A particle swarm optimization algorithm for mixed-variable optimization problems
Many optimization problems in reality involve both continuous and discrete decision variables, and these problems are called mixed-variable optimization problems (MVOPs). The mixed decision variables of MVOPs increase the complexity of search space and make them difficult to be solved. The Particle...
Saved in:
Published in | Swarm and evolutionary computation Vol. 60; p. 100808 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many optimization problems in reality involve both continuous and discrete decision variables, and these problems are called mixed-variable optimization problems (MVOPs). The mixed decision variables of MVOPs increase the complexity of search space and make them difficult to be solved. The Particle Swarm Optimization (PSO) algorithm is easy to implement due to its simple framework and high speed of convergence, and has been successfully applied to many difficult optimization problems. Many existing PSO variants have been proposed to solve continuous or discrete optimization problems, which make it feasible and promising for solving MVOPs. In this paper, a new PSO algorithm for solving MVOPs is proposed, namely PSOmv, which can deal with both continuous and discrete decision variables simultaneously. To efficiently handle mixed variables, the PSOmv employs a mixed-variable encoding scheme. Based on the mixed-variable encoding scheme, two reproduction methods respectively for continuous variables and discrete variables are proposed. Furthermore, an adaptive parameter tuning strategy is employed and a constraints handling method is utilized to improve the overall efficiency of the PSOmv.The experimental results on 28 artificial MVOPs and two practical MVOPs demonstrate that the proposed PSOmv is a competitive algorithm for MVOPs. |
---|---|
AbstractList | Many optimization problems in reality involve both continuous and discrete decision variables, and these problems are called mixed-variable optimization problems (MVOPs). The mixed decision variables of MVOPs increase the complexity of search space and make them difficult to be solved. The Particle Swarm Optimization (PSO) algorithm is easy to implement due to its simple framework and high speed of convergence, and has been successfully applied to many difficult optimization problems. Many existing PSO variants have been proposed to solve continuous or discrete optimization problems, which make it feasible and promising for solving MVOPs. In this paper, a new PSO algorithm for solving MVOPs is proposed, namely PSOmv, which can deal with both continuous and discrete decision variables simultaneously. To efficiently handle mixed variables, the PSOmv employs a mixed-variable encoding scheme. Based on the mixed-variable encoding scheme, two reproduction methods respectively for continuous variables and discrete variables are proposed. Furthermore, an adaptive parameter tuning strategy is employed and a constraints handling method is utilized to improve the overall efficiency of the PSOmv.The experimental results on 28 artificial MVOPs and two practical MVOPs demonstrate that the proposed PSOmv is a competitive algorithm for MVOPs. |
ArticleNumber | 100808 |
Author | Zhang, Heng Zhou, Aimin Wang, Feng |
Author_xml | – sequence: 1 givenname: Feng surname: Wang fullname: Wang, Feng email: fengwang@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan 430072, China – sequence: 2 givenname: Heng surname: Zhang fullname: Zhang, Heng organization: School of Computer Science, Wuhan University, Wuhan 430072, China – sequence: 3 givenname: Aimin surname: Zhou fullname: Zhou, Aimin organization: Shanghai Key Laboratory of Multidimensional Information Processing, School of Computer Science and Technology, East China Normal University, Shanghai 200241, China |
BookMark | eNp9kLtOxDAQRV0sEsuyX0CTH0gY25uHC4rVipe0EhRQW44zBkdJHNlRFvh6EkJDwzQjXd0zGp0Lsupch4RcUUgo0Oy6TsIJR5cwYHMCBRQrsmaMQpylwM7JNoQapsmApalYk-d91Cs_WN1gFE7Kt5HrB9vaLzVY10WqeXPeDu9tZJyPWvuBVTwqb1U59f80e--mrA2X5MyoJuD2d2_I693ty-EhPj7dPx72x1jzTAwxCm4MYF4iqNLkIHLNWFEgBZPvKq5TZoygkJrKFDSjKs9LypnYZVrxMqXIN4Qvd7V3IXg0sve2Vf5TUpCzC1nLHxdydiEXFxN1s1A4vTZa9DJoi53GynrUg6yc_Zf_BodAbnI |
CitedBy_id | crossref_primary_10_1002_cpe_6773 crossref_primary_10_1016_j_knosys_2021_107366 crossref_primary_10_1016_j_egyr_2021_01_096 crossref_primary_10_1016_j_ins_2021_08_065 crossref_primary_10_1007_s40747_024_01478_0 crossref_primary_10_1080_15567036_2022_2055231 crossref_primary_10_1016_j_engappai_2022_105718 crossref_primary_10_1016_j_ins_2023_118957 crossref_primary_10_1002_int_22790 crossref_primary_10_1016_j_ins_2022_11_002 crossref_primary_10_1016_j_agwat_2022_108125 crossref_primary_10_1016_j_egyai_2024_100340 crossref_primary_10_1007_s11042_023_17699_3 crossref_primary_10_1016_j_asoc_2023_111126 crossref_primary_10_1021_acsanm_3c01789 crossref_primary_10_1007_s11042_022_12539_2 crossref_primary_10_1155_2022_4755728 crossref_primary_10_1080_09540091_2021_1997913 crossref_primary_10_1016_j_apm_2022_06_032 crossref_primary_10_1016_j_swevo_2023_101232 crossref_primary_10_1109_TCSS_2023_3263546 crossref_primary_10_1016_j_cie_2021_107131 crossref_primary_10_1016_j_swevo_2024_101591 crossref_primary_10_1002_adem_202201224 crossref_primary_10_3390_ai3020024 crossref_primary_10_1080_15599612_2023_2185714 crossref_primary_10_1016_j_egyr_2022_01_080 crossref_primary_10_1016_j_envc_2023_100720 crossref_primary_10_1016_j_asoc_2022_109957 crossref_primary_10_1016_j_ins_2023_119016 crossref_primary_10_1016_j_crgsc_2022_100325 crossref_primary_10_1016_j_engappai_2024_108659 crossref_primary_10_1142_S0219467822500528 crossref_primary_10_1007_s11760_022_02171_w crossref_primary_10_1016_j_engappai_2024_108263 crossref_primary_10_1016_j_ins_2024_120250 crossref_primary_10_1038_s41598_023_36921_8 crossref_primary_10_1177_0958305X231217635 crossref_primary_10_1007_s10489_022_03561_w crossref_primary_10_1016_j_asoc_2021_107404 crossref_primary_10_1016_j_ins_2022_08_001 crossref_primary_10_3390_sym14010011 crossref_primary_10_1109_TR_2023_3297124 crossref_primary_10_1007_s11042_022_12658_w crossref_primary_10_1016_j_jobe_2022_104430 crossref_primary_10_1016_j_ins_2023_120053 crossref_primary_10_1155_2022_1874005 crossref_primary_10_7717_peerj_cs_893 crossref_primary_10_1016_j_cor_2022_105860 crossref_primary_10_1088_1361_6501_ac8a65 crossref_primary_10_1016_j_energy_2021_122283 crossref_primary_10_1016_j_jclepro_2022_131224 crossref_primary_10_1515_revce_2021_0107 crossref_primary_10_1016_j_asoc_2022_109073 crossref_primary_10_1016_j_asoc_2023_110733 crossref_primary_10_1002_rnc_6533 crossref_primary_10_1109_ACCESS_2022_3156919 crossref_primary_10_1177_09670335231183086 crossref_primary_10_1007_s40722_023_00282_1 crossref_primary_10_1038_s41598_022_26566_4 crossref_primary_10_1016_j_swevo_2023_101257 crossref_primary_10_23919_CSMS_2021_0002 crossref_primary_10_3390_s23125368 crossref_primary_10_1007_s11665_023_08871_9 crossref_primary_10_1016_j_cie_2023_109333 crossref_primary_10_1016_j_ejor_2022_06_052 crossref_primary_10_1016_j_swevo_2023_101274 crossref_primary_10_1016_j_knosys_2022_108306 crossref_primary_10_1371_journal_pone_0300445 crossref_primary_10_1007_s10462_022_10359_2 crossref_primary_10_1021_acs_jctc_3c00637 crossref_primary_10_1007_s12652_022_04422_7 crossref_primary_10_54097_fcis_v2i3_5203 crossref_primary_10_1155_2022_3259222 crossref_primary_10_1016_j_swevo_2023_101427 crossref_primary_10_1080_0305215X_2022_2086238 crossref_primary_10_1109_LCOMM_2022_3213578 crossref_primary_10_1016_j_envsoft_2021_105272 crossref_primary_10_3934_mbe_2023695 crossref_primary_10_1016_j_engappai_2023_107573 crossref_primary_10_1007_s12205_023_0903_5 crossref_primary_10_1007_s40747_021_00363_4 crossref_primary_10_3390_sym14102036 crossref_primary_10_3233_JIFS_201124 crossref_primary_10_3390_sym13020322 crossref_primary_10_1016_j_energy_2022_125966 crossref_primary_10_1016_j_physa_2022_128392 crossref_primary_10_1002_int_22816 crossref_primary_10_1016_j_physa_2024_129681 crossref_primary_10_3390_math10213990 crossref_primary_10_3390_math9030205 crossref_primary_10_1063_5_0054894 crossref_primary_10_3390_machines11040497 crossref_primary_10_1016_j_eswa_2020_114418 crossref_primary_10_1016_j_ins_2022_05_055 crossref_primary_10_3390_en15228359 crossref_primary_10_3390_sym13061091 crossref_primary_10_1155_2021_1203726 crossref_primary_10_1007_s40684_021_00372_1 crossref_primary_10_1016_j_asoc_2023_110479 crossref_primary_10_1016_j_ins_2023_119164 crossref_primary_10_1016_j_swevo_2023_101398 crossref_primary_10_1016_j_asoc_2022_109018 crossref_primary_10_3390_su152015118 crossref_primary_10_1007_s12652_021_03120_0 crossref_primary_10_1109_ACCESS_2022_3222530 crossref_primary_10_1016_j_ins_2022_05_063 crossref_primary_10_1016_j_oceaneng_2024_117831 crossref_primary_10_1109_TIE_2023_3303611 crossref_primary_10_1007_s00366_021_01497_2 crossref_primary_10_1007_s11128_023_04071_5 crossref_primary_10_1007_s40747_021_00635_z crossref_primary_10_1155_2022_4600787 crossref_primary_10_32604_cmc_2023_031867 crossref_primary_10_3390_s21227499 crossref_primary_10_3390_su14095554 crossref_primary_10_1080_10106049_2021_1975832 crossref_primary_10_3390_biomimetics8020174 crossref_primary_10_1016_j_measurement_2021_110325 crossref_primary_10_1016_j_matcom_2022_04_031 crossref_primary_10_1007_s00521_023_08446_8 crossref_primary_10_1109_ACCESS_2022_3220239 crossref_primary_10_1155_2022_5755885 crossref_primary_10_1109_LRA_2023_3316070 crossref_primary_10_1155_2022_9599417 crossref_primary_10_1155_2021_3594271 crossref_primary_10_1093_jcde_qwac090 crossref_primary_10_1007_s40747_021_00380_3 crossref_primary_10_1016_j_adhoc_2023_103354 crossref_primary_10_1016_j_matcom_2022_04_026 crossref_primary_10_3390_su15086814 crossref_primary_10_1007_s11356_021_13352_4 crossref_primary_10_1016_j_cor_2023_106318 crossref_primary_10_1007_s00521_023_08661_3 crossref_primary_10_1088_2051_672X_ac5d6b crossref_primary_10_1007_s10854_023_10393_y crossref_primary_10_1007_s11831_021_09700_9 crossref_primary_10_1002_sat_1517 crossref_primary_10_1016_j_asoc_2021_107697 crossref_primary_10_1109_ACCESS_2023_3244792 crossref_primary_10_1016_j_swevo_2024_101499 crossref_primary_10_5194_ms_13_505_2022 crossref_primary_10_1109_ACCESS_2022_3218691 crossref_primary_10_1016_j_ast_2023_108330 crossref_primary_10_1088_1755_1315_1266_1_012021 crossref_primary_10_1109_ACCESS_2023_3272835 crossref_primary_10_1016_j_engappai_2023_107124 crossref_primary_10_1155_2022_8791968 crossref_primary_10_1016_j_engappai_2024_108118 crossref_primary_10_1016_j_cja_2023_11_018 crossref_primary_10_1016_j_dajour_2023_100251 crossref_primary_10_1016_j_ins_2022_04_053 crossref_primary_10_3390_machines9120344 crossref_primary_10_1155_2021_8378579 crossref_primary_10_1016_j_ecmx_2021_100129 crossref_primary_10_1016_j_asoc_2022_109943 crossref_primary_10_1109_ACCESS_2024_3387308 crossref_primary_10_1080_10255842_2023_2181660 crossref_primary_10_1016_j_eswa_2023_123122 crossref_primary_10_3390_s23208426 crossref_primary_10_7717_peerj_cs_2095 crossref_primary_10_1016_j_swevo_2024_101642 |
Cites_doi | 10.1109/TEVC.2004.826074 10.1016/j.asoc.2020.106592 10.1109/TEVC.2009.2030331 10.1109/TEVC.2014.2387433 10.1080/18756891.2010.9727745 10.1016/j.ins.2018.01.027 10.1109/TEVC.2017.2782571 10.1115/1.1876436 10.1016/j.ins.2014.08.039 10.1109/TSMCB.2003.818557 10.1016/j.swevo.2017.11.002 10.1016/j.swevo.2018.04.009 10.1109/TEVC.2004.826071 10.1016/j.amc.2006.09.098 10.1115/1.2912596 10.1016/j.cie.2006.09.002 10.1016/j.swevo.2020.100665 10.1016/S0141-9331(02)00053-4 10.1016/j.swevo.2017.05.010 10.1016/j.swevo.2011.02.002 10.1631/jzus.2004.0851 10.1016/j.asoc.2018.12.025 10.1007/s10462-020-09906-6 10.1016/j.asoc.2010.06.015 10.1109/TEVC.2005.857610 10.1023/A:1008202821328 10.1016/j.asoc.2018.11.042 10.1016/j.swevo.2018.08.015 10.1109/4235.585892 10.1109/TEVC.2013.2281531 10.1016/j.swevo.2019.06.009 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.swevo.2020.100808 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_swevo_2020_100808 S2210650220304612 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c369t-e93ff0e7be0abf7097c2288e10f74d3c52ff9105fdf8161a77b132946ca3b51e3 |
IEDL.DBID | AIKHN |
ISSN | 2210-6502 |
IngestDate | Thu Sep 26 17:46:27 EDT 2024 Fri Feb 23 02:48:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mixed-variable optimization Particle swarm optimization Parameter tuning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-e93ff0e7be0abf7097c2288e10f74d3c52ff9105fdf8161a77b132946ca3b51e3 |
ParticipantIDs | crossref_primary_10_1016_j_swevo_2020_100808 elsevier_sciencedirect_doi_10_1016_j_swevo_2020_100808 |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationTitle | Swarm and evolutionary computation |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shi, Chen, Lin, Gu, Kwong, Zhang (bib0033) 2019; 23 Sun, Zhang, Zhou, Zhang, Zhang (bib0037) 2019; 44 Shelokar, Siarry, Jayaraman, Kulkarni (bib0032) 2007; 188 Awad, Ali, Mallipeddi, Suganthan (bib0001) 2019; 76 Kennedy, Rui (bib0017) 2002 Mashinchi, A., Pedrycz (bib0024) 2011; 11 Juang (bib0015) 2004; 34 Eberhart, Kennedy (bib0010) 2002 Salman, Ahmad, Al-Madani (bib0030) 2002; 26 Liu, Chen, Zhan, Lin, Gong, Zhang (bib0022) 2013 Wu, Mallipeddi, Suganthan (bib0043) 2019; 44 Wang, Li, Zhang, Hu, Shen (bib0039) 2019; 49 Wang, Huang, Zhou, Pang (bib0042) 2003 Guo, Hu, Ye, Cao (bib0013) 2004; 5 Shi, Eberhart (bib0034) 1998 Dorigo, Gambardella (bib0008) 1997; 1 Datta, Figueira (bib0006) 2010 Chen, Zhang, Chung, Zhong, Wu, hui Shi (bib0004) 2014; 14 Wang, Li, Zhou, Tang (bib0040) 2020; 24 Ratnaweera, Halgamuge, Watson (bib0029) 2004; 8 Carrasco, García, Rueda, Das, Herrera (bib0003) 2020; 54 Rao, Y. (bib0028) 2005; 127 Derrac, García, Molina, Herrera (bib0007) 2011; 1 Goldberg (bib0012) 1989 Kennedy, Eberhart (bib0016) 1997; 5 Wang, Li, Liao, Yan (bib0038) 2020; 96 Biswas, Suganthan, Mallipeddi, Amaratunga (bib0002) 2019; 75 Storn, Price (bib0036) 1997; 11 Zhou, Sun, Zhang (bib0046) 2015; 19 Mendes, Kennedy, Neves (bib0025) 2004; 8 Sha, Hsu (bib0031) 2012; 51 E (bib0009) 1990; 112 Liang, Qin, Suganthan, Baskar (bib0019) 2006; 10 Liang, Suganthan (bib0020) 2005 Pang, Wang, Zhou, Dong, Liu, Zhang, Wang (bib0027) 2004 Halim, Ismail, Das (bib0014) 2020 Liao, Socha, Montes de Oca, Stutzle, Dorigo (bib0021) 2014; 18 Ying, Yu, Chen, Zhang (bib0045) 2018 Yan, Zhao, Hu, Zeng (bib0044) 2019; 47 Michalewicz (bib0026) 1994 Shi, Eberhart (bib0035) 2001 Wang, Zhang, Li, Lin, Shen (bib0041) 2018; 436–437 Lynn, Ali, Suganthan (bib0023) 2018; 39 Cheng, Jin (bib0005) 2015; 291 Gao, Hailu (bib0011) 2010; 3 Lampinen, Zelinka (bib0018) 1999 Shi (10.1016/j.swevo.2020.100808_bib0035) 2001 Rao (10.1016/j.swevo.2020.100808_bib0028) 2005; 127 Shi (10.1016/j.swevo.2020.100808_bib0033) 2019; 23 Liao (10.1016/j.swevo.2020.100808_bib0021) 2014; 18 Ratnaweera (10.1016/j.swevo.2020.100808_bib0029) 2004; 8 Shelokar (10.1016/j.swevo.2020.100808_bib0032) 2007; 188 Wang (10.1016/j.swevo.2020.100808_bib0039) 2019; 49 Biswas (10.1016/j.swevo.2020.100808_bib0002) 2019; 75 Liang (10.1016/j.swevo.2020.100808_bib0019) 2006; 10 Wang (10.1016/j.swevo.2020.100808_bib0042) 2003 Michalewicz (10.1016/j.swevo.2020.100808_bib0026) 1994 Lampinen (10.1016/j.swevo.2020.100808_bib0018) 1999 Shi (10.1016/j.swevo.2020.100808_bib0034) 1998 Carrasco (10.1016/j.swevo.2020.100808_bib0003) 2020; 54 Wang (10.1016/j.swevo.2020.100808_bib0040) 2020; 24 Datta (10.1016/j.swevo.2020.100808_bib0006) 2010 Yan (10.1016/j.swevo.2020.100808_bib0044) 2019; 47 Eberhart (10.1016/j.swevo.2020.100808_bib0010) 2002 Lynn (10.1016/j.swevo.2020.100808_bib0023) 2018; 39 Cheng (10.1016/j.swevo.2020.100808_bib0005) 2015; 291 Ying (10.1016/j.swevo.2020.100808_bib0045) 2018 E (10.1016/j.swevo.2020.100808_bib0009) 1990; 112 Kennedy (10.1016/j.swevo.2020.100808_bib0017) 2002 Wu (10.1016/j.swevo.2020.100808_bib0043) 2019; 44 Zhou (10.1016/j.swevo.2020.100808_bib0046) 2015; 19 Awad (10.1016/j.swevo.2020.100808_bib0001) 2019; 76 Gao (10.1016/j.swevo.2020.100808_bib0011) 2010; 3 Sun (10.1016/j.swevo.2020.100808_bib0037) 2019; 44 Derrac (10.1016/j.swevo.2020.100808_bib0007) 2011; 1 Mashinchi (10.1016/j.swevo.2020.100808_bib0024) 2011; 11 Juang (10.1016/j.swevo.2020.100808_bib0015) 2004; 34 Liang (10.1016/j.swevo.2020.100808_bib0020) 2005 Salman (10.1016/j.swevo.2020.100808_bib0030) 2002; 26 Dorigo (10.1016/j.swevo.2020.100808_bib0008) 1997; 1 Wang (10.1016/j.swevo.2020.100808_bib0038) 2020; 96 Wang (10.1016/j.swevo.2020.100808_bib0041) 2018; 436–437 Kennedy (10.1016/j.swevo.2020.100808_bib0016) 1997; 5 Storn (10.1016/j.swevo.2020.100808_bib0036) 1997; 11 Guo (10.1016/j.swevo.2020.100808_bib0013) 2004; 5 Mendes (10.1016/j.swevo.2020.100808_bib0025) 2004; 8 Goldberg (10.1016/j.swevo.2020.100808_bib0012) 1989 Pang (10.1016/j.swevo.2020.100808_bib0027) 2004 Chen (10.1016/j.swevo.2020.100808_bib0004) 2014; 14 Sha (10.1016/j.swevo.2020.100808_bib0031) 2012; 51 Halim (10.1016/j.swevo.2020.100808_bib0014) 2020 Liu (10.1016/j.swevo.2020.100808_bib0022) 2013 |
References_xml | – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0007 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. contributor: fullname: Herrera – volume: 291 start-page: 43 year: 2015 end-page: 60 ident: bib0005 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inf. Sci. contributor: fullname: Jin – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib0025 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Neves – volume: 188 start-page: 129 year: 2007 end-page: 142 ident: bib0032 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Appl. Math. Comput. contributor: fullname: Kulkarni – start-page: 71 year: 1999 end-page: 76 ident: bib0018 article-title: Mixed integer-discrete-continuous optimization by differential evolution publication-title: Proceedings of the 5th International Conference on Soft Computing contributor: fullname: Zelinka – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: bib0019 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Baskar – volume: 96 start-page: 106592 year: 2020 ident: bib0038 article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization publication-title: Appl. Soft Comput. contributor: fullname: Yan – start-page: 1583 year: 2003 end-page: 1585 ident: bib0042 article-title: Particle swarm optimization for traveling salesman problem publication-title: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (ICMLC2003) contributor: fullname: Pang – start-page: 101 year: 2001 end-page: 106 ident: bib0035 article-title: Fuzzy adaptive particle swarm optimization publication-title: Proceedings of the 2001 Congress on Evolutionary Computation contributor: fullname: Eberhart – volume: 436–437 start-page: 162 year: 2018 end-page: 177 ident: bib0041 article-title: A hybrid particle swarm optimization algorithm using adaptive learning strategy publication-title: Inf. Sci. contributor: fullname: Shen – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0036 article-title: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. contributor: fullname: Price – volume: 26 start-page: 363 year: 2002 end-page: 371 ident: bib0030 article-title: Particle swarm optimization for task assignment problem publication-title: Microprocessors Microsyst. contributor: fullname: Al-Madani – volume: 19 start-page: 807 year: 2015 end-page: 822 ident: bib0046 article-title: An estimation of distribution algorithm with cheap and expensive local search methods publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Zhang – volume: 76 start-page: 445 year: 2019 end-page: 458 ident: bib0001 article-title: An efficient differential evolution algorithm for stochastic OPF based active-reactive power dispatch problem considering renewable generators publication-title: Appl. Soft Comput. contributor: fullname: Suganthan – volume: 75 start-page: 616 year: 2019 end-page: 632 ident: bib0002 article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach publication-title: Appl. Soft Comput. contributor: fullname: Amaratunga – volume: 39 start-page: 24 year: 2018 end-page: 35 ident: bib0023 article-title: Population topologies for particle swarm optimization and differential evolution publication-title: Swarm Evol. Comput. contributor: fullname: Suganthan – volume: 1 start-page: 53 year: 1997 end-page: 66 ident: bib0008 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Gambardella – start-page: 124 year: 2005 end-page: 129 ident: bib0020 article-title: Dynamic multi-swarm particle swarm optimizer with local search publication-title: Proceedings of the Congress on Evolutionary Computation (CEC2005) contributor: fullname: Suganthan – year: 1994 ident: bib0026 article-title: Genetic Algorithms + Data Structures = Evolution Programs contributor: fullname: Michalewicz – volume: 18 start-page: 503 year: 2014 end-page: 518 ident: bib0021 article-title: Ant colony optimization for mixed-variable optimization problems publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Dorigo – start-page: 39 year: 2002 end-page: 43 ident: bib0010 article-title: A new optimizer using particle swarm theory publication-title: Proceedings of International Symposium on Human Science contributor: fullname: Kennedy – volume: 23 start-page: 1 year: 2019 end-page: 14 ident: bib0033 article-title: An adaptive estimation of distribution algorithm for multipolicy insurance investment planning publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Zhang – start-page: 1347 year: 2013 end-page: 1352 ident: bib0022 article-title: A set-based discrete differential evolution algorithm publication-title: International Conference on Systems, Man, and Cybernetics (SMC 2013) contributor: fullname: Zhang – year: 1989 ident: bib0012 article-title: Genetic Algorithms in Search Optimization and Machine Learning contributor: fullname: Goldberg – volume: 49 start-page: 220 year: 2019 end-page: 233 ident: bib0039 article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization publication-title: Swarm Evol. Comput. contributor: fullname: Shen – volume: 5 start-page: 851 year: 2004 end-page: 860 ident: bib0013 article-title: Swarm intelligence for mixed-variable design optimization publication-title: J. Zhejiang Univ. contributor: fullname: Cao – volume: 127 start-page: 1100 year: 2005 end-page: 1112 ident: bib0028 article-title: A hybrid genetic algorithm for mixed-discrete design optimization publication-title: J. Mech. Des. contributor: fullname: Y. – start-page: 69 year: 1998 end-page: 73 ident: bib0034 article-title: A modified particle swarm optimizer publication-title: Proceeding of IEEE International Conference on Entertainment Computing (ICEC1998) contributor: fullname: Eberhart – volume: 5 start-page: 4104 year: 1997 end-page: 4108 ident: bib0016 article-title: A discrete binary version of the particle swarm algorithm publication-title: IEEE Int. Conf. Syst. ManCybern. contributor: fullname: Eberhart – volume: 11 start-page: 1993 year: 2011 end-page: 2006 ident: bib0024 article-title: Hybrid optimization with improved tabu search publication-title: Appl. Soft Comput. contributor: fullname: Pedrycz – volume: 44 start-page: 695 year: 2019 end-page: 711 ident: bib0043 article-title: Ensemble strategies for population-based optimization algorithms – a survey publication-title: Swarm Evol. Comput. contributor: fullname: Suganthan – volume: 51 start-page: 791 year: 2012 end-page: 808 ident: bib0031 article-title: A hybrid particle swarm optimization for job shop scheduling problem publication-title: Comput. Ind. Eng. contributor: fullname: Hsu – start-page: 35 year: 2010 end-page: 46 ident: bib0006 article-title: A real-integer-discrete-coded differential evolution algorithm: a preliminary study publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization contributor: fullname: Figueira – volume: 44 start-page: 304 year: 2019 end-page: 319 ident: bib0037 article-title: A new learning-based adaptive multi-objective evolutionary algorithm publication-title: Swarm Evol. Comput. contributor: fullname: Zhang – volume: 47 start-page: 66 year: 2019 end-page: 71 ident: bib0044 article-title: Multimodal optimization problem in contamination source determination of water supply networks publication-title: Swarm Evol. Comput. contributor: fullname: Zeng – volume: 3 start-page: 832 year: 2010 end-page: 842 ident: bib0011 article-title: Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems publication-title: Int. J. Comput. Intell.Syst. contributor: fullname: Hailu – start-page: 1671 year: 2002 end-page: 1676 ident: bib0017 article-title: Population structure and particle swarm performance publication-title: Proceedings of the Congress on Evolutionary Computation (CEC2002) contributor: fullname: Rui – volume: 34 start-page: 997 year: 2004 end-page: 1006 ident: bib0015 article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design publication-title: IEEE Trans. Syst. Man Cybern. contributor: fullname: Juang – volume: 112 start-page: 223 year: 1990 end-page: 229 ident: bib0009 article-title: Nonlinear integer and discrete programming in mechanical design optimization publication-title: J. Mech. Des. contributor: fullname: E – start-page: 2342 year: 2004 end-page: 2346 ident: bib0027 article-title: Modified particle swarm optimization based on space transformation for solving traveling salesman problem publication-title: Proceedings of the 2004 International Conference on Machine Learning and Cybernetics (ICMLC2004) contributor: fullname: Wang – year: 2020 ident: bib0014 article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review publication-title: Artif. Intell. Rev. contributor: fullname: Das – start-page: 177 year: 2018 end-page: 188 ident: bib0045 article-title: A hybrid differential evolution algorithm for mixed-variable optimization problems publication-title: Inf. Sci. contributor: fullname: Zhang – volume: 24 start-page: 479 year: 2020 end-page: 493 ident: bib0040 article-title: An estimation of distribution algorithm for mixed-variable newsvendor problems publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Tang – volume: 54 start-page: 100665 year: 2020 ident: bib0003 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. contributor: fullname: Herrera – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: bib0029 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Watson – volume: 14 start-page: 278 year: 2014 end-page: 300 ident: bib0004 article-title: A novel set-based particle swarm optimization method for discrete optimization problems publication-title: IEEE Trans. Evol. Comput. contributor: fullname: hui Shi – start-page: 1671 year: 2002 ident: 10.1016/j.swevo.2020.100808_bib0017 article-title: Population structure and particle swarm performance contributor: fullname: Kennedy – volume: 8 start-page: 204 issue: 3 year: 2004 ident: 10.1016/j.swevo.2020.100808_bib0025 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826074 contributor: fullname: Mendes – start-page: 69 year: 1998 ident: 10.1016/j.swevo.2020.100808_bib0034 article-title: A modified particle swarm optimizer contributor: fullname: Shi – volume: 96 start-page: 106592 year: 2020 ident: 10.1016/j.swevo.2020.100808_bib0038 article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106592 contributor: fullname: Wang – volume: 14 start-page: 278 issue: 2 year: 2014 ident: 10.1016/j.swevo.2020.100808_bib0004 article-title: A novel set-based particle swarm optimization method for discrete optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2030331 contributor: fullname: Chen – start-page: 71 year: 1999 ident: 10.1016/j.swevo.2020.100808_bib0018 article-title: Mixed integer-discrete-continuous optimization by differential evolution contributor: fullname: Lampinen – volume: 19 start-page: 807 year: 2015 ident: 10.1016/j.swevo.2020.100808_bib0046 article-title: An estimation of distribution algorithm with cheap and expensive local search methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2387433 contributor: fullname: Zhou – volume: 3 start-page: 832 year: 2010 ident: 10.1016/j.swevo.2020.100808_bib0011 article-title: Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems publication-title: Int. J. Comput. Intell.Syst. doi: 10.1080/18756891.2010.9727745 contributor: fullname: Gao – volume: 436–437 start-page: 162 year: 2018 ident: 10.1016/j.swevo.2020.100808_bib0041 article-title: A hybrid particle swarm optimization algorithm using adaptive learning strategy publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.01.027 contributor: fullname: Wang – start-page: 1347 year: 2013 ident: 10.1016/j.swevo.2020.100808_bib0022 article-title: A set-based discrete differential evolution algorithm contributor: fullname: Liu – volume: 23 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.swevo.2020.100808_bib0033 article-title: An adaptive estimation of distribution algorithm for multipolicy insurance investment planning publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2782571 contributor: fullname: Shi – volume: 127 start-page: 1100 issue: 6 year: 2005 ident: 10.1016/j.swevo.2020.100808_bib0028 article-title: A hybrid genetic algorithm for mixed-discrete design optimization publication-title: J. Mech. Des. doi: 10.1115/1.1876436 contributor: fullname: Rao – volume: 291 start-page: 43 year: 2015 ident: 10.1016/j.swevo.2020.100808_bib0005 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.08.039 contributor: fullname: Cheng – volume: 34 start-page: 997 issue: 2 year: 2004 ident: 10.1016/j.swevo.2020.100808_bib0015 article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2003.818557 contributor: fullname: Juang – volume: 39 start-page: 24 year: 2018 ident: 10.1016/j.swevo.2020.100808_bib0023 article-title: Population topologies for particle swarm optimization and differential evolution publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.11.002 contributor: fullname: Lynn – start-page: 124 year: 2005 ident: 10.1016/j.swevo.2020.100808_bib0020 article-title: Dynamic multi-swarm particle swarm optimizer with local search contributor: fullname: Liang – year: 1989 ident: 10.1016/j.swevo.2020.100808_bib0012 contributor: fullname: Goldberg – volume: 44 start-page: 304 year: 2019 ident: 10.1016/j.swevo.2020.100808_bib0037 article-title: A new learning-based adaptive multi-objective evolutionary algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.04.009 contributor: fullname: Sun – volume: 8 start-page: 240 issue: 3 year: 2004 ident: 10.1016/j.swevo.2020.100808_bib0029 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 contributor: fullname: Ratnaweera – start-page: 2342 year: 2004 ident: 10.1016/j.swevo.2020.100808_bib0027 article-title: Modified particle swarm optimization based on space transformation for solving traveling salesman problem contributor: fullname: Pang – volume: 188 start-page: 129 issue: 1 year: 2007 ident: 10.1016/j.swevo.2020.100808_bib0032 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.09.098 contributor: fullname: Shelokar – volume: 112 start-page: 223 issue: 2 year: 1990 ident: 10.1016/j.swevo.2020.100808_bib0009 article-title: Nonlinear integer and discrete programming in mechanical design optimization publication-title: J. Mech. Des. doi: 10.1115/1.2912596 contributor: fullname: E – volume: 51 start-page: 791 issue: 4 year: 2012 ident: 10.1016/j.swevo.2020.100808_bib0031 article-title: A hybrid particle swarm optimization for job shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2006.09.002 contributor: fullname: Sha – volume: 54 start-page: 100665 year: 2020 ident: 10.1016/j.swevo.2020.100808_bib0003 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100665 contributor: fullname: Carrasco – volume: 26 start-page: 363 issue: 8 year: 2002 ident: 10.1016/j.swevo.2020.100808_bib0030 article-title: Particle swarm optimization for task assignment problem publication-title: Microprocessors Microsyst. doi: 10.1016/S0141-9331(02)00053-4 contributor: fullname: Salman – volume: 47 start-page: 66 year: 2019 ident: 10.1016/j.swevo.2020.100808_bib0044 article-title: Multimodal optimization problem in contamination source determination of water supply networks publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.05.010 contributor: fullname: Yan – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.swevo.2020.100808_bib0007 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 contributor: fullname: Derrac – start-page: 1583 year: 2003 ident: 10.1016/j.swevo.2020.100808_bib0042 article-title: Particle swarm optimization for traveling salesman problem contributor: fullname: Wang – volume: 5 start-page: 851 issue: 7 year: 2004 ident: 10.1016/j.swevo.2020.100808_bib0013 article-title: Swarm intelligence for mixed-variable design optimization publication-title: J. Zhejiang Univ. doi: 10.1631/jzus.2004.0851 contributor: fullname: Guo – volume: 76 start-page: 445 year: 2019 ident: 10.1016/j.swevo.2020.100808_bib0001 article-title: An efficient differential evolution algorithm for stochastic OPF based active-reactive power dispatch problem considering renewable generators publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.12.025 contributor: fullname: Awad – year: 2020 ident: 10.1016/j.swevo.2020.100808_bib0014 article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09906-6 contributor: fullname: Halim – volume: 11 start-page: 1993 year: 2011 ident: 10.1016/j.swevo.2020.100808_bib0024 article-title: Hybrid optimization with improved tabu search publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.015 contributor: fullname: Mashinchi – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.swevo.2020.100808_bib0019 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 contributor: fullname: Liang – start-page: 101 year: 2001 ident: 10.1016/j.swevo.2020.100808_bib0035 article-title: Fuzzy adaptive particle swarm optimization contributor: fullname: Shi – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.swevo.2020.100808_bib0036 article-title: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 contributor: fullname: Storn – volume: 24 start-page: 479 issue: 3 year: 2020 ident: 10.1016/j.swevo.2020.100808_bib0040 article-title: An estimation of distribution algorithm for mixed-variable newsvendor problems publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Wang – volume: 75 start-page: 616 year: 2019 ident: 10.1016/j.swevo.2020.100808_bib0002 article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.042 contributor: fullname: Biswas – volume: 44 start-page: 695 year: 2019 ident: 10.1016/j.swevo.2020.100808_bib0043 article-title: Ensemble strategies for population-based optimization algorithms – a survey publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.015 contributor: fullname: Wu – year: 1994 ident: 10.1016/j.swevo.2020.100808_bib0026 contributor: fullname: Michalewicz – volume: 1 start-page: 53 issue: 1 year: 1997 ident: 10.1016/j.swevo.2020.100808_bib0008 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585892 contributor: fullname: Dorigo – volume: 5 start-page: 4104 year: 1997 ident: 10.1016/j.swevo.2020.100808_bib0016 article-title: A discrete binary version of the particle swarm algorithm publication-title: IEEE Int. Conf. Syst. ManCybern. contributor: fullname: Kennedy – volume: 18 start-page: 503 issue: 4 year: 2014 ident: 10.1016/j.swevo.2020.100808_bib0021 article-title: Ant colony optimization for mixed-variable optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281531 contributor: fullname: Liao – start-page: 177 year: 2018 ident: 10.1016/j.swevo.2020.100808_bib0045 article-title: A hybrid differential evolution algorithm for mixed-variable optimization problems publication-title: Inf. Sci. contributor: fullname: Ying – start-page: 39 year: 2002 ident: 10.1016/j.swevo.2020.100808_bib0010 article-title: A new optimizer using particle swarm theory contributor: fullname: Eberhart – start-page: 35 year: 2010 ident: 10.1016/j.swevo.2020.100808_bib0006 article-title: A real-integer-discrete-coded differential evolution algorithm: a preliminary study contributor: fullname: Datta – volume: 49 start-page: 220 year: 2019 ident: 10.1016/j.swevo.2020.100808_bib0039 article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.06.009 contributor: fullname: Wang |
SSID | ssj0000602559 |
Score | 2.6244667 |
Snippet | Many optimization problems in reality involve both continuous and discrete decision variables, and these problems are called mixed-variable optimization... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 100808 |
SubjectTerms | Mixed-variable optimization Parameter tuning Particle swarm optimization |
Title | A particle swarm optimization algorithm for mixed-variable optimization problems |
URI | https://dx.doi.org/10.1016/j.swevo.2020.100808 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7eLF3-L8MXLwaFyb_kqOYzim4hB0sFtJ2kQrdhtb3Tz5t5u0qSiIB6-lD8LX5nvfC-_lAzinTBKRSl3kCKawn0iGWeJynKpAZ1NdUZDy6OJuFA7H_s0kmDSgX8_CmLZKy_0Vp5dsbZ90LZrdeZZ1H4iuVrS-IKS6NVzzcEunI0Kb0Opd3w5HX0ctTlgKZ2Mzp0OwianvHyo7vZZruTJzgKTsGaDGafK3HPUt7wx2YMsKRtSr1rQLDTndg-3ajAHZvbkP9z00twtHyzVf5Gim2SC3Y5aIvz7NFlnxnCOtUlGevcsUr3SdbCanfr5pLWaWBzAeXD32h9jaJeDEC1mBJfOUcmQkpMOFihwWJYRQKl1HRX7qJQFRSouDQKWKap3Ho0gYl3k_TLgnAld6h9CczqbyCJDUokCSQPCQcp85HmdukirmM4_6nBLZhosaoHhe3YoR1-1iL3GJZ2zwjCs82xDWIMY_Pm6sefuvwOP_Bp7AJjHNJ2V79Sk0i8WbPNPqoRAd2Lj8cDv2H_kEyFPE4w |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yPeiLd3Fe8-CjZW16Sx7HcHTuguAGeytJm2jFbmObmz_fkzYVB-KDr6UHwtfmy3fCOedD6I4ySUQqIckRTFleIpnFEodbqfLhNIWMghRXF4NhEI29x4k_2UHtqhdGl1Ua7i85vWBr86Rp0GzOs6z5TCBbAX1BSDk1HHi4DmqAwe6st7q9aPh91WIHhXDWNnMQYumYav5QUem13Mi17gMkRc0A1U6Tv51RP86dziHaN4IRt8o1HaEdOT1GB5UZAzZ78wQ9tfDcLBwvN3yR4xmwQW7aLDF_f5ktstVrjkGl4jz7lKm1hjxZd05tv2ksZpanaNx5GLUjy9glWIkbsJUlmauULUMhbS5UaLMwIYRS6dgq9FI38YlSIA58lSoKOo-HodAu816QcFf4jnTPUG06m8pzhCWIAkl8wQPKPWa7nDlJqpjHXOpxSmQD3VcAxfNyKkZclYu9xQWescYzLvFsoKACMd76uDHw9l-BF_8NvEW70WjQj_vdYe8S7RFdiFKUWl-h2mrxIa9BSazEjflTvgCQ18bX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+particle+swarm+optimization+algorithm+for+mixed-variable+optimization+problems&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Feng&rft.au=Zhang%2C+Heng&rft.au=Zhou%2C+Aimin&rft.date=2021-02-01&rft.issn=2210-6502&rft.volume=60&rft.spage=100808&rft_id=info:doi/10.1016%2Fj.swevo.2020.100808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2020_100808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |