsol_2017_09_010 crossref_primary_10_1016_j_ijimpeng_2015_04_002 crossref_primary_10_1061__ASCE_EM_1943_7889_0000475 crossref_primary_10_4028_www_scientific_net_AMM_703_385 crossref_primary_10_1080_13588265_2017_1367355 crossref_primary_10_1007_s00419_012_0685_6 crossref_primary_10_1016_j_ijsolstr_2015_02_034 crossref_primary_10_1680_jencm_21_00018 crossref_primary_10_1016_j_ijsolstr_2013_05_017 crossref_primary_10_1177_0309324720923214 crossref_primary_10_1016_j_compstruct_2010_03_016 crossref_primary_10_1016_j_ijimpeng_2017_10_006 crossref_primary_10_1002_adem_201801255 crossref_primary_10_2140_jomms_2022_17_1 crossref_primary_10_1016_j_ijimpeng_2009_01_004 crossref_primary_10_1007_s40436_015_0099_0 crossref_primary_10_1016_j_ijmecsci_2013_11_004 crossref_primary_10_1016_j_ijsolstr_2006_12_017 crossref_primary_10_1016_j_tws_2017_03_028 crossref_primary_10_1016_j_ijmecsci_2019_105062 crossref_primary_10_1016_j_ijimpeng_2018_11_014 crossref_primary_10_1016_j_ijimpeng_2007_11_008 crossref_primary_10_1016_j_ijimpeng_2015_03_011 crossref_primary_10_1016_j_mechmat_2016_04_004 crossref_primary_10_1016_j_tws_2019_106356 crossref_primary_10_1016_j_ijimpeng_2014_11_006 crossref_primary_10_1016_j_jmps_2005_07_007 crossref_primary_10_1016_j_ijsolstr_2013_11_020 crossref_primary_10_1016_j_matdes_2016_02_074 crossref_primary_10_3390_ma14174992 crossref_primary_10_1016_j_ijimpeng_2008_04_004 crossref_primary_10_1016_j_tws_2020_106915 crossref_primary_10_3139_146_110767 crossref_primary_10_3390_met3040343 crossref_primary_10_1016_j_mechmat_2009_11_014 crossref_primary_10_1016_j_mechmat_2013_06_006 crossref_primary_10_1016_j_ijimpeng_2014_02_015 crossref_primary_10_1088_1742_6596_1948_1_012071 crossref_primary_10_1016_j_ijimpeng_2005_05_007 crossref_primary_10_1016_j_ijimpeng_2008_03_001 crossref_primary_10_1016_j_eml_2015_08_001 crossref_primary_10_1016_j_jmps_2005_05_003 crossref_primary_10_1016_j_ijsolstr_2010_10_018 crossref_primary_10_1016_j_advengsoft_2006_12_006 crossref_primary_10_1680_jbibn_22_00074 crossref_primary_10_3390_app112311167 crossref_primary_10_1016_j_compstruct_2016_12_065 crossref_primary_10_1016_j_ijsolstr_2019_06_007 crossref_primary_10_1155_2022_6301537 crossref_primary_10_1080_13588265_2018_1480471 crossref_primary_10_1002_pts_973 crossref_primary_10_1002_pc_26252 crossref_primary_10_1098_rsfs_2023_0066 crossref_primary_10_1177_1099636213509099 crossref_primary_10_1115_1_4030007 crossref_primary_10_1177_20414196211062620 crossref_primary_10_1007_s10999_013_9232_z crossref_primary_10_1016_j_compstruct_2009_04_045 crossref_primary_10_2514_1_45021 crossref_primary_10_2514_1_J059461 |
Cites_doi | 10.1016/0734-743X(83)90014-3 10.1016/0734-743X(83)90005-2 10.1016/S0734-743X(99)00153-0 10.1016/0020-7403(88)90060-4 10.1016/0022-5096(94)90085-X 10.1016/0734-743X(91)90044-G 10.1016/S0734-743X(97)00016-X 10.1016/0020-7403(87)90001-4 10.1016/S1359-6454(97)00453-9 10.1016/S0734-743X(98)00034-7 10.1016/S0734-743X(99)00037-8 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science Ltd 2002 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science Ltd – notice: 2002 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7TC |
DOI | 10.1016/S0020-7403(02)00061-9 |
DatabaseName | Pascal-Francis CrossRef Mechanical Engineering Abstracts |
DatabaseTitle | CrossRef Mechanical Engineering Abstracts |
DatabaseTitleList | Mechanical Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2162 |
EndPage | 1714 |
ExternalDocumentID | 10_1016_S0020_7403_02_00061_9 13891315 S0020740302000619 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACKIV ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UNMZH WUQ XFK XPP XSW ZMT ~G- 08R AAPBV ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7TC |
ID | FETCH-LOGICAL-c369t-f96a13f4c95b762576fe2942b4d9754e8adf7672d371d0ca307c650e0677cd8e3 |
IEDL.DBID | .~1 |
ISSN | 0020-7403 |
IngestDate | Fri Oct 25 04:25:05 EDT 2024 Thu Sep 26 16:04:55 EDT 2024 Sun Oct 22 16:06:41 EDT 2023 Fri Feb 23 02:28:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Deformation band Measurement Fold Total energy Numerical method Elastic wave Experimental study Porous material Modeling Finite element method Inelasticity Trapping Honeycomb structure Localization Crush Mechanical shock |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-f96a13f4c95b762576fe2942b4d9754e8adf7672d371d0ca307c650e0677cd8e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 745945203 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_745945203 crossref_primary_10_1016_S0020_7403_02_00061_9 pascalfrancis_primary_13891315 elsevier_sciencedirect_doi_10_1016_S0020_7403_02_00061_9 |
PublicationCentury | 2000 |
PublicationDate | 2002-08-01 |
PublicationDateYYYYMMDD | 2002-08-01 |
PublicationDate_xml | – month: 08 year: 2002 text: 2002-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of mechanical sciences |
PublicationYear | 2002 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Papka, Kyriakides (BIB16) 1998; 46 Klintworth JW. Dynamic crushing of cellular solids. PhD dissertation, University of Cambridge, UK, 1988. Reid, Bell, Barr (BIB10) 1983; 1 Zhao, Gary (BIB3) 1998; 21 Deshpande, Fleck (BIB5) 2000; 24 Breton N. Research report. Engineering Department, University of Cambridge, UK, 1997, unpublished. Stronge WJ. Dynamic crushing of elastoplastic cellular solids. In: Jono M, Inoue T, editors. Proceedings of the Sixth International Conference of Mechanical Behaviour of Materials, vol. 1. Oxford: Pergamon Press, 1991. p. 377–87. ABAQUS Standard and Explicit User's Manuals, Version 5.7. Providence, RI, USA: Hibbit, Karlson and Sorensen, Inc., 1997. Reid, Peng (BIB2) 1997; 19 Klintworth, Stronge (BIB8) 1988; 30 Gibson, Ashby (BIB1) 1997 Papka, Kyriakides (BIB14) 1994; 42 Harrigan, Reid, Peng (BIB4) 1999; 22 Stronge, Shim (BIB11) 1987; 29 Holt, Babcock, Green, Maiden (BIB18) 1967; 60 Reid, Reddy (BIB9) 1983; 1 Tam, Calladine (BIB17) 1991; 11 Hönig A, Stronge WJ. In-plane dynamic crushing of hexagonal honeycomb I: crush band initiation and wave trapping. International Journal of Mechanical Sciences, PII: S0020-7403(02)00060-7. 10.1016/S0020-7403(02)00061-9_BIB7 10.1016/S0020-7403(02)00061-9_BIB6 10.1016/S0020-7403(02)00061-9_BIB15 Harrigan (10.1016/S0020-7403(02)00061-9_BIB4) 1999; 22 Reid (10.1016/S0020-7403(02)00061-9_BIB10) 1983; 1 Klintworth (10.1016/S0020-7403(02)00061-9_BIB8) 1988; 30 Reid (10.1016/S0020-7403(02)00061-9_BIB9) 1983; 1 Tam (10.1016/S0020-7403(02)00061-9_BIB17) 1991; 11 Reid (10.1016/S0020-7403(02)00061-9_BIB2) 1997; 19 Papka (10.1016/S0020-7403(02)00061-9_BIB14) 1994; 42 Gibson (10.1016/S0020-7403(02)00061-9_BIB1) 1997 10.1016/S0020-7403(02)00061-9_BIB12 Stronge (10.1016/S0020-7403(02)00061-9_BIB11) 1987; 29 Papka (10.1016/S0020-7403(02)00061-9_BIB16) 1998; 46 Holt (10.1016/S0020-7403(02)00061-9_BIB18) 1967; 60 10.1016/S0020-7403(02)00061-9_BIB13 Zhao (10.1016/S0020-7403(02)00061-9_BIB3) 1998; 21 Deshpande (10.1016/S0020-7403(02)00061-9_BIB5) 2000; 24 |
References_xml | – volume: 46 start-page: 2765 year: 1998 end-page: 2776 ident: BIB16 article-title: Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb publication-title: Acta Materialia contributor: fullname: Kyriakides – volume: 1 start-page: 175 year: 1983 end-page: 191 ident: BIB10 article-title: Structural plastic shock model for one-dimensional ring systems publication-title: International Journal of Impact Engineering contributor: fullname: Barr – volume: 24 start-page: 277 year: 2000 end-page: 298 ident: BIB5 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: International Journal of Impact Engineering contributor: fullname: Fleck – volume: 19 start-page: 531 year: 1997 end-page: 570 ident: BIB2 article-title: Dynamic uniaxial crushing of wood publication-title: International Journal of Impact Engineering contributor: fullname: Peng – volume: 22 start-page: 955 year: 1999 end-page: 979 ident: BIB4 article-title: Inertia effects in impact energy absorbing materials and structures publication-title: International Journal of Impact Engineering contributor: fullname: Peng – volume: 1 start-page: 85 year: 1983 end-page: 106 ident: BIB9 article-title: Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to impact—I publication-title: International Journal of Impact Engineering contributor: fullname: Reddy – volume: 29 start-page: 381 year: 1987 end-page: 406 ident: BIB11 article-title: Dynamic crushing of a ductile cellular array publication-title: International Journal of Mechanical Sciences contributor: fullname: Shim – volume: 60 start-page: 152 year: 1967 ident: BIB18 publication-title: Transactions of the American Society of Metals contributor: fullname: Maiden – volume: 21 start-page: 827 year: 1998 end-page: 836 ident: BIB3 article-title: Crushing behaviour of aluminium honeycombs under impact loading publication-title: International Journal of Impact Engineering contributor: fullname: Gary – volume: 42 start-page: 1499 year: 1994 end-page: 1532 ident: BIB14 article-title: In-plane compressive response and crushing of honeycomb publication-title: Journal of Mechanics and Physics of Solids contributor: fullname: Kyriakides – volume: 11 start-page: 349 year: 1991 end-page: 377 ident: BIB17 article-title: Inertia and strain-rate effects in a simple plate-structure under impact loading publication-title: International Journal of Impact Engineering contributor: fullname: Calladine – volume: 30 start-page: 273 year: 1988 end-page: 292 ident: BIB8 article-title: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs publication-title: International Journal of Mechanical Sciences contributor: fullname: Stronge – year: 1997 ident: BIB1 publication-title: Cellular solids: structure and properties contributor: fullname: Ashby – volume: 1 start-page: 85 year: 1983 ident: 10.1016/S0020-7403(02)00061-9_BIB9 article-title: Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to impact—I publication-title: International Journal of Impact Engineering doi: 10.1016/0734-743X(83)90014-3 contributor: fullname: Reid – ident: 10.1016/S0020-7403(02)00061-9_BIB12 – volume: 1 start-page: 175 year: 1983 ident: 10.1016/S0020-7403(02)00061-9_BIB10 article-title: Structural plastic shock model for one-dimensional ring systems publication-title: International Journal of Impact Engineering doi: 10.1016/0734-743X(83)90005-2 contributor: fullname: Reid – volume: 24 start-page: 277 year: 2000 ident: 10.1016/S0020-7403(02)00061-9_BIB5 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: International Journal of Impact Engineering doi: 10.1016/S0734-743X(99)00153-0 contributor: fullname: Deshpande – volume: 30 start-page: 273 year: 1988 ident: 10.1016/S0020-7403(02)00061-9_BIB8 article-title: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs publication-title: International Journal of Mechanical Sciences doi: 10.1016/0020-7403(88)90060-4 contributor: fullname: Klintworth – volume: 42 start-page: 1499 year: 1994 ident: 10.1016/S0020-7403(02)00061-9_BIB14 article-title: In-plane compressive response and crushing of honeycomb publication-title: Journal of Mechanics and Physics of Solids doi: 10.1016/0022-5096(94)90085-X contributor: fullname: Papka – volume: 11 start-page: 349 year: 1991 ident: 10.1016/S0020-7403(02)00061-9_BIB17 article-title: Inertia and strain-rate effects in a simple plate-structure under impact loading publication-title: International Journal of Impact Engineering doi: 10.1016/0734-743X(91)90044-G contributor: fullname: Tam – ident: 10.1016/S0020-7403(02)00061-9_BIB13 – volume: 19 start-page: 531 year: 1997 ident: 10.1016/S0020-7403(02)00061-9_BIB2 article-title: Dynamic uniaxial crushing of wood publication-title: International Journal of Impact Engineering doi: 10.1016/S0734-743X(97)00016-X contributor: fullname: Reid – ident: 10.1016/S0020-7403(02)00061-9_BIB15 – volume: 29 start-page: 381 year: 1987 ident: 10.1016/S0020-7403(02)00061-9_BIB11 article-title: Dynamic crushing of a ductile cellular array publication-title: International Journal of Mechanical Sciences doi: 10.1016/0020-7403(87)90001-4 contributor: fullname: Stronge – ident: 10.1016/S0020-7403(02)00061-9_BIB6 – ident: 10.1016/S0020-7403(02)00061-9_BIB7 – year: 1997 ident: 10.1016/S0020-7403(02)00061-9_BIB1 contributor: fullname: Gibson – volume: 46 start-page: 2765 year: 1998 ident: 10.1016/S0020-7403(02)00061-9_BIB16 article-title: Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb publication-title: Acta Materialia doi: 10.1016/S1359-6454(97)00453-9 contributor: fullname: Papka – volume: 21 start-page: 827 year: 1998 ident: 10.1016/S0020-7403(02)00061-9_BIB3 article-title: Crushing behaviour of aluminium honeycombs under impact loading publication-title: International Journal of Impact Engineering doi: 10.1016/S0734-743X(98)00034-7 contributor: fullname: Zhao – volume: 22 start-page: 955 year: 1999 ident: 10.1016/S0020-7403(02)00061-9_BIB4 article-title: Inertia effects in impact energy absorbing materials and structures publication-title: International Journal of Impact Engineering doi: 10.1016/S0734-743X(99)00037-8 contributor: fullname: Harrigan – volume: 60 start-page: 152 year: 1967 ident: 10.1016/S0020-7403(02)00061-9_BIB18 publication-title: Transactions of the American Society of Metals contributor: fullname: Holt |
SSID | ssj0017053 |
Score | 1.9519957 |
Snippet | Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios
L/
t=38 and 167). The... Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/t=38 and 167). The... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1697 |
SubjectTerms | Computational techniques Computer simulation Crushing Deformation Energy dissipation Exact sciences and technology Finite element method Finite-element and galerkin methods Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fundamental areas of phenomenology (including applications) Mathematical methods in physics Physics Solid mechanics Strain rate Structural and continuum mechanics |
Title | In-plane dynamic crushing of honeycomb. Part II: application to impact |
URI | https://dx.doi.org/10.1016/S0020-7403(02)00061-9 https://search.proquest.com/docview/745945203 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsoAQ4inKo_LAAEPaxHYeZqsqqgZExUClblbsOIKlidp0YOG3c3YS2gohJNYoOdvfnc_n3AuhG0qZuVIrx2UycZiioAe5VE5GGVx7COE6NInCz5NgPGWPM3_WQsMmF8aEVda6v9LpVlvXT_o1mv3i_d3k-BI4_0BIbbaJLf1pim2BTPc-v8M8TLWYyssM1yTz9jqLp6JgH9665M4Scfhv59N-kSwBtaxqd_FDc9vjaHSIDmo7Eg-qqR6hlp4fo72N6oInaBTPncLEsuK0ajuP1WJl_zjhPMNv-Vx_wKplD7_AgnEc3-MNbzYuc1xlUJ6i6ejhdTh26rYJjqIBL52MB4lHM6a4L0HVwYUi04QzIlnKQ5_pKEmzMAhJSkMvdVUCu1yBnaZNLTmVRpqeofYc5nCOMFgrCTAxZDJKmJekkgE3NZNAzNVERh3Ua8ASRVUdQ6zDxgBdYdAVLhEWXcE7KGogFVtsFqDB__q0u8WC9YDW1er5HYQbngjYI8bxARDnqyVQ8jmInksv_j_8Jdq1jWBs7N8VapeLlb4Ge6SUXStwXbQziJ_Gky8eftfc |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHtQY42fED-zBgx4GW9ux1ZshElAgHiDh1qxdF7lsBMbBi3-7r90QiDEmXpfttf2919fXvS-E7ihl5kqtHJfJyGGKgh7kUjkJZXDtIYTrwCQKD4at7pi9TPxJBbVXuTAmrLLU_YVOt9q6fNIs0WzOplOT40vg_AMhtdkmpvTnDjP1s0CoG5_fcR6mXEzhZoZ7knl9ncZTkLAP713yYKk4_LcD6mAWLQC2pOh38UN12_Ooc4QOS0MSPxVzPUYVnZ6g_Y3ygqeo00udmQlmxXHRdx6r-dL-csJZgt-zVH_AsmUDv8GKca_3iDfc2TjPcJFCeYbGnedRu-uUfRMcRVs8dxLeijyaMMV9CboObhSJJpwRyWIe-EyHUZwErYDENPBiV0WwzRUYatoUk1NxqOk5qqYwhwuEwVyJgIsBk2HEvCiWDNipmQRiriYyrKHGCiwxK8pjiHXcGKArDLrCJcKiK3gNhStIxRafBajwvz6tb7FgPaD1tXp-DeEVTwRsEuP5AIiz5QIo-Rxkz6WX_x_-Fu12R4O-6PeGr1doz3aFsYGA16iaz5f6BoyTXNat8H0BZxvZfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-plane+dynamic+crushing+of+honeycomb.+Part+II%3A+application+to+impact&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=H%C3%96NIG%2C+A&rft.au=STRONGE%2C+W.+J&rft.date=2002-08-01&rft.pub=Elsevier&rft.issn=0020-7403&rft.eissn=1879-2162&rft.volume=44&rft.issue=8&rft.spage=1697&rft.epage=1714&rft_id=info:doi/10.1016%2FS0020-7403%2802%2900061-9&rft.externalDBID=n%2Fa&rft.externalDocID=13891315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon |