Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean
Stimulation of C 3 crop yield by rising concentrations of atmospheric carbon dioxide ([CO 2 ]) is widely expected to counteract crop losses that are due to greater drought this century. But these expectations come from sparse field trials that have been biased towards mesic growth conditions. This e...
Saved in:
Published in | Nature plants Vol. 2; no. 9; p. 16132 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.09.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stimulation of C
3
crop yield by rising concentrations of atmospheric carbon dioxide ([CO
2
]) is widely expected to counteract crop losses that are due to greater drought this century. But these expectations come from sparse field trials that have been biased towards mesic growth conditions. This eight-year study used precipitation manipulation and year-to-year variation in weather conditions at a unique open-air field facility to show that the stimulation of soybean yield by elevated [CO
2
] diminished to zero as drought intensified. Contrary to the prevalent expectation in the literature, rising [CO
2
] did not counteract the effect of strong drought on photosynthesis and yield because elevated [CO
2
] interacted with drought to modify stomatal function and canopy energy balance. This new insight from field experimentation under hot and dry conditions, which will become increasingly prevalent in the coming decades, highlights the likelihood of negative impacts from interacting global change factors on a key global commodity crop in its primary region of production.
The predicted rise in CO
2
levels during this century is expected to stimulate crop yields, offsetting losses from greater drought. But this study, using free-air CO
2
enrichment, shows soybean yield gains dropping to zero as drought stress increased. |
---|---|
AbstractList | Stimulation of C3 crop yield by rising concentrations of atmospheric carbon dioxide ([CO2]) is widely expected to counteract crop losses that are due to greater drought this century. But these expectations come from sparse field trials that have been biased towards mesic growth conditions. This eight-year study used precipitation manipulation and year-to-year variation in weather conditions at a unique open-air field facility to show that the stimulation of soybean yield by elevated [CO2] diminished to zero as drought intensified. Contrary to the prevalent expectation in the literature, rising [CO2] did not counteract the effect of strong drought on photosynthesis and yield because elevated [CO2] interacted with drought to modify stomatal function and canopy energy balance. This new insight from field experimentation under hot and dry conditions, which will become increasingly prevalent in the coming decades, highlights the likelihood of negative impacts from interacting global change factors on a key global commodity crop in its primary region of production. Stimulation of C3 crop yield by rising concentrations of atmospheric carbon dioxide ([CO2]) is widely expected to counteract crop losses that are due to greater drought this century. But these expectations come from sparse field trials that have been biased towards mesic growth conditions. This eight-year study used precipitation manipulation and year-to-year variation in weather conditions at a unique open-air field facility to show that the stimulation of soybean yield by elevated [CO2] diminished to zero as drought intensified. Contrary to the prevalent expectation in the literature, rising [CO2] did not counteract the effect of strong drought on photosynthesis and yield because elevated [CO2] interacted with drought to modify stomatal function and canopy energy balance. This new insight from field experimentation under hot and dry conditions, which will become increasingly prevalent in the coming decades, highlights the likelihood of negative impacts from interacting global change factors on a key global commodity crop in its primary region of production.Stimulation of C3 crop yield by rising concentrations of atmospheric carbon dioxide ([CO2]) is widely expected to counteract crop losses that are due to greater drought this century. But these expectations come from sparse field trials that have been biased towards mesic growth conditions. This eight-year study used precipitation manipulation and year-to-year variation in weather conditions at a unique open-air field facility to show that the stimulation of soybean yield by elevated [CO2] diminished to zero as drought intensified. Contrary to the prevalent expectation in the literature, rising [CO2] did not counteract the effect of strong drought on photosynthesis and yield because elevated [CO2] interacted with drought to modify stomatal function and canopy energy balance. This new insight from field experimentation under hot and dry conditions, which will become increasingly prevalent in the coming decades, highlights the likelihood of negative impacts from interacting global change factors on a key global commodity crop in its primary region of production. Stimulation of C3 crop yield by rising concentrations of atmospheric carbon dioxide ([CO2]) is widely expected to counteract crop losses that are due to greater drought this century. But these expectations come from sparse field trials that have been biased towards mesic growth conditions. This eight-year study used precipitation manipulation and year-to-year variation in weather conditions at a unique open-air field facility to show that the stimulation of soybean yield by elevated [CO2] diminished to zero as drought intensified. Contrary to the prevalent expectation in the literature, rising [CO2] did not counteract the effect of strong drought on photosynthesis and yield because elevated [CO2] interacted with drought to modify stomatal function and canopy energy balance. This new insight from field experimentation under hot and dry conditions, which will become increasingly prevalent in the coming decades, highlights the likelihood of negative impacts from interacting global change factors on a key global commodity crop in its primary region of production.The predicted rise in CO2 levels during this century is expected to stimulate crop yields, offsetting losses from greater drought. But this study, using free-air CO2 enrichment, shows soybean yield gains dropping to zero as drought stress increased. Stimulation of C 3 crop yield by rising concentrations of atmospheric carbon dioxide ([CO 2 ]) is widely expected to counteract crop losses that are due to greater drought this century. But these expectations come from sparse field trials that have been biased towards mesic growth conditions. This eight-year study used precipitation manipulation and year-to-year variation in weather conditions at a unique open-air field facility to show that the stimulation of soybean yield by elevated [CO 2 ] diminished to zero as drought intensified. Contrary to the prevalent expectation in the literature, rising [CO 2 ] did not counteract the effect of strong drought on photosynthesis and yield because elevated [CO 2 ] interacted with drought to modify stomatal function and canopy energy balance. This new insight from field experimentation under hot and dry conditions, which will become increasingly prevalent in the coming decades, highlights the likelihood of negative impacts from interacting global change factors on a key global commodity crop in its primary region of production. The predicted rise in CO 2 levels during this century is expected to stimulate crop yields, offsetting losses from greater drought. But this study, using free-air CO 2 enrichment, shows soybean yield gains dropping to zero as drought stress increased. |
ArticleNumber | 16132 |
Author | Bernacchi, Carl J. Gray, Sharon B. Strellner, Reid Dermody, Orla Ort, Donald R. Locke, Anna M. Klein, Stephanie P. Ruiz-Vera, Ursula M. Ainsworth, Elizabeth A. Paul, Rachel E. Rosenthal, David M. Long, Stephen P. Leakey, Andrew D. B. Siebers, Matthew H. McGrath, Justin M. |
Author_xml | – sequence: 1 givenname: Sharon B. surname: Gray fullname: Gray, Sharon B. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, †Present addresses: Department of Plant Biology, University of California, Davis, California 95616, USA (S.B.G.). CSIRO Plant Industry, Urrbrae, South Australia 5064, Australia (M.H.S.). United States Department of Agriculture, Agricultural Research Service, Raleigh, North Carolina 27695, USA (A.M.L.). Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, USA (D.M.R.). Department of Plant Science, Penn State University, State College, Pennsylvania 16802, USA (S.P.K.) – sequence: 2 givenname: Orla surname: Dermody fullname: Dermody, Orla organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign – sequence: 3 givenname: Stephanie P. surname: Klein fullname: Klein, Stephanie P. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, †Present addresses: Department of Plant Biology, University of California, Davis, California 95616, USA (S.B.G.). CSIRO Plant Industry, Urrbrae, South Australia 5064, Australia (M.H.S.). United States Department of Agriculture, Agricultural Research Service, Raleigh, North Carolina 27695, USA (A.M.L.). Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, USA (D.M.R.). Department of Plant Science, Penn State University, State College, Pennsylvania 16802, USA (S.P.K.) – sequence: 4 givenname: Anna M. surname: Locke fullname: Locke, Anna M. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, †Present addresses: Department of Plant Biology, University of California, Davis, California 95616, USA (S.B.G.). CSIRO Plant Industry, Urrbrae, South Australia 5064, Australia (M.H.S.). United States Department of Agriculture, Agricultural Research Service, Raleigh, North Carolina 27695, USA (A.M.L.). Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, USA (D.M.R.). Department of Plant Science, Penn State University, State College, Pennsylvania 16802, USA (S.P.K.) – sequence: 5 givenname: Justin M. surname: McGrath fullname: McGrath, Justin M. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign – sequence: 6 givenname: Rachel E. surname: Paul fullname: Paul, Rachel E. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign – sequence: 7 givenname: David M. surname: Rosenthal fullname: Rosenthal, David M. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, †Present addresses: Department of Plant Biology, University of California, Davis, California 95616, USA (S.B.G.). CSIRO Plant Industry, Urrbrae, South Australia 5064, Australia (M.H.S.). United States Department of Agriculture, Agricultural Research Service, Raleigh, North Carolina 27695, USA (A.M.L.). Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, USA (D.M.R.). Department of Plant Science, Penn State University, State College, Pennsylvania 16802, USA (S.P.K.) – sequence: 8 givenname: Ursula M. surname: Ruiz-Vera fullname: Ruiz-Vera, Ursula M. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign – sequence: 9 givenname: Matthew H. surname: Siebers fullname: Siebers, Matthew H. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, †Present addresses: Department of Plant Biology, University of California, Davis, California 95616, USA (S.B.G.). CSIRO Plant Industry, Urrbrae, South Australia 5064, Australia (M.H.S.). United States Department of Agriculture, Agricultural Research Service, Raleigh, North Carolina 27695, USA (A.M.L.). Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, USA (D.M.R.). Department of Plant Science, Penn State University, State College, Pennsylvania 16802, USA (S.P.K.) – sequence: 10 givenname: Reid surname: Strellner fullname: Strellner, Reid organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign – sequence: 11 givenname: Elizabeth A. surname: Ainsworth fullname: Ainsworth, Elizabeth A. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, United States Department of Agriculture, Agricultural Research Service – sequence: 12 givenname: Carl J. surname: Bernacchi fullname: Bernacchi, Carl J. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, United States Department of Agriculture, Agricultural Research Service – sequence: 13 givenname: Stephen P. orcidid: 0000-0002-8501-7164 surname: Long fullname: Long, Stephen P. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign – sequence: 14 givenname: Donald R. surname: Ort fullname: Ort, Donald R. organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, United States Department of Agriculture, Agricultural Research Service – sequence: 15 givenname: Andrew D. B. surname: Leakey fullname: Leakey, Andrew D. B. email: leakey@illinois.edu organization: Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27595230$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctL9DAUxYMoPkb3riTgxs2MSdo07VLEFwhudCeEtLkZI51kTNIP5783ZcYHwucql_A793HOAdp23gFCx5TMKCnqc7fslUtxxgitZrRgW2ifEc6nhIl6-0e9h45ifCWEUMF5UZFdtMcEbzgryD56vnMJXLRmZd0c6-CH-UvC0NuFdSpBxOkFMLwvoUugcQsOjE0Re5MZ-KfGz06F1jusrX-3GrDxAUe_akG5Q7RjVB_haPNO0NP11ePl7fT-4ebu8uJ-2hVVk6aG65YKTVVdMQIN022tm65QxGhV8rYBKGutGYdGkLIUjWC0UfmYqjVk5IsJOlv3XQb_NkBMcmFjB332B_wQJa3H0-tKjOjpL_TVD8Hl7SSrBGeiLLJJE3SyoYZ2AVoug12osJKfvmWArIEu-BgDmC-EEjmmIzfpyDEdmdPJkuqXpLNJJetdCsr2fwnpWhjzDDeH8L3yfzUf0Hem6A |
CitedBy_id | crossref_primary_10_1111_gcb_13678 crossref_primary_10_1038_s41598_022_11423_1 crossref_primary_10_1111_nph_15283 crossref_primary_10_1071_CP18421 crossref_primary_10_3389_fpls_2020_587958 crossref_primary_10_3390_su13084237 crossref_primary_10_1042_ETLS20180105 crossref_primary_10_1016_j_jplph_2018_08_001 crossref_primary_10_3390_econometrics9020024 crossref_primary_10_1111_pce_13466 crossref_primary_10_1016_j_cub_2018_10_015 crossref_primary_10_1038_s43016_022_00481_3 crossref_primary_10_1093_jxb_erab090 crossref_primary_10_1038_s41477_018_0356_x crossref_primary_10_1111_pce_14430 crossref_primary_10_3389_fpls_2021_775477 crossref_primary_10_1073_pnas_1911301116 crossref_primary_10_1146_annurev_arplant_042817_040305 crossref_primary_10_1111_nph_16937 crossref_primary_10_1002_pei3_10009 crossref_primary_10_1007_s11104_017_3333_7 crossref_primary_10_1111_gcb_14632 crossref_primary_10_1016_j_agrformet_2019_107629 crossref_primary_10_1016_j_jplph_2022_153764 crossref_primary_10_1038_s41477_020_0625_3 crossref_primary_10_3390_ijms24043210 crossref_primary_10_5194_esd_13_595_2022 crossref_primary_10_1093_jxb_erad049 crossref_primary_10_3390_agronomy12123008 crossref_primary_10_1093_jxb_erae379 crossref_primary_10_1093_plphys_kiae586 crossref_primary_10_3390_biology10121277 crossref_primary_10_1002_agg2_20453 crossref_primary_10_1016_j_agrformet_2019_03_026 crossref_primary_10_3390_agronomy14010071 crossref_primary_10_1007_s11120_018_0524_x crossref_primary_10_1016_j_tplants_2018_02_009 crossref_primary_10_1111_pce_13681 crossref_primary_10_1007_s00344_022_10754_7 crossref_primary_10_1016_j_eja_2022_126482 crossref_primary_10_1016_j_rse_2023_113880 crossref_primary_10_1016_j_fcr_2018_05_014 crossref_primary_10_1016_j_device_2024_100322 crossref_primary_10_1111_gcb_15628 crossref_primary_10_1016_j_eja_2021_126446 crossref_primary_10_1016_j_agwat_2018_07_034 crossref_primary_10_1071_CP19308 crossref_primary_10_3732_ajb_1600340 crossref_primary_10_3390_ijms25147995 crossref_primary_10_1016_j_agrformet_2021_108599 crossref_primary_10_1038_s43017_019_0001_x crossref_primary_10_1111_plb_12973 crossref_primary_10_1111_ppl_12899 crossref_primary_10_1093_aob_mcz048 crossref_primary_10_1111_gcb_14893 crossref_primary_10_1016_j_tplants_2021_02_011 crossref_primary_10_1016_j_envexpbot_2018_01_004 crossref_primary_10_1016_j_envexpbot_2020_104125 crossref_primary_10_1016_j_jclepro_2019_119920 crossref_primary_10_1016_j_eja_2022_126610 crossref_primary_10_3390_plants13040490 crossref_primary_10_1007_s11104_019_03949_7 crossref_primary_10_1111_nph_16055 crossref_primary_10_1007_s10725_023_01092_z crossref_primary_10_1051_ocl_2016055 crossref_primary_10_15407_frg2022_02_095 crossref_primary_10_1007_s11104_019_03987_1 crossref_primary_10_1111_gcb_15375 crossref_primary_10_1017_S1742170517000692 crossref_primary_10_1371_journal_pone_0226542 crossref_primary_10_1007_s10661_020_08788_z crossref_primary_10_1111_jac_12505 crossref_primary_10_1002_eco_1880 crossref_primary_10_1016_j_envexpbot_2020_104154 crossref_primary_10_1093_plcell_koac303 crossref_primary_10_1111_gcb_15128 crossref_primary_10_1073_pnas_1706383114 crossref_primary_10_1093_aob_mcx208 crossref_primary_10_1016_j_chieco_2024_102177 crossref_primary_10_1038_s41597_023_02118_x crossref_primary_10_1038_s41598_020_59494_2 crossref_primary_10_5194_bg_14_4071_2017 crossref_primary_10_1016_j_agrformet_2023_109747 crossref_primary_10_1126_sciadv_aau2406 crossref_primary_10_1111_pce_13677 crossref_primary_10_1111_plb_12994 crossref_primary_10_1038_s41477_020_00780_2 crossref_primary_10_1016_j_plantsci_2020_110675 crossref_primary_10_32615_ps_2023_030 crossref_primary_10_1007_s11120_020_00772_5 crossref_primary_10_1016_j_fcr_2021_108069 crossref_primary_10_1111_nph_14307 crossref_primary_10_1111_gcb_13778 crossref_primary_10_1093_jxb_eraa133 crossref_primary_10_3390_rs16193552 crossref_primary_10_33158_ASB_r136_v7_2021 crossref_primary_10_1038_nplants_2016_138 crossref_primary_10_3389_fpls_2022_952146 crossref_primary_10_3390_agriculture14112073 crossref_primary_10_1071_CP22344 crossref_primary_10_3390_cli10110179 crossref_primary_10_1016_j_agwat_2025_109312 crossref_primary_10_1007_s41885_021_00091_6 crossref_primary_10_1016_j_rse_2022_112950 crossref_primary_10_3390_en15051653 crossref_primary_10_1038_s43016_020_00195_4 crossref_primary_10_1016_j_eja_2018_06_002 crossref_primary_10_1111_jse_12649 crossref_primary_10_1111_tpj_15501 crossref_primary_10_1016_j_envexpbot_2019_06_003 crossref_primary_10_1007_s11104_018_3603_z crossref_primary_10_1038_s41598_021_96037_9 crossref_primary_10_1016_j_catena_2021_105501 crossref_primary_10_1093_jxb_erae511 crossref_primary_10_1111_gcb_15339 crossref_primary_10_1016_j_eja_2017_08_003 crossref_primary_10_1111_gcb_13830 crossref_primary_10_1007_s11104_019_04393_3 crossref_primary_10_1111_1365_2745_13988 crossref_primary_10_1016_j_scitotenv_2021_151393 crossref_primary_10_1111_pce_13863 crossref_primary_10_1016_j_ydbio_2016_07_023 crossref_primary_10_1029_2021JG006304 crossref_primary_10_3390_ijms23169194 crossref_primary_10_1080_1343943X_2019_1626254 crossref_primary_10_1016_j_envexpbot_2019_01_013 crossref_primary_10_1038_nplants_2016_160 crossref_primary_10_3733_ca_2018a0028 crossref_primary_10_1111_nph_16520 crossref_primary_10_5194_bg_20_2117_2023 crossref_primary_10_3390_w12092347 crossref_primary_10_1111_gcb_13946 crossref_primary_10_1088_1748_9326_aa518a crossref_primary_10_1111_ppl_13203 crossref_primary_10_1016_j_fcr_2021_108261 crossref_primary_10_3389_fpls_2018_01889 crossref_primary_10_1111_gcb_17500 crossref_primary_10_1016_j_nantod_2020_100918 crossref_primary_10_1111_pce_12868 crossref_primary_10_3390_su14020718 crossref_primary_10_1111_gcb_13617 crossref_primary_10_1016_j_envexpbot_2017_04_008 crossref_primary_10_1111_pce_14015 crossref_primary_10_3389_fpls_2021_733658 crossref_primary_10_1111_gcb_16201 crossref_primary_10_1002_pmic_201800262 crossref_primary_10_1111_tpj_14167 crossref_primary_10_1016_j_scitotenv_2023_167046 crossref_primary_10_1093_plphys_kiaa024 crossref_primary_10_1038_s41893_018_0106_0 crossref_primary_10_1007_s12298_021_00968_6 crossref_primary_10_1016_j_plaphy_2020_05_039 crossref_primary_10_1111_gcb_16562 crossref_primary_10_3390_w15234196 crossref_primary_10_1038_s43016_023_00821_x crossref_primary_10_1016_j_agwat_2019_06_004 crossref_primary_10_1038_s41467_018_06525_2 crossref_primary_10_1038_s43017_023_00491_0 crossref_primary_10_3389_fenvs_2022_1010269 crossref_primary_10_1007_s11104_022_05827_1 crossref_primary_10_1016_j_fcr_2022_108547 crossref_primary_10_1029_2018GL079093 crossref_primary_10_1016_j_agwat_2020_106631 crossref_primary_10_1371_journal_pone_0198928 crossref_primary_10_1016_j_scitotenv_2024_175748 crossref_primary_10_3389_fpls_2024_1345462 crossref_primary_10_1111_nph_17540 crossref_primary_10_1093_jxb_erab166 crossref_primary_10_1038_nclimate3133 crossref_primary_10_1071_CP22287 crossref_primary_10_1016_j_agrformet_2021_108524 crossref_primary_10_1016_j_agsy_2024_104225 crossref_primary_10_1007_s11356_023_30646_x crossref_primary_10_1111_pce_14358 crossref_primary_10_1016_j_agrformet_2017_05_017 crossref_primary_10_1038_s41893_020_0569_7 crossref_primary_10_3389_fpls_2020_00882 crossref_primary_10_1086_706260 crossref_primary_10_1111_pce_14474 crossref_primary_10_1111_pce_14472 crossref_primary_10_1029_2019GL086940 crossref_primary_10_1038_s41598_017_14936_2 crossref_primary_10_1111_gcb_13901 crossref_primary_10_1007_s00704_018_2637_8 crossref_primary_10_1111_gcb_14796 crossref_primary_10_1007_s00344_022_10819_7 crossref_primary_10_1016_j_agee_2022_108179 crossref_primary_10_3390_su11236619 crossref_primary_10_1111_nph_17096 crossref_primary_10_3389_fchem_2018_00026 crossref_primary_10_1016_j_fcr_2017_11_005 crossref_primary_10_1038_s43016_020_00165_w crossref_primary_10_3390_plants8040092 crossref_primary_10_1016_j_apr_2024_102046 crossref_primary_10_5194_essd_11_1839_2019 crossref_primary_10_1016_j_scitotenv_2018_12_345 crossref_primary_10_1111_pce_13123 crossref_primary_10_1038_s43247_023_01016_9 crossref_primary_10_1111_pce_13360 crossref_primary_10_1093_hr_uhad026 crossref_primary_10_1016_j_agrformet_2017_11_023 crossref_primary_10_3390_ijms22115662 crossref_primary_10_1073_pnas_1914436117 crossref_primary_10_1073_pnas_1720712115 crossref_primary_10_1038_s43017_022_00368_8 crossref_primary_10_1017_S0021859623000011 crossref_primary_10_1016_j_envexpbot_2018_07_017 crossref_primary_10_1071_CP17044 |
Cites_doi | 10.1111/j.1469-8137.2004.01224.x 10.1111/j.1365-3040.1995.tb00630.x 10.1007/BF00385601 10.1111/j.1469-8137.2008.02516.x 10.1093/jxb/41.9.1125 10.1093/jxb/erq244 10.2136/sssaj1997.03615995006100060006x 10.1111/j.1365-3040.2006.01581.x 10.1046/j.1469-8137.2000.00678.x 10.1111/pce.12443 10.1007/s00425-004-1320-8 10.1093/jxb/eru380 10.1093/jxb/erp096 10.1016/S0065-2113(02)77017-X 10.1071/FP02185 10.1016/0168-1923(91)90010-N 10.1146/annurev.arplant.55.031903.141610 10.1104/pp.124.2.767 10.1111/j.1757-1707.2010.01053.x 10.1104/pp.106.089557 10.1111/j.1365-3040.2009.02052.x 10.1093/jxb/ers148 10.1007/BF00401020 10.1007/3-540-31237-4_17 10.1071/FP12044 10.1093/jxb/erp273 10.1111/j.1365-3040.2004.01163.x 10.1111/j.1365-3040.2006.01556.x 10.1007/s11829-012-9195-2 10.1111/j.1365-3040.2011.02427.x 10.1046/j.1469-8137.2001.00115.x 10.1046/j.1365-3040.1998.00253.x 10.1016/j.plantsci.2014.06.013 10.1046/j.1469-8137.1997.00674.x 10.1093/jxb/27.3.559 10.1111/j.1469-8137.2005.01565.x 10.1104/pp.104.043968 10.1016/j.pbi.2012.01.009 10.1007/s00425-007-0682-0 10.1073/pnas.0810955106 10.1016/S0167-8809(01)00352-8 10.1016/j.gloenvcha.2003.10.008 10.1046/j.1365-2486.2002.00498.x 10.1093/jxb/erg262 10.1016/j.agrformet.2004.01.005 10.1111/j.1365-2486.2007.01502.x 10.1046/j.1365-3040.2002.00796.x 10.1111/gcb.12270 10.1111/j.1365-2486.2011.02406.x 10.1093/jxb/err269 10.1104/pp.60.3.379 10.1093/jxb/38.2.311 10.1007/BF00384257 10.1007/s12571-010-0108-x |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited 2016 Macmillan Publishers Limited 2016. |
Copyright_xml | – notice: Macmillan Publishers Limited 2016 – notice: Macmillan Publishers Limited 2016. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN AEUYN AFKRA BENPR BHPHI BKSAR C1K CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1038/nplants.2016.132 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College Ecology Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2055-0278 |
ExternalDocumentID | 27595230 10_1038_nplants_2016_132 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 5BI AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AENEX AEUYN AFKRA AFSHS AFWHJ AGAYW AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BENPR BHPHI BKKNO BKSAR CCPQU EBS FSGXE FZEXT HCIFZ HZ~ NNMJJ O9- PCBAR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7SN C1K DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 |
ID | FETCH-LOGICAL-c369t-f5db17d1a8620e92db8d9c3a0fda45b9ee48dd25e97044797219a1756bf00e923 |
IEDL.DBID | BENPR |
ISSN | 2055-0278 |
IngestDate | Thu Jul 10 19:27:47 EDT 2025 Sat Aug 23 12:48:20 EDT 2025 Thu Apr 03 07:07:12 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Tue Jul 01 03:33:55 EDT 2025 Fri Feb 21 02:40:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-f5db17d1a8620e92db8d9c3a0fda45b9ee48dd25e97044797219a1756bf00e923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8501-7164 |
PMID | 27595230 |
PQID | 2675274355 |
PQPubID | 2069614 |
ParticipantIDs | proquest_miscellaneous_1817558672 proquest_journals_2675274355 pubmed_primary_27595230 crossref_primary_10_1038_nplants_2016_132 crossref_citationtrail_10_1038_nplants_2016_132 springer_journals_10_1038_nplants_2016_132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160905 |
PublicationDateYYYYMMDD | 2016-09-05 |
PublicationDate_xml | – month: 9 year: 2016 text: 20160905 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature plants |
PublicationTitleAbbrev | Nature Plants |
PublicationTitleAlternate | Nat Plants |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Cline (CR3) 2007 Quarrie (CR53) 1988; 173 Kimball, Kobayashi, Bindi (CR6) 2002; 77 Miglietta (CR18) 2001; 150 Leakey (CR8) 2009; 60 Liu, Andersen, Jensen (CR21) 2003; 30 Ainsworth (CR12) 2002; 8 Jones, Outlaw, Lowry (CR57) 1977; 60 Morgan, Bernacchi, Ort, Long (CR50) 2004; 135 Bernacchi (CR28) 2006; 29 Kirtman, Stocker (CR20) 2013 Field, Jackson, Mooney (CR15) 1995; 18 Bernacchi, Morgan, Ort, Long (CR49) 2005; 220 Pritchard, Rogers (CR24) 2000; 147 Long, Bernacchi (CR51) 2003; 54 Wullschleger, Tschaplinski, Norby (CR25) 2002; 25 Ewert (CR9) 2002; 93 Rosenthal (CR48) 2014; 226 Vanloocke, Bernacchi, Twine (CR38) 2010; 2 Ohshima, Hayashi, Chino (CR58) 1990; 31 Mansfield (CR35) 1976; 27 Wilkinson (CR29) 2012; 63 Triggs (CR52) 2004; 124 Bishop, Betzelberger, Long, Ainsworth (CR37) 2015; 38 Bunce (CR34) 1998; 21 Von Caemmerer, Farquhar (CR45) 1981; 153 Ebel, Duan, Still, Auge (CR56) 1997; 135 Wong (CR31) 2000; 124 McGrath, Lobell (CR10) 2011; 17 Zhang, Davies (CR55) 1990; 41 Paltineanu, Starr (CR39) 1997; 61 Casteel (CR30) 2012; 6 Dermody, Long, McConnaughay, DeLucia (CR43) 2008; 14 Woodward, Peters, Lovejoy (CR19) 1992 Tardieu (CR22) 2012; 63 CR17 CR16 Locke, Ort (CR32) 2014; 65 Leakey, Bernacchi, Ort, Long (CR61) 2006; 29 Hartman, West, Herman (CR11) 2011; 3 Twine (CR41) 2013; 19 Kimball, Bernacchi, Nösberger, Long (CR4) 2006 Bernacchi, Kimball, Quarles, Long, Ort (CR5) 2007; 143 Leakey, Bishop, Ainsworth (CR13) 2012; 15 Nadwodnik, Lohaus (CR60) 2008; 227 Gray (CR23) 2013; 40 Durand, Sheehy, Minchin (CR26) 1987; 38 Porter, Field (CR2) 2014 Gray, Dermody, DeLucia (CR44) 2010; 61 McNaughton, Jarvis (CR14) 1991; 54 Wilkinson, Davies (CR27) 2010; 33 Gillespie (CR47) 2012; 35 Sharp, Davies (CR54) 2009; 60 Parry, Rosenzweig, Iglesias, Livermore, Fischer (CR1) 2004; 14 Hayashi, Chino (CR59) 1990; 31 Long, Ainsworth, Rogers, Ort (CR62) 2004; 55 Iversen, Ledford, Norby (CR40) 2008; 179 Dermody, Long, DeLucia (CR42) 2006; 169 Ainsworth, Long (CR7) 2005; 165 Rogers (CR36) 2004; 27 Leakey (CR46) 2009; 106 Raschke (CR33) 1975; 125 JM McGrath (BFnplants2016132_CR10) 2011; 17 SG Pritchard (BFnplants2016132_CR24) 2000; 147 F Miglietta (BFnplants2016132_CR18) 2001; 150 R Ebel (BFnplants2016132_CR56) 1997; 135 J Nadwodnik (BFnplants2016132_CR60) 2008; 227 ADB Leakey (BFnplants2016132_CR8) 2009; 60 GL Hartman (BFnplants2016132_CR11) 2011; 3 B Kirtman (BFnplants2016132_CR20) 2013 KM Gillespie (BFnplants2016132_CR47) 2012; 35 S Quarrie (BFnplants2016132_CR53) 1988; 173 F Ewert (BFnplants2016132_CR9) 2002; 93 TE Twine (BFnplants2016132_CR41) 2013; 19 ADB Leakey (BFnplants2016132_CR46) 2009; 106 A Vanloocke (BFnplants2016132_CR38) 2010; 2 J Triggs (BFnplants2016132_CR52) 2004; 124 EA Ainsworth (BFnplants2016132_CR12) 2002; 8 SB Gray (BFnplants2016132_CR23) 2013; 40 S Wilkinson (BFnplants2016132_CR29) 2012; 63 A Leakey (BFnplants2016132_CR61) 2006; 29 SP Long (BFnplants2016132_CR62) 2004; 55 JL Durand (BFnplants2016132_CR26) 1987; 38 A Rogers (BFnplants2016132_CR36) 2004; 27 H Hayashi (BFnplants2016132_CR59) 1990; 31 K Raschke (BFnplants2016132_CR33) 1975; 125 I Paltineanu (BFnplants2016132_CR39) 1997; 61 JWH Wong (BFnplants2016132_CR31) 2000; 124 TA Mansfield (BFnplants2016132_CR35) 1976; 27 FI Woodward (BFnplants2016132_CR19) 1992 J Zhang (BFnplants2016132_CR55) 1990; 41 C Iversen (BFnplants2016132_CR40) 2008; 179 JR Porter (BFnplants2016132_CR2) 2014 KA Bishop (BFnplants2016132_CR37) 2015; 38 EA Ainsworth (BFnplants2016132_CR7) 2005; 165 KG McNaughton (BFnplants2016132_CR14) 1991; 54 O Dermody (BFnplants2016132_CR42) 2006; 169 PB Morgan (BFnplants2016132_CR50) 2004; 135 C Bernacchi (BFnplants2016132_CR5) 2007; 143 BFnplants2016132_CR16 T Ohshima (BFnplants2016132_CR58) 1990; 31 BFnplants2016132_CR17 SB Gray (BFnplants2016132_CR44) 2010; 61 BA Kimball (BFnplants2016132_CR4) 2006 CB Field (BFnplants2016132_CR15) 1995; 18 ADB Leakey (BFnplants2016132_CR13) 2012; 15 SD Wullschleger (BFnplants2016132_CR25) 2002; 25 S Von Caemmerer (BFnplants2016132_CR45) 1981; 153 S Wilkinson (BFnplants2016132_CR27) 2010; 33 ML Parry (BFnplants2016132_CR1) 2004; 14 JA Bunce (BFnplants2016132_CR34) 1998; 21 DM Rosenthal (BFnplants2016132_CR48) 2014; 226 M Jones (BFnplants2016132_CR57) 1977; 60 WR Cline (BFnplants2016132_CR3) 2007 BA Kimball (BFnplants2016132_CR6) 2002; 77 SP Long (BFnplants2016132_CR51) 2003; 54 O Dermody (BFnplants2016132_CR43) 2008; 14 F Tardieu (BFnplants2016132_CR22) 2012; 63 R Sharp (BFnplants2016132_CR54) 2009; 60 CJ Bernacchi (BFnplants2016132_CR28) 2006; 29 CJ Bernacchi (BFnplants2016132_CR49) 2005; 220 CL Casteel (BFnplants2016132_CR30) 2012; 6 AM Locke (BFnplants2016132_CR32) 2014; 65 F Liu (BFnplants2016132_CR21) 2003; 30 27595319 - Nat Plants. 2016 Sep 05;2(9):16138 |
References_xml | – volume: 135 start-page: 2348 year: 2004 end-page: 2357 ident: CR50 article-title: An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean publication-title: Plant Physiol. – volume: 63 start-page: 3499 year: 2012 end-page: 3509 ident: CR29 article-title: Plant hormone interactions innovative targets for crop breeding and management publication-title: J. Exp. Bot. – volume: 8 start-page: 695 year: 2002 end-page: 709 ident: CR12 article-title: A meta-analysis of elevated CO effects on soybean ( ) physiology, growth and yield publication-title: Glob. Chang. Biol. – volume: 19 start-page: 2838 year: 2013 end-page: 2852 ident: CR41 article-title: Impacts of elevated CO concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA publication-title: Glob. Change Biol. – volume: 106 start-page: 3597 year: 2009 end-page: 3602 ident: CR46 article-title: Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide publication-title: Proc. Natl Acad. Sci. USA – start-page: 485 year: 2014 end-page: 533 ident: CR2 publication-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability – volume: 169 start-page: 145 year: 2006 end-page: 155 ident: CR42 article-title: How does elevated CO or ozone affect the leaf-area index of soybean when applied independently? publication-title: New Phytol. – ident: CR16 – volume: 25 start-page: 319 year: 2002 end-page: 331 ident: CR25 article-title: Plant water relations at elevated CO —implications for water-limited environments publication-title: Plant Cell Environ. – start-page: 311 year: 2006 end-page: 324 ident: CR4 publication-title: Managed Ecosystems and CO : Case Studies Processes, and Perspectives – volume: 15 start-page: 228 year: 2012 end-page: 236 ident: CR13 article-title: A multi-biome gap in understanding of crop and ecosystem responses to elevated CO publication-title: Curr. Opin. Plant Biol. – volume: 165 start-page: 351 year: 2005 end-page: 371 ident: CR7 article-title: What have we learned from 15 years of free-air CO enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO publication-title: New Phytol. – volume: 14 start-page: 556 year: 2008 end-page: 564 ident: CR43 article-title: How do elevated CO and O affect the interception and utilization of radiation by a soybean canopy? publication-title: Glob. Change Biol. – volume: 27 start-page: 559 year: 1976 end-page: 564 ident: CR35 article-title: Delay in response of stomata to abscisic acid in CO -free air publication-title: J. Exp. Bot. – volume: 14 start-page: 53 year: 2004 end-page: 67 ident: CR1 article-title: Effects of climate change on global food production under SRES emissions and socio-economic scenarios publication-title: Global Environ. Change – volume: 38 start-page: 311 year: 1987 end-page: 321 ident: CR26 article-title: Nitrogenase activity, photosynthesis and nodule water potential in soybean plants experiencing water deprivation publication-title: J. Exp. Bot. – volume: 27 start-page: 449 year: 2004 end-page: 458 ident: CR36 article-title: Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment publication-title: Plant Cell Environ. – volume: 179 start-page: 837 year: 2008 end-page: 847 ident: CR40 article-title: CO enrichment increases carbon and nitrogen input from fine roots in a deciduous forest publication-title: New Phytol. – volume: 173 start-page: 330 year: 1988 end-page: 339 ident: CR53 article-title: A monoclonal antibody to (S)-abscisic acid: its characterization and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves publication-title: Planta – volume: 18 start-page: 1214 year: 1995 end-page: 1225 ident: CR15 article-title: Stomatal responses to increased CO : implications from the plant to the global scale publication-title: Plant Cell Environ. – volume: 93 start-page: 249 year: 2002 end-page: 266 ident: CR9 article-title: Effects of elevated CO and drought on wheat: testing crop simulation models for different experimental and climatic conditions publication-title: Agric. Ecosyst. Environ. – volume: 226 start-page: 136 year: 2014 end-page: 146 ident: CR48 article-title: Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean ( ) at elevated [CO ] and temperatures under fully open air field conditions publication-title: Plant Sci. – volume: 40 start-page: 137 year: 2013 end-page: 147 ident: CR23 article-title: Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO enrichment only when combined with drought stress publication-title: Funct. Plant Biol. – volume: 60 start-page: 4361 year: 2009 end-page: 4370 ident: CR54 article-title: Variability among species in the apoplastic pH signalling response to drying soils publication-title: J. Exp. Bot. – volume: 31 start-page: 735 year: 1990 end-page: 737 ident: CR58 article-title: Collection and chemical composition of pure phloem sap from L publication-title: Plant Cell Physiol. – volume: 135 start-page: 755 year: 1997 end-page: 761 ident: CR56 article-title: Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal in drying soil publication-title: New Phytol. – volume: 61 start-page: 4413 year: 2010 end-page: 4422 ident: CR44 article-title: Spectral reflectance from a soybean canopy exposed to elevated CO and O publication-title: J. Exp. Bot. – volume: 30 start-page: 271 year: 2003 end-page: 280 ident: CR21 article-title: Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean publication-title: Funct. Plant Biol. – volume: 17 start-page: 2689 year: 2011 end-page: 2696 ident: CR10 article-title: An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years publication-title: Glob. Chang. Biol. – volume: 60 start-page: 2859 year: 2009 end-page: 2876 ident: CR8 article-title: Elevated CO effects on plant carbon, nitrogen, and water relations: six important lessons from FACE publication-title: J. Exp. Bot. – volume: 124 start-page: 767 year: 2000 end-page: 779 ident: CR31 article-title: Effects of elevated [CO ] and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton publication-title: Plant Physiol. – volume: 227 start-page: 1079 year: 2008 end-page: 1089 ident: CR60 article-title: Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in , , , and publication-title: Planta – volume: 33 start-page: 510 year: 2010 end-page: 525 ident: CR27 article-title: Drought, ozone, ABA and ethylene: new insights from cell to plant to community publication-title: Plant Cell Environ. – volume: 63 start-page: 25 year: 2012 end-page: 31 ident: CR22 article-title: Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario publication-title: J. Exp. Bot. – volume: 38 start-page: 1765 year: 2015 end-page: 1774 ident: CR37 article-title: Is there potential to adapt soybean Merr.) to future [CO ]? An analysis of the yield response of 18 genotypes in free-air CO enrichment publication-title: Plant Cell Environ. – volume: 61 start-page: 1576 year: 1997 end-page: 1585 ident: CR39 article-title: Real-time soil water dynamics using multisensor capacitance probes: laboratory calibration publication-title: Soil Sci. Soc. Am. J. – volume: 153 start-page: 376 year: 1981 end-page: 387 ident: CR45 article-title: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves publication-title: Planta – volume: 35 start-page: 169 year: 2012 end-page: 184 ident: CR47 article-title: Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O under both ambient and elevated CO publication-title: Plant Cell Environ. – volume: 2 start-page: 180 year: 2010 end-page: 191 ident: CR38 article-title: The impacts of Miscanthus x giganteus production on the Midwest US hydrologic cycle publication-title: Glob. Change Biol. Bioenergy – volume: 124 start-page: 63 year: 2004 end-page: 79 ident: CR52 article-title: Free-air CO enrichment effects on the energy balance and evapotranspiration of sorghum publication-title: Agricult. Forest Meteorol. – volume: 55 start-page: 591 year: 2004 end-page: 628 ident: CR62 article-title: Rising atmospheric carbon dioxide: plants FACE the future publication-title: Annu. Rev. Plant Biol. – volume: 60 start-page: 379 year: 1977 end-page: 383 ident: CR57 article-title: Enzymic assay of 10 to 10 moles of sucrose in plant tissues publication-title: Plant Physiol. – volume: 29 start-page: 1794 year: 2006 end-page: 1800 ident: CR61 article-title: Long-term growth of soybean at elevated [CO ] does not cause acclimation of stomatal conductance under fully open-air conditions publication-title: Plant Cell Environ. – volume: 147 start-page: 55 year: 2000 end-page: 71 ident: CR24 article-title: Spatial and temporal deployment of crop roots in CO -enriched environments publication-title: New Phytol. – year: 2007 ident: CR3 publication-title: Global Warming and Agriculture: Impact Assessments by Country – volume: 21 start-page: 115 year: 1998 end-page: 120 ident: CR34 article-title: Effects of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration publication-title: Plant Cell Environ. – volume: 150 start-page: 465 year: 2001 end-page: 476 ident: CR18 article-title: Free-air CO enrichment (FACE) of a poplar plantation: the POPFACE fumigation system publication-title: New Phytol. – start-page: 105 year: 1992 end-page: 123 ident: CR19 publication-title: Global Warming and Biological Diversity – volume: 220 start-page: 434 year: 2005 end-page: 446 ident: CR49 article-title: The growth of soybean under free air CO enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity publication-title: Planta – volume: 54 start-page: 2393 year: 2003 end-page: 2401 ident: CR51 article-title: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error publication-title: J. Exp. Bot. – volume: 125 start-page: 243 year: 1975 end-page: 259 ident: CR33 article-title: Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in L publication-title: Planta – ident: CR17 – volume: 65 start-page: 6617 year: 2014 end-page: 6627 ident: CR32 article-title: Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture publication-title: J. Exp. Bot. – volume: 54 start-page: 279 year: 1991 end-page: 301 ident: CR14 article-title: Effects of spatial scale on stomatal control of transpiration publication-title: Agric. Forest Meterol. – volume: 41 start-page: 1125 year: 1990 end-page: 1132 ident: CR55 article-title: Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants? publication-title: J. Exp. Bot. – volume: 143 start-page: 134 year: 2007 end-page: 144 ident: CR5 article-title: Decreases in stomatal conductance of soybean under open-air elevation of [CO ] are closely coupled with decreases in ecosystem evapotranspiration publication-title: Plant Physiol. – volume: 3 start-page: 5 year: 2011 end-page: 17 ident: CR11 article-title: Crops that feed the world 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests publication-title: Food Secur. – volume: 6 start-page: 439 year: 2012 end-page: 447 ident: CR30 article-title: Effects of elevated CO and soil water content on phytohormone transcript induction in after feeding publication-title: Arthropod Plant Interact. – volume: 77 start-page: 293 year: 2002 end-page: 368 ident: CR6 article-title: Responses of agricultural crops to free-air CO enrichment publication-title: Adv. Agron. – volume: 29 start-page: 2077 year: 2006 end-page: 2090 ident: CR28 article-title: Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO and ozone concentrations for 3 years under fully open-air field conditions publication-title: Plant Cell Environ. – volume: 31 start-page: 247 year: 1990 end-page: 251 ident: CR59 article-title: Chemical composition of phloem sap from the uppermost internode of the rice plant publication-title: Plant Cell Physiol. – start-page: 485 year: 2013 end-page: 533 ident: CR20 publication-title: Climate Change 2013: The Physical Science Basis – volume: 165 start-page: 351 year: 2005 ident: BFnplants2016132_CR7 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2004.01224.x – volume-title: Global Warming and Agriculture: Impact Assessments by Country year: 2007 ident: BFnplants2016132_CR3 – volume: 18 start-page: 1214 year: 1995 ident: BFnplants2016132_CR15 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1995.tb00630.x – volume: 125 start-page: 243 year: 1975 ident: BFnplants2016132_CR33 publication-title: Planta doi: 10.1007/BF00385601 – volume: 179 start-page: 837 year: 2008 ident: BFnplants2016132_CR40 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02516.x – volume: 41 start-page: 1125 year: 1990 ident: BFnplants2016132_CR55 publication-title: J. Exp. Bot. doi: 10.1093/jxb/41.9.1125 – volume: 61 start-page: 4413 year: 2010 ident: BFnplants2016132_CR44 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq244 – ident: BFnplants2016132_CR17 – volume: 61 start-page: 1576 year: 1997 ident: BFnplants2016132_CR39 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1997.03615995006100060006x – volume: 29 start-page: 2077 year: 2006 ident: BFnplants2016132_CR28 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01581.x – volume: 147 start-page: 55 year: 2000 ident: BFnplants2016132_CR24 publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00678.x – volume: 38 start-page: 1765 year: 2015 ident: BFnplants2016132_CR37 publication-title: Plant Cell Environ. doi: 10.1111/pce.12443 – volume: 31 start-page: 735 year: 1990 ident: BFnplants2016132_CR58 publication-title: Plant Cell Physiol. – volume: 220 start-page: 434 year: 2005 ident: BFnplants2016132_CR49 publication-title: Planta doi: 10.1007/s00425-004-1320-8 – volume: 65 start-page: 6617 year: 2014 ident: BFnplants2016132_CR32 publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru380 – volume: 60 start-page: 2859 year: 2009 ident: BFnplants2016132_CR8 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp096 – volume: 77 start-page: 293 year: 2002 ident: BFnplants2016132_CR6 publication-title: Adv. Agron. doi: 10.1016/S0065-2113(02)77017-X – volume: 30 start-page: 271 year: 2003 ident: BFnplants2016132_CR21 publication-title: Funct. Plant Biol. doi: 10.1071/FP02185 – volume: 54 start-page: 279 year: 1991 ident: BFnplants2016132_CR14 publication-title: Agric. Forest Meterol. doi: 10.1016/0168-1923(91)90010-N – volume: 55 start-page: 591 year: 2004 ident: BFnplants2016132_CR62 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141610 – volume: 124 start-page: 767 year: 2000 ident: BFnplants2016132_CR31 publication-title: Plant Physiol. doi: 10.1104/pp.124.2.767 – start-page: 485 volume-title: Climate Change 2013: The Physical Science Basis year: 2013 ident: BFnplants2016132_CR20 – volume: 2 start-page: 180 year: 2010 ident: BFnplants2016132_CR38 publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/j.1757-1707.2010.01053.x – volume: 143 start-page: 134 year: 2007 ident: BFnplants2016132_CR5 publication-title: Plant Physiol. doi: 10.1104/pp.106.089557 – volume: 33 start-page: 510 year: 2010 ident: BFnplants2016132_CR27 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02052.x – volume: 63 start-page: 3499 year: 2012 ident: BFnplants2016132_CR29 publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers148 – volume: 173 start-page: 330 year: 1988 ident: BFnplants2016132_CR53 publication-title: Planta doi: 10.1007/BF00401020 – start-page: 311 volume-title: Managed Ecosystems and CO2: Case Studies Processes, and Perspectives year: 2006 ident: BFnplants2016132_CR4 doi: 10.1007/3-540-31237-4_17 – volume: 40 start-page: 137 year: 2013 ident: BFnplants2016132_CR23 publication-title: Funct. Plant Biol. doi: 10.1071/FP12044 – volume: 60 start-page: 4361 year: 2009 ident: BFnplants2016132_CR54 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp273 – volume: 27 start-page: 449 year: 2004 ident: BFnplants2016132_CR36 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2004.01163.x – volume: 29 start-page: 1794 year: 2006 ident: BFnplants2016132_CR61 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01556.x – volume: 6 start-page: 439 year: 2012 ident: BFnplants2016132_CR30 publication-title: Arthropod Plant Interact. doi: 10.1007/s11829-012-9195-2 – start-page: 485 volume-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability year: 2014 ident: BFnplants2016132_CR2 – volume: 35 start-page: 169 year: 2012 ident: BFnplants2016132_CR47 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02427.x – volume: 150 start-page: 465 year: 2001 ident: BFnplants2016132_CR18 publication-title: New Phytol. doi: 10.1046/j.1469-8137.2001.00115.x – volume: 21 start-page: 115 year: 1998 ident: BFnplants2016132_CR34 publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.1998.00253.x – volume: 226 start-page: 136 year: 2014 ident: BFnplants2016132_CR48 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2014.06.013 – volume: 135 start-page: 755 year: 1997 ident: BFnplants2016132_CR56 publication-title: New Phytol. doi: 10.1046/j.1469-8137.1997.00674.x – volume: 27 start-page: 559 year: 1976 ident: BFnplants2016132_CR35 publication-title: J. Exp. Bot. doi: 10.1093/jxb/27.3.559 – volume: 169 start-page: 145 year: 2006 ident: BFnplants2016132_CR42 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01565.x – volume: 135 start-page: 2348 year: 2004 ident: BFnplants2016132_CR50 publication-title: Plant Physiol. doi: 10.1104/pp.104.043968 – volume: 31 start-page: 247 year: 1990 ident: BFnplants2016132_CR59 publication-title: Plant Cell Physiol. – volume: 15 start-page: 228 year: 2012 ident: BFnplants2016132_CR13 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2012.01.009 – volume: 227 start-page: 1079 year: 2008 ident: BFnplants2016132_CR60 publication-title: Planta doi: 10.1007/s00425-007-0682-0 – start-page: 105 volume-title: Global Warming and Biological Diversity year: 1992 ident: BFnplants2016132_CR19 – volume: 106 start-page: 3597 year: 2009 ident: BFnplants2016132_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0810955106 – volume: 93 start-page: 249 year: 2002 ident: BFnplants2016132_CR9 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00352-8 – volume: 14 start-page: 53 year: 2004 ident: BFnplants2016132_CR1 publication-title: Global Environ. Change doi: 10.1016/j.gloenvcha.2003.10.008 – volume: 8 start-page: 695 year: 2002 ident: BFnplants2016132_CR12 publication-title: Glob. Chang. Biol. doi: 10.1046/j.1365-2486.2002.00498.x – volume: 54 start-page: 2393 year: 2003 ident: BFnplants2016132_CR51 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erg262 – volume: 124 start-page: 63 year: 2004 ident: BFnplants2016132_CR52 publication-title: Agricult. Forest Meteorol. doi: 10.1016/j.agrformet.2004.01.005 – volume: 14 start-page: 556 year: 2008 ident: BFnplants2016132_CR43 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2007.01502.x – volume: 25 start-page: 319 year: 2002 ident: BFnplants2016132_CR25 publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2002.00796.x – ident: BFnplants2016132_CR16 – volume: 19 start-page: 2838 year: 2013 ident: BFnplants2016132_CR41 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12270 – volume: 17 start-page: 2689 year: 2011 ident: BFnplants2016132_CR10 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02406.x – volume: 63 start-page: 25 year: 2012 ident: BFnplants2016132_CR22 publication-title: J. Exp. Bot. doi: 10.1093/jxb/err269 – volume: 60 start-page: 379 year: 1977 ident: BFnplants2016132_CR57 publication-title: Plant Physiol. doi: 10.1104/pp.60.3.379 – volume: 38 start-page: 311 year: 1987 ident: BFnplants2016132_CR26 publication-title: J. Exp. Bot. doi: 10.1093/jxb/38.2.311 – volume: 153 start-page: 376 year: 1981 ident: BFnplants2016132_CR45 publication-title: Planta doi: 10.1007/BF00384257 – volume: 3 start-page: 5 year: 2011 ident: BFnplants2016132_CR11 publication-title: Food Secur. doi: 10.1007/s12571-010-0108-x – reference: 27595319 - Nat Plants. 2016 Sep 05;2(9):16138 |
SSID | ssj0001755360 |
Score | 2.4905028 |
Snippet | Stimulation of C
3
crop yield by rising concentrations of atmospheric carbon dioxide ([CO
2
]) is widely expected to counteract crop losses that are due to... Stimulation of C3 crop yield by rising concentrations of atmospheric carbon dioxide ([CO2]) is widely expected to counteract crop losses that are due to... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16132 |
SubjectTerms | 631/449/1734 631/449/1736 631/449/2124 704/106/694/2739 Agricultural production Biomedical and Life Sciences Carbon dioxide Carbon Dioxide - metabolism Climate Change Crop yield Crops Drought Droughts Energy balance Experimentation Glycine max - physiology Growth conditions Life Sciences Military air facilities Photosynthesis Plant Sciences Soybeans Stimulation Stomata Stress, Physiological Weather |
Title | Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean |
URI | https://link.springer.com/article/10.1038/nplants.2016.132 https://www.ncbi.nlm.nih.gov/pubmed/27595230 https://www.proquest.com/docview/2675274355 https://www.proquest.com/docview/1817558672 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB-81Yd7ET_uY_0iB_dyB3XbpGmbJ1FRRDg55AQfhJJPWFjaPbeC_vfOdLMrIvraSdIwk0x-mZnMAPyUViqd8SypDBdJzoNPjAsy4dYVOhiNNLJD_rkqLm7yy1t5Gw1usxhWudCJvaJ2rSUb-YgjssUbFB6PR9P_CVWNIu9qLKHxCVZRBVfVAFZPzq7-Xr9YWUopRZFG_2QqqlEznVCACQV1FYeZ4K_Pozcg842DtD93zjdgPQJGdjyX8Cas-GYL1k5aBHVP23AXQ9D710rM9TV3OuYnfa0uRJEM8R2jLP4WkSUzqNjCuJuxNjB6V67po9X3pm2YG7ePY-cZglg2a5-M180XuDk_-3d6kcSCCYkVheqSIJ3JSpdpvKakXnFnKqes0GlwOpdGeZ9XznHpVZnmeUmJe1BQpSxMSKm9-AqDpm38d2DeB-UEYkOV2bx03jjECoWynHI2IQQbwmjBttrGbOJU1GJS915tUdWR0TUxukZGD-HXssd0nknjg7Z7C0nUcU8hcbkChvBjScbdQC4O3fj2YVYjXkGJV0WJQ3ybS3D5M15KRTbwIfxeiPRl8PdmsvPxTHbhM7Xsg87kHgy6-we_jyilMwdxKT4Dp0npoQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qVdAX8dvTqivog0K8ZDebZB9ErLZcbXuItNCHQtxPODiSs5ei90_5NzqTS65IsW99zexukpnZ3d_OzM4AvJZWKp3wJCoMF1HKg4-MCzLi1mU6GI00skMeTrLxcfr1RJ5swJ_-LgyFVfZrYrtQu9qSjXzEEdniCQq3x4_znxFVjSLval9CY6UW-375C49siw97X1C-bzjf3Tn6PI66qgKRFZlqoiCdSXKXaMTysVfcmcIpK3QcnE6lUd6nhXNcepXHaZpTdhv8m1xmJsTUXuC4N2AzFVnMB7C5vTP59v3CqpNLiYTOHxqLYlTNZxTQQkFk2ftE8H_3v0ug9pJDtt3ndu_CnQ6gsk8rjboHG766Dze3awSRywdw2oW8t7ejmGtr_DTMz9raYIhaGeJJRlUDLCJZZnAhDdNmwerA6B67podWn5m6Ym5a_546zxA0s0W9NF5XD-H4Wlj5CAZVXfknwLwPygnEoiqxae68cYhNMmU55YhCyDeEUc-20nbZy6mIxqxsveiiKDtGl8ToEhk9hLfrHvNV5o4r2m71kii7OYzEtcYN4dWajLOPXCq68vX5okR8hBIvshyHeLyS4PplPJeKbO5DeNeL9GLw_33J06u_5CXcGh8dHpQHe5P9Z3CberUBb3ILBs3ZuX-OCKkxLzq1ZPDjumfCX68bJnc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intensifying+drought+eliminates+the+expected+benefits+of+elevated+carbon+dioxide+for+soybean&rft.jtitle=Nature+plants&rft.au=Gray%2C+Sharon+B.&rft.au=Dermody%2C+Orla&rft.au=Klein%2C+Stephanie+P.&rft.au=Locke%2C+Anna+M.&rft.date=2016-09-05&rft.issn=2055-0278&rft.eissn=2055-0278&rft.volume=2&rft.issue=9&rft_id=info:doi/10.1038%2Fnplants.2016.132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nplants_2016_132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon |