A particle swarm optimization algorithm for mixed-variable optimization problems

Many optimization problems in reality involve both continuous and discrete decision variables, and these problems are called mixed-variable optimization problems (MVOPs). The mixed decision variables of MVOPs increase the complexity of search space and make them difficult to be solved. The Particle...

Full description

Saved in:
Bibliographic Details
Published inSwarm and evolutionary computation Vol. 60; p. 100808
Main Authors Wang, Feng, Zhang, Heng, Zhou, Aimin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many optimization problems in reality involve both continuous and discrete decision variables, and these problems are called mixed-variable optimization problems (MVOPs). The mixed decision variables of MVOPs increase the complexity of search space and make them difficult to be solved. The Particle Swarm Optimization (PSO) algorithm is easy to implement due to its simple framework and high speed of convergence, and has been successfully applied to many difficult optimization problems. Many existing PSO variants have been proposed to solve continuous or discrete optimization problems, which make it feasible and promising for solving MVOPs. In this paper, a new PSO algorithm for solving MVOPs is proposed, namely PSOmv, which can deal with both continuous and discrete decision variables simultaneously. To efficiently handle mixed variables, the PSOmv employs a mixed-variable encoding scheme. Based on the mixed-variable encoding scheme, two reproduction methods respectively for continuous variables and discrete variables are proposed. Furthermore, an adaptive parameter tuning strategy is employed and a constraints handling method is utilized to improve the overall efficiency of the PSOmv.The experimental results on 28 artificial MVOPs and two practical MVOPs demonstrate that the proposed PSOmv is a competitive algorithm for MVOPs.
AbstractList Many optimization problems in reality involve both continuous and discrete decision variables, and these problems are called mixed-variable optimization problems (MVOPs). The mixed decision variables of MVOPs increase the complexity of search space and make them difficult to be solved. The Particle Swarm Optimization (PSO) algorithm is easy to implement due to its simple framework and high speed of convergence, and has been successfully applied to many difficult optimization problems. Many existing PSO variants have been proposed to solve continuous or discrete optimization problems, which make it feasible and promising for solving MVOPs. In this paper, a new PSO algorithm for solving MVOPs is proposed, namely PSOmv, which can deal with both continuous and discrete decision variables simultaneously. To efficiently handle mixed variables, the PSOmv employs a mixed-variable encoding scheme. Based on the mixed-variable encoding scheme, two reproduction methods respectively for continuous variables and discrete variables are proposed. Furthermore, an adaptive parameter tuning strategy is employed and a constraints handling method is utilized to improve the overall efficiency of the PSOmv.The experimental results on 28 artificial MVOPs and two practical MVOPs demonstrate that the proposed PSOmv is a competitive algorithm for MVOPs.
ArticleNumber 100808
Author Zhang, Heng
Zhou, Aimin
Wang, Feng
Author_xml – sequence: 1
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  email: fengwang@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Heng
  surname: Zhang
  fullname: Zhang, Heng
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 3
  givenname: Aimin
  surname: Zhou
  fullname: Zhou, Aimin
  organization: Shanghai Key Laboratory of Multidimensional Information Processing, School of Computer Science and Technology, East China Normal University, Shanghai 200241, China
BookMark eNp9kLtOxDAQRV0sEsuyX0CTH0gY25uHC4rVipe0EhRQW44zBkdJHNlRFvh6EkJDwzQjXd0zGp0Lsupch4RcUUgo0Oy6TsIJR5cwYHMCBRQrsmaMQpylwM7JNoQapsmApalYk-d91Cs_WN1gFE7Kt5HrB9vaLzVY10WqeXPeDu9tZJyPWvuBVTwqb1U59f80e--mrA2X5MyoJuD2d2_I693ty-EhPj7dPx72x1jzTAwxCm4MYF4iqNLkIHLNWFEgBZPvKq5TZoygkJrKFDSjKs9LypnYZVrxMqXIN4Qvd7V3IXg0sve2Vf5TUpCzC1nLHxdydiEXFxN1s1A4vTZa9DJoi53GynrUg6yc_Zf_BodAbnI
CitedBy_id crossref_primary_10_1002_cpe_6773
crossref_primary_10_1016_j_knosys_2021_107366
crossref_primary_10_1016_j_egyr_2021_01_096
crossref_primary_10_1016_j_ins_2021_08_065
crossref_primary_10_1007_s40747_024_01478_0
crossref_primary_10_1080_15567036_2022_2055231
crossref_primary_10_1016_j_engappai_2022_105718
crossref_primary_10_1016_j_ins_2023_118957
crossref_primary_10_1002_int_22790
crossref_primary_10_1016_j_ins_2022_11_002
crossref_primary_10_1016_j_agwat_2022_108125
crossref_primary_10_1016_j_egyai_2024_100340
crossref_primary_10_1007_s11042_023_17699_3
crossref_primary_10_1016_j_asoc_2023_111126
crossref_primary_10_1021_acsanm_3c01789
crossref_primary_10_1007_s11042_022_12539_2
crossref_primary_10_1155_2022_4755728
crossref_primary_10_1080_09540091_2021_1997913
crossref_primary_10_1016_j_apm_2022_06_032
crossref_primary_10_1016_j_swevo_2023_101232
crossref_primary_10_1109_TCSS_2023_3263546
crossref_primary_10_1016_j_cie_2021_107131
crossref_primary_10_1016_j_swevo_2024_101591
crossref_primary_10_1002_adem_202201224
crossref_primary_10_3390_ai3020024
crossref_primary_10_1080_15599612_2023_2185714
crossref_primary_10_1016_j_egyr_2022_01_080
crossref_primary_10_1016_j_envc_2023_100720
crossref_primary_10_1016_j_asoc_2022_109957
crossref_primary_10_1016_j_ins_2023_119016
crossref_primary_10_1016_j_crgsc_2022_100325
crossref_primary_10_1016_j_engappai_2024_108659
crossref_primary_10_1142_S0219467822500528
crossref_primary_10_1007_s11760_022_02171_w
crossref_primary_10_1016_j_engappai_2024_108263
crossref_primary_10_1016_j_ins_2024_120250
crossref_primary_10_1038_s41598_023_36921_8
crossref_primary_10_1177_0958305X231217635
crossref_primary_10_1007_s10489_022_03561_w
crossref_primary_10_1016_j_asoc_2021_107404
crossref_primary_10_1016_j_ins_2022_08_001
crossref_primary_10_3390_sym14010011
crossref_primary_10_1109_TR_2023_3297124
crossref_primary_10_1007_s11042_022_12658_w
crossref_primary_10_1016_j_jobe_2022_104430
crossref_primary_10_1016_j_ins_2023_120053
crossref_primary_10_1155_2022_1874005
crossref_primary_10_7717_peerj_cs_893
crossref_primary_10_1016_j_cor_2022_105860
crossref_primary_10_1088_1361_6501_ac8a65
crossref_primary_10_1016_j_energy_2021_122283
crossref_primary_10_1016_j_jclepro_2022_131224
crossref_primary_10_1515_revce_2021_0107
crossref_primary_10_1016_j_asoc_2022_109073
crossref_primary_10_1016_j_asoc_2023_110733
crossref_primary_10_1002_rnc_6533
crossref_primary_10_1109_ACCESS_2022_3156919
crossref_primary_10_1177_09670335231183086
crossref_primary_10_1007_s40722_023_00282_1
crossref_primary_10_1038_s41598_022_26566_4
crossref_primary_10_1016_j_swevo_2023_101257
crossref_primary_10_23919_CSMS_2021_0002
crossref_primary_10_3390_s23125368
crossref_primary_10_1007_s11665_023_08871_9
crossref_primary_10_1016_j_cie_2023_109333
crossref_primary_10_1016_j_ejor_2022_06_052
crossref_primary_10_1016_j_swevo_2023_101274
crossref_primary_10_1016_j_knosys_2022_108306
crossref_primary_10_1371_journal_pone_0300445
crossref_primary_10_1007_s10462_022_10359_2
crossref_primary_10_1021_acs_jctc_3c00637
crossref_primary_10_1007_s12652_022_04422_7
crossref_primary_10_54097_fcis_v2i3_5203
crossref_primary_10_1155_2022_3259222
crossref_primary_10_1016_j_swevo_2023_101427
crossref_primary_10_1080_0305215X_2022_2086238
crossref_primary_10_1109_LCOMM_2022_3213578
crossref_primary_10_1016_j_envsoft_2021_105272
crossref_primary_10_3934_mbe_2023695
crossref_primary_10_1016_j_engappai_2023_107573
crossref_primary_10_1007_s12205_023_0903_5
crossref_primary_10_1007_s40747_021_00363_4
crossref_primary_10_3390_sym14102036
crossref_primary_10_3233_JIFS_201124
crossref_primary_10_3390_sym13020322
crossref_primary_10_1016_j_energy_2022_125966
crossref_primary_10_1016_j_physa_2022_128392
crossref_primary_10_1002_int_22816
crossref_primary_10_1016_j_physa_2024_129681
crossref_primary_10_3390_math10213990
crossref_primary_10_3390_math9030205
crossref_primary_10_1063_5_0054894
crossref_primary_10_3390_machines11040497
crossref_primary_10_1016_j_eswa_2020_114418
crossref_primary_10_1016_j_ins_2022_05_055
crossref_primary_10_3390_en15228359
crossref_primary_10_3390_sym13061091
crossref_primary_10_1155_2021_1203726
crossref_primary_10_1007_s40684_021_00372_1
crossref_primary_10_1016_j_asoc_2023_110479
crossref_primary_10_1016_j_ins_2023_119164
crossref_primary_10_1016_j_swevo_2023_101398
crossref_primary_10_1016_j_asoc_2022_109018
crossref_primary_10_3390_su152015118
crossref_primary_10_1007_s12652_021_03120_0
crossref_primary_10_1109_ACCESS_2022_3222530
crossref_primary_10_1016_j_ins_2022_05_063
crossref_primary_10_1016_j_oceaneng_2024_117831
crossref_primary_10_1109_TIE_2023_3303611
crossref_primary_10_1007_s00366_021_01497_2
crossref_primary_10_1007_s11128_023_04071_5
crossref_primary_10_1007_s40747_021_00635_z
crossref_primary_10_1155_2022_4600787
crossref_primary_10_32604_cmc_2023_031867
crossref_primary_10_3390_s21227499
crossref_primary_10_3390_su14095554
crossref_primary_10_1080_10106049_2021_1975832
crossref_primary_10_3390_biomimetics8020174
crossref_primary_10_1016_j_measurement_2021_110325
crossref_primary_10_1016_j_matcom_2022_04_031
crossref_primary_10_1007_s00521_023_08446_8
crossref_primary_10_1109_ACCESS_2022_3220239
crossref_primary_10_1155_2022_5755885
crossref_primary_10_1109_LRA_2023_3316070
crossref_primary_10_1155_2022_9599417
crossref_primary_10_1155_2021_3594271
crossref_primary_10_1093_jcde_qwac090
crossref_primary_10_1007_s40747_021_00380_3
crossref_primary_10_1016_j_adhoc_2023_103354
crossref_primary_10_1016_j_matcom_2022_04_026
crossref_primary_10_3390_su15086814
crossref_primary_10_1007_s11356_021_13352_4
crossref_primary_10_1016_j_cor_2023_106318
crossref_primary_10_1007_s00521_023_08661_3
crossref_primary_10_1088_2051_672X_ac5d6b
crossref_primary_10_1007_s10854_023_10393_y
crossref_primary_10_1007_s11831_021_09700_9
crossref_primary_10_1002_sat_1517
crossref_primary_10_1016_j_asoc_2021_107697
crossref_primary_10_1109_ACCESS_2023_3244792
crossref_primary_10_1016_j_swevo_2024_101499
crossref_primary_10_5194_ms_13_505_2022
crossref_primary_10_1109_ACCESS_2022_3218691
crossref_primary_10_1016_j_ast_2023_108330
crossref_primary_10_1088_1755_1315_1266_1_012021
crossref_primary_10_1109_ACCESS_2023_3272835
crossref_primary_10_1016_j_engappai_2023_107124
crossref_primary_10_1155_2022_8791968
crossref_primary_10_1016_j_engappai_2024_108118
crossref_primary_10_1016_j_cja_2023_11_018
crossref_primary_10_1016_j_dajour_2023_100251
crossref_primary_10_1016_j_ins_2022_04_053
crossref_primary_10_3390_machines9120344
crossref_primary_10_1155_2021_8378579
crossref_primary_10_1016_j_ecmx_2021_100129
crossref_primary_10_1016_j_asoc_2022_109943
crossref_primary_10_1109_ACCESS_2024_3387308
crossref_primary_10_1080_10255842_2023_2181660
crossref_primary_10_1016_j_eswa_2023_123122
crossref_primary_10_3390_s23208426
crossref_primary_10_7717_peerj_cs_2095
crossref_primary_10_1016_j_swevo_2024_101642
Cites_doi 10.1109/TEVC.2004.826074
10.1016/j.asoc.2020.106592
10.1109/TEVC.2009.2030331
10.1109/TEVC.2014.2387433
10.1080/18756891.2010.9727745
10.1016/j.ins.2018.01.027
10.1109/TEVC.2017.2782571
10.1115/1.1876436
10.1016/j.ins.2014.08.039
10.1109/TSMCB.2003.818557
10.1016/j.swevo.2017.11.002
10.1016/j.swevo.2018.04.009
10.1109/TEVC.2004.826071
10.1016/j.amc.2006.09.098
10.1115/1.2912596
10.1016/j.cie.2006.09.002
10.1016/j.swevo.2020.100665
10.1016/S0141-9331(02)00053-4
10.1016/j.swevo.2017.05.010
10.1016/j.swevo.2011.02.002
10.1631/jzus.2004.0851
10.1016/j.asoc.2018.12.025
10.1007/s10462-020-09906-6
10.1016/j.asoc.2010.06.015
10.1109/TEVC.2005.857610
10.1023/A:1008202821328
10.1016/j.asoc.2018.11.042
10.1016/j.swevo.2018.08.015
10.1109/4235.585892
10.1109/TEVC.2013.2281531
10.1016/j.swevo.2019.06.009
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2020.100808
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2020_100808
S2210650220304612
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c369t-e93ff0e7be0abf7097c2288e10f74d3c52ff9105fdf8161a77b132946ca3b51e3
IEDL.DBID AIKHN
ISSN 2210-6502
IngestDate Thu Sep 26 17:46:27 EDT 2024
Fri Feb 23 02:48:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mixed-variable optimization
Particle swarm optimization
Parameter tuning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-e93ff0e7be0abf7097c2288e10f74d3c52ff9105fdf8161a77b132946ca3b51e3
ParticipantIDs crossref_primary_10_1016_j_swevo_2020_100808
elsevier_sciencedirect_doi_10_1016_j_swevo_2020_100808
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shi, Chen, Lin, Gu, Kwong, Zhang (bib0033) 2019; 23
Sun, Zhang, Zhou, Zhang, Zhang (bib0037) 2019; 44
Shelokar, Siarry, Jayaraman, Kulkarni (bib0032) 2007; 188
Awad, Ali, Mallipeddi, Suganthan (bib0001) 2019; 76
Kennedy, Rui (bib0017) 2002
Mashinchi, A., Pedrycz (bib0024) 2011; 11
Juang (bib0015) 2004; 34
Eberhart, Kennedy (bib0010) 2002
Salman, Ahmad, Al-Madani (bib0030) 2002; 26
Liu, Chen, Zhan, Lin, Gong, Zhang (bib0022) 2013
Wu, Mallipeddi, Suganthan (bib0043) 2019; 44
Wang, Li, Zhang, Hu, Shen (bib0039) 2019; 49
Wang, Huang, Zhou, Pang (bib0042) 2003
Guo, Hu, Ye, Cao (bib0013) 2004; 5
Shi, Eberhart (bib0034) 1998
Dorigo, Gambardella (bib0008) 1997; 1
Datta, Figueira (bib0006) 2010
Chen, Zhang, Chung, Zhong, Wu, hui Shi (bib0004) 2014; 14
Wang, Li, Zhou, Tang (bib0040) 2020; 24
Ratnaweera, Halgamuge, Watson (bib0029) 2004; 8
Carrasco, García, Rueda, Das, Herrera (bib0003) 2020; 54
Rao, Y. (bib0028) 2005; 127
Derrac, García, Molina, Herrera (bib0007) 2011; 1
Goldberg (bib0012) 1989
Kennedy, Eberhart (bib0016) 1997; 5
Wang, Li, Liao, Yan (bib0038) 2020; 96
Biswas, Suganthan, Mallipeddi, Amaratunga (bib0002) 2019; 75
Storn, Price (bib0036) 1997; 11
Zhou, Sun, Zhang (bib0046) 2015; 19
Mendes, Kennedy, Neves (bib0025) 2004; 8
Sha, Hsu (bib0031) 2012; 51
E (bib0009) 1990; 112
Liang, Qin, Suganthan, Baskar (bib0019) 2006; 10
Liang, Suganthan (bib0020) 2005
Pang, Wang, Zhou, Dong, Liu, Zhang, Wang (bib0027) 2004
Halim, Ismail, Das (bib0014) 2020
Liao, Socha, Montes de Oca, Stutzle, Dorigo (bib0021) 2014; 18
Ying, Yu, Chen, Zhang (bib0045) 2018
Yan, Zhao, Hu, Zeng (bib0044) 2019; 47
Michalewicz (bib0026) 1994
Shi, Eberhart (bib0035) 2001
Wang, Zhang, Li, Lin, Shen (bib0041) 2018; 436–437
Lynn, Ali, Suganthan (bib0023) 2018; 39
Cheng, Jin (bib0005) 2015; 291
Gao, Hailu (bib0011) 2010; 3
Lampinen, Zelinka (bib0018) 1999
Shi (10.1016/j.swevo.2020.100808_bib0035) 2001
Rao (10.1016/j.swevo.2020.100808_bib0028) 2005; 127
Shi (10.1016/j.swevo.2020.100808_bib0033) 2019; 23
Liao (10.1016/j.swevo.2020.100808_bib0021) 2014; 18
Ratnaweera (10.1016/j.swevo.2020.100808_bib0029) 2004; 8
Shelokar (10.1016/j.swevo.2020.100808_bib0032) 2007; 188
Wang (10.1016/j.swevo.2020.100808_bib0039) 2019; 49
Biswas (10.1016/j.swevo.2020.100808_bib0002) 2019; 75
Liang (10.1016/j.swevo.2020.100808_bib0019) 2006; 10
Wang (10.1016/j.swevo.2020.100808_bib0042) 2003
Michalewicz (10.1016/j.swevo.2020.100808_bib0026) 1994
Lampinen (10.1016/j.swevo.2020.100808_bib0018) 1999
Shi (10.1016/j.swevo.2020.100808_bib0034) 1998
Carrasco (10.1016/j.swevo.2020.100808_bib0003) 2020; 54
Wang (10.1016/j.swevo.2020.100808_bib0040) 2020; 24
Datta (10.1016/j.swevo.2020.100808_bib0006) 2010
Yan (10.1016/j.swevo.2020.100808_bib0044) 2019; 47
Eberhart (10.1016/j.swevo.2020.100808_bib0010) 2002
Lynn (10.1016/j.swevo.2020.100808_bib0023) 2018; 39
Cheng (10.1016/j.swevo.2020.100808_bib0005) 2015; 291
Ying (10.1016/j.swevo.2020.100808_bib0045) 2018
E (10.1016/j.swevo.2020.100808_bib0009) 1990; 112
Kennedy (10.1016/j.swevo.2020.100808_bib0017) 2002
Wu (10.1016/j.swevo.2020.100808_bib0043) 2019; 44
Zhou (10.1016/j.swevo.2020.100808_bib0046) 2015; 19
Awad (10.1016/j.swevo.2020.100808_bib0001) 2019; 76
Gao (10.1016/j.swevo.2020.100808_bib0011) 2010; 3
Sun (10.1016/j.swevo.2020.100808_bib0037) 2019; 44
Derrac (10.1016/j.swevo.2020.100808_bib0007) 2011; 1
Mashinchi (10.1016/j.swevo.2020.100808_bib0024) 2011; 11
Juang (10.1016/j.swevo.2020.100808_bib0015) 2004; 34
Liang (10.1016/j.swevo.2020.100808_bib0020) 2005
Salman (10.1016/j.swevo.2020.100808_bib0030) 2002; 26
Dorigo (10.1016/j.swevo.2020.100808_bib0008) 1997; 1
Wang (10.1016/j.swevo.2020.100808_bib0038) 2020; 96
Wang (10.1016/j.swevo.2020.100808_bib0041) 2018; 436–437
Kennedy (10.1016/j.swevo.2020.100808_bib0016) 1997; 5
Storn (10.1016/j.swevo.2020.100808_bib0036) 1997; 11
Guo (10.1016/j.swevo.2020.100808_bib0013) 2004; 5
Mendes (10.1016/j.swevo.2020.100808_bib0025) 2004; 8
Goldberg (10.1016/j.swevo.2020.100808_bib0012) 1989
Pang (10.1016/j.swevo.2020.100808_bib0027) 2004
Chen (10.1016/j.swevo.2020.100808_bib0004) 2014; 14
Sha (10.1016/j.swevo.2020.100808_bib0031) 2012; 51
Halim (10.1016/j.swevo.2020.100808_bib0014) 2020
Liu (10.1016/j.swevo.2020.100808_bib0022) 2013
References_xml – volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0007
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  contributor:
    fullname: Herrera
– volume: 291
  start-page: 43
  year: 2015
  end-page: 60
  ident: bib0005
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Inf. Sci.
  contributor:
    fullname: Jin
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib0025
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Neves
– volume: 188
  start-page: 129
  year: 2007
  end-page: 142
  ident: bib0032
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Kulkarni
– start-page: 71
  year: 1999
  end-page: 76
  ident: bib0018
  article-title: Mixed integer-discrete-continuous optimization by differential evolution
  publication-title: Proceedings of the 5th International Conference on Soft Computing
  contributor:
    fullname: Zelinka
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: bib0019
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Baskar
– volume: 96
  start-page: 106592
  year: 2020
  ident: bib0038
  article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: Yan
– start-page: 1583
  year: 2003
  end-page: 1585
  ident: bib0042
  article-title: Particle swarm optimization for traveling salesman problem
  publication-title: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (ICMLC2003)
  contributor:
    fullname: Pang
– start-page: 101
  year: 2001
  end-page: 106
  ident: bib0035
  article-title: Fuzzy adaptive particle swarm optimization
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation
  contributor:
    fullname: Eberhart
– volume: 436–437
  start-page: 162
  year: 2018
  end-page: 177
  ident: bib0041
  article-title: A hybrid particle swarm optimization algorithm using adaptive learning strategy
  publication-title: Inf. Sci.
  contributor:
    fullname: Shen
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0036
  article-title: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  contributor:
    fullname: Price
– volume: 26
  start-page: 363
  year: 2002
  end-page: 371
  ident: bib0030
  article-title: Particle swarm optimization for task assignment problem
  publication-title: Microprocessors Microsyst.
  contributor:
    fullname: Al-Madani
– volume: 19
  start-page: 807
  year: 2015
  end-page: 822
  ident: bib0046
  article-title: An estimation of distribution algorithm with cheap and expensive local search methods
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Zhang
– volume: 76
  start-page: 445
  year: 2019
  end-page: 458
  ident: bib0001
  article-title: An efficient differential evolution algorithm for stochastic OPF based active-reactive power dispatch problem considering renewable generators
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: Suganthan
– volume: 75
  start-page: 616
  year: 2019
  end-page: 632
  ident: bib0002
  article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: Amaratunga
– volume: 39
  start-page: 24
  year: 2018
  end-page: 35
  ident: bib0023
  article-title: Population topologies for particle swarm optimization and differential evolution
  publication-title: Swarm Evol. Comput.
  contributor:
    fullname: Suganthan
– volume: 1
  start-page: 53
  year: 1997
  end-page: 66
  ident: bib0008
  article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Gambardella
– start-page: 124
  year: 2005
  end-page: 129
  ident: bib0020
  article-title: Dynamic multi-swarm particle swarm optimizer with local search
  publication-title: Proceedings of the Congress on Evolutionary Computation (CEC2005)
  contributor:
    fullname: Suganthan
– year: 1994
  ident: bib0026
  article-title: Genetic Algorithms + Data Structures = Evolution Programs
  contributor:
    fullname: Michalewicz
– volume: 18
  start-page: 503
  year: 2014
  end-page: 518
  ident: bib0021
  article-title: Ant colony optimization for mixed-variable optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Dorigo
– start-page: 39
  year: 2002
  end-page: 43
  ident: bib0010
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of International Symposium on Human Science
  contributor:
    fullname: Kennedy
– volume: 23
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib0033
  article-title: An adaptive estimation of distribution algorithm for multipolicy insurance investment planning
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Zhang
– start-page: 1347
  year: 2013
  end-page: 1352
  ident: bib0022
  article-title: A set-based discrete differential evolution algorithm
  publication-title: International Conference on Systems, Man, and Cybernetics (SMC 2013)
  contributor:
    fullname: Zhang
– year: 1989
  ident: bib0012
  article-title: Genetic Algorithms in Search Optimization and Machine Learning
  contributor:
    fullname: Goldberg
– volume: 49
  start-page: 220
  year: 2019
  end-page: 233
  ident: bib0039
  article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization
  publication-title: Swarm Evol. Comput.
  contributor:
    fullname: Shen
– volume: 5
  start-page: 851
  year: 2004
  end-page: 860
  ident: bib0013
  article-title: Swarm intelligence for mixed-variable design optimization
  publication-title: J. Zhejiang Univ.
  contributor:
    fullname: Cao
– volume: 127
  start-page: 1100
  year: 2005
  end-page: 1112
  ident: bib0028
  article-title: A hybrid genetic algorithm for mixed-discrete design optimization
  publication-title: J. Mech. Des.
  contributor:
    fullname: Y.
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0034
  article-title: A modified particle swarm optimizer
  publication-title: Proceeding of IEEE International Conference on Entertainment Computing (ICEC1998)
  contributor:
    fullname: Eberhart
– volume: 5
  start-page: 4104
  year: 1997
  end-page: 4108
  ident: bib0016
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: IEEE Int. Conf. Syst. ManCybern.
  contributor:
    fullname: Eberhart
– volume: 11
  start-page: 1993
  year: 2011
  end-page: 2006
  ident: bib0024
  article-title: Hybrid optimization with improved tabu search
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: Pedrycz
– volume: 44
  start-page: 695
  year: 2019
  end-page: 711
  ident: bib0043
  article-title: Ensemble strategies for population-based optimization algorithms – a survey
  publication-title: Swarm Evol. Comput.
  contributor:
    fullname: Suganthan
– volume: 51
  start-page: 791
  year: 2012
  end-page: 808
  ident: bib0031
  article-title: A hybrid particle swarm optimization for job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  contributor:
    fullname: Hsu
– start-page: 35
  year: 2010
  end-page: 46
  ident: bib0006
  article-title: A real-integer-discrete-coded differential evolution algorithm: a preliminary study
  publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization
  contributor:
    fullname: Figueira
– volume: 44
  start-page: 304
  year: 2019
  end-page: 319
  ident: bib0037
  article-title: A new learning-based adaptive multi-objective evolutionary algorithm
  publication-title: Swarm Evol. Comput.
  contributor:
    fullname: Zhang
– volume: 47
  start-page: 66
  year: 2019
  end-page: 71
  ident: bib0044
  article-title: Multimodal optimization problem in contamination source determination of water supply networks
  publication-title: Swarm Evol. Comput.
  contributor:
    fullname: Zeng
– volume: 3
  start-page: 832
  year: 2010
  end-page: 842
  ident: bib0011
  article-title: Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems
  publication-title: Int. J. Comput. Intell.Syst.
  contributor:
    fullname: Hailu
– start-page: 1671
  year: 2002
  end-page: 1676
  ident: bib0017
  article-title: Population structure and particle swarm performance
  publication-title: Proceedings of the Congress on Evolutionary Computation (CEC2002)
  contributor:
    fullname: Rui
– volume: 34
  start-page: 997
  year: 2004
  end-page: 1006
  ident: bib0015
  article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
  publication-title: IEEE Trans. Syst. Man Cybern.
  contributor:
    fullname: Juang
– volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: bib0009
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
  contributor:
    fullname: E
– start-page: 2342
  year: 2004
  end-page: 2346
  ident: bib0027
  article-title: Modified particle swarm optimization based on space transformation for solving traveling salesman problem
  publication-title: Proceedings of the 2004 International Conference on Machine Learning and Cybernetics (ICMLC2004)
  contributor:
    fullname: Wang
– year: 2020
  ident: bib0014
  article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review
  publication-title: Artif. Intell. Rev.
  contributor:
    fullname: Das
– start-page: 177
  year: 2018
  end-page: 188
  ident: bib0045
  article-title: A hybrid differential evolution algorithm for mixed-variable optimization problems
  publication-title: Inf. Sci.
  contributor:
    fullname: Zhang
– volume: 24
  start-page: 479
  year: 2020
  end-page: 493
  ident: bib0040
  article-title: An estimation of distribution algorithm for mixed-variable newsvendor problems
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Tang
– volume: 54
  start-page: 100665
  year: 2020
  ident: bib0003
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  contributor:
    fullname: Herrera
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: bib0029
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Watson
– volume: 14
  start-page: 278
  year: 2014
  end-page: 300
  ident: bib0004
  article-title: A novel set-based particle swarm optimization method for discrete optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: hui Shi
– start-page: 1671
  year: 2002
  ident: 10.1016/j.swevo.2020.100808_bib0017
  article-title: Population structure and particle swarm performance
  contributor:
    fullname: Kennedy
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  ident: 10.1016/j.swevo.2020.100808_bib0025
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826074
  contributor:
    fullname: Mendes
– start-page: 69
  year: 1998
  ident: 10.1016/j.swevo.2020.100808_bib0034
  article-title: A modified particle swarm optimizer
  contributor:
    fullname: Shi
– volume: 96
  start-page: 106592
  year: 2020
  ident: 10.1016/j.swevo.2020.100808_bib0038
  article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106592
  contributor:
    fullname: Wang
– volume: 14
  start-page: 278
  issue: 2
  year: 2014
  ident: 10.1016/j.swevo.2020.100808_bib0004
  article-title: A novel set-based particle swarm optimization method for discrete optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2030331
  contributor:
    fullname: Chen
– start-page: 71
  year: 1999
  ident: 10.1016/j.swevo.2020.100808_bib0018
  article-title: Mixed integer-discrete-continuous optimization by differential evolution
  contributor:
    fullname: Lampinen
– volume: 19
  start-page: 807
  year: 2015
  ident: 10.1016/j.swevo.2020.100808_bib0046
  article-title: An estimation of distribution algorithm with cheap and expensive local search methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2387433
  contributor:
    fullname: Zhou
– volume: 3
  start-page: 832
  year: 2010
  ident: 10.1016/j.swevo.2020.100808_bib0011
  article-title: Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems
  publication-title: Int. J. Comput. Intell.Syst.
  doi: 10.1080/18756891.2010.9727745
  contributor:
    fullname: Gao
– volume: 436–437
  start-page: 162
  year: 2018
  ident: 10.1016/j.swevo.2020.100808_bib0041
  article-title: A hybrid particle swarm optimization algorithm using adaptive learning strategy
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.01.027
  contributor:
    fullname: Wang
– start-page: 1347
  year: 2013
  ident: 10.1016/j.swevo.2020.100808_bib0022
  article-title: A set-based discrete differential evolution algorithm
  contributor:
    fullname: Liu
– volume: 23
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100808_bib0033
  article-title: An adaptive estimation of distribution algorithm for multipolicy insurance investment planning
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2782571
  contributor:
    fullname: Shi
– volume: 127
  start-page: 1100
  issue: 6
  year: 2005
  ident: 10.1016/j.swevo.2020.100808_bib0028
  article-title: A hybrid genetic algorithm for mixed-discrete design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.1876436
  contributor:
    fullname: Rao
– volume: 291
  start-page: 43
  year: 2015
  ident: 10.1016/j.swevo.2020.100808_bib0005
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.039
  contributor:
    fullname: Cheng
– volume: 34
  start-page: 997
  issue: 2
  year: 2004
  ident: 10.1016/j.swevo.2020.100808_bib0015
  article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2003.818557
  contributor:
    fullname: Juang
– volume: 39
  start-page: 24
  year: 2018
  ident: 10.1016/j.swevo.2020.100808_bib0023
  article-title: Population topologies for particle swarm optimization and differential evolution
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.11.002
  contributor:
    fullname: Lynn
– start-page: 124
  year: 2005
  ident: 10.1016/j.swevo.2020.100808_bib0020
  article-title: Dynamic multi-swarm particle swarm optimizer with local search
  contributor:
    fullname: Liang
– year: 1989
  ident: 10.1016/j.swevo.2020.100808_bib0012
  contributor:
    fullname: Goldberg
– volume: 44
  start-page: 304
  year: 2019
  ident: 10.1016/j.swevo.2020.100808_bib0037
  article-title: A new learning-based adaptive multi-objective evolutionary algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.04.009
  contributor:
    fullname: Sun
– volume: 8
  start-page: 240
  issue: 3
  year: 2004
  ident: 10.1016/j.swevo.2020.100808_bib0029
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
  contributor:
    fullname: Ratnaweera
– start-page: 2342
  year: 2004
  ident: 10.1016/j.swevo.2020.100808_bib0027
  article-title: Modified particle swarm optimization based on space transformation for solving traveling salesman problem
  contributor:
    fullname: Pang
– volume: 188
  start-page: 129
  issue: 1
  year: 2007
  ident: 10.1016/j.swevo.2020.100808_bib0032
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.098
  contributor:
    fullname: Shelokar
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  ident: 10.1016/j.swevo.2020.100808_bib0009
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2912596
  contributor:
    fullname: E
– volume: 51
  start-page: 791
  issue: 4
  year: 2012
  ident: 10.1016/j.swevo.2020.100808_bib0031
  article-title: A hybrid particle swarm optimization for job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2006.09.002
  contributor:
    fullname: Sha
– volume: 54
  start-page: 100665
  year: 2020
  ident: 10.1016/j.swevo.2020.100808_bib0003
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100665
  contributor:
    fullname: Carrasco
– volume: 26
  start-page: 363
  issue: 8
  year: 2002
  ident: 10.1016/j.swevo.2020.100808_bib0030
  article-title: Particle swarm optimization for task assignment problem
  publication-title: Microprocessors Microsyst.
  doi: 10.1016/S0141-9331(02)00053-4
  contributor:
    fullname: Salman
– volume: 47
  start-page: 66
  year: 2019
  ident: 10.1016/j.swevo.2020.100808_bib0044
  article-title: Multimodal optimization problem in contamination source determination of water supply networks
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.05.010
  contributor:
    fullname: Yan
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2020.100808_bib0007
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
  contributor:
    fullname: Derrac
– start-page: 1583
  year: 2003
  ident: 10.1016/j.swevo.2020.100808_bib0042
  article-title: Particle swarm optimization for traveling salesman problem
  contributor:
    fullname: Wang
– volume: 5
  start-page: 851
  issue: 7
  year: 2004
  ident: 10.1016/j.swevo.2020.100808_bib0013
  article-title: Swarm intelligence for mixed-variable design optimization
  publication-title: J. Zhejiang Univ.
  doi: 10.1631/jzus.2004.0851
  contributor:
    fullname: Guo
– volume: 76
  start-page: 445
  year: 2019
  ident: 10.1016/j.swevo.2020.100808_bib0001
  article-title: An efficient differential evolution algorithm for stochastic OPF based active-reactive power dispatch problem considering renewable generators
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.12.025
  contributor:
    fullname: Awad
– year: 2020
  ident: 10.1016/j.swevo.2020.100808_bib0014
  article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09906-6
  contributor:
    fullname: Halim
– volume: 11
  start-page: 1993
  year: 2011
  ident: 10.1016/j.swevo.2020.100808_bib0024
  article-title: Hybrid optimization with improved tabu search
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.015
  contributor:
    fullname: Mashinchi
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.swevo.2020.100808_bib0019
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857610
  contributor:
    fullname: Liang
– start-page: 101
  year: 2001
  ident: 10.1016/j.swevo.2020.100808_bib0035
  article-title: Fuzzy adaptive particle swarm optimization
  contributor:
    fullname: Shi
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.swevo.2020.100808_bib0036
  article-title: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
  contributor:
    fullname: Storn
– volume: 24
  start-page: 479
  issue: 3
  year: 2020
  ident: 10.1016/j.swevo.2020.100808_bib0040
  article-title: An estimation of distribution algorithm for mixed-variable newsvendor problems
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Wang
– volume: 75
  start-page: 616
  year: 2019
  ident: 10.1016/j.swevo.2020.100808_bib0002
  article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.042
  contributor:
    fullname: Biswas
– volume: 44
  start-page: 695
  year: 2019
  ident: 10.1016/j.swevo.2020.100808_bib0043
  article-title: Ensemble strategies for population-based optimization algorithms – a survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.015
  contributor:
    fullname: Wu
– year: 1994
  ident: 10.1016/j.swevo.2020.100808_bib0026
  contributor:
    fullname: Michalewicz
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: 10.1016/j.swevo.2020.100808_bib0008
  article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585892
  contributor:
    fullname: Dorigo
– volume: 5
  start-page: 4104
  year: 1997
  ident: 10.1016/j.swevo.2020.100808_bib0016
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: IEEE Int. Conf. Syst. ManCybern.
  contributor:
    fullname: Kennedy
– volume: 18
  start-page: 503
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2020.100808_bib0021
  article-title: Ant colony optimization for mixed-variable optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281531
  contributor:
    fullname: Liao
– start-page: 177
  year: 2018
  ident: 10.1016/j.swevo.2020.100808_bib0045
  article-title: A hybrid differential evolution algorithm for mixed-variable optimization problems
  publication-title: Inf. Sci.
  contributor:
    fullname: Ying
– start-page: 39
  year: 2002
  ident: 10.1016/j.swevo.2020.100808_bib0010
  article-title: A new optimizer using particle swarm theory
  contributor:
    fullname: Eberhart
– start-page: 35
  year: 2010
  ident: 10.1016/j.swevo.2020.100808_bib0006
  article-title: A real-integer-discrete-coded differential evolution algorithm: a preliminary study
  contributor:
    fullname: Datta
– volume: 49
  start-page: 220
  year: 2019
  ident: 10.1016/j.swevo.2020.100808_bib0039
  article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.06.009
  contributor:
    fullname: Wang
SSID ssj0000602559
Score 2.6244667
Snippet Many optimization problems in reality involve both continuous and discrete decision variables, and these problems are called mixed-variable optimization...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 100808
SubjectTerms Mixed-variable optimization
Parameter tuning
Particle swarm optimization
Title A particle swarm optimization algorithm for mixed-variable optimization problems
URI https://dx.doi.org/10.1016/j.swevo.2020.100808
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7eLF3-L8MXLwaFyb_kqOYzim4hB0sFtJ2kQrdhtb3Tz5t5u0qSiIB6-lD8LX5nvfC-_lAzinTBKRSl3kCKawn0iGWeJynKpAZ1NdUZDy6OJuFA7H_s0kmDSgX8_CmLZKy_0Vp5dsbZ90LZrdeZZ1H4iuVrS-IKS6NVzzcEunI0Kb0Opd3w5HX0ctTlgKZ2Mzp0OwianvHyo7vZZruTJzgKTsGaDGafK3HPUt7wx2YMsKRtSr1rQLDTndg-3ajAHZvbkP9z00twtHyzVf5Gim2SC3Y5aIvz7NFlnxnCOtUlGevcsUr3SdbCanfr5pLWaWBzAeXD32h9jaJeDEC1mBJfOUcmQkpMOFihwWJYRQKl1HRX7qJQFRSouDQKWKap3Ho0gYl3k_TLgnAld6h9CczqbyCJDUokCSQPCQcp85HmdukirmM4_6nBLZhosaoHhe3YoR1-1iL3GJZ2zwjCs82xDWIMY_Pm6sefuvwOP_Bp7AJjHNJ2V79Sk0i8WbPNPqoRAd2Lj8cDv2H_kEyFPE4w
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yPeiLd3Fe8-CjZW16Sx7HcHTuguAGeytJm2jFbmObmz_fkzYVB-KDr6UHwtfmy3fCOedD6I4ySUQqIckRTFleIpnFEodbqfLhNIWMghRXF4NhEI29x4k_2UHtqhdGl1Ua7i85vWBr86Rp0GzOs6z5TCBbAX1BSDk1HHi4DmqAwe6st7q9aPh91WIHhXDWNnMQYumYav5QUem13Mi17gMkRc0A1U6Tv51RP86dziHaN4IRt8o1HaEdOT1GB5UZAzZ78wQ9tfDcLBwvN3yR4xmwQW7aLDF_f5ktstVrjkGl4jz7lKm1hjxZd05tv2ksZpanaNx5GLUjy9glWIkbsJUlmauULUMhbS5UaLMwIYRS6dgq9FI38YlSIA58lSoKOo-HodAu816QcFf4jnTPUG06m8pzhCWIAkl8wQPKPWa7nDlJqpjHXOpxSmQD3VcAxfNyKkZclYu9xQWescYzLvFsoKACMd76uDHw9l-BF_8NvEW70WjQj_vdYe8S7RFdiFKUWl-h2mrxIa9BSazEjflTvgCQ18bX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+particle+swarm+optimization+algorithm+for+mixed-variable+optimization+problems&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Feng&rft.au=Zhang%2C+Heng&rft.au=Zhou%2C+Aimin&rft.date=2021-02-01&rft.issn=2210-6502&rft.volume=60&rft.spage=100808&rft_id=info:doi/10.1016%2Fj.swevo.2020.100808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2020_100808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon