In-plane dynamic crushing of honeycomb. Part II: application to impact

Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/ t=38 and 167). The response of the honeycomb with the smaller slenderness ratio was studied for impact speeds up to 40.0 m/s which corresponds to a nominal strai...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical sciences Vol. 44; no. 8; pp. 1697 - 1714
Main Authors Hönig, A, Stronge, W.J
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2002
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/ t=38 and 167). The response of the honeycomb with the smaller slenderness ratio was studied for impact speeds up to 40.0 m/s which corresponds to a nominal strain rate for the specimen of 500 s −1 . Total plastically dissipated energy was used to quantify the effects of increasing strain-rate, since other measures showed a strong dependence on details of the finite element model. The simulations revealed a strong increase of total dissipated energy with increasing impact speed for velocities larger than the critical speed for wave trapping, v cr . One reason was a higher percent of cells collapsing in a symmetric crush mode (IV). Another reason for the larger total dissipation at higher crushing speeds was the greater irregularity in the folding pattern that developed. Experimental and calculated global force-time curves were compared for the honeycomb with the larger slenderness ratio at impact speeds 3.0 and 7.2 m/s and a satisfactory agreement was found. At these low impact speeds there was no increase of initial collapse or plateau stresses. A comparison of sequences of deformed mesh plots and high speed photos showed good correlation of the general distribution and modes of crushing.
AbstractList Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/t=38 and 167). The response of the honeycomb with the smaller slenderness ratio was studied for impact speeds up to 40.0 m/s which corresponds to a nominal strain rate for the specimen of 500 s super(-1). Total plastically dissipated energy was used to quantify the effects of increasing strain-rate, since other measures showed a strong dependence on details of the finite element model. The simulations revealed a strong increase of total dissipated energy with increasing impact speed for velocities larger than the critical speed for wave trapping, v sub(cr). One reason was a higher percent of cells collapsing in a symmetric crush mode (IV). Another reason for the larger total dissipation at higher crushing speeds was the greater irregularity in the folding pattern that developed. Experimental and calculated global force-time curves were compared for the honeycomb with the larger slenderness ratio at impact speeds 3.0 and 7.2 m/s and a satisfactory agreement was found. At these low impact speeds there was no increase of initial collapse or plateau stresses. A comparison of sequences of deformed mesh plots and high speed photos showed good correlation of the general distribution and modes of crushing. copyright 2002 Elsevier Science Ltd. All rights reserved.
Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/ t=38 and 167). The response of the honeycomb with the smaller slenderness ratio was studied for impact speeds up to 40.0 m/s which corresponds to a nominal strain rate for the specimen of 500 s −1 . Total plastically dissipated energy was used to quantify the effects of increasing strain-rate, since other measures showed a strong dependence on details of the finite element model. The simulations revealed a strong increase of total dissipated energy with increasing impact speed for velocities larger than the critical speed for wave trapping, v cr . One reason was a higher percent of cells collapsing in a symmetric crush mode (IV). Another reason for the larger total dissipation at higher crushing speeds was the greater irregularity in the folding pattern that developed. Experimental and calculated global force-time curves were compared for the honeycomb with the larger slenderness ratio at impact speeds 3.0 and 7.2 m/s and a satisfactory agreement was found. At these low impact speeds there was no increase of initial collapse or plateau stresses. A comparison of sequences of deformed mesh plots and high speed photos showed good correlation of the general distribution and modes of crushing.
Author Hönig, A
Stronge, W.J
Author_xml – sequence: 1
  givenname: A
  surname: Hönig
  fullname: Hönig, A
– sequence: 2
  givenname: W.J
  surname: Stronge
  fullname: Stronge, W.J
  email: wjs@eng.cam.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13891315$$DView record in Pascal Francis
BookMark eNqFkMFqGzEURUVJobbbTyhoE5Isxn2SRpLVTQihbgyBBNquhfxG0yjMSFNpHPDfZxyHZNnV25z7LvfMyUlM0RPylcGSAVPffgFwqHQN4hz4BQAoVpkPZMZW2lScKX5CZm_IJzIv5RGAaZBiRtabWA2di542--j6gBTzrjyE-Jemlj5MRXtM_XZJ710e6Wbznbph6AK6MaRIx0RDPzgcP5OPreuK__J6F-TP-sfv65vq9u7n5vrqtkKhzFi1Rjkm2hqN3GrFpVat56bm27oxWtZ-5ZpWK80boVkD6ARoVBI8KK2xWXmxIGfHv0NO_3a-jLYPBX13WJB2xepamlpyEBMpjyTmVEr2rR1y6F3eWwb2oM2-aLMHJxa4fdFmzZQ7fW1wBV3XZhcxlPewWBkmmJy4yyPnp7lPwWdbMPiIvgnZ42ibFP7T9AwqB4Fn
CODEN IMSCAW
CitedBy_id crossref_primary_10_1016_j_euromechsol_2017_09_010
crossref_primary_10_1016_j_ijimpeng_2015_04_002
crossref_primary_10_1061__ASCE_EM_1943_7889_0000475
crossref_primary_10_4028_www_scientific_net_AMM_703_385
crossref_primary_10_1080_13588265_2017_1367355
crossref_primary_10_1007_s00419_012_0685_6
crossref_primary_10_1016_j_ijsolstr_2015_02_034
crossref_primary_10_1680_jencm_21_00018
crossref_primary_10_1016_j_ijsolstr_2013_05_017
crossref_primary_10_1177_0309324720923214
crossref_primary_10_1016_j_compstruct_2010_03_016
crossref_primary_10_1016_j_ijimpeng_2017_10_006
crossref_primary_10_1002_adem_201801255
crossref_primary_10_2140_jomms_2022_17_1
crossref_primary_10_1016_j_ijimpeng_2009_01_004
crossref_primary_10_1007_s40436_015_0099_0
crossref_primary_10_1016_j_ijmecsci_2013_11_004
crossref_primary_10_1016_j_ijsolstr_2006_12_017
crossref_primary_10_1016_j_tws_2017_03_028
crossref_primary_10_1016_j_ijmecsci_2019_105062
crossref_primary_10_1016_j_ijimpeng_2018_11_014
crossref_primary_10_1016_j_ijimpeng_2007_11_008
crossref_primary_10_1016_j_ijimpeng_2015_03_011
crossref_primary_10_1016_j_mechmat_2016_04_004
crossref_primary_10_1016_j_tws_2019_106356
crossref_primary_10_1016_j_ijimpeng_2014_11_006
crossref_primary_10_1016_j_jmps_2005_07_007
crossref_primary_10_1016_j_ijsolstr_2013_11_020
crossref_primary_10_1016_j_matdes_2016_02_074
crossref_primary_10_3390_ma14174992
crossref_primary_10_1016_j_ijimpeng_2008_04_004
crossref_primary_10_1016_j_tws_2020_106915
crossref_primary_10_3139_146_110767
crossref_primary_10_3390_met3040343
crossref_primary_10_1016_j_mechmat_2009_11_014
crossref_primary_10_1016_j_mechmat_2013_06_006
crossref_primary_10_1016_j_ijimpeng_2014_02_015
crossref_primary_10_1088_1742_6596_1948_1_012071
crossref_primary_10_1016_j_ijimpeng_2005_05_007
crossref_primary_10_1016_j_ijimpeng_2008_03_001
crossref_primary_10_1016_j_eml_2015_08_001
crossref_primary_10_1016_j_jmps_2005_05_003
crossref_primary_10_1016_j_ijsolstr_2010_10_018
crossref_primary_10_1016_j_advengsoft_2006_12_006
crossref_primary_10_1680_jbibn_22_00074
crossref_primary_10_3390_app112311167
crossref_primary_10_1016_j_compstruct_2016_12_065
crossref_primary_10_1016_j_ijsolstr_2019_06_007
crossref_primary_10_1155_2022_6301537
crossref_primary_10_1080_13588265_2018_1480471
crossref_primary_10_1002_pts_973
crossref_primary_10_1002_pc_26252
crossref_primary_10_1098_rsfs_2023_0066
crossref_primary_10_1177_1099636213509099
crossref_primary_10_1115_1_4030007
crossref_primary_10_1177_20414196211062620
crossref_primary_10_1007_s10999_013_9232_z
crossref_primary_10_1016_j_compstruct_2009_04_045
crossref_primary_10_2514_1_45021
crossref_primary_10_2514_1_J059461
Cites_doi 10.1016/0734-743X(83)90014-3
10.1016/0734-743X(83)90005-2
10.1016/S0734-743X(99)00153-0
10.1016/0020-7403(88)90060-4
10.1016/0022-5096(94)90085-X
10.1016/0734-743X(91)90044-G
10.1016/S0734-743X(97)00016-X
10.1016/0020-7403(87)90001-4
10.1016/S1359-6454(97)00453-9
10.1016/S0734-743X(98)00034-7
10.1016/S0734-743X(99)00037-8
ContentType Journal Article
Copyright 2002 Elsevier Science Ltd
2002 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science Ltd
– notice: 2002 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TC
DOI 10.1016/S0020-7403(02)00061-9
DatabaseName Pascal-Francis
CrossRef
Mechanical Engineering Abstracts
DatabaseTitle CrossRef
Mechanical Engineering Abstracts
DatabaseTitleList Mechanical Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2162
EndPage 1714
ExternalDocumentID 10_1016_S0020_7403_02_00061_9
13891315
S0020740302000619
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
WUQ
XFK
XPP
XSW
ZMT
~G-
08R
AAPBV
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TC
ID FETCH-LOGICAL-c369t-f96a13f4c95b762576fe2942b4d9754e8adf7672d371d0ca307c650e0677cd8e3
IEDL.DBID .~1
ISSN 0020-7403
IngestDate Fri Oct 25 04:25:05 EDT 2024
Thu Sep 26 16:04:55 EDT 2024
Sun Oct 22 16:06:41 EDT 2023
Fri Feb 23 02:28:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deformation band
Measurement
Fold
Total energy
Numerical method
Elastic wave
Experimental study
Porous material
Modeling
Finite element method
Inelasticity
Trapping
Honeycomb structure
Localization
Crush
Mechanical shock
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-f96a13f4c95b762576fe2942b4d9754e8adf7672d371d0ca307c650e0677cd8e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 745945203
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_745945203
crossref_primary_10_1016_S0020_7403_02_00061_9
pascalfrancis_primary_13891315
elsevier_sciencedirect_doi_10_1016_S0020_7403_02_00061_9
PublicationCentury 2000
PublicationDate 2002-08-01
PublicationDateYYYYMMDD 2002-08-01
PublicationDate_xml – month: 08
  year: 2002
  text: 2002-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of mechanical sciences
PublicationYear 2002
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Papka, Kyriakides (BIB16) 1998; 46
Klintworth JW. Dynamic crushing of cellular solids. PhD dissertation, University of Cambridge, UK, 1988.
Reid, Bell, Barr (BIB10) 1983; 1
Zhao, Gary (BIB3) 1998; 21
Deshpande, Fleck (BIB5) 2000; 24
Breton N. Research report. Engineering Department, University of Cambridge, UK, 1997, unpublished.
Stronge WJ. Dynamic crushing of elastoplastic cellular solids. In: Jono M, Inoue T, editors. Proceedings of the Sixth International Conference of Mechanical Behaviour of Materials, vol. 1. Oxford: Pergamon Press, 1991. p. 377–87.
ABAQUS Standard and Explicit User's Manuals, Version 5.7. Providence, RI, USA: Hibbit, Karlson and Sorensen, Inc., 1997.
Reid, Peng (BIB2) 1997; 19
Klintworth, Stronge (BIB8) 1988; 30
Gibson, Ashby (BIB1) 1997
Papka, Kyriakides (BIB14) 1994; 42
Harrigan, Reid, Peng (BIB4) 1999; 22
Stronge, Shim (BIB11) 1987; 29
Holt, Babcock, Green, Maiden (BIB18) 1967; 60
Reid, Reddy (BIB9) 1983; 1
Tam, Calladine (BIB17) 1991; 11
Hönig A, Stronge WJ. In-plane dynamic crushing of hexagonal honeycomb I: crush band initiation and wave trapping. International Journal of Mechanical Sciences, PII: S0020-7403(02)00060-7.
10.1016/S0020-7403(02)00061-9_BIB7
10.1016/S0020-7403(02)00061-9_BIB6
10.1016/S0020-7403(02)00061-9_BIB15
Harrigan (10.1016/S0020-7403(02)00061-9_BIB4) 1999; 22
Reid (10.1016/S0020-7403(02)00061-9_BIB10) 1983; 1
Klintworth (10.1016/S0020-7403(02)00061-9_BIB8) 1988; 30
Reid (10.1016/S0020-7403(02)00061-9_BIB9) 1983; 1
Tam (10.1016/S0020-7403(02)00061-9_BIB17) 1991; 11
Reid (10.1016/S0020-7403(02)00061-9_BIB2) 1997; 19
Papka (10.1016/S0020-7403(02)00061-9_BIB14) 1994; 42
Gibson (10.1016/S0020-7403(02)00061-9_BIB1) 1997
10.1016/S0020-7403(02)00061-9_BIB12
Stronge (10.1016/S0020-7403(02)00061-9_BIB11) 1987; 29
Papka (10.1016/S0020-7403(02)00061-9_BIB16) 1998; 46
Holt (10.1016/S0020-7403(02)00061-9_BIB18) 1967; 60
10.1016/S0020-7403(02)00061-9_BIB13
Zhao (10.1016/S0020-7403(02)00061-9_BIB3) 1998; 21
Deshpande (10.1016/S0020-7403(02)00061-9_BIB5) 2000; 24
References_xml – volume: 46
  start-page: 2765
  year: 1998
  end-page: 2776
  ident: BIB16
  article-title: Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb
  publication-title: Acta Materialia
  contributor:
    fullname: Kyriakides
– volume: 1
  start-page: 175
  year: 1983
  end-page: 191
  ident: BIB10
  article-title: Structural plastic shock model for one-dimensional ring systems
  publication-title: International Journal of Impact Engineering
  contributor:
    fullname: Barr
– volume: 24
  start-page: 277
  year: 2000
  end-page: 298
  ident: BIB5
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: International Journal of Impact Engineering
  contributor:
    fullname: Fleck
– volume: 19
  start-page: 531
  year: 1997
  end-page: 570
  ident: BIB2
  article-title: Dynamic uniaxial crushing of wood
  publication-title: International Journal of Impact Engineering
  contributor:
    fullname: Peng
– volume: 22
  start-page: 955
  year: 1999
  end-page: 979
  ident: BIB4
  article-title: Inertia effects in impact energy absorbing materials and structures
  publication-title: International Journal of Impact Engineering
  contributor:
    fullname: Peng
– volume: 1
  start-page: 85
  year: 1983
  end-page: 106
  ident: BIB9
  article-title: Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to impact—I
  publication-title: International Journal of Impact Engineering
  contributor:
    fullname: Reddy
– volume: 29
  start-page: 381
  year: 1987
  end-page: 406
  ident: BIB11
  article-title: Dynamic crushing of a ductile cellular array
  publication-title: International Journal of Mechanical Sciences
  contributor:
    fullname: Shim
– volume: 60
  start-page: 152
  year: 1967
  ident: BIB18
  publication-title: Transactions of the American Society of Metals
  contributor:
    fullname: Maiden
– volume: 21
  start-page: 827
  year: 1998
  end-page: 836
  ident: BIB3
  article-title: Crushing behaviour of aluminium honeycombs under impact loading
  publication-title: International Journal of Impact Engineering
  contributor:
    fullname: Gary
– volume: 42
  start-page: 1499
  year: 1994
  end-page: 1532
  ident: BIB14
  article-title: In-plane compressive response and crushing of honeycomb
  publication-title: Journal of Mechanics and Physics of Solids
  contributor:
    fullname: Kyriakides
– volume: 11
  start-page: 349
  year: 1991
  end-page: 377
  ident: BIB17
  article-title: Inertia and strain-rate effects in a simple plate-structure under impact loading
  publication-title: International Journal of Impact Engineering
  contributor:
    fullname: Calladine
– volume: 30
  start-page: 273
  year: 1988
  end-page: 292
  ident: BIB8
  article-title: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs
  publication-title: International Journal of Mechanical Sciences
  contributor:
    fullname: Stronge
– year: 1997
  ident: BIB1
  publication-title: Cellular solids: structure and properties
  contributor:
    fullname: Ashby
– volume: 1
  start-page: 85
  year: 1983
  ident: 10.1016/S0020-7403(02)00061-9_BIB9
  article-title: Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to impact—I
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/0734-743X(83)90014-3
  contributor:
    fullname: Reid
– ident: 10.1016/S0020-7403(02)00061-9_BIB12
– volume: 1
  start-page: 175
  year: 1983
  ident: 10.1016/S0020-7403(02)00061-9_BIB10
  article-title: Structural plastic shock model for one-dimensional ring systems
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/0734-743X(83)90005-2
  contributor:
    fullname: Reid
– volume: 24
  start-page: 277
  year: 2000
  ident: 10.1016/S0020-7403(02)00061-9_BIB5
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/S0734-743X(99)00153-0
  contributor:
    fullname: Deshpande
– volume: 30
  start-page: 273
  year: 1988
  ident: 10.1016/S0020-7403(02)00061-9_BIB8
  article-title: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/0020-7403(88)90060-4
  contributor:
    fullname: Klintworth
– volume: 42
  start-page: 1499
  year: 1994
  ident: 10.1016/S0020-7403(02)00061-9_BIB14
  article-title: In-plane compressive response and crushing of honeycomb
  publication-title: Journal of Mechanics and Physics of Solids
  doi: 10.1016/0022-5096(94)90085-X
  contributor:
    fullname: Papka
– volume: 11
  start-page: 349
  year: 1991
  ident: 10.1016/S0020-7403(02)00061-9_BIB17
  article-title: Inertia and strain-rate effects in a simple plate-structure under impact loading
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/0734-743X(91)90044-G
  contributor:
    fullname: Tam
– ident: 10.1016/S0020-7403(02)00061-9_BIB13
– volume: 19
  start-page: 531
  year: 1997
  ident: 10.1016/S0020-7403(02)00061-9_BIB2
  article-title: Dynamic uniaxial crushing of wood
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/S0734-743X(97)00016-X
  contributor:
    fullname: Reid
– ident: 10.1016/S0020-7403(02)00061-9_BIB15
– volume: 29
  start-page: 381
  year: 1987
  ident: 10.1016/S0020-7403(02)00061-9_BIB11
  article-title: Dynamic crushing of a ductile cellular array
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/0020-7403(87)90001-4
  contributor:
    fullname: Stronge
– ident: 10.1016/S0020-7403(02)00061-9_BIB6
– ident: 10.1016/S0020-7403(02)00061-9_BIB7
– year: 1997
  ident: 10.1016/S0020-7403(02)00061-9_BIB1
  contributor:
    fullname: Gibson
– volume: 46
  start-page: 2765
  year: 1998
  ident: 10.1016/S0020-7403(02)00061-9_BIB16
  article-title: Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb
  publication-title: Acta Materialia
  doi: 10.1016/S1359-6454(97)00453-9
  contributor:
    fullname: Papka
– volume: 21
  start-page: 827
  year: 1998
  ident: 10.1016/S0020-7403(02)00061-9_BIB3
  article-title: Crushing behaviour of aluminium honeycombs under impact loading
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/S0734-743X(98)00034-7
  contributor:
    fullname: Zhao
– volume: 22
  start-page: 955
  year: 1999
  ident: 10.1016/S0020-7403(02)00061-9_BIB4
  article-title: Inertia effects in impact energy absorbing materials and structures
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/S0734-743X(99)00037-8
  contributor:
    fullname: Harrigan
– volume: 60
  start-page: 152
  year: 1967
  ident: 10.1016/S0020-7403(02)00061-9_BIB18
  publication-title: Transactions of the American Society of Metals
  contributor:
    fullname: Holt
SSID ssj0017053
Score 1.9519957
Snippet Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/ t=38 and 167). The...
Finite element simulations were employed to analyse in-plane dynamic crushing of two different hexagonal honeycombs (slenderness ratios L/t=38 and 167). The...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1697
SubjectTerms Computational techniques
Computer simulation
Crushing
Deformation
Energy dissipation
Exact sciences and technology
Finite element method
Finite-element and galerkin methods
Fracture mechanics (crack, fatigue, damage...)
Fracture mechanics, fatigue and cracks
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Physics
Solid mechanics
Strain rate
Structural and continuum mechanics
Title In-plane dynamic crushing of honeycomb. Part II: application to impact
URI https://dx.doi.org/10.1016/S0020-7403(02)00061-9
https://search.proquest.com/docview/745945203
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsoAQ4inKo_LAAEPaxHYeZqsqqgZExUClblbsOIKlidp0YOG3c3YS2gohJNYoOdvfnc_n3AuhG0qZuVIrx2UycZiioAe5VE5GGVx7COE6NInCz5NgPGWPM3_WQsMmF8aEVda6v9LpVlvXT_o1mv3i_d3k-BI4_0BIbbaJLf1pim2BTPc-v8M8TLWYyssM1yTz9jqLp6JgH9665M4Scfhv59N-kSwBtaxqd_FDc9vjaHSIDmo7Eg-qqR6hlp4fo72N6oInaBTPncLEsuK0ajuP1WJl_zjhPMNv-Vx_wKplD7_AgnEc3-MNbzYuc1xlUJ6i6ejhdTh26rYJjqIBL52MB4lHM6a4L0HVwYUi04QzIlnKQ5_pKEmzMAhJSkMvdVUCu1yBnaZNLTmVRpqeofYc5nCOMFgrCTAxZDJKmJekkgE3NZNAzNVERh3Ua8ASRVUdQ6zDxgBdYdAVLhEWXcE7KGogFVtsFqDB__q0u8WC9YDW1er5HYQbngjYI8bxARDnqyVQ8jmInksv_j_8Jdq1jWBs7N8VapeLlb4Ge6SUXStwXbQziJ_Gky8eftfc
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHtQY42fED-zBgx4GW9ux1ZshElAgHiDh1qxdF7lsBMbBi3-7r90QiDEmXpfttf2919fXvS-E7ihl5kqtHJfJyGGKgh7kUjkJZXDtIYTrwCQKD4at7pi9TPxJBbVXuTAmrLLU_YVOt9q6fNIs0WzOplOT40vg_AMhtdkmpvTnDjP1s0CoG5_fcR6mXEzhZoZ7knl9ncZTkLAP713yYKk4_LcD6mAWLQC2pOh38UN12_Ooc4QOS0MSPxVzPUYVnZ6g_Y3ygqeo00udmQlmxXHRdx6r-dL-csJZgt-zVH_AsmUDv8GKca_3iDfc2TjPcJFCeYbGnedRu-uUfRMcRVs8dxLeijyaMMV9CboObhSJJpwRyWIe-EyHUZwErYDENPBiV0WwzRUYatoUk1NxqOk5qqYwhwuEwVyJgIsBk2HEvCiWDNipmQRiriYyrKHGCiwxK8pjiHXcGKArDLrCJcKiK3gNhStIxRafBajwvz6tb7FgPaD1tXp-DeEVTwRsEuP5AIiz5QIo-Rxkz6WX_x_-Fu12R4O-6PeGr1doz3aFsYGA16iaz5f6BoyTXNat8H0BZxvZfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-plane+dynamic+crushing+of+honeycomb.+Part+II%3A+application+to+impact&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=H%C3%96NIG%2C+A&rft.au=STRONGE%2C+W.+J&rft.date=2002-08-01&rft.pub=Elsevier&rft.issn=0020-7403&rft.eissn=1879-2162&rft.volume=44&rft.issue=8&rft.spage=1697&rft.epage=1714&rft_id=info:doi/10.1016%2FS0020-7403%2802%2900061-9&rft.externalDBID=n%2Fa&rft.externalDocID=13891315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon