Light perception and signalling by phytochrome A

In etiolated seedlings, phytochrome A (phyA) mediates very-low-fluence responses (VLFRs), which initiate de-etiolation at the interphase between the soil and above-ground environments, and high-irradiance responses (HIR), which complete de-etiolation under dense canopies and require more sustained a...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 65; no. 11; pp. 2835 - 2845
Main Authors Casal, J. J, Candia, A. N, Sellaro, R
Format Journal Article
LanguageEnglish
Published England Oxford University Press [etc.] 01.06.2014
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In etiolated seedlings, phytochrome A (phyA) mediates very-low-fluence responses (VLFRs), which initiate de-etiolation at the interphase between the soil and above-ground environments, and high-irradiance responses (HIR), which complete de-etiolation under dense canopies and require more sustained activation with far-red light. Light-activated phyA is transported to the nucleus by FAR-RED ELONGATED HYPOCOTYL1 (FHY1). The nuclear pool of active phyA increases under prolonged far-red light of relatively high fluence rates. This condition maximizes the rate of FHY1–phyA complex assembly and disassembly, allowing FHY1 to return to the cytoplasm to translocate further phyA to the nucleus, to replace phyA degraded in the proteasome. The core signalling pathways downstream of nuclear phyA involve the negative regulation of CONSTITUTIVE PHOTOMORPHOGENIC 1, which targets for degradation transcription factors required for photomorphogenesis, and PHYTOCHROME-INTERACTING FACTORs, which are transcription factors that repress photomorphogenesis. Under sustained far-red light activation, released FHY1 can also be recruited with active phyA to target gene promoters as a transcriptional activator, and nuclear phyA signalling activates a positive regulatory loop involving BELL-LIKE HOMEODOMAIN 1 that reinforces the HIR.
AbstractList In etiolated seedlings, phytochrome A (phyA) mediates very-low-fluence responses (VLFRs), which initiate de-etiolation at the interphase between the soil and above-ground environments, and high-irradiance responses (HIR), which complete de-etiolation under dense canopies and require more sustained activation with far-red light. Light-activated phyA is transported to the nucleus by FAR-RED ELONGATED HYPOCOTYL1 (FHY1). The nuclear pool of active phyA increases under prolonged far-red light of relatively high fluence rates. This condition maximizes the rate of FHY1-phyA complex assembly and disassembly, allowing FHY1 to return to the cytoplasm to translocate further phyA to the nucleus, to replace phyA degraded in the proteasome. The core signalling pathways downstream of nuclear phyA involve the negative regulation of CONSTITUTIVE PHOTOMORPHOGENIC 1, which targets for degradation transcription factors required for photomorphogenesis, and PHYTOCHROME-INTERACTING FACTORs, which are transcription factors that repress photomorphogenesis. Under sustained far-red light activation, released FHY1 can also be recruited with active phyA to target gene promoters as a transcriptional activator, and nuclear phyA signalling activates a positive regulatory loop involving BELL-LIKE HOMEODOMAIN 1 that reinforces the HIR.
Author Casal, J. J
Candia, A. N
Sellaro, R
Author_xml – sequence: 1
  fullname: Casal, J. J
– sequence: 2
  fullname: Candia, A. N
– sequence: 3
  fullname: Sellaro, R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24220656$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLw0AUhQep2PrYuFezFCF655VJliK-oOBCux5mkjttSpqJMynYf28kVVzdxfk4h_sdk0nrWyTknMIthYLfrb_sHYaeq-KAzKjIIGWC0wmZATCWQiHVlBzHuAYACVIekSkTjEEmsxmBeb1c9UmHocSur32bmLZKYr1sTdPU7TKxu6Rb7XpfroLfYHJ_Sg6daSKe7e8JWTw9fjy8pPO359eH-3la8qzoU3RCUVdwyZx1JjelzFTGq6q0jGVorRDOUqeoApRcSJsLZICgDFZICwv8hFyPvV3wn1uMvd7UscSmMS36bdRUipwWkqt8QG9GtAw-xoBOd6HemLDTFPSPIT0Y0qOhAb7c927tBqs_9FfJAFyMwDr2PvzLQfBc_qxdjbkzXptlqKNevDOgctBL1fA1_wa37HZL
CitedBy_id crossref_primary_10_1111_nph_19047
crossref_primary_10_3390_ijms241713201
crossref_primary_10_1016_j_jgg_2015_02_005
crossref_primary_10_1111_nph_14032
crossref_primary_10_1134_S1021443720060102
crossref_primary_10_15252_embj_2019104273
crossref_primary_10_1093_plcell_koac138
crossref_primary_10_1186_s12870_018_1440_0
crossref_primary_10_3389_fpls_2022_828529
crossref_primary_10_1111_pbi_12936
crossref_primary_10_3390_plants10071485
crossref_primary_10_1111_pce_12887
crossref_primary_10_1111_pce_14995
crossref_primary_10_17660_ActaHortic_2022_1337_48
crossref_primary_10_3390_ijms24032110
crossref_primary_10_1007_s00344_022_10661_x
crossref_primary_10_1016_j_molp_2020_04_002
crossref_primary_10_1111_tpj_13451
crossref_primary_10_1111_nph_13941
crossref_primary_10_3389_fevo_2020_00089
crossref_primary_10_3389_fpls_2024_1340260
crossref_primary_10_1007_s00425_020_03456_5
crossref_primary_10_1093_pcp_pcz029
crossref_primary_10_1007_s40415_016_0277_8
crossref_primary_10_1016_j_devcel_2017_11_017
crossref_primary_10_5511_plantbiotechnology_19_1219a
crossref_primary_10_19159_tutad_1109558
crossref_primary_10_1093_mp_ssu078
crossref_primary_10_1007_s12551_022_00985_z
crossref_primary_10_1007_s43630_021_00110_1
crossref_primary_10_1016_j_scienta_2021_110455
crossref_primary_10_2139_ssrn_4058205
crossref_primary_10_1007_s12551_022_00974_2
crossref_primary_10_1186_s12864_021_07871_0
crossref_primary_10_1371_journal_pgen_1006413
crossref_primary_10_1071_FP18156
crossref_primary_10_1093_plphys_kiad028
crossref_primary_10_1134_S1021443719030154
crossref_primary_10_1016_j_xplc_2019_100007
crossref_primary_10_3389_fpls_2020_00439
crossref_primary_10_1016_j_plantsci_2024_112050
crossref_primary_10_3390_ijms232012650
crossref_primary_10_1186_s12870_016_0831_3
crossref_primary_10_3389_fphy_2023_1322232
crossref_primary_10_1101_cshperspect_a040030
crossref_primary_10_1007_s11627_018_9902_5
crossref_primary_10_1111_tpj_15018
crossref_primary_10_1071_FP16261
crossref_primary_10_1039_c8pp00574e
crossref_primary_10_1093_jxb_erac473
crossref_primary_10_3390_ijms20235882
crossref_primary_10_1111_1365_2745_12551
crossref_primary_10_1016_j_envexpbot_2015_05_010
crossref_primary_10_1021_acs_jafc_7b01214
crossref_primary_10_1093_jxb_erx020
crossref_primary_10_1111_php_13289
crossref_primary_10_1371_journal_pgen_1005516
crossref_primary_10_3389_fpls_2021_644823
crossref_primary_10_1007_s00344_023_11118_5
crossref_primary_10_1371_journal_pone_0186468
crossref_primary_10_3390_molecules26040782
crossref_primary_10_1007_s42994_023_00129_1
crossref_primary_10_1007_s11540_023_09620_0
crossref_primary_10_1134_S0006297919050043
crossref_primary_10_3389_fpls_2019_01584
crossref_primary_10_1093_plphys_kiad081
crossref_primary_10_4081_ija_2022_1982
crossref_primary_10_1007_s11105_017_1035_1
crossref_primary_10_1111_pce_12634
crossref_primary_10_1073_pnas_1803398115
crossref_primary_10_1038_s41598_021_86984_8
crossref_primary_10_1016_j_gene_2021_145539
crossref_primary_10_3389_fpls_2020_00256
crossref_primary_10_1104_pp_15_00782
crossref_primary_10_3390_plants11081097
crossref_primary_10_1093_jxb_erz496
crossref_primary_10_3390_genes14071478
crossref_primary_10_1007_s11540_019_09435_y
crossref_primary_10_1016_j_tibs_2017_04_006
Cites_doi 10.1016/j.cub.2009.05.062
10.1073/pnas.93.15.8129
10.1111/j.1365-3040.1985.tb01699.x
10.1104/pp.112.213280
10.1105/tpc.112.097733
10.1105/tpc.014563
10.1104/pp.121.2.571
10.1093/pcp/pct042
10.1105/tpc.000521
10.1104/pp.121.4.1207
10.1126/science.284.5413.496
10.1111/j.1365-313X.2007.03036.x
10.1111/j.1365-313X.2005.02635.x
10.1105/tpc.108.061259
10.1093/mp/sst001
10.1105/tpc.109.067215
10.1104/pp.107.097048
10.1111/j.1365-3040.1995.tb00582.x
10.1093/pcp/pcq025
10.1104/pp.67.4.733
10.1104/pp.103.029546
10.1105/tpc.109.066472
10.1016/j.tplants.2010.08.003
10.1126/science.7732376
10.1093/pcp/pcq121
10.1104/pp.104.059071
10.1101/gad.197201
10.1111/j.1365-313X.2005.02449.x
10.1073/pnas.0404286101
10.1046/j.1365-3040.2000.00550.x
10.1007/s004250100545
10.1104/pp.114.2.637
10.1126/science.1146281
10.1074/jbc.M603538200
10.1105/tpc.112.104331
10.1104/pp.110.2.439
10.1199/tab.0148
10.1105/tpc.110.080481
10.1104/pp.112.206607
10.1104/pp.105.1.141
10.1073/pnas.95.23.13976
10.1104/pp.010977
10.1111/j.1365-313X.2009.03971.x
10.1016/j.cell.2011.07.023
10.1016/j.tplants.2012.05.004
10.1111/j.1365-313X.2005.02606.x
10.1016/j.cell.2010.05.007
10.1146/annurev.arplant.53.100301.135302
10.1007/978-94-011-1884-2_5
10.4161/psb.2.6.4744
10.1073/pnas.0703855104
10.1105/tpc.001156
10.1105/tpc.021568
10.1038/emboj.2009.306
10.1093/molbev/msg123
10.1104/pp.126.2.826
10.1016/j.molcel.2008.08.003
10.1126/science.1091761
10.1046/j.1365-313X.1997.d01-19.x
10.1146/annurev-arplant-050312-120221
10.1016/j.cub.2005.10.042
10.1534/genetics.108.092742
10.1073/pnas.1120203109
10.1101/gad.1568207
10.1104/pp.112.3.965
10.1105/tpc.112.107086
10.1046/j.1365-3040.1997.d01-62.x
10.1105/tpc.5.7.757
10.1105/tpc.108.060020
10.1007/s11103-006-9115-x
10.1046/j.1365-313X.2003.01770.x
10.1073/pnas.0906598106
10.1104/pp.005389
10.1046/j.1365-3040.1997.d01-107.x
10.1104/pp.010467
10.1111/j.1365-313X.2006.02914.x
10.1046/j.1365-313X.1999.00475.x
10.1104/pp.111.181792
10.1016/j.tplants.2011.05.011
10.1111/j.1365-3040.1991.tb01520.x
10.1105/tpc.111.095083
10.1101/gad.13.15.2017
10.1371/journal.pgen.1000143
10.1110/ps.8.5.1032
10.1104/pp.125.2.1036
10.1101/gad.1187804
10.1104/pp.122.1.147
10.1007/s11103-010-9649-9
10.1105/tpc.104.030205
10.1104/pp.110.160820
10.1017/S0960258500004384
10.1101/gad.1122903
10.1562/0031-8655(2000)071<0481:TPPOPA>2.0.CO;2
10.1534/genetics.108.098772
10.1046/j.1365-313X.2003.01813.x
10.1007/s00425-002-0801-x
10.1104/pp.123.1.235
10.1007/978-94-011-1884-2_10
10.1007/s10059-013-0135-5
10.1073/pnas.161300998
10.1104/pp.010811
10.1038/nature00996
10.1105/tpc.111.094201
10.1046/j.1365-313x.1998.00290.x
10.1101/gad.915001
10.1093/pcp/pcj087
ContentType Journal Article
Copyright Society for Experimental Biology 2014
The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: Society for Experimental Biology 2014
– notice: The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1093/jxb/ert379
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 2845
ExternalDocumentID 10_1093_jxb_ert379
24220656
24043858
US201500017471
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AABJS
AABMN
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFEDG
DFGAJ
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FBQ
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAHBH
AARHZ
AASNB
AAUAY
ABMNT
ABXSQ
ABXVV
ADACV
ADQBN
AQVQM
ATGXG
H13
IPSME
JXSIZ
ACMRT
ACZBC
AEHUL
AFSHK
AGMDO
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c369t-ef471f9352fbfa8ac56763ddcb226ebb44fb1f7170e5345b84e20e07aede19b03
ISSN 0022-0957
IngestDate Wed Jul 24 14:19:23 EDT 2024
Thu Sep 12 19:40:03 EDT 2024
Sat Sep 28 07:54:25 EDT 2024
Fri Sep 27 02:49:39 EDT 2024
Wed Dec 27 19:14:55 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords phytochrome
very-low-fluence response (VLFR)
PHYTOCHROME INTERACTING FACTOR (PIF)
high-irradiance response (HIR)
nuclear translocation
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)
Language English
License The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-ef471f9352fbfa8ac56763ddcb226ebb44fb1f7170e5345b84e20e07aede19b03
Notes http://dx.doi.org/10.1093/jxb/ert379
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://academic.oup.com/jxb/article-pdf/65/11/2835/16933816/ert379.pdf
PMID 24220656
PQID 1548195378
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1548195378
crossref_primary_10_1093_jxb_ert379
pubmed_primary_24220656
jstor_primary_24043858
fao_agris_US201500017471
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2014
Publisher Oxford University Press [etc.]
Oxford University Press
Publisher_xml – name: Oxford University Press [etc.]
– name: Oxford University Press
References ( key 20170512121614_CIT0022) 2013; 161
( key 20170512121614_CIT0036) 2013; 6
( key 20170512121614_CIT0060) 2006; 281
( key 20170512121614_CIT0044) 2012; 24
( key 20170512121614_CIT0096) 2001; 127
( key 20170512121614_CIT0030) 2001; 125
( key 20170512121614_CIT0093) 2001; 98
( key 20170512121614_CIT0095) 2013; 161
( key 20170512121614_CIT0026) 2007; 50
( key 20170512121614_CIT0041) 2013; 35
( key 20170512121614_CIT0065) 2007; 144
( key 20170512121614_CIT0072) 2011; 146
( key 20170512121614_CIT0104) 1997; 12
( key 20170512121614_CIT0002) 2001; 15
( key 20170512121614_CIT0053) 2007; 318
( key 20170512121614_CIT0011) 1996; 200
( key 20170512121614_CIT0099) 2011; 16
( key 20170512121614_CIT0102) 2005; 17
( key 20170512121614_CIT0071) 2005; 43
( key 20170512121614_CIT0048) 2003; 15
( key 20170512121614_CIT0008) 1999; 121
( key 20170512121614_CIT0050) 2003; 35
( key 20170512121614_CIT0032) 2005; 15
( key 20170512121614_CIT0105) 1995; 18
( key 20170512121614_CIT0009) 1996; 112
( key 20170512121614_CIT0107) 2002; 14
( key 20170512121614_CIT0046) 2009; 21
( key 20170512121614_CIT0040) 2007; 21
( key 20170512121614_CIT0110) 2013; 25
( key 20170512121614_CIT0090) 2009; 106
( key 20170512121614_CIT0073) 2007; 104
( key 20170512121614_CIT0068) 2013; 25
( key 20170512121614_CIT0004) 2002; 215
( key 20170512121614_CIT0097) 2007; 63
( key 20170512121614_CIT0014) 2000; 71
( key 20170512121614_CIT0054) 2008; 180
( key 20170512121614_CIT0075) 2008; 31
( key 20170512121614_CIT0024) 2003; 34
( key 20170512121614_CIT0029) 1999; 121
( key 20170512121614_CIT0079) 2004; 18
( key 20170512121614_CIT0033) 1999; 284
( key 20170512121614_CIT0049) 2012; 17
( key 20170512121614_CIT0045) 2002; 14
( key 20170512121614_CIT0023) 2001; 15
( key 20170512121614_CIT0092) 2006; 48
( key 20170512121614_CIT0038) 2011; 23
( key 20170512121614_CIT0089) 1997; 114
( key 20170512121614_CIT0069) 1994
( key 20170512121614_CIT0066) 1998; 16
( key 20170512121614_CIT0086) 2001; 213
( key 20170512121614_CIT0031) 2006; 47
( key 20170512121614_CIT0106) 2002; 419
( key 20170512121614_CIT0064) 2012; 24
( key 20170512121614_CIT0020) 2007; 2
( key 20170512121614_CIT0091) 2001; 126
( key 20170512121614_CIT0076) 1991; 14
( key 20170512121614_CIT0088) 2000; 122
( key 20170512121614_CIT0039) 2013; 54
( key 20170512121614_CIT0016) 2012; 24
( key 20170512121614_CIT0025) 2000; 23
( key 20170512121614_CIT0013) 1998; 49
( key 20170512121614_CIT0077) 2010; 154
( key 20170512121614_CIT0083) 2005; 44
( key 20170512121614_CIT0056) 2002; 178
( key 20170512121614_CIT0051) 2011; 16
( key 20170512121614_CIT0028) 2010; 51
( key 20170512121614_CIT0019) 1985; 8
( key 20170512121614_CIT0047) 1999; 8
( key 20170512121614_CIT0057) 1994
( key 20170512121614_CIT0080) 2003; 2003
( key 20170512121614_CIT0027) 2008; 4
( key 20170512121614_CIT0081) 2002; 130
( key 20170512121614_CIT0052) 2011; 9
( key 20170512121614_CIT0078) 2009; 19
( key 20170512121614_CIT0005) 2003; 133
( key 20170512121614_CIT0042) 1980; 3
( key 20170512121614_CIT0067) 2011; 157
( key 20170512121614_CIT0062) 1997; 20
( key 20170512121614_CIT0074) 2003; 17
( key 20170512121614_CIT0010) 2013; 64
( key 20170512121614_CIT0003) 2004; 16
( key 20170512121614_CIT0012) 2002; 129
( key 20170512121614_CIT0084) 2008; 20
( key 20170512121614_CIT0017) 2010; 141
( key 20170512121614_CIT0001) 2005; 138
( key 20170512121614_CIT0021) 2010; 73
( key 20170512121614_CIT0070) 1995; 268
( key 20170512121614_CIT0058) 1981; 67
( key 20170512121614_CIT0055) 2009; 60
( key 20170512121614_CIT0108) 2000; 123
( key 20170512121614_CIT0082) 2004; 101
( key 20170512121614_CIT0085) 2009; 21
( key 20170512121614_CIT0006) 1998; 8
( key 20170512121614_CIT0100) 2009; 182
( key 20170512121614_CIT0035) 1999; 13
( key 20170512121614_CIT0061) 2003; 20
( key 20170512121614_CIT0111) 2002; 128
( key 20170512121614_CIT0098) 2004; 303
( key 20170512121614_CIT0018) 1997; 20
( key 20170512121614_CIT0103) 2009; 21
( key 20170512121614_CIT0015) 1999; 18
( key 20170512121614_CIT0101) 1993; 5
( key 20170512121614_CIT0109) 1998; 95
( key 20170512121614_CIT0059) 2006; 45
( key 20170512121614_CIT0043) 1994; 105
( key 20170512121614_CIT0063) 2002; 53
( key 20170512121614_CIT0087) 1996; 93
( key 20170512121614_CIT0007) 1996; 110
( key 20170512121614_CIT0034) 2009; 28
( key 20170512121614_CIT0037) 2012; 109
( key 20170512121614_CIT0094) 2010; 51
References_xml – volume: 19
  start-page: 1216
  year: 2009
  ident: key 20170512121614_CIT0078
  article-title: Synergism of red and blue light in the control of Arabidopsis gene expression and development
  publication-title: Current Biology
  doi: 10.1016/j.cub.2009.05.062
– volume: 93
  start-page: 8129
  year: 1996
  ident: key 20170512121614_CIT0087
  article-title: Action spectra for phytochrome A- and phytochrome B-specific photoinduction of seed germination in Arabidopsis thaliana
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.93.15.8129
– volume: 8
  start-page: 605
  year: 1985
  ident: key 20170512121614_CIT0019
  article-title: Biphasic fluence–response curves for light-induced germination of Arabidopsis thaliana seeds
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.1985.tb01699.x
– volume: 161
  start-page: 2136
  year: 2013
  ident: key 20170512121614_CIT0022
  article-title: Conditional involvement of CONSTITUTIVE PHOTOMORPHOGENIC1 in the degradation of phytochrome
  publication-title: Plant Physiology
  doi: 10.1104/pp.112.213280
– volume: 3
  start-page: 45
  year: 1980
  ident: key 20170512121614_CIT0042
  article-title: The effect of red light in the high irradiance reaction of phytochrome: evidence for an interaction between Pfr and a phytochrome cycling-driven process
  publication-title: Plant, Cell and Environment
– volume: 24
  start-page: 1907
  year: 2012
  ident: key 20170512121614_CIT0016
  article-title: Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis
  publication-title: The Plant Cell
  doi: 10.1105/tpc.112.097733
– volume: 15
  start-page: 2966
  year: 2003
  ident: key 20170512121614_CIT0048
  article-title: A growth regulatory loop that provides homeostasis to phytochrome A signaling
  publication-title: The Plant Cell
  doi: 10.1105/tpc.014563
– volume: 121
  start-page: 571
  year: 1999
  ident: key 20170512121614_CIT0029
  article-title: Dynamic properties of endogenous phytochrome A in Arabidopsis seedlings
  publication-title: Plant Physiology
  doi: 10.1104/pp.121.2.571
– volume: 54
  start-page: 907
  year: 2013
  ident: key 20170512121614_CIT0039
  article-title: Three transcription factors, HFR1, LAF1 and HY5, regulate largely independent signaling pathways downstream of phytochrome A
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pct042
– volume: 14
  start-page: 1591
  year: 2002
  ident: key 20170512121614_CIT0107
  article-title: Missense mutation in the PAS2 domain of phytochrome A impairs subnuclear localization and a subset of responses
  publication-title: The Plant Cell
  doi: 10.1105/tpc.000521
– volume: 121
  start-page: 1207
  year: 1999
  ident: key 20170512121614_CIT0008
  article-title: Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.121.4.1207
– volume: 284
  start-page: 496
  year: 1999
  ident: key 20170512121614_CIT0033
  article-title: SPA1, a WD-repeat protein specific to phytochrome A signal transduction
  publication-title: Science
  doi: 10.1126/science.284.5413.496
– volume: 50
  start-page: 108
  year: 2007
  ident: key 20170512121614_CIT0026
  article-title: Phytochrome A is an irradiance-dependent red light sensor
  publication-title: Plant Journal
  doi: 10.1111/j.1365-313X.2007.03036.x
– volume: 45
  start-page: 423
  year: 2006
  ident: key 20170512121614_CIT0059
  article-title: Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2005.02635.x
– volume: 21
  start-page: 494
  year: 2009
  ident: key 20170512121614_CIT0085
  article-title: Phytochrome A mediates rapid red light-induced phosphorylation of arabidopsis FAR-RED ELONGATED HYPOCOTYL1 in a low fluence response
  publication-title: The Plant Cell
  doi: 10.1105/tpc.108.061259
– volume: 6
  start-page: 1261
  year: 2013
  ident: key 20170512121614_CIT0036
  article-title: Transcriptional programs related to phytochrome A function in arabidopsis seed germination
  publication-title: Molecular Plant
  doi: 10.1093/mp/sst001
– volume: 21
  start-page: 1341
  year: 2009
  ident: key 20170512121614_CIT0103
  article-title: Far-red elongated hypocotyl1 and FHY1-like associate with the arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation
  publication-title: The Plant Cell
  doi: 10.1105/tpc.109.067215
– volume: 144
  start-page: 495
  year: 2007
  ident: key 20170512121614_CIT0065
  article-title: GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock
  publication-title: Plant Physiology
  doi: 10.1104/pp.107.097048
– volume: 18
  start-page: 788
  year: 1995
  ident: key 20170512121614_CIT0105
  article-title: Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak de-etiolation of the phyA mutant under dense canopies
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.1995.tb00582.x
– volume: 51
  start-page: 596
  year: 2010
  ident: key 20170512121614_CIT0028
  article-title: Functional characterization of phytochrome autophosphorylation in plant light signaling
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcq025
– volume: 67
  start-page: 733
  year: 1981
  ident: key 20170512121614_CIT0058
  article-title: Phytochrome control of two low-irradiance responses in etiolated oat seedlings
  publication-title: Plant Physiology
  doi: 10.1104/pp.67.4.733
– volume: 133
  start-page: 1547
  year: 2003
  ident: key 20170512121614_CIT0005
  article-title: The Cvi allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.103.029546
– volume: 21
  start-page: 3212
  year: 2009
  ident: key 20170512121614_CIT0046
  article-title: OWL1: an Arabidopsis J-domain protein involved in perception of very low light fluences
  publication-title: The Plant Cell
  doi: 10.1105/tpc.109.066472
– volume: 16
  start-page: 19
  year: 2011
  ident: key 20170512121614_CIT0051
  article-title: PIFs: pivotal components in a cellular signaling hub
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2010.08.003
– volume: 268
  start-page: 675
  year: 1995
  ident: key 20170512121614_CIT0070
  article-title: Phytochromes: photosensory perception and signal transduction
  publication-title: Science
  doi: 10.1126/science.7732376
– volume: 51
  start-page: 1648
  year: 2010
  ident: key 20170512121614_CIT0094
  article-title: Subcellular sites of the signal transduction and degradation of phytochrome A
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcq121
– volume: 138
  start-page: 1126
  year: 2005
  ident: key 20170512121614_CIT0001
  article-title: New Arabidopsis recombinant inbred lines (Ler/No-0) reveal natural variation in phytochrome-mediated responses
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.059071
– volume: 15
  start-page: 939
  year: 2001
  ident: key 20170512121614_CIT0023
  article-title: EID1, an F-box protein involved in phytochrome A-specific light signaling
  publication-title: Genes and Development
  doi: 10.1101/gad.197201
– volume: 43
  start-page: 371
  year: 2005
  ident: key 20170512121614_CIT0071
  article-title: Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2005.02449.x
– volume: 101
  start-page: 11500
  year: 2004
  ident: key 20170512121614_CIT0082
  article-title: Heterodimerization of type II phytochromes in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0404286101
– volume: 23
  start-page: 311
  year: 2000
  ident: key 20170512121614_CIT0025
  article-title: Variation in dynamics of phytochrome A in Arabidopsis ecotypes and mutants
  publication-title: Plant, Cell and Environment
  doi: 10.1046/j.1365-3040.2000.00550.x
– volume: 213
  start-page: 764
  year: 2001
  ident: key 20170512121614_CIT0086
  article-title: Phytochrome A-mediated inhibition of seed germination in tomato
  publication-title: Planta
  doi: 10.1007/s004250100545
– volume: 114
  start-page: 637
  year: 1997
  ident: key 20170512121614_CIT0089
  article-title: Antagonistic but complementary actions of phytochromes A and B allow optimum seedling de-etiolation
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.2.637
– volume: 318
  start-page: 1302
  year: 2007
  ident: key 20170512121614_CIT0053
  article-title: Transposase-derived transcription factors regulate light signaling in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.1146281
– volume: 281
  start-page: 34421
  year: 2006
  ident: key 20170512121614_CIT0060
  article-title: Functional and biochemical analysis of the N-terminal domain of phytochrome A
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M603538200
– volume: 25
  start-page: 102
  year: 2013
  ident: key 20170512121614_CIT0068
  article-title: An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants
  publication-title: The Plant Cell
  doi: 10.1105/tpc.112.104331
– volume: 110
  start-page: 439
  year: 1996
  ident: key 20170512121614_CIT0007
  article-title: Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.110.2.439
– volume: 9
  start-page: e0148
  year: 2011
  ident: key 20170512121614_CIT0052
  article-title: Phytochrome signaling mechanisms
  publication-title: The Arabidopsis Book
  doi: 10.1199/tab.0148
– volume: 23
  start-page: 459
  year: 2011
  ident: key 20170512121614_CIT0038
  article-title: Rapid and reversible light-mediated chromatin modifications of arabidopsis phytochrome A locus
  publication-title: The Plant Cell
  doi: 10.1105/tpc.110.080481
– volume: 161
  start-page: 291
  year: 2013
  ident: key 20170512121614_CIT0095
  article-title: Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction
  publication-title: Plant Physiology
  doi: 10.1104/pp.112.206607
– volume: 105
  start-page: 141
  year: 1994
  ident: key 20170512121614_CIT0043
  article-title: Photoresponses of light-grown phyA mutants of Arabidopsis. Phytochrome A is required for the perception of daylength extensions
  publication-title: Plant Physiology
  doi: 10.1104/pp.105.1.141
– volume: 95
  start-page: 13976
  year: 1998
  ident: key 20170512121614_CIT0109
  article-title: Eukariotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.95.23.13976
– volume: 129
  start-page: 1127
  year: 2002
  ident: key 20170512121614_CIT0012
  article-title: The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor
  publication-title: Plant Physiology
  doi: 10.1104/pp.010977
– volume: 60
  start-page: 449
  year: 2009
  ident: key 20170512121614_CIT0055
  article-title: Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2009.03971.x
– volume: 146
  start-page: 813
  year: 2011
  ident: key 20170512121614_CIT0072
  article-title: Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.023
– volume: 17
  start-page: 584
  year: 2012
  ident: key 20170512121614_CIT0049
  article-title: The photomorphogenic repressors COP1 and DET1: 20 years later
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2012.05.004
– volume: 44
  start-page: 1023
  year: 2005
  ident: key 20170512121614_CIT0083
  article-title: PIF1 is regulated by light-mediated degradation through the ubiquitin–26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2005.02606.x
– volume: 141
  start-page: 1230
  year: 2010
  ident: key 20170512121614_CIT0017
  article-title: Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.007
– volume: 53
  start-page: 329
  year: 2002
  ident: key 20170512121614_CIT0063
  article-title: Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.53.100301.135302
– start-page: 71
  volume-title: Photomorphogenesis in plants
  year: 1994
  ident: key 20170512121614_CIT0069
  article-title: Phytochrome genes and their expression
  doi: 10.1007/978-94-011-1884-2_5
– volume: 2
  start-page: 530
  year: 2007
  ident: key 20170512121614_CIT0020
  article-title: Blue rhythms between GIGANTEA and phytochromes
  publication-title: Plant Signaling and Behavior
  doi: 10.4161/psb.2.6.4744
– volume: 104
  start-page: 10737
  year: 2007
  ident: key 20170512121614_CIT0073
  article-title: Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0703855104
– volume: 14
  start-page: 1541
  year: 2002
  ident: key 20170512121614_CIT0045
  article-title: Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm
  publication-title: The Plant Cell
  doi: 10.1105/tpc.001156
– volume: 16
  start-page: 1433
  year: 2004
  ident: key 20170512121614_CIT0003
  article-title: Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis
  publication-title: The Plant Cell
  doi: 10.1105/tpc.021568
– volume: 28
  start-page: 3893
  year: 2009
  ident: key 20170512121614_CIT0034
  article-title: Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers
  publication-title: EMBO Journal
  doi: 10.1038/emboj.2009.306
– volume: 20
  start-page: 1087
  year: 2003
  ident: key 20170512121614_CIT0061
  article-title: Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msg123
– volume: 126
  start-page: 826
  year: 2001
  ident: key 20170512121614_CIT0091
  article-title: The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via photoreversible phytochrome A-dependent modulation of auxin responsiveness
  publication-title: Plant Physiology
  doi: 10.1104/pp.126.2.826
– volume: 31
  start-page: 607
  year: 2008
  ident: key 20170512121614_CIT0075
  article-title: Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2008.08.003
– volume: 303
  start-page: 1003
  year: 2004
  ident: key 20170512121614_CIT0098
  article-title: Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic flowering
  publication-title: Science
  doi: 10.1126/science.1091761
– volume: 12
  start-page: 659
  year: 1997
  ident: key 20170512121614_CIT0104
  article-title: The VLF loci, polymorphic between ecotypes Landsberg erecta and Columbia, dissect two branches of phytochrome A signal transduction that correspond to very-low-fluence and high-irradiance responses
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.1997.d01-19.x
– volume: 64
  start-page: 403
  year: 2013
  ident: key 20170512121614_CIT0010
  article-title: Photoreceptor signaling networks in plant responses to shade
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-050312-120221
– volume: 15
  start-page: 2125
  year: 2005
  ident: key 20170512121614_CIT0032
  article-title: Nuclear accumulation of the phytochrome A photoreceptor requires FHY1
  publication-title: Current Biology
  doi: 10.1016/j.cub.2005.10.042
– volume: 180
  start-page: 995
  year: 2008
  ident: key 20170512121614_CIT0054
  article-title: Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene
  publication-title: Genetics
  doi: 10.1534/genetics.108.092742
– volume: 49
  start-page: 127
  year: 1998
  ident: key 20170512121614_CIT0013
  article-title: Modes of action of phytochromes
  publication-title: Journal of Experimental Botany
– volume: 109
  start-page: 12231
  year: 2012
  ident: key 20170512121614_CIT0037
  article-title: A phytochrome–phototropin light signaling complex at the plasma membrane
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1120203109
– volume: 21
  start-page: 2100
  year: 2007
  ident: key 20170512121614_CIT0040
  article-title: Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling
  publication-title: Genes and Development
  doi: 10.1101/gad.1568207
– volume: 112
  start-page: 965
  year: 1996
  ident: key 20170512121614_CIT0009
  article-title: Phytochrome A enhances the promotion of hypocotyl growth caused by reductions of phytochrome B Pfr levels in light-grown Arabidopsis thaliana
  publication-title: Plant Physiology
  doi: 10.1104/pp.112.3.965
– volume: 25
  start-page: 115
  year: 2013
  ident: key 20170512121614_CIT0110
  article-title: Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light
  publication-title: The Plant Cell
  doi: 10.1105/tpc.112.107086
– volume: 20
  start-page: 261
  year: 1997
  ident: key 20170512121614_CIT0062
  article-title: Dual effect of phytochrome A on hypocotyl growth under continuous red light
  publication-title: Plant, Cell and Environment
  doi: 10.1046/j.1365-3040.1997.d01-62.x
– volume: 5
  start-page: 757
  year: 1993
  ident: key 20170512121614_CIT0101
  article-title: Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light
  publication-title: The Plant Cell
  doi: 10.1105/tpc.5.7.757
– volume: 20
  start-page: 1586
  year: 2008
  ident: key 20170512121614_CIT0084
  article-title: Light-induced phosphorylation and degradation of the negative regulator phytochrome-interacting factor1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes
  publication-title: The Plant Cell
  doi: 10.1105/tpc.108.060020
– volume: 63
  start-page: 669
  year: 2007
  ident: key 20170512121614_CIT0097
  article-title: The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-006-9115-x
– volume: 34
  start-page: 827
  year: 2003
  ident: key 20170512121614_CIT0024
  article-title: HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.2003.01770.x
– volume: 106
  start-page: 13624
  year: 2009
  ident: key 20170512121614_CIT0090
  article-title: Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0906598106
– volume: 130
  start-page: 442
  year: 2002
  ident: key 20170512121614_CIT0081
  article-title: Patterns of expression and normalized levels of the five Arabidopsis phytochromes
  publication-title: Plant Physiology
  doi: 10.1104/pp.005389
– volume: 20
  start-page: 713
  year: 1997
  ident: key 20170512121614_CIT0018
  article-title: Phytochrome degradation
  publication-title: Plant, Cell and Environment
  doi: 10.1046/j.1365-3040.1997.d01-107.x
– volume: 178
  start-page: 173
  year: 2002
  ident: key 20170512121614_CIT0056
  article-title: Brassinosteroid mutants uncover fine tunning of phytochrome signaling
  publication-title: Plant Physiology
– volume: 127
  start-page: 1607
  year: 2001
  ident: key 20170512121614_CIT0096
  article-title: Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.010467
– volume: 48
  start-page: 728
  year: 2006
  ident: key 20170512121614_CIT0092
  article-title: phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2006.02914.x
– volume: 18
  start-page: 499
  year: 1999
  ident: key 20170512121614_CIT0015
  article-title: Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.1999.00475.x
– volume: 157
  start-page: 1128
  year: 2011
  ident: key 20170512121614_CIT0067
  article-title: Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.181792
– volume: 16
  start-page: 417
  year: 2011
  ident: key 20170512121614_CIT0099
  article-title: Phytochrome signaling: solving the Gordian knot with microbial relatives
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2011.05.011
– volume: 14
  start-page: 501
  year: 1991
  ident: key 20170512121614_CIT0076
  article-title: Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.1991.tb01520.x
– volume: 24
  start-page: 566
  year: 2012
  ident: key 20170512121614_CIT0044
  article-title: Nuclear phytochrome A signaling promotes phototropism in Arabidopsis
  publication-title: The Plant Cell
  doi: 10.1105/tpc.111.095083
– volume: 200
  start-page: 132
  year: 1996
  ident: key 20170512121614_CIT0011
  article-title: High-irradiance responses induced by far-red light in grass seedlings of the wild type or overexpressing phytochrome A
  publication-title: Planta
– volume: 13
  start-page: 2017
  year: 1999
  ident: key 20170512121614_CIT0035
  article-title: The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling
  publication-title: Genes and Development
  doi: 10.1101/gad.13.15.2017
– volume: 4
  start-page: e1000143
  year: 2008
  ident: key 20170512121614_CIT0027
  article-title: FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1000143
– volume: 8
  start-page: 1032
  year: 1999
  ident: key 20170512121614_CIT0047
  article-title: Mass spectrometric characterization of oat phytochrome A: isoforms and posttranslational modifications
  publication-title: Protein Science
  doi: 10.1110/ps.8.5.1032
– volume: 125
  start-page: 1036
  year: 2001
  ident: key 20170512121614_CIT0030
  article-title: Negative interference of endogenous phytochrome B with phytochrome A function in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.125.2.1036
– volume: 18
  start-page: 617
  year: 2004
  ident: key 20170512121614_CIT0079
  article-title: Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling
  publication-title: Genes and Development
  doi: 10.1101/gad.1187804
– volume: 122
  start-page: 147
  year: 2000
  ident: key 20170512121614_CIT0088
  article-title: Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.122.1.147
– volume: 73
  start-page: 687
  year: 2010
  ident: key 20170512121614_CIT0021
  article-title: Light-induced degradation of phyA is promoted by transfer of the photoreceptor into the nucleus
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-010-9649-9
– volume: 17
  start-page: 804
  year: 2005
  ident: key 20170512121614_CIT0102
  article-title: Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis
  publication-title: The Plant Cell
  doi: 10.1105/tpc.104.030205
– volume: 154
  start-page: 401
  year: 2010
  ident: key 20170512121614_CIT0077
  article-title: Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.110.160820
– volume: 8
  start-page: 423
  year: 1998
  ident: key 20170512121614_CIT0006
  article-title: Burial conditions affect light responses of Datura ferox seeds
  publication-title: Seed Science Research
  doi: 10.1017/S0960258500004384
– volume: 17
  start-page: 2642
  year: 2003
  ident: key 20170512121614_CIT0074
  article-title: The COP1–SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity
  publication-title: Genes and Development
  doi: 10.1101/gad.1122903
– volume: 71
  start-page: 481
  year: 2000
  ident: key 20170512121614_CIT0014
  article-title: Two photobiological pathways of phytochrome A activity, only one of which shows dominant negative suppression by phytochrome B
  publication-title: Photochemistry and Photobiology
  doi: 10.1562/0031-8655(2000)071<0481:TPPOPA>2.0.CO;2
– volume: 2003
  start-page: 995
  year: 2003
  ident: key 20170512121614_CIT0080
  article-title: LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1
  publication-title: Nature
– volume: 182
  start-page: 1251
  year: 2009
  ident: key 20170512121614_CIT0100
  article-title: Map-based cloning of the gene associated with the soybean maturity locus E3
  publication-title: Genetics
  doi: 10.1534/genetics.108.098772
– volume: 35
  start-page: 373
  year: 2003
  ident: key 20170512121614_CIT0050
  article-title: The SPA1-like proteins SPA3 and SPA4 repress photomorphogenesis in the light
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.2003.01813.x
– volume: 215
  start-page: 745
  year: 2002
  ident: key 20170512121614_CIT0004
  article-title: SPA1, a component of phytochrome A signal transduction, regulates the light signaling current
  publication-title: Planta
  doi: 10.1007/s00425-002-0801-x
– volume: 123
  start-page: 235
  year: 2000
  ident: key 20170512121614_CIT0108
  article-title: fhy3-1 retains inductive responses of phytochrome A
  publication-title: Plant Physiology
  doi: 10.1104/pp.123.1.235
– start-page: 211
  volume-title: Photomorphogenesis in plants
  year: 1994
  ident: key 20170512121614_CIT0057
  article-title: The physiology of phytochrome action
  doi: 10.1007/978-94-011-1884-2_10
– volume: 35
  start-page: 371
  year: 2013
  ident: key 20170512121614_CIT0041
  article-title: Phytochrome-interacting factors have both shared and distinct biological roles
  publication-title: Molecules and Cells
  doi: 10.1007/s10059-013-0135-5
– volume: 98
  start-page: 9437
  year: 2001
  ident: key 20170512121614_CIT0093
  article-title: Multiple transcription-factor genes are early targets of phytochrome A signaling
  publication-title: Proccedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.161300998
– volume: 128
  start-page: 1098
  year: 2002
  ident: key 20170512121614_CIT0111
  article-title: The negatively acting factors EID1 and SPA1 have distinct functions in phytochrome A-specific light signaling
  publication-title: Plant Physiology
  doi: 10.1104/pp.010811
– volume: 419
  start-page: 308
  year: 2002
  ident: key 20170512121614_CIT0106
  article-title: Molecular basis of seasonal time measurement in Arabidopsis
  publication-title: Nature
  doi: 10.1038/nature00996
– volume: 24
  start-page: 2949
  year: 2012
  ident: key 20170512121614_CIT0064
  article-title: Arabidopsis phytochrome A is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome
  publication-title: The Plant Cell
  doi: 10.1105/tpc.111.094201
– volume: 16
  start-page: 201
  year: 1998
  ident: key 20170512121614_CIT0066
  article-title: Multiple photoreceptors mediate the light induced reduction of GUS–COP1 from Arabidopsis hypocotyl nuclei
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313x.1998.00290.x
– volume: 15
  start-page: 2613
  year: 2001
  ident: key 20170512121614_CIT0002
  article-title: LAF1, a MYB transcription activator for phytochrome A signaling
  publication-title: Genes and Development
  doi: 10.1101/gad.915001
– volume: 47
  start-page: 1023
  year: 2006
  ident: key 20170512121614_CIT0031
  article-title: FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcj087
SSID ssj0005055
Score 2.467949
SecondaryResourceType review_article
Snippet In etiolated seedlings, phytochrome A (phyA) mediates very-low-fluence responses (VLFRs), which initiate de-etiolation at the interphase between the soil and...
SourceID proquest
crossref
pubmed
jstor
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 2835
SubjectTerms cytoplasm
Environment
etiolation
far-red light
Fluence
Gene expression
Genes
Hypocotyls
interphase
Light
light intensity
Light Signal Transduction
Models, Biological
photomorphogenesis
Photoreceptors
phytochrome
Phytochrome A - metabolism
Plant cells
Plant physiology
Plants - metabolism
Plants - radiation effects
proteasome endopeptidase complex
REVIEW PAPER
Seed germination
Seedlings
soil
transcription (genetics)
Transcription factors
Title Light perception and signalling by phytochrome A
URI https://www.jstor.org/stable/24043858
https://www.ncbi.nlm.nih.gov/pubmed/24220656
https://search.proquest.com/docview/1548195378
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKy4ELopTSLQ8FFU4oWyd-rH1sK1BVFQ7QlfYW2Y4N4rBBbSpRfj0zdtJkaYuAS7QbJU4yM5oZz-MbQl4zX1jDpMuZ0XXOwUTlmmr465ya-cI5F8e3ffgoj-f8ZCEWw1TU2F3S2qn7eWtfyf9wFc4BX7FL9h84e70onIDfwF84Aofh-Fc8PsWdNSIPd7UpMROAFRkmIW3bGLloG_cVQQm6sOVNT3QF5d82ba8fYmriwqQg8XRIIB1hK0yKx05HqRyso0pdM5_GsYSCDzVPf-pRfPtGHIIMTfuR50MbAPhnyVr6pD25pHnJO7Xeqdc0CqIXo2KsLFVCKukMLxhKcatST4BX335YZPJ5y9L0md9gsuefSwzeoNXliCmwUc7g5bD7ezGq-aFC9PDx-O49Xq1m-7D8flp8xUO5F0zTl6revQmJzsjZI_Kw4112kERik6z55WNy_zCybovQKBfZIBcZMCwb5CKzV9lILrKDJ2T-_t3Z0XHeTcbIHZO6zX2AbwwanOdgg1HGCQl2oq6dBW_aW8t5sEWAnTr1gnFhFfcl9XRmfO0LbSnbJuvLZul3SKaloQ430kF6LrSyystQAymL2nDl-ITs9dSovicAlCoVLrAKaFYlmk3IDhCqMl_AMlWrrJiQ7Ui967tLBHRSQk3Iq56cFeg0TFSZpW8uLyrcRmN6dwbXPE10Ht1dluA2y927n_iMPBiE-zlZb88v_QtwHVv7MorDL0_8aUY
link.rule.ids 315,786,790,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light+perception+and+signalling+by+phytochrome+A&rft.jtitle=Journal+of+experimental+botany&rft.au=Casal%2C+J.+J&rft.au=Candia%2C+A.+N&rft.au=Sellaro%2C+R&rft.date=2014-06-01&rft.pub=Oxford+University+Press+%5Betc.%5D&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=65&rft.issue=11&rft.spage=2835&rft.epage=2845&rft_id=info:doi/10.1093%2Fjxb%2Fert379&rft.externalDocID=US201500017471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon